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Outline of lectures

• Brief introduction to optical communications.

• Basic classical physics of parametric devices.

• Some conventional applications of parametric devices.

• Basic quantum physics of parametric devices.

• Signals, noise and information in parametric links.

• Some novel applications of parametric devices:


 

Photon generation and frequency conversion in quantum information systems.
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1960 1970 1980 1990 2000 t

1958 Schawlow
and Townes 

invent the laser

1970 Corning
reports first low-
loss optical fiber

1983 AT&T 
installs first  
commercial 
fiber system 
in US

1989 AT&T’s
Roaring Creek
WDM field trial

1987
EDFA
invented

1996 1 Tb/s
WDM transmission
(Fujitsu, AT&T, NTT)

Selected milestones in communications

•Kao 1966

F & B
F & B
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Gain profile of an EDFA

• Erbium-doped silicate fiber pumped by a semiconductor laser.

[J. Zyskind]
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Progress in single-fiber transmission capacity

[A. Gnauck, J. Lightwave Technol. 26, 1032 (2008).]

• Current capacity exceeds 50 Tb/s.
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Advanced modulation formats

• Until 2000, systems used on-off keying (OOK), which has 2 constellation 
points per symbol and requires only direct detection.

• 2002: Differential phase-shift keying (DPSK) was introduced, with 2 points 
per symbol, self-homodyne detection.

• 2005: Differential quadrature phase-shift keying (DQPSK).

• 2010: 16 quadrature-amplitude modulation (16-QAM) . . .

• Complex constellations require homodyne detection (local oscillator).
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[P. Winzer, Photon. Soc. News 23 (1), 4 (2009); S. Chandrasekhar, OFC, paper OMU5 (2011).]
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What characteristics should an amplifier have?

• Broad-bandwidth



 

To amplify 128 channels separated by 0.4 nm a bandwidth of 51 nm is required. 
The gain nonuniformity (ripple) should be minimal.

• Polarization insensitive



 

Transmission fibers do not preserve the signal polarizations, so the polarization 
dependence of the gain should be minimal.

• Low noise



 

Noise makes a signal hard to read. An amplifier should emit minimal noise.

• Similar criteria apply to other parametric devices, such as frequency 
convertors, phase conjugators and buffers (delay elements).
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Outline of lectures

•

 

Brief introduction to optical communications.

•

 

Basic classical physics of parametric devices.

•

 

Some conventional applications of parametric devices.

•

 

Basic quantum physics of parametric devices.

•

 

Signals, noise and information in parametric links.

•

 

Some novel applications of parametric devices.
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Linear evolution (dispersion)

•

 

Define the electric-field amplitude E(t,z) = A(t,z)exp(ik0

 

z –

 

i0

 

t), where 0

 
and k0

 

= k(0

 

) are the carrier frequency and wavenumber, and A(t,z) is the 
slowly-varying wave amplitude (envelope) .

•

 

In the frequency domain, dz

 

A(,z) = i()A(,z), where dz

 

= d/dz

 

and the 
envelope wavenumber

 

() = k(0

 

+) –

 

k(0

 

) = n1

 

n

 

n/n!, n

 

= k(n)(0

 

).

•

 

In the time domain, dz

 

A(t,z) = i(idt

 

)A(t,z), where dt

 

= d/dt

 

(  idt

 

).

Explicitly, dz

 

A(t,z) = in1

 

n

 

(idt

 

)n/n! A(t,z).

•

 

For n = 1, dz

 

A = -1

 

dt

 

A : convection 

 

A(t

 

–

 

1

 

z).

•

 

For n = 2, dz

 

A = -i0
(2)dtt

 

A/2 : (second-order) dispersion 
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[ ( )]

t i z
i z
 

  
 





•

11QNLO, August 2012

Dispersion of different fibers

•

 

The zero-dispersion wavelength (ZDW) of the fiber can be controlled by 
varying the cladding material and structure.
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Nonlinear evolution (nonlinearity)

•

 

In a third-order nonlinear medium, dz

 

E(t) ≈

 

i(2k0

 

)P(3)(t), where P(3)

 

= (3)E3.

•

 

Let E(t,z) = A(t,z)exp(i) + c.c., where 

 

= k0

 

z –

 

0

 

t. Then

E3

 

= A3exp(i3) + 3|A|2Aexp(i) + c.c.

•

 

Third-harmonic generation (THG) and self-action, for which

dz

 

A(t) = i|A(t)|2A(t),

where 

 

is the (Kerr) nonlinearity coefficient (instantaneous response).

•

 

If A = B1

 

exp(i1

 

), then RS = i|B1

 

|2B1

 

exp(i1

 

); self-phase modulation (PM)

•

 

If A = B1

 

exp(i1

 

) + B2

 

exp(i2

 

), the RS has many terms.

exp(i1

 

): RS ≈

 

i|B1

 

|2

 

+ 2|B2

 

|2)B1 ; self-

 

and cross-PM.

exp[i(21

 

–

 

2

 

)]: RS ≈

 

iB1
2B2

 

* ; harmonic generation at 3

 

= 21

 

–

 

2

 

,

also called four-wave mixing (FWM).

There are similar terms with 1  2.
112 221

1 2

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Several types of fiber exist

•

 

Most of the cited results were obtained using small-effective-area 
fibers, also called highly-nonlinear fibers (HNFs), with 

 

= 10 / Km-W.

•

 

Some of the results were obtained using micro-structured fibers (MSFs), 
also called photonic-crystal fibers, with 

 

= 10 –

 

100. Their dispersion 
properties can be customized for specific applications!

•

 

Bismuth-doped fibers have 

 

= 100 –

 

1000.

•

 

Chalcogenide

 

fibers have 

 

> 1000.

[K. Hansen, Opt. Express 11, 1503 (2003); J. Lee, J. Lightwave

 

Technol. 24, 22 (2006); 
P. Russell, J. Lightwave

 

Technol. 24, 4729 (2006); M. Pelusi, J. Sel. Top. Quantum 
Electron. 14, 529 (2008); M. Hirano, J. Sel. Top. Quantum Electron. 15, 103 (2009).]
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Scalar nonlinear Schrodinger equation

•

 

Light-wave propagation in a fiber is governed by the generalized nonlinear 
Schrodinger equation (NSE)

dz

 

A(t) = -

 

A(t) + i(idt

 

)A(t) + i|A(t)|2A(t).

•

 

NSE governs wave propagation in a variety of weakly-nonlinear media.

•

 

Includes convection, dispersion, (gain) loss, PM and FWM.

•

 

Excludes polarization effects.

•

 

Excludes time-dependent fiber responses, which cause stimulated Brillouin

 and Raman scattering (SBS and SRS), and wave steepening.

•

 

Excludes quantum fluctuations produced by gain and loss (later).

[G. Agrawal, Nonlinear Fiber Optics (Elsevier, 2006); R. Boyd, Nonlinear Optics (Elsevier, 2008); 
L. Mollenauer, Solitons in Optical Fibers (Elsevier, 2006).] 
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Degenerate four-wave mixing

•

 

In degenerate FWM, also called modulation interaction (MI), a strong pump (p) drives 
a weak signal and idler (s, i). The frequency-matching (FM) condition is 2p

 

=

 

s

 

+ i

 

.

dz

 

As

 

= i(s

 

+ 2|Ap

 

|2)As

 

+ iAp
2Ai

 

*,

dz

 

Ap

 

≈

 

i(p

 

+ |Ap

 

|2)Ap

 

,

dz

 

Ai

 

= i(i

 

+ 2|Ap

 

|2)As

 

+ iAp
2As

 

*.

•

 

Remove pump phase factor: Aj

 

(z) = Bj

 

(z)exp[i(p

 

+ P)z], where P = |Ap

 

|2.

dz

 

Bs

 

= i(s

 

-

 

p

 

+ P)Bs

 

+ iBp
2Bi

 

*,

dz

 

Bi

 

= i(i

 

-

 

p

 

+ P)Bi

 

+ iBp
2Bs

 

*.

•

 

Conjugate the i-equation and look for eigenvalues

 

(MI wavenumbers) k.

k = (s

 

–

 

i

 

)/2 

 

[(s

 

+ i

 

)2/4 -

 

(P)2]1/2, where j

 

= j

 

-

 

p

 

+ P.

•

 

Define the (wavenumber) mismatch 

 

= (s

 

+ i

 

)/2 = (s

 

– 2p

 

+ i

 

)/2 + P.

•

 

If || > P, then k is real; the MI is stable, (s and i) sidebands do not grow.

•

 

If || < P, then k is imaginary; the MI is unstable, sidebands grow.

[C. McKinstrie, J. Sel. Top. Quantum Electron. 8, 538 & 956 (2002).]
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When is the MI unstable?

•

 

Expand the wavenumbers

 

about the pump frequency.

j

 

(j

 

) = 0

 

(p

 

) + 1

 

(p

 

)(j

 

–

 

p

 

) + 2

 

(p

 

)(j

 

–

 

p

 

)2/2; s,i

 

= p

 

 ,



 

= [0

 

(p

 

) + 1

 

(p

 

)

 

+ 2

 

(p

 

)2/2] -

 

20

 

(p

 

)

+

 

0

 

(p

 

) -

 

1

 

(p

 

)

 

+ 2

 

(p

 

)2/2] + 2P = 2

 

(p

 

)2

 

+ 2P.

•

 

If 2

 

(p

 

) > 0 (normal dispersion), then || > P; MI is stable.

•

 

If -4P < 2

 

(p

 

)2

 

< 0 (anomalous dispersion), then || < P; MI is unstable.

•

 

The maximal spatial growth rate P

 

is attained when 

 

= (2P/|2

 

|)1/2.

•

 

In the presence of higher-order dispersion, extra gain bands can exist.
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Input-output equations for MI

•

 

Let Bs

 

= Cs

 

exp[i(s

 

-

 

i

 

)z/2] and Bi

 

= Ci

 

exp[i(i

 

–

 

s

 

)z/2]. Then the MI equations can be 
written in the symmetric form

dz

 

Cs

 

= iCs

 

+ iBp
2Ci

 

*,  dz

 

Ci

 

* = -iCi

 

* -

 

iBp

 

*)2Cs

 

,

where the (common) mismatch 

 

= (s

 

+ i

 

)/2.

•

 

The solutions of the MI equations can be written in the input-output form

Cs

 

(z) = (z)Cs

 

(0) + (z)Ci

 

*(0),  Ci

 

*(z) = *(z)Cs

 

(0) + *(z)Ci

 

*(0),

where the transfer (Green) functions

(z) = cos(kz) + isin(kz)/k,  (z) = iBp
2sin(kz)/k

and the MI wavenumber

 

k = [2

 

- (P)2]1/2.

•

 

Notice that |(z)|2

 

- |(z)|2

 

= 1, from which it follows that

|Cs

 

(z)|2

 

- |Ci

 

(z)|2

 

= [|(z)|2

 

- |(z)|2][|Cs

 

(0)|2

 

- |Ci

 

(0)|2] = |Cs

 

(0)|2

 

- |Ci

 

(0)|2.

•

 

Sideband photons are created in pairs (linear theory)!

[C. McKinstrie, Opt. Express 12, 5037 (2004).]
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Conservation equations for MI

•

 

With pump-depletion included, the nonlinear MI equations are

dz

 

As

 

= i(s

 

+ 2|Ap

 

|2)As

 

+ iAp
2Ai

 

*,

dz

 

Ap

 

= i(p

 

+ |Ap

 

|2)Ap

 

+ i2As

 

Ai

 

Ap

 

*,

dz

 

Ai

 

= i(i

 

+ 2|Ap

 

|2)As

 

+ iAp
2As

 

*.

•

 

The signal equation implies that

dz

 

|As

 

|2

 

= iAp
2Ai

 

*As

 

* -

 

i(Ap

 

*)2Ai

 

As

 

.

•

 

By combining this and similar equations, one obtains the Manley-Rowe-Weiss (MRW) 
equations

dz

 

(|As

 

|2

 

+ |Ap

 

|2

 

+ |Ai

 

|2) = 0,

dz

 

(|As

 

|2

 

- |Ai

 

|2) = 0.

•

 

Dim(|A|2) = E/T and the photon energies ≈

 

h0

 

. Dim(|A|2/h0

 

) = 1/T (photon flux).

•

 

Photons are created and destroyed in pairs (2 pump or 2 sideband

 

photons):

2p

 

 s

 

+ i

 

, where j

 

is a photon with frequency j

 

.

•

 

MRW and FM imply energy conservation: dz

 

(|As

 

|2s

 

+ |Ap

 

|2p

 

+ |Ai

 

|2i

 

) = 0.

[J. Manley, Proc. IRE 44, 904 (1956), M. Weiss, Proc. IRE 45, 1012 (1957).]
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Basic properties of MI

•

 

Photons are created and destroyed in pairs: 2p

 

 s

 

+ i

 

, where j

 

is a 
photon with frequency j

 

and (natural) wavenumber

 

kj

 

.

•

 

Frequency-

 

and wavenumber-matching equations: 2p

 

= s

 

+ i

 

, 2kp

 



 

ks

 

+ ki

 

. 
Similar to the photon equation (h

 

= energy, hk

 

= momentum).

•

 

MI is driven by coupling and suppressed by mismatch: kMI

 

= [2

 

– (P)2]1/2.

•

 

As

 

is coupled to Ai

 

* and the coupling term is P.

•

 

The mismatch term 

 

is (ks

 

+ ki

 

- 2kp

 

)/2 = 2

 

s
2/2 + P.

(2

 

is evaluated at p

 

and s

 

is measured relative to p

 

).

•

 

Narrow-bandwidth instability for 2

 

< 0 and |s

 

| < 2|P/2

 

|1/2.

•

 

|As

 

|2

 

- |Ai

 

|2

 

is constant: Sideband photons are produced in pairs.

s p i


MI
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Basic properties of PC

•

 

Photons are created and destroyed in pairs: p

 

+ q

 

 s

 

+ i

 

, where j

 

is a 
photon with frequency j

 

and wavenumber

 

kj

 

(-, k-equations are similar).

•

 

PC is driven by coupling and suppressed by mismatch: kPC

 

= (2

 

– 42Pp

 

Pq

 

)1/2.

•

 

As

 

is coupled to Ai

 

* and the coupling term is 2(Pp

 

Pq

 

)1/2.

•

 

The mismatch term 

 

is (ks

 

+ ki

 

– kp

 

- kq

 

)/2 = 2

 

(s
2

 

–

 

p
2)/2 + Pp

 

+ Pq

 

)/2

[2

 

is evaluated at a

 

= (p

 

+ q

 

)/2 and p

 

, s

are measured relative to a

 

].

•

 

Broad-bandwidth instability for 2

 



 

0.

•

 

|As

 

|2

 

- |Ai

 

|2

 

is constant: Sideband photons

are produced in pairs.


s i qp

PC


p q is

PC
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Basic properties of BS

•

 

Photons are created and destroyed in pairs: q

 

+ s

 

 p

 

+ i

 

, where j

 

is a 
photon with frequency j

 

and wavenumber

 

kj

 

.

•

 

BS is driven by coupling and suppressed by mismatch: kBS

 

= (2

 

+ 42Pp

 

Pq

 

)1/2.

•

 

As

 

is coupled to Ai

 

and the coupling term is 2(Pp

 

Pq

 

)1/2.

•

 

The mismatch term 

 

is (ks

 

+ kq

 

– kp

 

- ki

 

)/2 = 2

 

(s
2

 

–

 

p
2)/2 + Pp

 

- Pq

 

)/2

[2

 

is evaluated at a

 

= (q

 

+ s

 

)/2 and p

 

, s

 

are measured relative to a

 

].

•

 

Broad-bandwidth tunable FC for 2

 



 

0: i

 

= s

 

+ q

 

–

 

p

 

.

•

 

|As

 

|2

 

+ |Ai

 

|2

 

is constant: Sideband photons are conserved (s

 

 i

 

).

q s i


p

BS


s q ip

BS
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The Kerr nonlinearity is a tensor nonlinearity

•

 

Light waves have two polarizations (HP and VP, or LCP and RCP).

•

 

For an instantaneous isotropic medium, P3

 

 (E.E)E/3.

•

 

At the fundamental frequency, P3

 

 [2(A*.A)A + (A.A)A*]/3, A = [Ax

 

,Ay

 

]t.

P3x

 

 (|Ax

 

|2Ax

 

+ 2|Ay

 

|2Ax

 

/3 + Ay
2Ax

 

*/3),

P3y

 

 (2|Ax

 

|2Ay

 

/3 + |Ay

 

|2Ax

 

+ Ax
2Ay

 

*/3).

•

 

Waves in strongly-birefringent

 

(x

 

 y

 

) and rapidly-spun fibers: full Kerr 
nonlinearity. Self-

 

and cross-PM, self-

 

and cross-PR, scalar and vector FWM.

•

 

Waves in randomly-birefringent

 

fibers: polarization-averaged Kerr 
nonlinearity (Manakov

 

nonlinearity).

P3x

 

= 8(|Ax

 

|2

 

+ |Ay

 

|2)Ax

 

/9,

P3y

 

= 8(|Ax

 

|2

 

+ |Ay

 

|2)Ay

 

/9.

Self-

 

and cross-PM, cross-PR, scalar and vector FWM.

•

 

In all fibers, vector FWM depends on the pump and sideband polarizations.
[K. Inoue, J. Quantum Electron. 28, 883 (1992); C. McKinstrie, Opt. Express 12, 2033 (2004),
M. Marhic, J. Opt. Soc. Am. B 20, 2425 (2003); C. McKinstrie, Opt. Express 14, 8516 (2006).]
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Outline of lectures

•

 

Brief introduction to optical communications.

•

 

Basic classical physics of parametric devices.

•

 

Some conventional applications of parametric devices.

•

 

Basic quantum physics of parametric devices.

•

 

Signals, noise and information in parametric links.

•

 

Some novel applications of parametric devices.
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Tunable radiation generation (MI)

[J. Harvey, Opt. Lett. 28, 2225 (2003); M. Hirano, J. Sel. Top. Quant. Elect. 15, 103 (2009).]
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•

 

MI is driven by pump-induced nonlinearity and 
suppressed by dispersion-

 

and pump-induced 
wavenumber

 

mismatch: kMI

 

= [t
2

 

– (P)2]1/2, 
where t

 

= l

 

+ P and l

 

= (s

 

+ i

 

)/2 –

 

p

 

.

•

 

Instability occurs when –2P < l

 

< 0.

•

 

Low-frequency branch: l

 

≈

 

2

 

2/2

(2

 

< 0 and 2

 



 

2P/|2

 

|).

Dispersion compensates nonlinearity.

•

 

High-frequency branch: l

 

≈

 

2

 

2/2 + 4

 

4/24 
(2 4

 

< 0 and 2

 



 

12|2

 

/4

 

|).

Dispersion compensates dispersion.

•

 

The coefficients 2

 

and 4

 

can be positive or 
negative. (PC and BS are similar.)
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OPO based on photonic-crystal fiber

•

 

Singly-resonant OPO: PCF (l = 1.3 m, 

 

= 110/Km-W), pulsed pump (

 

= 8 ps, 


 

≈

 

710 nm, P > 15 W), dichroic

 

mirrors. Frequency shifts from 20 –

 

170 THz.
•

 

Performance was limited by pump-sideband walk-off.

[Y. Xu, Opt. Lett. 33, 1351 (2008); S. Murdoch, CLEO-E, paper CD3.4 (2009).]

(S: 770–1150 nm)

(aS: 510-690 nm)
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Broad-bandwidth amplification (PC)

•

 

Parametric amplifiers have broader gain bandwidths than their competitors.

•

 

The current record bandwidth is 150 nm (signal plus idler).

•

 

Perpendicular pumps provide signal-polarization-independent gain.

•

 

Standard system with 128 channels at 10 Gb/s

 

requires 51 nm bandwidth.

•

 

Latest system (AL 1830) with 88 channels at 100 Gb/s

 

requires 35 nm.

15

20

25

30

35

1560 1580 1600

Parametric Amp
Raman Amp, one pump
Erbium Fiber Amp (shifted 30 nm)

Wavelength (nm)

G
ai

n 
(d

B
)

[R. Jopson

 

(2004); J. Chavez Boggio, Photon. Technol. Lett. 21, 612 (2009).]
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Phase conjugation can reduce impairments significantly

•

 

Pulse propagation is governed by the NS equation

•

 

The conjugate amplitude satisfies the conjugate equation

•

 

For deterministic evolution (no random source terms) in an ideal

 

system 
(no loss or odd-order dispersion), phase conjugation reverses the sense of 
propagation (z 

 

-z).

•

 

Propagation reversal reduces dispersive and nonlinear (SPM, CPM and FWM) 
impairments simultaneously!

AAAAi ttz
2||2/  

*2** ||2/ AAAAi ttz  

[B. Y. Zeldovich, Sov. Phys. JETP 15, 109 (1972); O. Y. Nosach, Sov. Phys. JETP 16, 435 (1972);
A. Yariv, J. Opt. Soc. Am. 66, 301 (1976); R. W. Hellwarth, J. Opt. Soc. Am. 67, 1 (1977).]
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How does dispersion compensation by PC work?

•

 

Let 0

 

be the carrier frequency of a pulse (relative to a

 

) and suppose that

(0

 

+) ≈

 

0

 

(0

 

) + 1

 

(0

 

)

 

+ 2

 

(0

 

)2/2.

•

 

If the input amplitude A(t,0) = exp(-t2/22), the output amplitude

A(t,z) = exp[i0

 

z –

 

(t –

 

1

 

z)2/2(2

 

- i2

 

z)]/(1 -

 

i2

 

z/2)1/2,

2(z) = 2

 

+ (2

 

z)2/2.

•

 

Suppose that a PC is placed at a distance zc

 

. Then the output (Fourier) 
amplitude A(-0

 

-,z) = A*(0

 

+,0)exp[i(-0

 

-)(z-zc

 

) –

 

i(0

 

+)zc

 

].



 

0th order: 0

 

(-0

 

)(z–zc

 

) -

 

0

 

(0

 

)zc

 



 

overall phase



 

1st order: –[1

 

(-0

 

)(z–zc

 

) + 1

 

(0

 

)zc

 

]  time delay



 

2nd order: [2

 

(-0

 

)(z–zc

 

) –

 

2

 

(0

 

)zc

 

]2

 



 

pulse broadening

•

 

If 2

 

(-0

 

) ≈

 

2

 

(0

 

), zc

 

≈

 

z/2 restores the pulse width (undoes dispersion).

•

 

D chirps pulse: fast at front, slow 

 

at back. PC reverses chirp: fast at 
back, slow at front. D unchirps

 

pulse: fast move forward, slow move back.
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Impairment reduction by phase conjugation

•

 

Phase conjugation (PC) reverses the sense of propagation: dispersing pulses 
compress and growing distortions shrink!

•

 

Single-channel dispersion compensation (DC) was demonstrated at 640 Gb/s

 (100 Km) and multiple-channel DC was demonstrated at 10 Gb/s

 

(320 Km).

•

 

PC also reduces impairments caused by nonlinear processes. Experiments 
were done with realistic 10-Gb/s links (10,000 Km).

In 640 Gb/s

Out –

 

PC

Out + PC

UCSD

[S. Radic, OFC 2003, PDP 12; S. Jansen, JLT 24, 54 (2006), P. Minzioni, PTL 18, 995 (2006);
E. Myslivets, OFC 2010, PDP C6.]

-3

-4

-5

-6
-7
-8
-9

-10
-11
-12

-42 -40 -38 -36 -34

Channel 5
Channel 4
Channel 3
Channel 2
Channel 1
Channel 3, b/b

03mar18

320 km
10 Gb/s
Worst polarizations

Received Power (dBm)

lo
g 

(E
rr

or
 P

ro
ba

bi
lit

y)



•

30QNLO, August 2012

Tunable wavelength conversion (BS)

[K. Inoue, JLT 12, 1423 (1994); T. Tanemura, PTL 16, 551 (2004).]

• A tuning range of 30 nm was demonstrated using parallel pumps.
• Idler spectral broadening was prevented (by pump co-phasing).

• By fixing 1

 

and s

 

, and varying 2

 

,
one varies i

 

(oppositely).



•

31QNLO, August 2012

Optical buffer based on FC and dispersion

•

 

MI, PC and BS all produce idlers that are FC copies of 
the signal.

•

 

Because i

 

 s

 

, propagation through a dispersive 
medium delays (or advances) the idler relative to the 
signal (t = 2

 

z).

•

 

Bit-level optical buffering is possible!

•

 

Goal: Delays of 103

 

―

 

104

 

bit slots.

[M. Burzio, Proc. ECOC, 581 (1994); S. Radic, PTL 16, 852 (2004); J. Sharping, OE 13, 7872 
(2005); J. Ren, ECOC, paper Th4.4.3 (2006).]

0ns

3.9ns

6.8ns

9.7ns

12.47ns

11- 1+ 2- 2 2+


BS

MI

PC
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Dispersion enables and limits the delays!

•

 

Inter-channel dispersion delays the idlers: t = 2

 

z.

•

 

Intra-channel dispersion broadens the idlers: 2(z) = 0
2

 

+ (2

 

z)2/0
2.

•

 

The spreading condition 2

 

z/0
2

 



 

1 implies that t/0

 

 0

 

.

•

 

The maximal delay decreases as the bit rate increases (problematic).

•

 

For two fibers without/with PC in between, 2(z) = 0
2

 

+ (a

 

z1

 

 b

 

z2

 

)2/0
2.

•

 

If a

 

> 0, the pulse acquires a positive chirp as it spreads (fast 

 

at the 
front, slow 

 

at the back). PC inverts the frequencies. If b

 

> 0, slow 

 
at the front and fast 

 

at the back result in compression.

•

 

Because the second idler is the PC of the first, Dc = Dl (re-use).

[J. Ren, ECOC, paper Th4.4.3 (2006); N. Alic, JSTQE 14, 681 (2008).]

S I
Dl

P1 P2

I S

P1 P2

Dc

UCSD
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•

 

Signals were FC by a PC process, passed through a DCF (delay), back-FC by 
the same PC process and sent through the same DCF (compensation).

•

 

Continuously-tunable delays from 0 –

 

400 ns were demonstrated at 10 Gb/s.

•

 

Problem: 2

 

(s

 

)  2

 

(i

 

), so DC is imperfect.

•

 

Namiki

 

and Kurosu

 

developed a better dispersion-compensation method.

•

 

Delays of 0 –

 

1.8 s at 10 Gb/s

 

(1.6 s at 40 Gb/s) were demonstrated.

Significant delays were demonstrated

[E. Myslivets, Photon. Technol. Lett. 21, 251 (2009); S. Namiki, J. Lightwave

 

Technol. 26,
28 (2008); T. Kurosu, OFC, paper OMH2 (2009); N. Alic, OFC, paper PDPA1 (2009).]

UCSD
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Namiki
 

dispersion-compensation scheme

•

 

Because of third-order dispersion, 2

 

(i

 

)  2

 

(s

 

), so DC is imperfect.

•

 

UCSD version of this scheme was implemented in delay experiments.

•

 

Use BS to generate a direct idler at i1 >> s

 

and delay idler.

•

 

Use MI to generate a conjugate idler at i2

 

 i1

 

, so that 2

 

(i2

 

)  2

 

(i1

 

). 

•

 

Use the same delay element to DC the idler (and delay it more).

•

 

Use PC to generate a conjugate2

 

(direct) idler at s

 

.

[S. Namiki, J. Lightwave

 

Technol. 26, 28 (2008); T. Kurosu, OFC, paper OMH2 (2009);
E. Myslivets, Opt. Express 17, 11958 (2009).]

1 s i2 2 i1


BS

MI

PC UCSD
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The incredible shrinking amplifier

(a) optical table (b) pizza box
(c) micro-coil
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Summary 1

•

 

Parametric (four-wave-mixing) processes in highly-nonlinear fibers (MI, 
PC and BS) are driven by pump-induced nonlinearity and inhibited by 
fiber dispersion.

•

 

These processes enable a variety of optical signal-processing functions.

•

 

Several applications relevant to optical communication systems were 
described: amplification, frequency conversion (with or without 
amplification), impairment reduction by phase conjugation and buffering 
(controlled delaying).

•

 

Other applications include amplitude and phase regeneration, and

 stroboscopic and real-time sampling . . .

[C. McKinstrie, Opt. Photon. News 18 (3), 34 (2007).]
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