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1/ Generalized Measurement
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1/ Treatment of Light

cτ

∆z

x̂ph,j

p̂ph,j

â†j âj ≈ |α|2 + βx̂ph,j

âj ≈ α+ δâj
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2/ Bose-Einstein Condensation

λdBMaxwell-Boltzmann

300K

T � Tc

T ≈ Tc
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2/ BEC - Hamiltonian

Ĥ =

�
dr ψ̂† (r)
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â, â†

�
= 1

�
ψ̂ (r) , ψ̂† (r�)

�
= δ (r− r�)
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2/ BEC - GPE

i�dψ (r, t)

dt
=

�
− �2
2m

∇2 + V (r) +
g

2
|ψ (r, t) |2

�
ψ (r, t)

Gross-Pitaevskii Equation

Self-Phase Modulation
Four-Wave Mixing

Second Harmonic Generation

Fiber optics:
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2/ BEC - Beyond GPE

ψ̂ (r) ≈ ψ (r) + δψ̂ (r)

Bogoliubov Approximation

Hamiltonian to second order in
First order vanishes for GPE solution

δψ̂ (r)

Bogoliubov Transformation diagonalizes Hamiltonian

�
α̂j , α̂

†
j

�
= 1δψ̂ (r) =

�

j �=0
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uj (r) α̂j − v∗j (r) α̂

†
j

�

âj ≈ α+ δâj
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2/ BEC - Beyond GPE

Well what did that mean?

K̂ = E0 +
�

j �=0

Ejα̂
†
jα̂j

We have reformulated the problem in terms of 
noninteracting quasi-particles.

Quasi-particles = Real particles

Ej � 0g = 0 or

Quasi-particles represent collective excitations, unless

Particle-like
vs Collective
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2/ BEC - Beyond GPE

E (p) = cp c =

�
gn

m

Uniform gas (            ): low energy excitations are phononsV (r) = 0
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x̂ph,j

p̂ph,j

â†j âj ≈ |α|2 + βx̂ph,j

3/ The Interaction

large detuning
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4/ Toy Example

ĤI ∝
�

j

x̂ph,j(�Gj,0 +
�

k �=0

�Gj,kx̂k)

var (x̂1) var (p̂1) ≥
1
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The End

1

0

BEC

normal state

Figure 2.3: The normalized first-order coherence function g(1)(s) vs the relative positions
s = |r − r�|. For a normal state, g(1)(s) vanishes for large s, but for a BEC, g(1)(s)
approaches to the condensate fraction N0/N for large s.

where �p̂2� = 1
N

�
dpn(p)p2 is the second order moment of the momentum distribution and

identically equal to the variance of the momentum distribution �∆p̂2� = �p̂2� − �p̂�2, since
�p̂� = 0.

The first order coherence function g(1)(s) is measured by various single particle in-
terferometers. A Young’s double slit interferometer is one of them. Figure 2.4 shows the
measured interference patterns for an exciton-polariton condensate across the BEC critical
density [11]. When the particle density is below BEC critical density (or above BEC criti-
cal temperature), no interference pattern is observed, while at above BEC critical density
(or below BEC critical temperature), the visibility of interference pattern increases with
the particle density. This indicates the condensate fraction increases with the particle
density. Figure 2.5 shows the measured g(1)(s) vs. s for a trapped Bose gas at below and
above BEC critical temperature [12].

Figure 2.4: The interference patterns of the Young’s double slit interferometer vs. the
particle density across the BEC critical density for an exciton polariton condensate [11].

If all particles condense into the ground state, i.e. N0
N → 1, the first-order coherence

function g(1)(s) is independent of s and equal to one. The first-order coherence function
g(1)(s) is a measure for the degree of condensation in momentum space. If only the ground
state is occupied and there is negligible populations in excited states, we always obtain
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