Continuous Local Probing of a Bose-Einstein Condensate

Andrew Wade, Jacob Sherson, Klaus Mølmer

Aug 25th - QNLO 2012 - Sandbjerg Estate


```
I/ Measurement2/ BEC3/ Interaction4/ Observations
```


Ultracold gas (BEC)

I/ Measurement

2/ BEC

3/ Interaction

4/ Observations

- I/ Measurement
- 2/ BEC
- 3/ Interaction
- 4/ Observations

1/ Generalized Measurement

1/ Treatment of Light

2/ Bose-Einstein Condensation

2/ BEC - Hamiltonian

Second quantization

$$\hat{H} = \int d\mathbf{r} \,\hat{\psi}^{\dagger} \left(\mathbf{r}\right) \left[-\frac{\hbar^{2}}{2m} \nabla^{2} + V\left(\mathbf{r}\right) + \frac{g}{2} \hat{\psi}^{\dagger} \left(\mathbf{r}\right) \hat{\psi} \left(\mathbf{r}\right) \right] \hat{\psi} \left(\mathbf{r}\right)$$

$$\left[\hat{a}, \hat{a}^{\dagger}\right] = 1$$

$$\left[\hat{\psi}\left(\mathbf{r}\right), \hat{\psi}^{\dagger}\left(\mathbf{r}'\right)\right] = \delta\left(\mathbf{r} - \mathbf{r}'\right)$$

$$|n\rangle = \frac{1}{\sqrt{n!}} \left(\hat{a}^{\dagger} \right)^n |0\rangle$$

$$|\phi_n\rangle = \frac{1}{\sqrt{n!}} \left[\int d\mathbf{r} \phi(\mathbf{r}) \,\hat{\psi}^{\dagger}(\mathbf{r}) \right]^n |0\rangle$$

$$\langle \hat{a}^{\dagger} \hat{a} \rangle = n$$

$$\langle \hat{\psi}^{\dagger} (\mathbf{r}) \, \hat{\psi} (\mathbf{r}) \rangle = n (\mathbf{r})$$

$$\hat{a} \approx \alpha$$

$$\hat{\psi}(\mathbf{r}) \approx \psi(\mathbf{r})$$

2/ BEC - GPE

Gross-Pitaevskii Equation

$$i\hbar \frac{d\psi(\mathbf{r},t)}{dt} = \left[-\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{r}) + \frac{g}{2} |\psi(\mathbf{r},t)|^2 \right] \psi(\mathbf{r},t)$$

Fiber optics:

Self-Phase Modulation
Four-Wave Mixing
Second Harmonic Generation

Bogoliubov Approximation

$$\hat{\psi}(\mathbf{r}) \approx \psi(\mathbf{r}) + \delta \hat{\psi}(\mathbf{r})$$
 $\hat{a}_j \approx \alpha + \delta \hat{a}_j$

Hamiltonian to second order in $\delta \hat{\psi}(\mathbf{r})$ First order vanishes for GPE solution

$$\delta \hat{\psi} \left(\mathbf{r} \right) = \sum_{i \neq 0} \left[u_j \left(\mathbf{r} \right) \hat{\alpha}_j - v_j^* \left(\mathbf{r} \right) \hat{\alpha}_j^{\dagger} \right] \qquad \left[\hat{\alpha}_j, \hat{\alpha}_j^{\dagger} \right] = 1$$

Bogoliubov Transformation diagonalizes Hamiltonian

Well what did that mean?

$$\hat{K} = E_0 + \sum_{j \neq 0} E_j \hat{\alpha}_j^{\dagger} \hat{\alpha}_j$$

We have reformulated the problem in terms of noninteracting quasi-particles.

Quasi-particles represent collective excitations, unless

$$g=0$$
 or $E_j\gg 0$

Quasi-particles = Real particles

Uniform gas $(V(\mathbf{r}) = 0)$: low energy excitations are phonons

$$E\left(p\right) = cp \qquad c = \sqrt{\frac{gn}{m}}$$

Harmonic trap:

$$V\left(\mathbf{r}\right) = \frac{m}{2} \left(\omega_x^2 x^2 + \omega_y^2 y^2 + \omega_z^2 z^2\right)$$

$$n(\mathbf{r},t) \approx \psi(\mathbf{r})^{2} + \psi(\mathbf{r}) \langle \delta \hat{\psi}(\mathbf{r}) + \delta \hat{\psi}^{\dagger}(\mathbf{r}) \rangle$$

$$= \psi(\mathbf{r})^{2} + 2\psi(\mathbf{r}) \sum_{j \neq 0} f_{j}^{-}(\mathbf{r}) \langle \hat{x}_{j} \rangle$$

$$\hat{x}_{j} = \frac{1}{\sqrt{2}} \left(\hat{\alpha}_{j} + \hat{\alpha}_{j}^{\dagger} \right)$$

Uniform gas $(V(\mathbf{r}) = 0)$: low energy excitations are phonons

$$E\left(p\right) = cp \qquad c = \sqrt{\frac{gn}{m}}$$

Harmonic trap:

$$V\left(\mathbf{r}\right) = \frac{m}{2} \left(\omega_x^2 x^2 + \omega_y^2 y^2 + \omega_z^2 z^2\right)$$

$$n(\mathbf{r},t) \approx \psi(\mathbf{r})^{2} + \psi(\mathbf{r}) \langle \delta \hat{\psi}(\mathbf{r}) + \delta \hat{\psi}^{\dagger}(\mathbf{r}) \rangle$$

$$= \psi(\mathbf{r})^{2} + 2\psi(\mathbf{r}) \sum_{j \neq 0} f_{j}^{-}(\mathbf{r}) \langle \hat{x}_{j} \rangle$$

$$\hat{x}_{j} = \frac{1}{\sqrt{2}} \left(\hat{\alpha}_{j} + \hat{\alpha}_{j}^{\dagger} \right)$$

3/ The Interaction

large detuning

$$\hat{H}_{I} \propto \sum_{j} \hat{a}_{j}^{\dagger} \hat{a}_{j} \int_{D_{j}} \hat{\psi}^{\dagger} (z) \, \hat{\psi} (z) \, dz$$

$$\hat{a}_{j}^{\dagger}\hat{a}_{j} \approx |\alpha|^{2} + \beta \hat{x}_{ph,j} \qquad \hat{\psi}^{\dagger}(z)\,\hat{\psi}(z) \approx \psi(\mathbf{r})^{2} + 2\,\psi(\mathbf{r})\sum_{j\neq 0}f_{j}^{-}(\mathbf{r})\,\hat{x}_{j}$$

$$\hat{H}_I \propto \sum_j \hat{x}_{ph,j} (\hbar G_{j,0} + \sum_{k \neq 0} \hbar G_{j,k} \hat{x}_k)$$

4/ Toy Example

$$\hat{H}_I \propto \sum_j \hat{x}_{ph,j} (\hbar G_{j,0} + \sum_{k \neq 0} \hbar G_{j,k} \hat{x}_k)$$

The End

