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Outline of lectures

•

 

Brief introduction to optical communications.

•

 

Basic classical physics of parametric devices.

•

 

Some conventional applications of parametric devices.

•

 

Basic quantum physics of parametric devices.

•

 

Signals, noise and information in parametric links.

•

 

Some novel applications of parametric devices.
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Transition from classical to quantum optics

•

 

Each frequency component of the field is a simple harmonic oscillator.

•

 

Classical mode amplitude A → quantum mode operator a.

•

 

Boson commutation relation (CR): [a,a+] = 1, where [a,b] = ab

 

–

 

ba.

•

 

Quadrature

 

operator q = (ae-i

 

+ a+ei)/21/2, number operator n = a+a.

•

 

Numbers (quadratures) are measured by direct (homodyne) detection.

•

 

Number states are eigenstates

 

of the number operator: a+a|n

 

= n|n.

•

 

Coherent states (CS) |

 

are eigenstates

 

of the amplitude operator:

a|

 

= |

 

or |a+

 

= |*.

•

 

Classical mode with amplitude 

 

→ coherent state (CS) with parameter .

•

 

For a CS, q

 

= |q|

 

= (e-i

 

+ *ei)/21/2

 

and n

 

= |n|

 

= ||2, like 
the classical mode with amplitude .

•

 

Where do quantum effects appear? Quadrature

 

and number fluctuations!

[W. Louisell, RaNiQE

 

(1964); R. Loudon, QToL

 

(2000).]

F & B

F & B
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Operators and commutation relations

•

 

Plane-wave function f(z) = exp(ikz), k = momentum.

•

 

Notice that

 

idz

 

f

 

= kf: k is the eigenvalue

 

of the operator idz

 

.

•

 

(zdz

 

– dz

 

z)f

 

= f, so [z,idz

 

] = i, where [a,b] = ab

 

-

 

ba.

•

 

Let q and p be conjugate operators, so [q,p] = i, and define a = (q + ip)/2. 
Then [a,a+] = 1: boson commutation relation (CR).

•

 

Here, a is a mode-amplitude operator, and q and p are mode-quadrature

 operators (real and imaginary parts).

•

 

Quantum phenomena, including noise, are consequences of the CR.
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•

 

Number (quadrature) moments can be measured by direct (homodyne) 
detection.

•

 

ns

 



 

is measured directly by a photon counter.

•

 

To measure qs

 

, one uses a beam splitter to combine as

 

and Al

 

,

where l denotes the local oscillator (LO).

•

 

n1

 



 

–

 

n2

 



 

= |Al

 

|as

 

exp(-il

 



 

+ as
+exp(il

 



= 2|Al

 

|qs

 

(l

 

)

 

.

Direct and homodyne detection

1

2

S

LO

[R. Loudon, QToL

 

(2000).]
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Number states

•

 

The number operator n = a+a

 

and the eigenvalue

 

equation is a+a|n

 

= n|n.

•

 

What effect do a and a+

 

have on the number state |n?

•

 

(a+a)a|n

 

= (aa+

 

- 1)a|n

 

= (n -

 

1)a|n

 

and n|a+a|n

 

= nn|n

 

= n. Hence, 
a|n

 

= n1/2|n-1.

•

 

(a+a)a+|n

 

= a+(a+a

 

+ 1)|n

 

= (n + 1)a+|n

 

and n|aa+|n

 

= n|(a+a + 1)|n

 

= 
(n + 1)n|n

 

= n + 1. Hence, a+|n

 

= (n + 1)1/2|n+1.

•

 

a is the lowering (destruction) operator and a+

 

is the raising (creation) 
operator.

•

 

Number states do not support mean fields: n|a|n

 

= n1/2n|n-1

 

= 0.
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Coherent states and quantum fluctuations

•

 

Coherent states (CS) |

 

are eigenstates

 

of the amplitude operator:

a|

 

= |

 

or |a+

 

= |*.

•

 

Coherent states do support mean fields: |a|

 

= |

 

= .

•

 

It is easy to check that |

 

= exp(-||2/2)n

 

n|n/(n!)1/2.

•

 

For the vacuum state |0, a|0

 

= 0 and 0|a+

 

= 0.

Hence, q

 

= 0 and q2

 

= q2

 

– 0.

q2

 

= 0|a2e-i2

 

+ aa+

 

+ a+a + (a+)2ei2|0/2

= 0|a2e-i2

 

+ (a+a

 

+ 1) + a+a + (a+)2ei2|0/2

= 1/2 (independent of ).

In a similar way, n

 

= 0 and n2

 

= 0.

•

 

For the CS |, q2

 

= 1/2. For other states, q2

 

≥

 

1/2.

•

 

For this CS, n

 

= ||2

 

and n2

 

= ||2

 

= n:

 

Shot noise!

[W. Louisell, RaNiQE

 

(1964); R. Loudon, QToL

 

(2000).]

ar

ai
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Quadrature
 

distributions of coherent states

•

 

We know that the variance q2

 

= 1/2. What is the distribution?

•

 

CS |

 

is defined by the equation a|

 

= |, where a = (q + ip)/2.

•

 

(q + ip)|

 

= 2|

 

 (q

 

+ d/dq)

 

= 2

 

(p  –id/dq).

•

 

Vacuum state: d

 

/dq

 

= q

 

, so 0

 

(q) = -1/4

 

exp[-(q)2/2].

•

 

In general, d

 

/

 

= 2(

 

– q)dq, so ln

 

= 2[q

 

– (q)2/2].

•

 

Coherent state: 

 

(q) = -1/4

 

exp[ipq

 

– (q

 

–

 

q)2/2].

•

 

The quadrature

 

fluctuations have Gaussian statistics (for any LO phase)!

[W. Louisell, RaNiQE

 

(1964).]
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Semi-classical model of coherent states

•

 

In the semi-classical (SC) model, A   + , where 

 

is a number and 

 is a Gaussian random variable with 

 

= 0, 2

 

= 0 and ||2

 

= 1/2.

•

 

Q()

 

= (e-i

 

+ *ei)/21/2

 

= q()

 

and Q2

 

= 1/2 = q2

 

: Correct!

•

 

N

 

= ||2

 

+ 1/2 ≈

 

n

 

and N2

 

≈

 

||2

 

+ 1/4 ≈

 

n

 

: Almost correct!

•

 

The SC method (half-photon per mode rule) predicts the quadrature

 variance exactly and the number variance accurately.

[W. Louisell, Phys. Rev. 124, 1646 (1961); J. Gordon, Phys. Rev. 129, 481 (1963).]
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Classical simple harmonic oscillator

•

 

For a simple harmonic oscillator, the Hamiltonian H = (Q2

 

+ P2)/2, where Q 
and P are conjugate variables.

•

 

The Hamilton equations are dt

 

Q

 

= dH/dP

 

= P, dt

 

P

 

= -dH/dQ

 

= -Q.

•

 

Periodic evolution: Q(t) = Q(0)cost + P(0)sint, P(t) = -Q(0)sint + P(0)cost.

•

 

Define the complex amplitude A = (Q + iP)/2, so that Q = (A + A*)/2 and    
P = (A –

 

A*)/2i.

•

 

Then the Hamiltonian H = A*A and the Hamilton equation dt

 

A

 

= -idH/dA*.

Check: dt

 

A = (P – iQ)/2 = -iA

 

= -idH/dA*.

•

 

Periodic evolution: A(t) = A(0)exp(-it).

•

 

This relationship is always true. Let H(Q,P) = H(A,A*) be arbitrary. Then

2dt

 

A = dt

 

Q + idt

 

P

 

= dH/dP

 

–

 

idH/dQ

= (idH/dA

 

–

 

idH/dA*)/2 -

 

i(dH/dA

 

+ dH/dA*)/2 = -i2dH/dA*.
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Heisenberg and Schrodinger pictures of QM evolution

•

 

The Hamilton equation is dt

 

A = -iH/A*, where H(A,A*) is the Hamiltonian.

•

 

In the Schrodinger picture, operators as

 

are constant and the state vector 
|

 

evolves according to the Schrodinger equation dt

 

|

 

= -iHs

 

|, where 
the Hamiltonian Hs

 

= H(A 

 

as

 

). 

•

 

Let dt

 

U = -iHs

 

U, so the unitary operator U(t) = exp(-iHs

 

t)U(0). Then |(t)

 

= 
U(t)|(0). Notice that U+U = 1 = UU+.

•

 

The expectation value as

 



 

= (t)|as

 

|(t)

 

= (0)|U+(t)as

 

U(t)|(0).

•

 

In the Heisenberg picture, operators ah

 

evolve and the state vector |

 

is 
constant.

•

 

Let ah

 

= U+(t)as

 

U(t), so ah

 



 

= as

 



 

by construction.

•

 

For any moment m(a), (t)|m(as

 

)|(t)

 

= (0)|m[ah

 

(t)]|(0).

•

 

The Heisenberg equation is dt

 

ah

 

= -i[ah

 

,Hh

 

], where Hh

 

= U+Hs

 

U = Hs

 

(as

 



 

ah

 

).

•

 

For spatial evolution, dt

 

 dz

 

+ renormalization.
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Quantum simple harmonic oscillator

•

 

In the Heisenberg picture the operators evolve in time.

•

 

A 

 

a and A* 

 

a+, where [a,a+] = 1.

•

 

H(A,A*) 

 

H(a,a+), so H = a+a, and dH/dA* 

 

[a,H].

•

 

dt

 

a

 

= -i[a,H] = -i[aa+a – a+a2] = -i[(a+a + 1)a – a+a2] = -ia.

•

 

Hence, a(t) = a(0)exp(-it).

•

 

The Heisenberg operators evolve in the same way as the classical

 variables (quadratic Hamiltonian).

•

 

This quantization procedure is equivalent to the replacement of the 
Poisson bracket by the commutator.
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Outline of lectures

•

 

Brief introduction to optical communications.

•

 

Basic classical physics of parametric devices.

•

 

Some conventional applications of parametric devices.

•

 

Basic quantum physics of parametric devices.

•

 

Signals, noise and information in parametric links.

•

 

Some novel applications of parametric devices.
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Erbium-doped, Raman and parametric amplification

•

 

In erbium-doped fiber amplifers

 

(EDFAs), each light mode interacts with an 
excited electron.

•

 

In Raman fiber amplifiers (RFAs), each light mode interacts with a vibration 
mode (optical phonon).

•

 

In parametric fiber amplifiers (PAs), each signal light mode interacts with 
another light mode (idler). This interaction is enabled by one or two pump 
waves, and is called four-wave mixing (FWM).

•

 

In linear QM, each process involves two modes (all modes are equal).

[P. Becker, EDFA (Academic, 1999), C. Headley, RAiFOCS

 

(Elsevier, 2004); M. Marhic, FOPA
(Cambridge, 2007).]

s

p

a

s

p

s

i

q

p
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Classical and quantal
 

models of parametric processes

•Classical MI or PC (2-mode amplification).

•Hc

 

= (|As

 

|2

 

+ |Ai

 

|2) + As

 

*Ai

 

* + *As

 

Ai

 

.

•Hc

 

is quadratic in the mode amplitudes.

•dz

 

Aj

 

= iHc

 

/Aj

 

* (dt

 

 dz

 

).

•dz As

 

= iAs

 

+ iAi

 

*.

•CMEs

 

are linear in the mode amplitudes.

•As

 

(z) = (z)As

 

(0) + (z)Ai

 

*(0).

•||2

 

- ||2

 

= 1 (conserves action flux).

•SC theory of noise: |j

 

|2

 

= 1/2.

•Linear combinations of GRVs

 

are GRVs.

•Quantal

 

MI or PC (2-mode squeezing).

•Hh

 

= (as
+as

 

+ ai
+ai

 

) + as
+ai

+

 

+ *as

 

ai

 

.

•[aj

 

,ak
+] = jk

 

.

•Hh

 

= Hc

 

(Aj

 



 

aj

 

).

•dz

 

aj

 

= i[aj

 

,Hh

 

].

•dz as

 

= ias

 

+ iai
+.

•CMEs

 

are linear in the mode operators.

•as

 

(z) = (z)as

 

(0) + (z)ai
+(0).

•||2

 

- ||2

 

= 1 (conserves probability).

•QM transfer functions same as CM.

•QM theory of detection: 0|aj
+aj

 

|0

 

= 0,

 
0|aj

 

aj
+|0

 

= 1.

•Output quadrature

 

distributions are G.

[W. Louisell, RaNiQE

 

(1964); R. Loudon, QToL

 

(2000).]
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Noise-figure calculations

•

 

The output quadrature

 

and number moments can be calculated.



 

Rewrite the output operators in terms of the input operators.



 

Use the BCR (aj

 

aj
+

 

= aj
+aj

 

+ 1) to rewrite the operator products in 
normal form (a+

 

before a). Extra terms appear (q2

 

calculation).



 

For coherent-state inputs (aj
+)mak

n

 

=(j

 

*)mk
n, like classical inputs 

(j

 

= aj

 

).



 

The extra terms are the quantum noise terms.

•

 

For direct detection the signal-to-noise ratio S = n2/n2.

•

 

For homodyne detection the signal-to-noise ratio S = q2/q2.

•

 

The noise figure F = S(0)/S(z) is a figure of demerit.

[W. Louisell, RaNiQE

 

(1964); R. Loudon, QToL

 

(2000).]
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•

 

IO relations: as

 

(z) = (z)as

 

(0) + (z)ai
+(0),  ai

 

(z) = (z)ai

 

(0) + (z)as
+(0).

•

 

MI and PC are PI if ai

 

(0)

 

= 0. Both signal quadratures

 

are amplified.

•

 

For homodyne detection S = q2/q2. The noise figure F = S(0)/S(z).

•

 

F = 1 + (G-1)/G, where G = ||2 is the PI gain.

•

 

In the high-gain regime, F = 2 (3 dB). The signal amplitude is amplified, 
as are its fluctuations and the idler fluctuations.

•

 

The SC model predicts the NFs

 

accurately!

ai

ar

Noise figures of MI and PC

[W. Louisell, PR 124, 1646 (1961); C. McKinstrie, OE 12, 5037 (2004) and 13, 4986 (2005).]

ar

ai
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Experimental results

•

 

Many groups have measured NFs

 

of 3 –

 

4 dB.

•

 

Extra noise due to spontaneous Raman 
scattering and pump-noise (induced by the 
erbium booster amplifiers).

•

 

Extra 1 dB is not a show stopper.

[J. Blows, OL 27, 491 (2002); K. Wong, OL 28, 692 (2003), R. Tang, OL 29, 2372 (2004),
P. Kylemark, JLT 22, 409 (2004) & 23, 2192 (2005); Z. Tong, OE 18, 2884 (2010).]
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•

 

IO relation: as

 

(z) = (z)as

 

(0) + (z)as
+(0).

•

 

Inverse MI is always PS.

•

 

If q() is amplified, q(+/2) is de-amplified.

•

 

For homodyne detection S = q2/q2.

•

 

The noise figure F = S(0)/S(z).

•

 

The noise figures depend on the pump, signal and LO phases.

•

 

For an in-phase (out-of-phase) signal, F = 1 (0 dB). The signal amplitude 
and its fluctuations are amplified (de-amplified) by the same amount.

•

 

The SC model predicts the NFs

 

accurately!

Noise figure of inverse MI

[R. Loudon, QToL

 

(2000), C. McKinstrie, OE 13, 4986 (2005) and OC 257, 146 (2006).]

ai

ar
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Noise figure of beam splitting and loss

•

 

Beam splitting (BS) is a real process and a model for fiber loss.

•

 

The IO relations are a1

 



 

= ta1

 

+ ira2

 

and a2

 



 

= ira1

 



 

+ ta2

 

(transmission, reflection).

•

 

The identity |t|2

 

+ |r|2

 

= 1 reflects power conservation.

•

 

BS adds quantum uncertainty (but not photons) to maintain q2

 

≥

 

1/2 (HUP).

•

 

For both types of detection, F = 1/|t|2 = L (weaker signal, same q-noise).

•

 

SC model: A2

 



 

0 + 2

 

, where |2

 

|2

 

= 1/2: Remember to add vacuum noise!

[R. Loudon, QToL

 

(2000); C. McKinstrie, OE 12, 5037 (2004) and 13, 4986 (2005).]

1’

2’

1

2

ai

ar
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BS converts signals without adding excess noise

•

 

Frequency conversion by BS is modeled by the same

input-output relations as a beam-splitter:

a1

 

(z) = (z)a1

 

(0) + (z)a2

 

(0), a2

 

(z) = -*(z)a1

 

(0) + *(z)a2

 

(0).

•

 

For complete conversion, |(z)| = 1, so a2

 

(z) 

 

a1

 

(0) !

•

 

BS converts signals (generates idlers) without adding excess noise.

•

 

SNR of the BS idler was measured to be 3-dB higher than the PC idler.

[C. McKinstrie, Opt. Express 13, 9131 (2005); A. Gnauck, Opt. Express 14, 8989 (2006).]

1

2

1’

2’

1’

2’

1

2

ar

ai

ar

ai
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Low-noise FC was demonstrated

•

 

The experiment involved a highly-nonlinear fiber (HNF). Pumps at 1566 and 
1598 nm were used to convert a signal at 1588 nm to a BS idler at 1556 nm 
(32-nm shift), with an efficiency of 0.99.

•

 

The output signal-to-noise ratio (SNR) of the BS idler was about 3 dB higher 
than the SNRs

 

of a PC idler and an erbium-amplified signal.

[A. Gnauck, Opt. Express 14, 8989 (2006).]
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Noise figures of single-
 

and multiple-stage links

•

 

Transmission links are sequences of attenuators followed by amplifiers.

•

 

L = attenuator (fiber) loss, G = PI amplifier gain.

•

 

For one stage of loss and PI gain, F = (2G –

 

1)L/G.

•

 

If the stage is balanced (G = L), then F = 2L –

 

1.

•

 

In the high-loss regime, F 

 

2L.

•

 

For an s-stage link, F = 1 + 2s(L –

 

1) 

 

2sL.

•

 

Half the noise figure comes from loss and half comes from gain.

•

 

For a balanced PS link and an in-phase signal, F = L.

•

 

For an s-stage link, F = 1 + s(L-1) 

 

sL.

•

 

The PS noise figure is 3-dB lower than the PI link (not 3s-dB).

•

 

Loss also reduces squeezing, because it adds noise isotropically.

•

 

Can one do better? Yes, by using two-mode PS amplification (F 

 

sL/2)!

[R. Loudon, JQE 21, 766 (1985); C. McKinstrie, OE 13, 4986 (2005); Z. Tong, OE 18, 15426 (2010).]
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Two-mode PS amplification

[C. McKinstrie, Opt. Express 13, 4986 (2005); M. Vasilyev, Opt. Express 13, 7563 (2005);
R. Tang, Opt. Express 13, 10483 (2005); J. Kakande, Opt. Express 18, 4130 (2010).]

ai

ar

•

 

2-mode PS amplification is produced by MI or PC if both inputs are

 

nonzero.

as

 

(z) = (z)as

 

(0) + (z)ai
+(0), ai

 

(z) = (z)ai

 

(0) + (z)as
+(0).

•

 

For equal inputs (0), output (z) = (0) + *(0) →

 

2G1/2

 

(0)|.

•

 

Power is amplified by 4G, noise is amplified by 2G, so the noise

 

figure (NF) 
of a 2-mode PSA is 0.5 (-3 dB)! [NF is 1 (0 dB) based on total input power.]

•

 

Result assumes pre-existing idler (non-standard).

•

 

Use (standard) 1-input MI (PC) to generate the idler,

a signal processor to control the sideband phases and

2-input MI (PC) to provide PS amplification.
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•

 

An ideal CPA involves 2 (signal and idler) modes.

•

 

Phase controller () ensures that the mode amplitudes add constructively.

•

 

The signal NF is (2H0

 

– 1)/H0

 

= 1 + (H0

 

– 1)/H0

 

, where

H0

 

= G2

 

G1

 

+ (G2

 

– 1)(G1

 

–

 

1) + 2[G2

 

(G2

 

– 1)G1

 

(G1

 

– 1)]1/2

is the composite in-phase gain, G1

 

and G2

 

are the individual PI gains.

•

 

1 < F < 2, just like a standard PI amplifier. Why?

•

 

The first PA makes the CPA operate in a PI manner.

•

 

PI operation ensures that F > 1 (0 dB).

Cascaded parametric amplification (1)

[ Z. Tong, Opt. Express 18, 14820 (2010); C. McKinstrie, Opt. Express 18, 19792 (2010).]
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•

 

The simplest CP link involves 4 modes (signal, idler and 2 loss modes).

•

 

General formulas exist for the NFs

 

of multiple-mode devices, for which

aj

 

(z) = k

 

[jk

 

(z)ak

 

(0) + jk

 

(z)ak
+(0)].

•

 

The signal NF is [(2H0

 

– 1)T + (2G2

 

–

 

1)(1 –

 

T)]/H0

 

T, where

H0

 

= G2

 

G1

 

+ (G2

 

–

 

1)(G1

 

–

 

1) + 2[G2

 

(G2

 

– 1)G1

 

(G1

 

– 1)]1/2

is composite gain, G1

 

and G2

 

are individual gains and T is transmission (loss).

•

 

Recall that the NF of a balanced PI link is 2L –

 

1, where L = 1/T.

•

 

In the high-loss regime, the NF of a CP link 

 

L/2 (6-dB reduction)!

Cascaded parametric amplification (2)

[C. McKinstrie

 

and Z. Tong, Opt. Express 13, 4986 (2005); 18, 14820 (2010); 18, 19792 (2010).]

Cascaded PSA
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Fiber link with two-mode PS amplification

[Z. Tong, Opt. Express 18, 15426 (2010) and Nat. Photon. 5, 430 (2011).]

•

 

A parametric amplifier with one input is PI, and has a NF of 3 dB (excess noise from 
idler vacuum fluctuations), but an amplifier with two inputs is PS and has a NF of -3 
dB (signals add coherently, but fluctuations add incoherently): 6-dB reduction!

•

 

The first amplifier augments the signal (1) and generates an idler (2). Both modes are 
attenuated by a transmission fiber (3, 4 are loss modes). The second amplifier is PS.

•

 

For a balanced PI link the NF ≈

 

2L, where L = 1/T is the loss.

•

 

For the PS link the NF ≈

 

L/2: 6-dB reduction!

•

 

In recent experiments, 5.5-dB NF reductions were observed!

•

 

PI copier plus PS amplifier operates in a format-independent manner!
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Entropy and information

•

 

Discrete symbols (variables) xi

 



 

X: H(X) = i

 

pi

 

ln

 

pi

 

, pi

 

is probability of xi

 

.

•

 

H is the average of the individual uncertainties (-ln

 

pi

 

).

•

 

High a priori uncertainty  the high potential information content.

•

 

If each pi

 

= 1/w (word length), then H(X) = ln

 

w.

•

 

Continuous variable x 

 

X: H(X) = 

 

p(x) ln[p(x)] dx.

•

 

For a Gaussian distribution with variance x2, H(X) = ln(2ex2)1/2.

•

 

If x2

 

is specified (average signal power), the associated Gaussian 
distribution has maximal entropy.

•

 

Base-2 logarithms 

 

bits, base-e 

 

nats.

[C. Shannon, BSTJ 28, 379 and 623 (1948), Proc. IRE 37, 10 (1949); T. Cover, EoIT

 

(Wiley, 2006);
E. Desurvire, CaQIT

 

(Cambridge, 2009).]
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Mutual information

•

 

Real signals are always corrupted by noise (QM).

•

 

Model noise addition as an IO process: ideal signal x 

 

real signal y.

•

 

The mutual entropy (shared information) H(X:Y) = H(Y) 

 

H(Y|X) is the extra 
entropy associated with the signal.

•

 

For additive noise, y = x + n and H(Y|X) = H(N).

•

 

N is Gaussian (QM), Gaussian X (and Y) maximizes the information.

•

 

Shannon: H(X:Y) = ln[2ey2]1/2

 



 

ln[2en2]1/2

 

= ln(1 + x2/n2)1/2.

•

 

(1 + x2/n2)1/2

 

= y

 

/n

 

= number of distinguishable signals (word length).

•

 

H depends logarithmically on the SNR.

[C. Shannon, BSTJ 28, 623 (1948) and Proc. IRE 37, 10 (1949).]

•2n

•+y•-y
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Multiple input modes

•

 

Let X = [xi

 

]t

 

be a signal vector, N = [ni

 

]t

 

be a noise vector and Y = X + N.

•

 

The distributions are specified by the covariance matrices Kx

 

= [xi

 

xj

 

], Kn

 

= 
[ni

 

nj

 

], and Ky

 

= Kx

 

+ Kn

 

.

•

 

Then H(X:Y) = ln(y

 

/n

 

)1/2, where j

 

= det(Kj

 

). (Hint: Trivial if Kj

 

diagonal.)

•

 

Example: Two input modes with independent noise.

•

 

H(X:Y) = ln[(1 + 11

 

/n

 

)(1 + 22

 

/n

 

) –

 

(12

 

/n

 

)2]1/2, where the strength 
parameters ij

 

= xi

 

xj

 



 

and n

 

= ni
2.

•

 

For specified 11 and 22

 

, H(X:Y) decreases as 12

 

increases.

•

 

To maximize the mutual information, use independent signals, in which case 
Ht

 

= H1

 

+ H2

 

. In general, Ht

 

= i

 

Hi

 

, which depends linearly on the DoFs.

•

 

The information capacity (b/s) C = FH(X:Y), F = positive signal bandwidth, 
and the spectral efficiency (b/s-Hz) S = C/B, B = total positive bandwidth.

[C. Shannon, BSTJ 28, 623 (1948) and Proc. IRE 37, 10 (1949);

 

C. McKinstrie, J. Sel. Top. Quantum 
Electron. 18, 794 (2012).]
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Spectral efficiencies of multiple-stage links

•

 

In erbium-doped and Raman fiber amplifiers, each light mode interacts with

 a material mode (1-light-mode devices).

•

 

In parametric amplifiers (PAs), each signal mode interacts with an idler. 
However, in phase-insensitive (PI) operation, the output idlers are discarded 
(effectively 1-light-mode devices).

•

 

Sq

 

= ln(1 + x

 

/n

 

)1/2, where x

 

and n

 

are the signal and noise strengths.

•

 

For a balanced link, the argument of S is decreased by the NF of

 

the link.

•

 

Standard PI link: NF = 1 + 2s(L –

 

1), both quadratures

 

are transmitted (2).

•

 

1-mode PS link: NF = 1 + s(L

 

–

 

1), only the in-phase quadrature

 

is transmitted 
(1): No net improvement (linear beats logarithmic)!

•

 

Copier plus 2-mode PS link: NF 

 

sL/2, both quadratures

 

are transmitted: 
Potential improvement of 2 b/s-Hz. Requires dark idler bandwidth!

[E. Desurvire, Opt. Lett. 25, 701 (2000); C. McKinstrie, Opt. Express 13, 4896 (2005); Z. Tong,
Opt. Express 18, 15426 (2010); C. McKinstrie, Opt. Express 19, 11977 (2011).]
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Quantum information

•

 

The density matrix 

 

= || or i

 

pi

 

|i

 

i

 

|.

•

 

For any operator o, |o|

 

= Tr(o), because Tr(|pq|) = q|p.

•

 

Von Neumann entropy S = Tr(ln), ln

 

is defined by its power series.

•

 

Example: If |

 

= n

 

cn

 

|n, then S = n

 

|cn

 

|2 ln(|cn

 

|2), like the entropy H.

•

 

Gordon-Kholevo

 

information I = S[(X)] –

 

x

 

px

 

S[(x)], where (X) = x

 

px

 

(x), 
and x 

 

X is a signal. 

•

 

Like the mutual information H(Y) –

 

H(Y|X) = H(Y) –

 

x

 

px

 

H(y|x).

[C. Bennett, Trans. Inform. Theory 44, 2724 (1998), M. Nielsen, QCaQI

 

(Cambridge, 2000),
E. Desurvire, CaQIT

 

(2009).]
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Summary 2

•

 

Conventional systems use coherent-state (CS) signals, which are like classical 
signals with intrinsic amplitude fluctuations.

•

 

The input (CS) and output (after transmission through a sequence

 

of 
amplifiers and attenuators) fluctuations have Gaussian statistics.

•

 

The SC model (half-photon per mode of Gaussian fluctuations) predicts the 
quadrature

 

and number fluctuations (variances and correlations) accurately.

•

 

Standard links use 2-mode PI amplifiers (linear devices). Simple formulas 
exist for their noise figures and information capacities.

•

 

Systems with 1-mode PS amplifiers have lower noise figures and lower 
information capacities (only in-phase quadratures

 

are transmitted)!

•

 

Systems with 2-mode PS amplifiers have lower noise figures and higher 
information capacities (but requires idler bandwidth)!

•

 

Fiber nonlinearities reduce the link capacities (by increasing fluctuations).

[C. McKinstrie, OE 19, 11977 (2011); JSTQE 18 794 and 958 (2012).]
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List of acronyms 1

•ASK = amplitude-shift keying

•BS = Bragg scattering

•CM = classical mechanics

•CME = coupled-mode equation

•CW = continuous wave

•CR = commutation relation

•DCF = dispersion-compensating fiber

•DSF = dispersion-shifter fiber

•DPSK = differential phase-shift keying

•EDFA = erbium-doped fiber amplifier

•FC = frequency conversion

•FM = frequency matching

•FS = four-sideband

•FWM = four-wave mixing

•HNF = highly-nonlinear fiber

•HP = horizontally polarized

•IO = input-output

•LCP = left-circularly polarized

•LO = local oscillator

•MSF = micro-structured fiber

•MRW = Manley-Rowe-Weiss

•NSE = nonlinear Schrodinger equation

•PA = parametric amplifier

•PC = phase conjugation

•PCF = photonic-crystal fiber

•PD = parametric device

•PM = phase modulation

•PO = parametric oscillator

•PR = polarization rotation

•PI = phase-insensitive
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List of acronyms 2

•PJ = phase jitter

•PMD = polarization-mode dispersion

•PS = phase-sensitive

•QM = quantum mechanics

•RBF = randomly-birefringent

 

fiber

•RCP = right-circularly polarized

•RFA = Raman fiber amplifier

•RSF = rapidly-spun fiber

•SBF = strongly-birefringent

 

fiber

•SBS = stimulated Brillouin

 

scattering

•SRS = stimulated Raman scattering

•SNR = signal-to-noise ratio

•THG = third-harmonic generation

•VP = vertically polarized

•WC = wavelength conversion

•WDM = wavelength-division multiplexing

•ZDF = zero-dispersion frequency
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