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Abstract

Acoustofluidics is an interdisciplinary field involving acoustics and microfluidics. Acousto-
fluidic applications utilize the acoustic radiation force for label-free and gentle manipu-
lation of particles. The label-free and gentle manipulation make the acoustofluidic tech-
nology suitable for biomedical applications. As acoustofluidic technology has matured
throughout the last three decades, commercial interest has grown.

Typically, an acoustofluidic device is fabricated in silicon and glass using clean-room
techniques, but as companies try to commercialize the technology, alternative and cost-
efficient fabrication methods are desired, e.g., injection molded or 3D printed polymer
devices. However, designing polymer-based acoustofluidic devices is not a straightforward
procedure. Due to the low acoustic contrast between polymers and fluids, the design
principles from clean-room fabricated silicon and glass-based devices are no longer appli-
cable. Furthermore, the acoustic response in a polymer-based device is weakened due to
the leakage and attenuation of acoustic waves. Therefore, polymer-based acoustofluidic
devices require optimization to be competitive. Computer-aided device engineering can
be used to efficiently test and optimize device designs; doing so requires accurate modeling.

In this thesis, our recently developed UEIS method will be used to determine complex-
valued material parameters of different classes, including piezoceramics, a UV-curable
adhesive, a polymer, and a 3D-print resin. The UEIS method provides a low-cost, easy-
to-execute method that only requires simple equipment. The UEIS method is verified by
ultrasound-through transmission and laser-Doppler velocimetry. The UEIS-determined
material parameters enable precise and accurate modeling of polymer-based acoustofluidic
devices allowing computer-aided device optimization and accurate 3D-print prototyping.
Furthermore, we have developed a numerical model able to simulate acoustofluidic phe-
nomena in multiphysics and complex systems, including the transducer, the coupling layer,
and the fluid-filled microfluidic chip. The model capability is illustrated as we present
simulations of polymer-based acoustofluidic devices, including the calculation of particle
trajectories influenced by acoustic forces in continuous and stop-flow conditions. The
particle trajectories are compared to experimental tracks providing a frequency-resolved
one-to-one comparison between experiment and simulation without free parameters, i.e.,
an attempt to bridge simulation and experiment. I hope this thesis will provide insight
into the challenges and possibilities within the field of polymer-based acoustofluidics.

iii





Resumé

Akustofluidik er et tværfagligt felt, der kombinerer akustik og mikrofluidik. Akusto-
fluidiske applikationer udnytter den akustiske str̊alingskraft til etiketfri og sk̊ansom ma-
nipulation af partikler. Den etiketfri og sk̊ansomme manipulation gør denne teknologi
velegnet til biomedicinske applikationer. Efterh̊anden som teknologien er modnet gennem
de sidste tre årtier, er den kommercielle interesse vokset.

Typisk fremstilles en akustofluidisk enhed i silicium og glas ved hjælp af renrums
teknikker, men da virksomheder forsøger at kommercialisere teknologien, ønskes alterna-
tive og omkostningseffektive fremstillingsmetoder, f.eks. sprøjtestøbte eller 3D-printede
polymerenheder. At designe polymerbaserede akustofluidiske enheder er ikke ligetil. P̊a
grund af den lave akustiske kontrast mellem polymerer og væsker er designprincipperne
fra renrums fremstillede silicium- og glasbaserede enheder ikke længere anvendelige. Yder-
mere, er den akustiske respons i en polymerbaseret enhed svækket p̊a grund af lækage og
dæmpning af akustiske bølger. Polymerbaserede akustofluidiske enheder kræver optimer-
ing for at være konkurrencedygtige. Computerbaseret modellering kan bruges til effektivt
at teste og optimere akustofluidisk enhedsdesign; det kræver dog nøjagtig modellering.

I denne afhandling vil vores nyligt udviklede UEIS-metode blive brugt til at bestemme
materialeparametre med komplekse værdier af forskellige klasser af materialer, herun-
der to typer piezokeramik, et UV-hærdet lim, en polymer og en polymer brugt til 3D-
print. UEIS-metoden er en billig og nem-at-udføre metode, der kun kræver simpelt udstyr.
UEIS-metoden verificeres ved ultralyd-transmission og laser-Doppler hastighedsm̊alinger.
De UEIS-bestemte materialeparametre muliggør præcis og nøjagtig modellering af poly-
merbaserede akustofluidiske enheder, hvilket ogs̊a muliggør computerstøttet enhedsopti-
mering og nøjagtig 3D-print prototypefremstilling. Desuden har vi udviklet en numerisk
model, der er i stand til at simulere akustofluidiske fænomener i multifysiske og kom-
plekse systemer, som inkluderer transduceren, koblingslaget og den væskefyldte mikro-
fluidchip. Modellens ydeevne og potentiale er illustreret, da vi præsenterer simuleringer
af polymerbaserede akustofluidiske enheder, herunder beregning af partikelbaner p̊avirket
af akustiske kræfter under kontinuerlige og stop-flow forhold. Partikelbanerne sammen-
lignes med eksperimentelle m̊alinger, der giver en frekvensopløst en-til-en sammenligning
mellem eksperiment og simulering uden frie parametre, et forsøg p̊a at forbinde simuler-
ing og eksperiment. Jeg h̊aber, at denne afhandling vil give et indblik i udfordringer og
muligheder inden for polymerbaseret akustofluidik.
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Chapter 1

Introduction

The concept and working principles of acoustofluidics applications will be introduced with
a focus on polymer-based devices. The introduction is followed by an overview of the
research and the thesis. The research overview ties together, relate, and motivates the
work published in the three papers listed in Chapter ”Publications in the PhD project”.
The thesis overview provides a description of each chapter’s content.

1.1 Introduction to polymer-based acoustofluidics

Acoustofluidics is an interdisciplinary research field involving acoustic waves and fluid
dynamics in sub-millimeter-sized microfluidic systems, typically at megahertz frequencies
in a laminar flow regime. For a laminar flow, particle trajectories are typically aligned
with the streamlines providing a controlled and smooth transport of suspended particles
without mixing. The particle trajectories can be manipulated by the acoustic radiation
force Frad originating from the scattering of acoustic waves on a compressible particle.
The acoustic waves are commonly generated by a piezoelectric transducer actuated at the
desired frequency. Typically the acoustic radiation force is used to manipulate the particle
motion perpendicular to the streamlines in a continuous flow, i.e., sorting and separating
the particles facilitated by microchannel architectures. The movement of suspended par-
ticles through a fluid under the action of acoustic forces generated by acoustic actuation is
referred to as acoustophoresis. The concept of acoustophoresis is illustrated in Fig. 1.1, in
which the particles are focused toward the channel center and sorted in the middle channel
outlet by a trichotomous branching flow. Usually, acoustofluidic devices are actuated at a
resonance frequency where the acoustic response is at a maximum.

The manipulation of particles in acoustofluidic devices relies primarily on the acoustic
radiation force; a compressible particle suspended in a fluid exposed to a sound field will be
subject to a force originating from the stress induced by the scattering of acoustic waves.
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(a) (b)
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Figure 1.1: Conceptual sketch of acoustophoresis. (a) Top-view of a typical acoustofluidic
design for particle (black dots) sorting with a flow in the x-direction. (b) Cross-sectional
view of the channel in the yz-plane, in which a standing acoustic pressure half-wave is
illustrated as a surface plot from negative (blue) to positive value (red) symmetric around
zero (white). Due to the scattering of acoustic waves, particles will tend to move to
the vertical pressure node (bright) facilitated by the acoustic radiation force Frad (yellow
arrows). The cross-section plane is indicated as a dashed line in (a). The figure is adapted
and modified from Ref. [4].

The acoustic radiation force depends on the particle and the fluid’s acoustic properties,
but also the acoustic pressure field, typically controlled by the channel geometry and ac-
tuation frequency. Particles are also affected by a drag induced by the acoustic streaming
v2; a steady flow generated by the attenuation of acoustic waves. The two forces compete
as the acoustic radiation force scales with the particle volume, whereas the drag induced
by the acoustic streaming scales with the particle size.

Acoustofluidic devices are capable of manipulating particles in a wide range from tens
of nanometer to tens of micrometer, primarily determined by the device design and the
acoustic wavelength in the fluid, given by the actuation frequency typically between kilo-
hertz and gigahertz. In this thesis, the range is narrowed down, focusing on the ultrasound
megahertz regime, i.e., sub-millimeter-sized acoustic wavelengths. This range is suitable
for manipulating ∼10-µm-sized particles, e.g., circulating tumor cells as well as red and
white blood cells. An archetypical ultrasound acoustophoresis application is the separa-
tion of plasma from whole blood.

Acoustophoresis allows a gentle, label-free, and precise handling of particles. The par-
ticle size range covers most of the relevant biological particles in a typical liquid human
biopsy, from proteins to blood cells [5]. Which makes the acoustofluidic technology suitable
for a wide range of biomedical applications, including continuous-flow bioassay [6], trap-
ping of bacteria [7], tumor cell enrichment [8], determination of hematocrit [9], bacteria
detection [10], separation of living and dead cells [11], purification of lymphocytes [12] etc.
The applications can be sub-categorized into continuous-flow systems and acoustic traps.
In continuous-flow applications, particles are separated according to their acoustic prop-
erties relative to the fluid, whereas the acoustic traps retain particles against a flow. The
acoustofluidic technology has recently gained popularity within tissue engineering, where
acoustophoresis devices are used to manipulate and pattern cells typically submerged in
a biodegradable hydrogel [13–16].
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The acoustofluidic technology is now an established part of lab-on-a-chip systems and
has proven efficient in separating, focusing, and analyzing biological samples. These sys-
tems are often fabricated in acoustically hard materials such as glass and silicon using
clean-room techniques providing accurate and ideal resonators [6–11]. Acoustic hardness
refers to the acoustic contrast between the fluid and the surrounding channel material.
The acoustic contrast is defined as the ratio of acoustic impedance Z̃ = Zac/Z0 between
the surrounding material’s acoustic impedance Zac and the fluid’s acoustic impedance Z0

defined as the product between the mass density and the sound speed. For glass and
water, the acoustic contrast is Z̃ ∼ 10, so the glass is said to be acoustically hard, which
signifies that the acoustic pressure field is confined to the channel. In acoustically hard
materials, the resonance frequencies can be approximated by the channel geometry, and
so the resonances are said to be hard-wall resonances. In this case, the model system can
be approximated to the channel geometry by using idealized boundary conditions for the
actuation as in Refs. [17–19].

For many biomedical applications, single-use is a requirement due to possible cross-
contamination. In this case, clean-room fabrication in glass or silicon is an expensive
procedure. Therefore, throughout the last decade, there has been a drive toward efficient,
fast, and cheap fabrication techniques involving polymers for commercializing acousto-
fluidic platforms. However, polymers are acoustically soft materials Z̃ ∼ 1, which means
that the acoustic pressure field is leaking and is no longer confined to the channel. There-
fore, instead of the ideal hard-wall resonances, the entire whole-system dynamics now
define the resonance frequencies. In Ref. [20], Moiseyenko and Bruus studied numerically
how an acoustofluidic device is affected by changing the microfluidic chip material from
glass/silicon to a polymer. By doing so, the acoustic contrast between the fluid and the
chip is comparable yielding complex whole-system-ultrasound resonances (WSUR). Fur-
thermore, the increased acoustic attenuation yields a weakened acoustic response. This
work was the first attempt to study and understand how polymers influences and affect
the acoustofluidic response; this was also the first step toward the start of this project.

To model polymer-based acoustofluidic devices, it is necessary to consider the entire
system, including the transducer, the coupling layer, and the microfluidic chip, and not
only the channel geometry. This also requires each component to be well-characterized
for the model to be applicable and representative. The model accuracy is limited by
the accuracy of the material parameters used as input to the model. These are sparsely
reported, and when they are, they are often insufficient due to incomplete information.
The scientific and technological motivation behind this thesis stem from this.
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The first attempts of using polymer-based devices have been published, showing ap-
plications such as purification of lymphocytes [12], focusing of red blood cells, lipids,
and polymer beads [21–25], as well as blood-bacteria separation [26]. Selected polymer-
based devices from the literature are shown in Fig. 1.2 and represent the current state
of polymer-based acoustofluidics. These devices can be sub-categorized as all-polymer
or partly polymer-based, referring to the materials used for microfluidic chip fabrication.
In Refs. [1, 27, 28] a polymer is used either as a cover or a spacer, typically fabricated
in polydimethylsiloxane (PDMS) for fast and easy prototyping. In Refs. [29–31], the
microfluidic chip is all-polymer based and fabricated in polystyrene (PS) or polymethyl-
methacrylate (PMMA). All of which consist of a polymer-based microfluidic chip glued
onto a transducer. This thesis investigates the physical consequences of introducing poly-
mers in acoustofluidic systems using numerical models validated and supported by exper-
iments. Apart from the studies by Moiseyenko and Bruus [20], the field of polymer-based
acoustofluidics has been predominantly holistic. Here, we will try to analyze and treat each
device component separately but also in combination to fully understand the dynamics
and driving mechanisms when using polymers for acoustofluidic applications.

2012

2021
2020

2019

2019

2018

Transducer

Aluminum

PDMS

Polystyrene

Transducer

(a)
(b) (c)

(d)

(e) (f)

Figure 1.2: Selected pictures of polymer-based acoustofluidic devices from literature in
chronological order from (a) to (f). (a) A microchannel acoustophoresis device fabricated
using glass substrates and PMMA spacers for high-throughput separation of blood cells,
adapted from Adams et al. [27]. (b) A micro-milled aluminum-based acoustophoresis de-
vice with a PDMS cover for fast and easy prototyping, adapted from Gautam et al. [28]. (c)
A PMMA-based acoustophoresis device for high-throughput platelet separation, adapted
from Gu et al. [29]. (d) An arrayed microchannel polystyrene-based acoustophoresis de-
vice, adapted from Dubay et al. [30]. (e) A micro-milled aluminum-based acoustophoresis
device with a PDMS cover for microparticle streaming studies in soft-walled systems and
split-electrode designs, adapted from Paper I [1]. (f) A PMMA-based acoustophoresis
device with split-electrode design, adapted from Lickert et al. [31].
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1.2 Overview of research related to this PhD project

The research related to this PhD project can be characterized as computer-assisted device
engineering within the field of polymer-based acoustofluidics. The outcome of the research
has been published in three peer-reviewed papers of different nature, but all related to
polymer-based acoustofluidics. All three papers either support or tries to bridge simulation
with experiment within the field of polymer-based acoustofluidics. The list below describes
how my research progressed and attempts to link together the research related to this
PhD project. Each item provides the motivation and story leading to each of the three
papers. The papers are the results of our pursuit of precise modeling of polymer-based
acoustofluidics with the ultimate goal of bridging simulation and experiment.

(1) Modeling a polymer-based acoustofluidic device
Already in Paper I [1], a numerical model was implemented, tested, and validated.
The model includes the necessary components required to simulate acoustic phenom-
ena in polymer-based acoustofluidic devices. The model is based on perturbation
theory and effective boundary conditions to include viscous effects, enabling effective
modeling of acoustic pressure and streaming. The components included in the model
were the piezoelectric transducer, the fluid, and the PDMS-sealed aluminum-based
microfluidic chip. The fields included in the model are the electric potential, the me-
chanical displacement, the acoustic pressure, and the acoustic streaming. The model
enabled us to calculate the acoustic forces, including the acoustic radiation force and
the acoustic streaming drag, in realistic conditions without idealized boundary con-
ditions. The acoustic forces were then used to simulate the particle trajectories
influenced by the acoustic radiation force and the acoustic streaming. In this paper,
we studied the microparticle velocity fields in an aluminum-based microfluidic chip
with a PDMS cover for various particle sizes. This study is an extension to the
work by Gautam et al. [28], in which they studied a similar device for inexpensive
prototyping of acoustofluidic devices. We extended the study by varying the par-
ticle sizes, and furthermore, we considered a new and similar device but with an
anti-symmetric actuation for enhanced coupling. The anti-symmetric actuation was
achieved by a split-electrode transducer design with an anti-symmetric bias.

Complex particle velocity patterns were observed experimentally and numerically,
very different from classical acoustofluidic devices. The simulated results resembled
the observed velocity patterns, but we saw a mismatch in magnitude and resonance
frequencies. We quickly realized that our material parameters, used as input in the
simulations, were not well-characterized even though provided by the manufacturer.
After finishing the study, we realized that well-characterized material parameters
are required to model polymer-based acoustofluidic devices accurately.

(2) Numerical coupling-layer analysis in classical acoustofluidic systems
It was evident that if we want to model complex polymer-based systems, we need
to understand the structural influence of each device component. This led to our
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studies in Paper II [2], where the coupling layer between the transducer and chip
was studied numerically. For completeness, we considered two classical designs, the
glass capillary with a localized actuation and the silicon-glass-based acoustophoretic
chip with bulk actuation. Two coupling layers were considered for each device, a
fluid (glycerol) and a solid (epoxy). The simulated results showed how the coupling
layer works as a dissipative layer. However, as the coupling layer thickness becomes
comparable to the wavelengths, the coupling layer also has a structural influence
on the system resonances. In this paper, we realized that layered 3D models are
well-approximated by 1D-layered models as studied in Refs.[32, 33].

(3) Material parameter determination for ultrasound applications
From here on out, we started looking into material characterization methods suit-
able for ultrasound acoustofluidic applications. Inspired by [34–38], I, together
with my colleague Fabian Lickert, developed the ultrasound-electrical-impedance-
spectroscopy (UEIS) method in Paper III [3], able to determine complex-valued ma-
terial parameters otherwise sparsely reported in the literature and rarely provided
by the manufacturer or supplier. The method is able to provide and determine ma-
terial parameters of different classes, including piezoceramic materials, UV-curable
adhesives, polymers, and 3D-print resins. With this method, we can now do table-
top in-house material parameter determination. The method is versatile, cheap,
easy to execute, and provides the missing tool for precise and accurate modeling of
polymer-based acoustofluidic systems.

1.3 Thesis overview

The content of this thesis will to a large extent, be the application of the ultrasound-
electrical-impedance-spectroscopy (UEIS) method for the determination of complex-valued
elastic moduli, presented and developed in Paper III [3]. The method will be used to
characterize acoustofluidic device components, including the piezoelectric transducer, the
glue, and the microfluidic chip, enabling precise and accurate modeling of polymer-based
acoustofluidic devices. The simulated results will be compared with experiments, including
electrical impedance measurements, laser-Doppler velocimetry, and acoustophoresis par-
ticle tracking.

The thesis is written in such a way that it is self-contained and links together the
main results contained in the associated papers. The papers are provided in Chapter 6
in agreement with the co-authors. The reader is encouraged to read them as they are
referenced throughout this thesis. The following overview provides a short description of
each chapter and suggestions for when to read the papers as the reader proceeds.
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Chapter 1 Introduction — The concept of polymer-based acoustofluidics is introduced
together with scientific and technological motivation.

Chapter 2: Theory of acoustofluidic devices — The equations required to model
an acoustofluidic device are derived. The equations to be solved involve the Helmholtz
equation for the acoustic pressure field, a Stokes flow equation for the acoustic stream-
ing, Newton’s second law for the mechanical displacement, and Gauss’ law for the electric
potential. The chapter will also present the acoustic energy density and the acoustic ra-
diation force. The governing equations are followed by a section including the necessary
boundary conditions to model an acoustofluidic device.

Chapter 3: Simulation of acoustofluidic devices — The basic concepts of the finite-
element method (FEM) are introduced together with the weak formulation used to imple-
ment the governing equations and boundary conditions. The weak formulation for an axi-
symmetric system is formulated, in a Cartesian-like formulation, enabling two-dimensional
modeling of an axisymmetric system. Furthermore, the theory of perfectly matched layers
(PML) is described, which can be used to truncate the modeled geometry. Finally, the
model is validated by numerical mesh convergence.

Chapter 4: Polymer-based acoustofluidics — The challenges of polymer-based
acoustofluidics are illustrated with selected model examples. The main results of Pa-
per I [1] are summarized, in which we studied the particle velocity patterns for a PDMS-
sealed aluminum-based acoustofluidic device. In addition, I present an analytical solution
to a soft-walled system providing new insight into soft-walled acoustofluidic systems ex-
plaining the velocity patterns and the shifted resonance frequency observed in Paper I [1].
It is appropriate to read Paper I [1] before reading Chapter 4.

Chapter 5: Characterization of acoustofluidic device components — Using the
UEIS method presented in Paper III [3], each device component is characterized, including
the piezoelectric transducer, the glue, and the microfluidic chip. The UEIS results are
supported and supplemented by verification measurements, including laser-Doppler ve-
locimetry (LDV) and particle tracking. The chapter is divided into three sections, one for
each device component. The final section regarding the microfluidic chip includes a recent
experimental and numerical study of the acoustic response, including particle trajectories
influenced by the acoustic radiation force. It is appropriate to read Paper III [3] before
Chapter 5, and Paper II [2] before Section 5.2.

Chapter 6: Published papers — In agreement with the co-authors, the papers pub-
lished doing this project are included in their original form together with the supplemental
material.
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Chapter 7: A 3D-printed polymer-based acoustofluidic device — This chapter
involves ongoing research, and we plan to publish the results in a fourth paper. The UEIS
method is used to characterize a resin used for 3D printing, and the UEIS-determined elas-
tic moduli are used to accurately design a 3D-printed polymer-based acoustofluidic device
for fast and easy prototyping. Finally, we analyze the device in terms of acoustic response
and acoustophoresis performance in steady flow conditions by numerical simulations.

Chapter 8: Conclusion and outlook — The thesis is concluded, and further outlooks
and perspectives are discussed.



Chapter 2

Theory of acoustofluidic devices

The equations governing the acoustic fields in fluids, solids, and piezoelectric materials,
are presented together with the boundary conditions used in implementing the numerical
model. The content is a detailed presentation of the theory used in the three papers
contained in Chapter 6 [1–3]. The presentation of the theory is inspired by the textbooks
[39–42] and will to a large extent, be a summary of the theoretical and numerical results
obtained in our group and published in Refs. [43–45]. Thermal effects are outside the
scope of this thesis, and any process is assumed to be isentropic. The equation of state
is used to relate pressure and density for a system in thermal equilibrium with constant
entropy per unit mass. After introducing the physical fields and presenting the equations
used in the numerical model, the boundary conditions will be presented in a dedicated
section. The boundary conditions will be grouped into fluid-solid, electrode-transducer,
and solid-air interfaces.

2.1 Acoustics in a fluid

The acoustic theory is derived using perturbation theory in the small parameter α, which
turns out to be the Mach number. The fluid dynamics are represented by the mass
density field ρ̃(r, t), the pressure field p̃(r, t), and the velocity field ṽ(r, t) all continuous
functions of space r and time t. The equations governing the dynamics of a fluid in thermal
equilibrium with dynamic viscosity η0, bulk viscosity ηb0 , and viscous stress tensor τ , are
the conservation of mass and momentum

∂tρ̃ = −∇ · (ρ̃ṽ), (2.1a)

∂t(ρ̃ṽ) = −∇p̃+∇ · τ −∇ · (ρ̃ṽṽ) + f , (2.1b)

where f is a general body force. For a Newtonian fluid the viscous stress tensor τ reads

τ = η0

[
∇ṽ + (∇ṽ)T

]
+

(
ηb0 −

2

3
η0

)
(∇ · ṽ)I, (2.2)

where the superscript T denotes the transpose of a tensor, and I is the unit tensor.

9
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The equations describing acoustic waves and acoustic streaming in fluids are obtained
by approximating the velocity, pressure, and density fields using a truncated perturbation
expansion to second order. For a general field g̃(r, t) the truncated expansion in α reads

g̃(r, t) = g0(r) + αg̃1(r, t) + α2g̃2(r, t), (2.3)

where it is assumed that the unperturbed state g0(r) is time-independent and in thermal
equilibrium. Acoustic waves can be considered as a small perturbation p̃1 to the equilib-
rium pressure p0 or equivalently in terms of the mass density, which defines the expansion
parameter

α =
|p̃1|
p0

=
|ρ̃1|
ρ0
≪ 1. (2.4)

However, at resonance, having a quality factor Q, a stronger requirement is obtained since
the expansion parameter α becomes Qα as shown in Ref. [19].

A closed set of equations can be obtained by the equation of state relating the pressure
p̃(ρ̃, S) to the mass density ρ̃ and the entropy per unit mass S. Consider the functional
dependency p̃(ρ̃, S) for a fluid in thermal equilibrium and with constant entropy per unit
mass S. To first order, the Taylor expansion for the pressure p̃ about the equilibrium ρ0
reads

p̃ = p0 +

(
∂p̃(ρ0)

∂ρ̃

)

S

(ρ̃− ρ0) = p0 +

(
∂p̃(ρ0)

∂ρ̃

)

S

ρ̃1. (2.5)

The partial derivative in Eq. (2.5) is identified as the isentropic sound speed squared(
∂p̃(ρ0)
∂ρ̃

)
S
= c20. Collecting first-order terms in Eq. (2.5) gives the constitutive relation

p̃1 = c20ρ̃1 between the first-order pressure field p̃1 and the first-order density field ρ̃1. The
isentropic compressibility κ0 can be identified as

κ0 =
1

ρ0

(
∂ρ̃(p0)

∂p̃

)

S

=
1

ρ0c
2
0

, (2.6)

where the subscript S denotes a partial derivative at constant entropy per unit mass. The
constitutive relation between pressure and density will be used in the proceeding section
to provide a closed set of equations describing the acoustic fields in a fluid.

2.1.1 Acoustic pressure waves

Using the constitutive relation p̃1 = c20ρ̃1 for a quiescent fluid v0 = 0 without external
forces, the collection of first-order terms in Eq. (2.1a) and Eq. (2.1b) gives a closed set of
linear partial differential equations

κ0∂tp̃1 = −∇ · ṽ1, (2.7a)

∂t(ρ0ṽ1) = −∇p̃1 + η0∇2ṽ1 +

(
1

3
η0 + ηb0

)
∇(∇ · ṽ1). (2.7b)
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In a linear system with a harmonic time response, given by the angular frequency ω = 2πf

with excitation frequency f , the first-order terms can be written as g̃1(r, t) = Re
[
g1(r)e

−iωt
]

in terms of the complex-valued amplitude g1(r). By these means, the time-derivative ∂t
can be substituted with −iω and the phase factor e−iωt can be factored out, leaving a set
of time-independent equations for which only the complex-valued amplitudes g1(r) needs
to be solved for. To obtain a single equation describing the first-order acoustic pressure
field p1, the velocity field is decomposed using a Helmholtz decomposition

v1 = vd
1 + vδ

1, where ∇× vd
1 = 0 and ∇ · vδ

1 = 0, (2.8)

and so Eq. (2.7a) becomes

iωκ0p1 = ∇ · vd
1 . (2.9)

By taking the divergence of Eq. (2.7b) and inserting Eq. (2.9), a single equation governing
the acoustic pressure field p1 is obtained

∇2p1 = −k2cp1, with k2c =
1

1− iΓ
k20 ≈ (1 + iΓ) k20, (2.10a)

Γ =

(
ηb0
η0

+
4

3

)
η0ωκ0, k0 =

ω

c0
=

2π

λ
. (2.10b)

The theory of acoustic pressure waves in a fluid is established, Eq. (2.10a) is a Helmholtz
equation with a complex-valued wavenumber kc, proportional to the acoustic wavenumber
k0 with acoustic wavelength λ, and with a damping coefficient Γ. The acoustic and fluid
properties for ultra-pure water are provided in Table 2.1 for f = 1MHz at 25 °C.

The irrotational part of Eq. (2.7b) combined with Eq. (2.9) gives the irrotational
velocity in terms of the pressure gradient

vd
1 = −i1− iΓ

ωρ0
∇p1, (2.11)

which also satisfies a Helmholtz equation with wavenumber kc. By inserting Eq. (2.9) into
Eq. (2.4) the perturbation expansion parameter α can be identified as the Mach number

Table 2.1: Acoustic and fluid properties for ultra-pure water at f = 1 MHz and 25 °C
[18, 46–49]. The fluid properties include the fluid mass density ρ0, the dynamic viscosity

η0, the bulk viscosity ηb0 , the isentropic sound speed c0, the isentropic compressibility
κ0, and the acoustic impedance Z0 = ρ0c0. The acoustic properties are evaluated at
f = 1MHz and include the acoustic wavelength λ, the damping coefficient Γ, the viscous
boundary-layer thickness δvisc, and the perturbation expansion parameter α.

ρ0 η0 ηb0 c0 κ0 Z0 λ Γ ∝ ω δvisc ∝ ω−1/2 α

(kg/m3) (mPa s) (mPa s) (m/s) (1/TPa) (MPa s/m) mm - nm -

997.1 0.89 2.5 1496.7 448 1.5 1.5 1× 10−5 533 |v1|
c0
∼10−6
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Ma = |v1|/c0. For typical acoustofluidic applications the velocity amplitude ranges be-
tween micrometer per second up to millimeter per second so Ma≪ 1 [1, 50–52].

Similarly, by considering the solenoidal part of Eq. (2.7b), the solenoidal velocity field

vδ
1 is found to be governed by a Helmholtz equation

∇2vδ
1 = −k2svδ

1, with ks =
1 + i

δvisc
, and δvisc =

√
2η0
ωρ0

, (2.12)

with a complex-valued wavenumber ks and the characteristic boundary-layer thickness
δvisc. Notice how vd

1 and vδ
1 are separated in length scales; at f = 1MHz the viscous

boundary layer thickness is δvisc = 533 nm and the acoustic wavelength is λ = 1.5mm,
a three orders of magnitude difference. Solving the velocity field numerically on a dis-
cretized mesh requires both length scales to be resolved. However, Bach and Bruus [45]
circumvented this problem as they developed a theory that includes the viscous effects
analytically in the boundary conditions, leaving p1 as the only required field when solving
first-order acoustics. This is possible since Re(ks) = Im(ks) signifies a heavily damped
solenoidal field that only exists in thin layers extending δvisc from the fluid-solid inter-
face. The fields vd

1 and vδ
1 will be used as inputs to the boundary conditions presented in

Section 2.4.1.

2.1.2 Acoustic streaming and radiation force

The linear theory presented in Section 2.1.1 provides the necessary equations to model
acoustic pressure waves in a fluid. However, as mentioned in the introduction, there
exists another essential second-order effect called acoustic streaming: a time-averaged flow
sourced by the dissipation of energy contained in the acoustic waves. Acoustic streaming
can be sub-categorized into bulk-driven and boundary driven. Due to the no-slip condition,
the boundary-driven acoustic streaming arises from the large velocity gradients near rigid
walls, causing time-averaged shear stress driving the acoustic streaming. The bulk-driven
streaming arises from the dissipation of energy contained in traveling waves. The equations
describing the acoustic streaming ṽ2 are obtained by collecting the second-order terms in
Eq. (2.1) and taking the time-average

0 = ρ0∇ · v2 +∇ · ⟨ρ̃1ṽ1⟩ , (2.13a)

0 = ∇ · σ2 − ρ0∇ · ⟨ṽ1ṽ1⟩ = −∇p2 +∇ · τ2 − ρ0∇ · ⟨ṽ1ṽ1⟩ , (2.13b)

τ2 = η0

[
∇v2 + (∇v2)

T
]
+

(
ηb0 −

2

3
η0

)
(∇ · v2)I, (2.13c)

where the time-average operator ⟨·⟩ is defined as

g2(r) = ⟨g̃2(r, t)⟩ =
ω

2π

∫ t+2π/ω

t
g̃2(r, t

′) dt′. (2.14)
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When taking the time average of a product of two harmonic terms
〈
g̃1h̃1

〉
, the following

identity is useful 〈
g̃1(r, t)h̃1(r, t)

〉
=

1

2
Re
(
g1(r)h1(r)

∗) , (2.15)

where the asterisk denotes complex conjugate.

As already mentioned, the boundary-driven acoustic streaming arises from the velocity
field adapting to the no-slip condition over a very short length-scale δvisc ∼ 500 nm. Both
the acoustic wavelength and the boundary layer must be resolved to model the acoustic
streaming. Numerically this is challenging since the boundary layer is several orders
of magnitude smaller than the acoustic wavelength. To overcome this challenge, Bach
and Bruus [45] developed an effective theory enabling the modeling of acoustic streaming
without resolving the boundary layer. In this theory, the viscous boundary layer effects are
accounted for in an analytical slip-velocity boundary condition. The theory separates the
acoustic streaming into a short-ranged velocity vδ

2 decaying within the viscous boundary
layer and a long-ranged vd

2 existing in the bulk domain. The long-ranged part of Eq. (2.13)
can be approximated as an incompressible Stokes flow

0 = ∇ · vd
2 , (2.16a)

0 = −∇pd2 + η0∇2vd
2 +

Γω

c20

〈
p1v

d
1

〉
, (2.16b)

where the short-ranged vδ
2 is included in the boundary condition and evaluated in terms

of the first-order acoustic fields. The Helmholtz Eq. (2.10a) and the incompressible Stokes
flow Eq. (2.16) constitute the equations required for effective modeling of the first and
second-order acoustic phenomena in a fluid, given by the acoustic pressure field p1 and
the acoustic streaming field vd

2 .

Acoustic energy density

The energy density is the sum of kinetic and potential energy densities and is another
time-averaged second-order quantity. For a quiescent fluid, the time-harmonic velocity

disturbances ṽ1 yields a time-averaged kinetic energy density 1
2ρ0

〈
ṽ2
1

〉
. The time-averaged

potential energy density for a fluid compressed by an excess pressure p̃1 is 1
2κ0

〈
p̃21

〉
. The

acoustic energy density Eac is defined as the spatial and time-averaged sum of kinetic and
potential energy density

Eac =
1

V

∫

Ω

(
1

2
ρ0

〈
ṽ2
1

〉
+

1

2
κ0

〈
p̃21

〉)
dV =

1

V

∫

Ω

(
1

4
ρ0|v1|2 +

1

4
κ0|p1|2

)
dV. (2.17)

The acoustic energy density spectrum Eac(f) is used to locate resonance frequencies and
as a measure of the acoustic response.
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Acoustic radiation force

Another important second-order quantity is the acoustic radiation force Frad, which forms
the foundation for acoustofluidic applications and acoustophoresis. The acoustic radiation
force arises from the scattering of acoustic waves on a compressible particle suspended in
a fluid. In general, the acoustic radiation force is calculated by integrating the stress σ
exerted by the fluid on the time-dependent particle surface ∂Ω(t) with normal vector n
and taking the time-average

Frad =

〈∮

∂Ω(t)
σ · ndA

〉
. (2.18)

The conservation of momentum and Gauss’ theorem can be used to re-formulate the inte-
gral in Eq. (2.18). For a time-harmonic response, the collection of second-order terms in the
time-averaged rate-of-change of the momentum density ⟨∂t(ρ̃ṽ)⟩ is zero, as in Eq. (2.13b),
so the volume integral must also be zero

0 =

∫

Ω
(∇ · σ2 − ρ0∇ · ⟨ṽ1ṽ1⟩) dV. (2.19)

Consider a fluid domain Ω enclosing a solid particle, then by using Gauss’ theorem, the
volume integral in Eq. (2.19) can be re-written as a static surface integral ∂Ωout enclosing
the particle plus the integral evaluated on the time-dependent particle surface ∂Ω(t) of
opposite sign due to the normal vectors pointing in opposite directions

0 =

∮

∂Ωout

(σ2 − ρ0 ⟨ṽ1ṽ1⟩) · ndA−
〈∮

∂Ω(t)
σ · ndA

〉
. (2.20)

The complicated time-dependent surface integral in Eq. (2.18) can now be replaced by a
steady surface integral enclosing the particle

Frad =

∮

∂Ωout

(σ2 − ρ0 ⟨ṽ1ṽ1⟩) · ndA, (2.21)

which comes by the cost of the momentum-flux density ρ0 ⟨ṽ1ṽ1⟩ entering the integral. In
Ref. [43], Settnes and Bruus studied the acoustic radiation force on a particle exposed to
a standing acoustic pressure wave in a viscous fluid, leading to the following expression
for the acoustic radiation force on a particle of radius a, compressibility κp, and density
ρp

Frad = −πa3
{
2κ0
3

Re
(
f1p

∗
1∇p1

)
− ρ0Re

[
f∗
2

(
vd
1

)∗
·∇vd

1

]}
, (2.22)

where the monopole f1 and dipole f2 scattering coefficients are

f1 = 1− κp
κ0

, f2 =
2 [1− γ] (ρ̃− 1)

2ρ̃+ 1− 3γ
, (2.23a)

γ = −3

2

[
1 + i

(
1 + δ̃

)]
δ̃, with ρ̃ =

ρp
ρ0

and δ̃ =
δvisc
a

. (2.23b)
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For an idealized standing acoustic pressure wave p1 = pa cos(k0z), the acoustic energy
density becomes Eac =

1
4κ0p

2
a and the acoustic radiation force simplifies to

Frad = 4πΦa3k0Eac sin(2k0z), (2.24)

where the acoustic contrast factor Φ is defined as

Φ =
1

3
f1 +

1

2
Re(f∗

2 ), (2.25)

which determines the sign and the amplitude of the acoustic radiation force, relative to
the acoustic field strength.

2.2 Acoustics in an elastic solid

The acoustic fields in a fluid are driven by the no-slip velocity condition at the fluid-solid
interface. To fully understand and study the acoustofluidic response, the dynamics in
the surrounding elastic material must be included. The equation of motion governing the
mechanical displacement field ũ in an elastic solid, undergoing small strain |∇ũ| ≪ 1,
with mass density ρsl and stress tensor σ, is governed by Newton’s second law

ρsl∂
2
t ũ = ∇ · σ. (2.26)

The gravitational body-force term has been neglected since it only leads to a tiny static
deformation.

In a linear system subject to a time-harmonic response, the first-order perturbed dis-

placement field can be written as ũ1(r, t) = Re
[
u1(r)e

−iωt
]
so Eq. (2.26) becomes

− ρslω
2u1 = ∇ · σ. (2.27)

The constitutive relation between the symmetric stress σ and strain s = 1
2

[
∇ũ1 + (∇ũ1)

T
]

for an elastic solid in thermal equilibrium, is given by the stiffness tensor C

σ = Cs. (2.28)

Using the Voigt notation, the symmetric stress and strain tensors can be reduced to six-
dimensional vectors

σV = (σxx, σyy, σzz, σyz, σxz, σxy), (2.29a)

sV = (∂xu1,x, ∂yu1,y, ∂zu1,z, ∂yu1,z + ∂zu1,y, ∂xu1,z + ∂zu1,x, ∂xu1,y + ∂yu1,x), (2.29b)

and the constitutive relation in Eq. (2.28) can be compactly written as



σxx
σyy
σzz
σyz
σxz
σxy




=




C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C14 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66







∂xu1,x
∂yu1,y
∂zu1,z

∂yu1,z + ∂zu1,y
∂xu1,z + ∂zu1,x
∂xu1,y + ∂yu1,x




. (2.30)
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The material’s crystal symmetry gives the number of elements and the structure of the
stiffness tensor. For an isotropic elastic solid, e.g., glass and polymers, the stiffness tensor
structure is

Ciso =




C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44




, (2.31)

where C12 = C11 − 2C44 leaving two independent coefficients C11 and C44. In general,
the stiffness tensor is complex-valued C = C ′ + iC ′′ signifying mechanical losses, which
means that a complete description of an isotropic elastic material requires five material
parameters including the mass density ρsl.

2.3 Linear piezoelectricity

One way to generate ultrasound is to drive a piezoelectric material at megahertz frequen-
cies using a function generator, exploiting the piezoelectric effect; by applying an electric
voltage to a piezoelectric material, the piezoelectric coupling yields a mechanical defor-
mation. To describe the dynamics of a piezoelectric material, the mechanical fields are
supplemented by the electric potential φ̃, the electric field E = −∇φ̃, and the electric
displacement field D = ϵE. Assuming no free charges, the electric potential inside the
piezoelectric material is governed by Gauss’ law

∇ ·D = 0. (2.32)

The constitutive equations describing the piezoelectric effect in the stress-charge form
are given in terms of the stiffness tensor C, the dielectric tensor ϵ, and the piezoelectric
coupling tensor e

σ = Cs− eTE, (2.33a)

D = es+ ϵE. (2.33b)

For a piezoelectric transducer belonging to the ∞mm symmetry class [53], which will be
the case for the piezoceramic materials considered in this thesis, the stress-charge form is
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compactly written using the Voigt notation

C =




C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C66




, (2.34a)

e =




0 0 0 0 e15 0
0 0 0 e15 0 0
e31 e31 e33 0 0 0


 , (2.34b)

ϵ =




ϵ11 0 0
0 ϵ11 0
0 0 ϵ33


 , (2.34c)

where C66 = 1
2 (C11 − C12). As in Eq. (2.31), the parameters are complex-valued, leaving

a total of 20 independent parameters to be determined for a complete description of a
∞mm piezoelectric material. The notation M = M ′+iM ′′ is used to distinguish real and
complex-valued parameters. The use and development of a method for the determination
of both real and complex-valued parameters contained in Eqs. (2.31) and (2.34) will, to a
large extent, be the main scope of this thesis.

2.4 Boundary conditions

This section presents the boundary conditions between the different interfaces, including
the fluid-solid interface, the electrode-piezoceramic interface, and the solid-air interface.
Together with the governing equations in the respective domains, this forms the theoretical
foundation for the numerical implementation.

2.4.1 Fluid-solid interface

The coupling at the fluid-solid interface is what drives the acoustic fields inside the fluid.
The fluid velocity has to satisfy the no-slip condition, and the stress has to be continuous
at the fluid-solid interface ∂Ωint, with normal vector n pointing into the fluid domain.
Using the effective theory in Ref. [45], where the viscous boundary layer effects are in-
cluded analytically in the boundary condition, the no-slip and continuous stress boundary
conditions are

vd
1 · n = −iωu1 · n−

i

ks
∇∥ ·

(
vδ
1

)
∥
, for r ∈ ∂Ωint, (2.35a)

σ · n = −p1n+ iksη0v
δ
1, for r ∈ ∂Ωint, (2.35b)

where the subscript ∥ denotes the parallel component with respect to the surface ∂Ωint.
Notice how the viscous effects are accounted for as a slip-like velocity in the no-slip con-
dition Eq. (2.35a) and as shear stress in the continuous stress condition Eq. (2.35b).
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To avoid explicit reference to vδ
1, we use vδ

1 =
(
−iωu1 − vd

1

)
, which is exactly the

first-order no-slip condition. Instead of the long-ranged velocity field vd
1 , Eq. (2.35a) can

be written in terms of the pressure gradient

(n ·∇)p1 =
iωρ0
1− iΓ

(
−iωu1 −

ω

ks
∇ · u1

)
− i

ks

(
k2cp1 + ∂2

np1

)
, (2.36)

where the operator ∂2
n is defined as ∂2

n = (n ·∇)(n ·∇). Equations (2.35a) and (2.36)
constitute the necessary boundary conditions to model acoustic pressure waves in a fluid,
where the viscous boundary layer effects have been analytically taken into account in the
boundary conditions.

When calculating the acoustic streaming, the no-slip condition has to be satisfied to
second order, yielding a Stokes drift condition

v2 = −⟨(u1 ·∇)v1⟩ for r ∈ ∂Ωint. (2.37)

Again, the results obtained by Bach and Bruus [45] are used to implement the boundary
conditions required to avoid explicit reference to fields existing in the boundary layer near
the fluid-solid interface. To second-order, the analytical inclusion of viscous effects in the
no-slip condition results in a slip condition sourced by the first-order terms

vd
2 = (A · t1)t1 + (A · t2)t2 + (B · n)n, for r ∈ ∂Ωint, (2.38a)

A = − 1

2ω
Re

[(
vδ
1

)∗
·∇

(
1

2
vδ
1 − ωu1

)
+ ωu∗

1 ·∇vd
1

+

(
2− i

2
∇ ·

(
vδ
1

)∗
+ i
{
iω∇ · u∗

1 − n ·∇
[
n ·
(
vd
1

)∗]})
vδ
1

]
,

(2.38b)

B =
1

2ω
Re
[
i
(
vd
1

)∗
·∇vd

1

]
. (2.38c)

The effective boundary conditions in Eq. (2.35) and Eq. (2.38) are valid for weakly curved
boundaries and thin boundary layers δvisc/min(λ,R)≪ 1, where R is the curvature length-
scale at the fluid-solid interface with unit tangent vectors t1 and t2.

2.4.2 Electrode-piezoceramic interface

The excitation voltage amplitudes give the boundary conditions between the electrodes
and the transducer interface. Typically one of the electrodes is grounded (∂Ωelec,1) while
the other (∂Ωelec,2) is driven at a sinusoidal signal with a constant voltage amplitude V0,

φ1 = V1 = 0, for r ∈ ∂Ωelec,1, (2.39a)

φ1 = V2 = V0, for r ∈ ∂Ωelec,2. (2.39b)

Experimentally, the electrical impedance Z is easily obtained using an impedance analyzer
when applying the voltage to the piezoelectric element. Throughout this thesis, the electri-
cal impedance will be used to characterize piezoelectric transducers and elastic materials.
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By matching the measured electrical impedance spectrum to the simulated, the simula-
tions can be used to decipher the signal providing insight into the dynamics. The electrical
impedance is calculated by dividing the voltage difference, between the electrodes, by the
current I

Z =
V2 − V1

I
. (2.40)

The current is calculated by integrating the current density Jφ = ∂t (D − ϵ0E) over one
of the electrodes

I =

∫

∂Ωelec,2

Jφ · ndA = −iω
∫

∂Ωelec,2

(D − ϵ0E) · ndA, (2.41)

where n is the normal vector to the electrode surface and ϵ0 is the vacuum permittivity.

2.4.3 Solid-air interface

The zero-stress boundary conditions are imposed on exterior surfaces ∂Ωext between solid
and air

n · σ = 0 for r ∈ ∂Ωext. (2.42)

In reality, there is a stress due to viscous shear and ambient pressure from the surrounding
air. Consider a solid vibrating at f = 1MHz with an amplitude of |u1| = 1nm. The shear
stress exerted on the solid by the fluid can be approximated by an oscillating boundary,
where the velocity has to completely develop on a length-scale δair =

√
2ηair/(ρairω) ∼

2 µm, yielding a shear stress ηairω|u1|/δair ∼ 50mPa. In a typical acoustofluidic device,
the stress magnitude is in the order of MPa, so the zero-stress boundary condition is a
good approximation. Furthermore, the compressibility of air is much smaller than typical
elastic solids.

The zero-stress boundary condition is accompanied by a zero free-charge density con-
dition at boundaries ∂Ωext between the piezoelectric transducer electrodes and the air

n ·D = 0 for r ∈ ∂Ωext. (2.43)





Chapter 3

Simulation of acoustofluidic
devices

The weak formulation will be derived, which forms the basis for solving differential equa-
tions using the finite-element method (FEM). The weak formulation will be re-formulated
in the case of an axisymmetric system, enabling efficient modeling by reducing an axisym-
metric three-dimensional geometry into a two-dimensional model domain. Furthermore,
the technique of perfectly matched layers (PML) is presented. The PML technique is used
to truncate numerical model domains in cases of non-reflecting outgoing waves. Finally,
a model is validated by numerical mesh convergence and evaluated using different sets of
polynomial test functions and mesh structures.

3.1 The finite-element method

The equations required for the numerical model implementation have been established in
Chapter 2, and a method to solve and satisfy the differential equations and boundary con-
ditions is needed. Here, we will use the finite-element method (FEM) to approximate the
solution to the governing differential equations on a discretized mesh with an appropriate
set of test functions. Here, the weak formulation is established, which will be the mathe-
matical basis for constructing approximate solutions to the governing equations given the
boundary conditions. When using the finite-element method, a physical domain Ω with
boundary ∂Ω is discretized into a finite number of mesh vertices n = 1, 2, . . . ,M con-
nected by mesh elements, as illustrated in Fig. 3.1. The solution to a field g(r) obtained
by the finite-element method is approximated and represented by a superposition of test
functions ĝ(r) as

g(r) ≈
M∑

n=1

cnĝn(r), (3.1)

21
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1

xy
n

Figure 3.1: Sketch of a two-dimensional domain Ω (gray) with boundary ∂Ω (red line)
represented by a triangular mesh with a maximum mesh-element size ℓ. Here, the test
function ĝn is chosen to be a first-order polynomial with value 1 at vertex n, located at
rn, and 0 at adjacent vertices.

where the coefficients cn are to be determined by numerical procedures. The test functions
ĝn(r) are continuous and holds the compact properties

ĝn(rm) =

{
0, m ̸= n,

1, m = n.
(3.2)

The equations governing the fields included in our model can all be written in the
generic form

∇ · J [g(r)]− F [g(r)] = 0, (3.3)

known as the strong formulation in which J can be interpreted as a generalized flux density
and F as a generalized force. The weak formulation is constructed by substituting the
approximation Eq. (3.1) into Eq. (3.3), which leads to a defect d(r) written as

∇ · J [g(r)]− F [g(r)] = d(r). (3.4)

The strong formulation is approximately satisfied if the projection of d(r) onto any test
function ĝm(r) vanishes

∫

Ω
ĝm(r)d(r) dV =

∫

Ω
ĝm(r) {∇ · J [g(r)]− F [g(r)]} dV = 0, (3.5)

which is known as the weak formulation. For a linear mapping J [g(r)] =
∑

n cnJ [ĝn(r)]
and F [g(r)] =

∑
n cnF [ĝn(r)] the weak formulation Eq. (3.5) can be written as

M∑

n=1

(∫

Ω
ĝm(r) {∇ · J [ĝn(r)]− F [ĝn(r)]} dV

)
cn = 0, (3.6a)

compactly written as
M∑

n=1

Kmncn = 0, (3.7)
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corresponding to M number of algebraic equations with unknowns cn to solve for. The
numerical task will be to calculate the integrals contained in Kmn and solve for the con-
stants cn to represent the approximate solution in Eq. (3.1). In the proceeding section,
the boundary conditions will be considered and added to the weak formulation, resulting
in a non-zero right-hand side of Eq. (3.7), which means that the unknown coefficients cn
can be obtained by matrix inversion procedures.

3.1.1 Boundary conditions implemented in the weak form

Here, two classes of boundary conditions are considered, one specifying the field value
g(r) = h(r) at the boundary ∂ΩD and another specifying the normal flux density
n ·J = q(r) at the boundary ∂ΩN . These are known as Dirichlet and Neumann boundary
conditions, respectively. The boundary ∂Ω surrounding the domain Ω is the union between
∂ΩD and ∂ΩN . The boundary conditions can be accessed by expanding Eq. (3.5) using
integration by parts

∫

Ω
[(∇ĝm) · J + ĝmF ] dV =

∫

∂ΩD

ĝmn · J dA+

∫

∂ΩN

ĝmn · J dA. (3.8)

The Dirichlet condition specifying the field value g(r) = h(r) for r ∈ ∂ΩD implies that
the test function ĝm must vanish on the surface r ∈ ∂ΩD, and together with the Neumann
boundary condition n · J = q the weak formulation Eq. (3.8) becomes

∫

Ω
[(∇ĝm) · J + ĝmF ] dV =

∫

∂ΩN

ĝmq(r) dA,

g(r) = h(r) for r ∈ ∂ΩD,

(3.9)

reducing the number of equations to be solved by the number of vertices contained in
∂ΩD. The matrix inversion problem Eq. (3.7) can then be written as

Kmncn = bm, for rm ∈ Ω ∪ ∂ΩN , and (3.10a)

bm = hm, for rm ∈ ∂ΩD. (3.10b)

where

Kmn =

∫

Ω
{(∇ĝm) · J [ĝn] + ĝmF [ĝn]} dV, (3.11a)

bm =

∫

∂ΩN

ĝmq(r) dA. (3.11b)

The matrix inversion problem is generated in three steps: first, the coefficients contained
in Kmn are assembled by calculating the integrals. Secondly, the Neumann boundary
conditions are imposed to calculate bm, and finally, the Dirichlet boundary conditions
overwrite bm for rm ∈ ∂ΩD.

Notice how the expanded version of the weak formulation in Eq. (3.8) is easier to solve
compared to Eq. (3.6) since the complicated divergence ∇ ·J is replaced by ∇ĝm, which is
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Table 3.1: FEM details for implementation in Comsol Multiphysics, including the
field name, the polynomial order (2D/3D), governing equation, the generalized flux density
J , the generalized force F , the boundary condition, and the type of boundary condition.

Field
Pol.
order

(2D/3D)

Gov.
eq.

J F
Bound.
cond.

Type

p1 4th/3rd Eq. (2.10a) ∇p1 −k2cp1 Eq. (2.36) Neumann

vd
2 3rd/2nd Eq. (2.16b) η0∇vd

2 − pd2I −Γω

c
2
0

〈
p1v

d
1

〉
Eq. (2.38) Dirichlet

pd2 2nd/1st Eq. (2.16a) 0 ∇ · vd
2

∫
Ω pd2 dV = 0 Global constraint

u1 4th/3rd Eq. (2.27) σ −ρslω2u1 Eq. (2.35b) Neumann

φ1 4th/3rd Eq. (2.32) D 0 Eq. (2.39) Dirichlet

known analytically given the set of polynomial test functions. The weak formulation is an
integrated part in the Comsol Multiphysics software, and by using the ”weak form PDE
module”, the specific J and F are to be specified together with the appropriate class of
boundary condition. For each field, the numerical details are given in Table 3.1, including
the polynomial order of the test functions, the flux density J , the force F , and the class
of boundary condition. In the equations governing the acoustic streaming, Eq. (2.16), the

second-order gradient pressure field ∇pd2 appear as a source term in Eq. (2.16b), the pd2
level is then set by using a global constraint defined as

∫
Ω pd2 dV = 0.

3.2 Symmetries

When a system features certain symmetries, symmetry boundary conditions can reduce
the model geometry. For example, consider a mirror plane with the surface normal n;
the model geometry can be reduced by one-half by imposing zero normal components and
zero fluxes across the mirror plane. The boundary conditions on a mirror plane are given
explicitly for each field in Table 3.2.

Another type of symmetry is axisymmetry, for which the geometry is rotationally
invariant. For axisymmetric geometries, the model domain can potentially be reduced
from a three-dimensional to two-dimensional model geometry. This reduction will not only
halve the degrees of freedom but reduce it by a factor proportional to the mesh element

Table 3.2: List of symmetry conditions imposed on a mirror plane with normal vector n
and tangent vectors ti. The symmetry conditions are tabulated for each field included in
the model and classified as Dirichlet or Neumann, referring to the field value or the flux.

p1 vd
2 u1 φ1 B. c. type

Normal component n · vd
2 = 0 n · u1 = 0 Dirichlet

Flux n ·∇p1 = 0 ti ·
(
η0∇vd

2 − pd2I
)
· n = 0 ti · σ · n = 0 n ·D = 0 Neumann
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size divided by the geometry length scale, typically in the order of 10−2 depending on
the frequency and the geometry. A two-dimensional axisymmetric model is achieved by
transforming Eq. (3.5) into cylindrical coordinates (r, ϕ, z) assuming ϕ-independent fields
and re-writing it into a form identical to Eq. (3.5). By introducing the Cartesian-like
gradient ∇rz = (∂rer + ∂zez) the axisymmetric version of Eq. (3.5) becomes

∫

Ω
ĝm(r) {∇rz · Jrz − Frz} drdz = 0. (3.12)

The task is now to find the transformed Jrz and Frz which satisfy Eq. (3.12).

In Table 3.1, it is seen how J appears either as a vector or as a tensor, in the case of
J being a vector, the transformed Jrz and Frz becomes

Jrz = 2πr (Jrer + Jzez) , and Frz = 2πrF, (3.13)

where Jr and Jz are the flux density components in cylindrical coordinates. In cases where
J appears as a tensor and F as a vector, the transformed Jrz and Frz reads

Jrz = 2πr {Jrrerer + Jrzerez + Jzrezer

+Jzzezez + Jrϕereϕ + Jzϕezeϕ
}
,

(3.14)

and
Frz = 2πrF̃ + 2πJϕϕer − 2πJϕreϕ, (3.15)

where F̃ is the cylindrical transformation of F . All fields are considered independent
of ϕ and with zero ϕ components. Implementing the axisymmetric version of the weak
formulation for a scalar field is straightforward and only acquires a factor 2πr as shown
in Eq. (3.13). However, for a vector field, the implementation requires knowledge of the
tensor components in Jrz and the extra terms appearing in Frz, for the acoustic streaming
vd
2 the non-zero components are

J

(
v
d
2

)
rr =

(
η0∂rv

d
2,r − pd2

)
, J

(
v
d
2

)
rz = η0∂zv

d
2,r,

J

(
v
d
2

)
zr = η0∂rv

d
2,z, J

(
v
d
2

)
zz =

(
η0∂zv

d
2,z − pd2

)
,

(3.16a)

J

(
v
d
2

)
ϕϕ = η0

vd2,r
r
− pd2. (3.16b)

Similarly, the transformed components for the mechanical displacement field in an isotropic
solid are provided

J (u1)
rr = C11∂ru1,r + C12

(u1,r
r

+ ∂zu1,z

)
,

J (u1)
rz = J (u1)

zr = C44

(
∂ru1,z + ∂zu1,r

)
,

J (u1)
zz = C12

1

r
∂r
(
ru1,r

)
+ C11∂zu1,z,

(3.17a)

J
(u1)
ϕϕ = C12∂ru1,r + C11

u1,r
r

+ C12∂zu1,z. (3.17b)
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For the constitutive relation in Eq. (2.33a), the mechanical displacement field is sup-
plemented by the electric field given by the piezoelectric coupling tensor. For a ∞mm
piezoelectric material, the axisymmetric transformation gives the following non-zero com-
ponents

J (u1↔φ1)
rr = C11∂ru1,r + C12

u1,r
r

+ C13∂zu1,z + e31∂zφ,

J (u1↔φ1)
rz = J (u1↔φ1)

zr = C44

(
∂ru1,z + ∂zu1,r

)
+ e15∂rφ,

J (u1↔φ1)
zz = C13

1

r
∂r
(
ru1,r

)
+ C33∂zu1,z + e33∂zφ,

(3.18a)

J
(u1↔φ1)
ϕϕ = C12∂ru1,r + C11

u1,r
r

+ C13∂zu1,z + e31∂zφ. (3.18b)

Except for the first-order no-slip condition in Eq. (2.36) and the acoustic streaming slip-
condition in Eq. (2.38), the boundary conditions are not altered by the axisymmetric
implementation apart from ∇ → ∇rz, (x, y, z) → (r, z), and the Neumann conditions
acquiring a factor of 2πr due to the surface integral.

The axisymmetric formulation of the first-order no-slip condition in Eq. (2.36) is

(n ·∇)p1 =
iωρ0
1− iΓ

[
−iωu1 −

ω

ks

(
∇rz · u1 +

u1,r
r

)]
− i

ks

(
k2cp1 + ∂2

np1

)
, (3.19)

in this case, the boundary condition acquires an additional term
u1,r

r due to the divergence.
Similarly, for the acoustic slip condition Eq. (2.38), the divergence contributes with extra
terms, and the boundary condition in axisymmetric coordinates is written as

Arz = A+


2− i

2

(
vδ1,r

)∗

r
+ ω

u∗1,r
r


vδ

1, (3.20a)

Brz = B, (3.20b)

where the three-component Cartesian vectors in A and B are replaced by the two-
component cylindrical vectors with r and z components together with ∇→∇rz. Further-
more, for any vector field, i.e., u1 and vd

2 , the r-component has to be zero at the rotational
axis at r = 0 since the fields have to be invariant of ϕ.

3.3 Perfectly matched layers

A perfectly matched layer (PML) is a numerical technique used to truncate computational
domains in numerical simulations. The technique is typically used to simulate prop-
agating waves in unbounded domains but can also be used in finite domains whenever
an outgoing wave is completely attenuated and non-reflecting. The technique involves an
artificial domain in continuation of the physical region of interest, which absorbs incoming
waves. Mathematically this is achieved by a complex coordinate transformation: for a
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wave traveling in the x-direction with angular frequency ω = 2πf , the complex coordinate
transformation inside the PML domain (Lphys ≤ x < Lphys + Lpml) is

x→ x+
i

ω

∫ x

Lphys

µ(s) ds, for x ∈ [Lphys, Lphys + Lpml[, (3.21)

and whenever the partial derivative ∂x appears, it should be replaced by

∂x →
1

1 + i
ωµ(x)

∂x, for x ∈ [Lphys, Lphys + Lpml[. (3.22)

The task is now to appropriately define the absorbing function µ(x). In this thesis, we use
an unbounded continuous absorbing function of the form

µ(x) =

{
0, for x ≤ Lphys,

2c
Lpml−(x−Lphys)

− 2c
Lpml

, for x > Lphys,
(3.23)

as in Ref. [54], which provides a PML layer without spurious reflections at x = Lphys+Lpml,
even though the thickness of the PML layer Lpml is finite and comparable to the wavelength
λ = c/f , where c is the sound speed in the physical domain. In cases where the PML
contains two different materials, as in Paper II [2], the PML size Lpml should be comparable
to the wavelength in the material with the largest sound speed. The solution should be
independent of the PML domain size and properties, which is verified by a numerical
convergence test as in Paper II [2].

3.4 Numerical mesh convergence analyses

The numerical models are verified by numerical mesh convergence as in Ref. [17]. The
convergence measure E is defined as the L2-norm of the difference between a field variable
g(r) and the best possible resolved field solution gref(r)

E =

√√√√
∫
Ω |g − gref |2 dV∫

Ω |gref |
2 dV

. (3.24)

A model is converged when E reaches a pre-desired limit, in this case, 1% for the first-
order fields and 10% for the second-order fields. In the elastic domains, the maximum
mesh-element size ℓ = λtr/∆ is given by a fraction of the transverse wavelength λtr in
terms of the mesh scale ∆. Similarly, the maximum mesh element size in the fluid domain
is given as a fraction of half the acoustic wavelength ℓ = λ/(2∆). By sweeping the mesh
scale ∆, the mesh is gradually refined, and the convergence measure E is calculated as g
approaches gref .

The convergence measure E can be used to find the optimal set of polynomial test func-
tions. Consider the sets of polynomial test functions in Table 3.3. For each set, a mesh



28 SIMULATION OF ACOUSTOFLUIDIC DEVICES

Table 3.3: Sets of polynomial test functions used to find the most efficient set. Each
entry indicates the polynomial order used for the test functions for each field.

u1 φ1 p1 vd
2 pd2

Set 1 2nd 2nd 2nd 2nd 1st

Set 2 3rd 3rd 3rd 2nd 1st

Set 3 4th 4th 4th 3rd 2nd

convergence is conducted by evaluating E as the mesh is gradually refined. The results are
plotted in Fig. 3.2, showing the convergence measure as a function of degrees of freedom
(DOF). Set 3 provides the most efficient convergence; the first-order fields have converged
below 1% at 29,810 DOF and the second-order fields below 10% at 207,900 DOF. This
mesh convergence was calculated for a model including all the field variables presented in
Chapter 2. The model consists of a water-filled polymer cavity glued onto a piezoelectric
transducer, similar to the model used in the studies presented in Section 5.3.1 and Chap-
ter 7.

(a)

(c)

(b)

Set 1

Set 2

Set 3

Figure 3.2: Mesh convergence for different sets of polynomial test functions. The corre-
sponding set of polynomial test functions is provided in Table 3.3. The vertical magenta
lines indicate the DOF at which the first-order fields have converged below 1%, whereas
the green vertical lines indicate at which DOF the second-order fields have converged be-
low 10%.
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Furthermore, the convergence measure can be used to evaluate and find the most
efficient mesh structure. In this case, the convergence measure E is calculated using the
polynomials in ”Set 3” in Table 3.3 for an unstructured free triangular mesh, a structured
mapped mesh, and a mix of the two for various mesh scales ∆. In each case, the degrees
of freedom are evaluated together with E , and the results are plotted in Fig. 3.3. For
this model, the unstructured triangular mesh has reached the desired limit of E = 1% at
∆ = 1.5 with 29,810 DOF for the first-order fields. In comparison, the two other cases
require ∆ = 2, yielding 40,000 degrees of freedom. The second-order fields require ∆ = 5
for the free triangular mesh and ∆ = 5.5 for the mapped and mixed mesh, all yielding
∼200, 000 DOF. This is an example of how a numerical mesh convergence is conducted
and how the mesh can be optimized in terms of structure. In this case, the free triangular
mesh provided the most efficient mesh structure. Another example of a mesh convergence
is given in Paper III [3] in Fig. S1.

Figure 3.3: Convergence measure E as a function of maximum mesh-element size ℓ =
λtr/∆ given by the mesh scale ∆ for three different mesh structures: (a) An unstructured
triangular mesh, (b) a structured mapped mesh, and (c) a triangular mesh in the fluid
domain and a structured mesh in the solid domains. Each mesh is shown for f = 1MHz.
The vertical magenta lines indicate the mesh scale at which the first-order fields have
converged below 1%, whereas the green vertical lines indicate at which mesh scale the
second-order fields have converged below 10%.





Chapter 4

Polymer-based acoustofluidics

The concepts and challenges of working with polymer-based acoustofluidics are illustrated
and discussed. Different model examples demonstrate the challenges arising from an all-
polymer-based acoustofluidic device, including idealized actuation modeling and micro-
fluidic chip-material variations. In Paper I [1], we studied the particle velocity fields in
PDMS-sealed aluminum-based acoustofluidic devices. This study was our first attempt to
bridge simulation and experiment for a polymer-based acoustofluidic device. The results
will be summarized in a dedicated section, and as a bonus, an analytical solution to an ide-
alized 2D system resembling the PDMS-sealed aluminum-based device will be presented.
The original paper is included in Chapter 6 with permission from the co-authors.

4.1 Whole-system ultrasound resonances in polymer-based
acoustofluidics

Generally speaking, acoustofluidic devices can be grouped into two groups referring to
the propagation of waves: one type which is driven by an interdigital transducer (IDT)
array, providing what is called surface acoustic waves (SAW), and another type of device
driven by bulk acoustic transducers, where the propagation of waves are referred to as
bulk acoustic waves (BAW). Surface acoustic waves are, as the name indicates, waves that
propagate on the surface of a substrate, whereas bulk acoustic waves propagate through-
out the entire bulk. Only BAW devices will be considered in this thesis.

Commercializing the acoustofluidic technology for biomedical applications implies cer-
tain restrictions for the fabrication processes. Especially for single-use applications, the
production cost has to be minimized. Transitioning to polymer-based devices is one way
to accommodate this. Consider, for example, the AcouPlast project: aiming to tap into
a 900-million-euro-per-year market by developing a polymer-based acoustofluidic chip to
separate plasma from whole blood, enabling point-of-care diagnostics with single-use car-
tridges. The project has the title ”Acoustofluidic blood plasma separation polymer chip
for Point-of-Care diagnostics”. It is a collaboration between the companies AcouSort AB
and Ortofon A/S, and the Technical University of Denmark and Lund University.

31
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The project is funded by the Eurostars 2 program, supporting innovative research and
product development for commercialization. [55]

For the last ten years, polymer-based acoustofluidics have gained interest, and the field
is still maturing. The term polymer-based acoustofluidics refers to the inclusion of a poly-
mer in the microfluidic chip design, examples are: spacers for microfluidic channels [27, 56],
cover films [1, 28], and all-polymer-based microfluidic devices [12, 29–31]. Typical poly-
mers used for acoustofluidic device fabrication are polystyrene (PS), polydimethylsiloxane
(PDMS/silicone), and polymethylmethacrylate (PMMA/acrylic). Acoustic properties for
selected polymers, glass, and silicon are provided in Table 4.1.

In a classical acoustophoresis device fabricated in either glass or silicon, the acoustic
resonance frequency can be approximated by the so-called hard-wall resonance frequency
given by the channel dimensions, the fluid sound speed c0, and the desired mode. Con-
sider, for example, the hard-wall half-wave resonance frequency fλ/2 = c0

2Wch
achieved by

tuning the frequency near to where the channel width Wch matches half the wavelength.
In a hard-wall system, the acoustic waves are confined to the fluid due to the large acou-
stic contrast between the fluid and the microfluidic chip material, which provides ideal
resonators with large quality factors. Furthermore, a hard-walled system provides the
necessary conditions to approximate the no-slip condition by the zero-velocity boundary
condition n·∇p1 = 0, which in turn provides ideal acoustic eigenmodes decoupled from the
surrounding solid. This approximation holds in systems where the material surrounding
the fluid has a much larger acoustic impedance compared to the contained fluid. However,
by introducing polymers, the acoustic impedance is comparable to water, and the acoustic
waves begin to leak out since the surrounding material yields to the fluid motion. As a
result, the surrounding material can no longer completely sustain the acoustic pressure
waves. The extreme case is that of a free liquid where p1 = 0 on the interface, for polymers
we find ourselves in the regime between the hard-wall n ·∇p1 = 0 and the zero stress
condition p1 = 0, and the boundary conditions can no longer be approximated be either
of the two.

Table 4.1: Acoustic properties of selected solids at 25 °C and f = 1MHz, including the
mass density ρsl, the longitudinal sound speed clo, the longitudinal wavelength λlo, the
acoustic impedance Zac = ρslclo, and the acoustic contrast Zac/Z0 between solid/water
and Zac/Zair for solid/air, where Zair = 410Pa s/m.

Density Sound speed Wavelength Acoustic impedance Acoustic contrast Source

ρsl clo λlo Zac
Zac
Z0

Zac
Zair

(kg/m3) (m/s) (mm) (MPa s/m) - -

Silicon 2329 8435 8.4 19.6 13.2 48× 103 [57]

Glass 2520 5824 5.8 14.7 9.8 36× 103 [34]

PMMA 1162 2486 2.5 2.9 1.9 7× 103 Paper III [3]

Polystyrene 1050 2350 2.5 2.89 1.7 6× 103 [58]

PDMS 1031 1030 1.0 1.1 0.7 3× 103 [59]
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In Ref. [20], Moiseyenko and Bruus studied how a classical acoustophoresis device is
affected by changing the microfluidic chip material from glass/silicon into PDMS/PMMA.
Instead of the classical hard-wall resonances observed in glass and silicon-based devices,
the resonances are now classified as whole-system-ultrasound resonances (WSUR), relying
on the acoustic contrast between the chip and the surrounding air. As a result, the design
principles relying on hard-wall resonance are no longer applicable. Instead, the acoustic
resonances in the fluid are strongly coupled to the motion in the surrounding material.

Modeling a polymer-based acoustofluidic device is a challenge. The concept of WSUR
requires each device component to be well-characterized to represent the whole-system
dynamics accurately. Otherwise, the model results can be misleading. In Ref. [20], Moi-
seyenko and Bruus studied numerically the consequences of introducing polymers com-
prising the microfluidic chip material in a classical acoustophoresis design sketched in
Fig. 4.1(a.1). Their model consisted of a 2D-cross section comprising the channel ar-
chitecture. The system was driven by an idealized actuation, approximating the actual
actuation given by the transducer. This section extends the study by including a piezo-
electric transducer to show the effect of having an idealized actuation versus the actual
actuation given by the piezoelectric transducer. The study is further extended by consid-
ering a glass-based capillary device illustrated in Fig. 4.1(b).

The two devices sketched in Fig. 4.1 are probably two of the most studied acoustofluidic
designs. The microfluidic chip design shown in Fig. 4.1(a) is a classical acoustophoresis
device studied in Refs. [20, 50, 52] for the separation of plasma from whole blood. In

glass
Transducer

Fluid

(a.1)

(a.2)
Transducer

Fluidglass
(b.2)

(b.1)

Figure 4.1: (a.1) Sketch of the classical acoustophoresis device experimentally studied in
Refs. [20, 50, 52] comprising a glass-based microfluidic chip glued onto a bulk transducer
for separation of particles in a continuous flow. (b.1) Sketch of the glass-based capillary-
tube device studied in Refs. [2, 7, 60–63] comprising a glass-based capillary tube glued
onto a small transducer for acoustic particle trapping. The cross-sections, corresponding
to the 2D model geometries, are shown in (a.2) and (b.2) for each device, respectively,
together with component labels.



34 POLYMER-BASED ACOUSTOFLUIDICS

this device, a horizontal half-wave pressure resonance is generated by a bulk ultrasound
transducer to migrate large and heavy particles into the vertical pressure node facilitated
by the acoustic radiation force. In this context, particles are large when the particle size
is much larger than the viscous boundary layer thickness δvisc ∼ 500 nm and heavy when
the particle compressibility κp is smaller than the fluid compressibility κ0, i.e. when the
acoustic contrast factor Eq. (2.25) is positive.

In this type of device, the fluid motion is perpendicular to the thickness mode in the
piezoelectric transducer driving the resonance, so the device is said to be a transversal
resonator. The model geometry and dimensions are similar to that in Ref. [20]: a channel
of width Wch = 377 µm and height Hch = 157 µm embedded in a glass chip of width
Wchip = 2.52mm and height Hchip = 1.5mm. The model is now extended by including a
piezoelectric transducer of width 12mm and thickness 1mm, off-centered by 2mm. The
device is illustrated in Fig. 4.1(b.1) and the model is limited to the 2D cross-section illus-
trated in Fig. 4.1(b.2).

The glass-based capillary tube device sketched in Fig. 4.1(b) is also a classical and
thoroughly studied device, see for example Refs. [2, 7, 60–63]. This device utilizes a pres-
sure node parallel to the transducer thickness mode to focus particles into the horizontal
plane. Furthermore, the localized actuation yields an in-plane acoustic radiation trapping
force, able to trap and retain particles against a flow. In this case, the fluid motion is
parallel to the transducer thickness mode driving the resonance, so this device is said to
be a layered resonator. The model geometry and dimensions are similar to that in Pa-
per II [2]: a channel of width 2 mm and height 200 µm embedded in a glass capillary with
wall thicknesses of 140 µm glued onto a transducer of width 3.4 mm and thickness 0.5 mm.
Both models consist of a glass-based microfluidic chip glued onto a lead-zirconate-titanate
(PZT) piezoelectric transducer. The parameters used to model the piezoelectric trans-
ducer are that of a Pz27 piezoceramic with parameters from Paper III [3], and the glass
parameters are that of SLS float glass taken from Ref. [34].

4.1.1 Idealized actuation versus transducer actuation

To illustrate the effect of having an idealized actuation versus the actual actuation, the
acoustic energy density spectrum Eac(f) is simulated for the two cases. The idealized
actuation is implemented as a displacement boundary condition uact = uact(y)ez between
the transducer and the microfluidic chip interface. For the acoustophoresis device, the
idealized actuation is antisymmetric around the channel centered at y = 0 with the shape

uact(y) = d0

(
y

Wchip
+

3

2

)
, (4.1)

and
uact(y) = d0, (4.2)

for the glass-based capillary tube device. Both with an actuation amplitude of d0 = 0.2 nm.
The results are shown in Fig. 4.2 for both devices. The Eac(f) spectra show how the
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idealized actuation causes a mismatch between both devices’ resonance frequencies and
acoustic response. With the idealized actuation, there is no chance to bridge simulation
with experiment without the use of free parameters, and the results can be misleading.
However, the idealized actuation can be used to study general trends and fundamental
acoustic phenomena in the fluid at single-frequency actuation and hard-wall systems, as
in Refs. [17–20]. For a complete description, the idealized actuation is insufficient. The
transducer must be included in the model, especially for polymer-based acoustofluidics,
where the complex whole-system ultrasound dynamics give the acoustic response.

4.1.2 Microfluidic chip material transition

To illustrate how the acoustic response is affected by going from a glass-based to a polymer-
based microfluidic chip, an artificial material with mass density ρ(s), and stiffness compo-

nents C
(s)
11 and C

(s)
44 , is defined as a linear interpolation between glass and PMMA

ρ(s) = ρ(pmma) +
(
ρ(glass) − ρ(pmma)

)
s, (4.3a)

C
(s)
11 = C

(pmma)
11 +

(
C

(glass)
11 − C

(pmma)
11

)
s, (4.3b)

C
(s)
44 = C

(pmma)
44 +

(
C

(glass)
44 − C

(pmma)
44

)
s, (4.3c)

given by the parameter s. The PMMA parameters are taken from Paper III [3], and the
glass parameters are taken from Ref. [34]. The effect of this material transitioning is
illustrated with a model example, where the acoustic energy density spectrum Eac(f) is
calculated while sweeping the parameter s, which defines the microfluidic chip material.

Figure 4.2: Idealized actuation versus transducer actuation for two classical acousto-
fluidic devices. (a) Acoustic energy density spectrum Eac(f) for a glass-based acousto-
fluidic device using an idealized actuation versus the coupled transducer actuation. (b)
Similar to (a) but for a glass-based capillary trapping device. The ideal half-wave resonance
frequencies are indicated as dashed vertical lines at fλ/2 = 1.99MHz for the device shown
in (a) and 3.74 MHz for the device shown in (b). The model geometries are shown as
inserts in each figure.
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This procedure is conducted for both the acoustophoresis device and the capillary trap-
ping device. The results are illustrated in Fig. 4.3(a)-(b). In both cases, the plot shows
how Eac(f) gradually degrades as the microfluidic chip material approaches the polymer
PMMA. For the acoustophoresis device design, Fig. 4.3(a), there are three major reso-
nances in the case of s = 1 (glass); these frequencies are shifted towards lower frequencies
as s → 0 (PMMA) and are almost completely degraded in terms of the acoustic energy
density. In the case of the capillary-tube device, there are two major resonances, these are
also completely degraded as s→ 0, but the resonance frequencies remain almost constant
while varying the microfluidic chip material.

To evaluate the acoustofluidic performance, the figure of merit F(f) is also evaluated
while sweeping s. The figure of merit F(f) is a measure of how efficient the particles are
focused and was first introduced in Ref. [20] and slightly modified here

Fy =

∫
sgn(−y)Frad,y dV∫
|Frad,z| dV

Eac and Fz =

∫
sgn(−z)Frad,z dV∫
|Frad,y|dV

Eac, (4.4a)

where sgn(y) extracts the sign of y. The figure of merit Fy is suited for acoustophoresis
applications in which particles are focused toward the vertical channel-center line at y = 0.

Figure 4.3: Surface plot of the simulated acoustic energy density spectrum Eac(f) as a
function of microfluidic chip material varying linearly between PMMA (s = 0) and glass
(s = 1) for two classical acoustofluidic devices: An acoustophoresis device in (a) and an
acoustofluidic capillary trap in (b). (c) and (d) are similar to (a) and (b), but instead
of Eac(f), the figure of merit spectrum F(f) is plotted on a logarithmic scale. The ideal
hard-wall half-wave resonance frequencies fλ/2 = 1.99MHz, and 3.74 MHz are indicated
as vertical lines in each plot. The 2D model geometries are shown as inserts in each plot.
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Similarly, for the capillary device, the merit Fz is large when the radiation force is uni-
form and points toward the horizontal pressure node at channel mid-height z = 0. These
measures can be modified to suit the desired acoustic radiation force field.

In Fig. 4.3(c)-(d) the figure of merit spectrum F(f) is plotted as s is varied. This
plot illustrates how the acoustofluidic performance is affected when transitioning into a
polymer-based device. The picture is the same; the acoustophoresis performance is de-
grading as s → 0. However, the performance in the capillary-based device seems robust
to the material transition compared to the acoustophoresis device.

Section summary: It is evident that one cannot just replace a glass or silicon-based
microfluidic chip with a polymer and expect it to work. For polymers, the hard-wall
resonance condition is no longer a good approximation since the acoustic impedances are
comparable, and the lower sound speed in polymers complicates the system resonances.
As seen in Fig. 4.3, the effect is most pronounced in the acoustophoresis device; here,
the resonance frequencies are shifted, and the acoustic response is completely degraded
for s = 0 (PMMA). For the capillary device, the picture is different. In Fig. 4.3(b), the
acoustic response is also degrading as s → 0, but the resonance frequencies are almost
constant as s is varied. From these results, we can conclude that acoustic resonances
parallel to the primary thickness mode of the transducer (layered resonators) are more
robust compared to the perpendicular case (transverse resonators).

To compete with classical glass/silicon-based devices, the polymer-based needs design
optimization. In virtue of the WSUR concept, the system components must be well-
characterized and considered in the model, including not only the transducer but also
the glue and the microfluidic chip. If we want to understand and model polymer-based
acoustofluidic devices, we simply need a complete and well-characterized model of the
acoustofluidic device without idealized boundary conditions for the actuation. The char-
acterization of each device component will follow in the next chapter.
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4.2 Microparticle acoustophoresis in a polymer-based acoustoflu-
idic device

This section provides a summary and discussion of Paper I [1] including the main results
and the faced challenges doing this study. The paper is included in Chapter 6 in its orig-
inal form, in agreement with the co-authors.

This study was our first attempt to model a polymer-based acoustofluidic device. The
model included an aluminum-based microfluidic chip that was sealed with a PDMS cover
and glued onto a piezoceramic Pz26 transducer. Two devices were studied. The first
device consisted of an aluminum-based microfluidic chip fabricated using micro-milling.
The channel was sealed using a PDMS cover, and the transducer was mounted on the
side. The second device was similar, but instead of mounting the transducer on the side,
a split-electrode transducer with anti-symmetric bias was mounted on the bottom for en-
hanced coupling of anti-symmetric modes. The two devices are sketched in Fig. 4.4. A
similar device was studied by Gautam et al. [28] for simple and inexpensive acoustophore-
sis, achieved by simple fabrication techniques and low-cost materials. In Paper I [1], we
used a similar approach to fabricate the devices. We extended the work by Gautam et al.
[28] as we varied the particle diameters ranging between 1 and 4.8 µm, thereby probing
the acoustic streaming. Furthermore, we studied a similar device having a split-electrode
transducer for enhanced coupling. Numerical simulations supported the experiments to
gain insight into the device dynamics.

The particle velocity field was analyzed in both devices by experimental and simulated
particle tracking of polystyrene particles with diameters 1, 2, and 4.8 µm. The measured
and simulated particle velocity fields are shown in Fig. 4.5 for the two devices at resonance.
The resonance frequencies were located at f = 2.048MHz for the side-mounted transducer
and f = 2.095MHz for the split-electrode transducer, both very different from the ideal
half-wave resonance frequency fλ/2 = 1.7MHz. For the smallest particles, the acoustic

Transducer
Al chipAl chip

(a) (b)

Figure 4.4: Sketch of the devices studied in Paper I [1]. (a) A PDMS-covered aluminum-
based microfluidic chip with a Pz26 transducer mounted on the side. A 2D cross-sectional
view is shown together with the electrode bias: grounded (cyan) and biased (red). (b)
Similar to (a) but with a transducer mounted beneath the channel with a split-electrode
design. The cross-sections comprising the model geometries are shown in both (a) and
(b). The figures are modified and adapted from Paper I [1].
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Figure 4.5: Left panel: Simulated and measured particle velocity fields for the side-
actuated aluminum-based device with a PDMS cover. The simulated and measured parti-
cle velocity fields were evaluated for polystyrene particles with diameters 1, 2, and 4.8 µm.
The particle velocity fields are illustrated as surface and vector plots where each row corre-
sponds to a certain particle diameter in descending order. The transducers were actuated
at 20 V peak-to-peak, and the particle velocity magnitude ranges from 0 µm/s (light) to
vmax (red), ranging between 19 and 40 µm/s as indicated in each figure. The channel
width and height are respectively Wch = 440 µm and Hch = 200 µm. The right panel is
similar to the left panel but for the anti-symmetrically actuated device, achieved by a
split-electrode transducer with anti-symmetric bias. The figures are modified and adapted
from Paper I [1].

streaming dominated the particle velocity field resulting in two large rolls and two small
rolls near the soft lid. For the largest particles, the acoustic radiation force dominated the
velocity field, exhibiting focusing toward the center and the soft PDMS cover.

For soft walls where the stress exerted on the fluid is vanishing, the acoustic streaming

boundary condition Eq. (2.38) reduces to a Stokes drift vd
2 =

〈
(u1 ·∇)vd

1

〉
, since the zero

stress implies vδ
1 = 0 on this interface. The generated streaming in devices with soft walls

fundamentally differs from streaming induced by a standing pressure wave in fluids sur-
rounded by hard walls, where the acoustic streaming is primarily dictated by the tangential
velocity gradients. Since the bottom wall is hard and the top wall is soft, the acoustic
streaming is a mix of the two mentioned situations. This led to a numerical study where
the aluminum chip was sealed at both top and bottom with PDMS covers. The acoustic
response was optimized numerically by manually tuning the top and bottom cover film
thicknesses. The microfluidic chip was actuated by a split-electrode design for enhanced
coupling of anti-symmetric resonances. The device and the simulated particle trajectories
are shown in Fig. 4.6. With this soft-walled design, the acoustic streaming was suppressed,
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(a) PDMS

PDMS
Aluminum

Transducer

0
0

(b)

Figure 4.6: (a) Cross-sectional view of a double-sided PDMS-covered aluminum-based
device design for sub-micron acoustophoresis. (b) Simulated 1-µm-diameter-polystyrene
particle trajectories. The channel dimensions are Wch = 440 µm and Hch = 200 µm,
identical to the device in Fig. 4.5. The figures are modified and adapted from Paper I [1].

and the resulting simulated particle velocity field for 1-µm-diameter polystyrene particles
mimicked the classical acoustophoresis focusing towards the vertical pressure node. How-
ever, due to the vanishing stress near the top and bottom, some particles migrated to the
top and bottom interfaces.

Section summary: Even though our model included the piezoelectric transducer, the
aluminum-based chip, and the PDMS sealing, the predicted numerical resonance frequen-
cies were off by 2-12% and 30-50% for the particle velocity magnitudes. Retrospectively,
the model was inaccurate and incomplete due to the poorly characterized and missing ma-
terial parameters. The microfluidic chip was glued onto the transducer using superglue and
neglected in the model due to insufficient and missing material parameters. The PDMS
and the aluminum parameters were rather well-characterized. However, the piezoelectric
parameters provided by the manufacturer were simply not well-characterized, causing in-
accurate modeling, as will be discussed and investigated in the proceeding chapter. The
uncertainties in the model parameters were too many, and from this point on, our pursuit
of a complete model with well-characterized material parameters began. The following
chapter will be dedicated to material parameter determination and component character-
ization for acoustofluidic application.

Analytical solution to the acoustic pressure field in a soft-wall system

As a bonus to Paper I [1], I present an analytical solution to the acoustic pressure field p1
in an idealized 2D soft-wall system. The system resembles the PDMS-covered aluminum-
based acoustofluidic channel cross-section, and the walls are represented by either soft
or hard-wall boundary conditions. The solution provides insight into the particle veloc-
ity field and the shift in resonance frequency, both different from classical hard-walled
acoustophoresis devices.
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Consider a rectangular fluid channel of width Wch and height Hch centered at Origo
in the yz plane. The channel is uniformly actuated on the side-walls at y = ±Wch/2

with a constant velocity magnitude Re
(
v0e

−iωt
)
ey in the y direction. The bottom wall

at z = −Hch/2 is stationary, and the top wall at z = Hch/2 is free. The corresponding
idealized boundary conditions are

−i
ωρ0

∂yp1 = v0, for y = ±Wch

2
, (4.5a)

∂zp1 = 0, for z = −Hch

2
, (4.5b)

p1 = 0, for z =
Hch

2
. (4.5c)

The solution to the Helmholtz Eq. (2.10a) with kc ≈ k0 is solved by separation of vari-
ables with the acoustic wavenumber k20 = k2y + k2z . In virtue of Eq. (4.5a), the acous-
tic pressure solution is anti-symmetric around y = 0 and the solution is of the form
p1 = [c1 cos(kzz) + c2 sin(kzz)] sin(kyy). The relation

c1 = −c2 tan
(
kz

Hch

2

)
and c2 = −c1 tan

(
kz

Hch

2

)
, (4.6a)

between the constants c1 and c2 is determined by Eqs. (4.5b) and (4.5c), which is satisfied

for kz = k(n)z = π
2Hch

(2n+ 1) yielding

p1 =
∞∑

n

cn

[
cos
(
k(n)z z

)
− (−1)n sin

(
k(n)z z

)]
sin(kyy). (4.7)

The constants cn are determined by Eq. (4.5a)

ky

∞∑

n

cn

[
cos
(
k(n)z z

)
− (−1)n sin

(
k(n)z z

)]
cos

(
ky

Wch

2

)
= iωρ0v0. (4.8)

Multiplying both sides of Eq. (4.8) with
[
cos
(
k(m)
z z

)
− (−1)m sin

(
k(m)
z z

)]
followed by

an integration in z from −Hch/2 to Hch/2 gives

cñ = i
4 sin

(
π
4 ñ
)

πñ

ωρ0v0

ky cos
(
ky

Wch
2

) , (4.9)

arriving at a final expression for the acoustic pressure field

p1(y, z) =
∞∑

ñ

i
4 sin

(
π
4 ñ
)

πñ

ωρ0v0

ky cos
(
ky

Wch
2

)

×
[
cos
(
k(ñ)z z

)
− iñ−1 sin

(
k(ñ)z z

)]
sin(kyy),

(4.10)
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where ñ is an odd integer. Theoretically, the resonance frequencies are identified as minima
in the denominator i.e. when ky = π

Wch
m̃, where m̃ is an odd integer. The acoustic

wavenumber k0 at resonance becomes

k0(m̃, ñ) =

√
k2y + k2z =

√(
m̃π

Wch

)2

+

(
ñπ

2Hch

)2

=
ω

c0
=

2πf

c0
. (4.11)

Consider the lowest resonance frequency

fres,0 =

√
f2
λ/2 +

(
c0

4Hch

)2

, for ñ = m̃ = 1. (4.12)

Notice how the classical half-wave resonance frequency fλ/2 = c0/(2Wch) is shifted due to
the appearance of a soft lid. For the channel dimensions Wch = 440 µm and Hch = 200 µm
studied in Paper I [1], the analytical obtained resonance frequency Eq. (4.12) becomes
fres,0 = 2.51MHz, very different from fλ/2 = 1.7MHz due to the low channel aspect ratio.
For the two devices studied in Paper I [1] and sketched in Fig. 4.4, the experimental
resonance frequencies were observed at 2.048 and 2.095 MHz respectively, different from
the analytically obtained but both larger than fλ/2 = 1.7MHz. The analytical solution
for the acoustic pressure field is plotted in Fig. 4.7 at fres,0 = 2.51MHz for an arbitrary
velocity magnitude, together with the resulting acoustic radiation force vector field. The
resulting acoustic radiation force field is very similar to the observed particle trajectories
in Fig. 4.5 for the largest particle diameters. In this case, the acoustic radiation force
dominates the particle velocity field, demonstrating particle motion toward the channel
center and the soft PDMS cover.

z

y

Figure 4.7: Analytical solution to the acoustic pressure field p1 and the acoustic radiation
force Frad for a fluid-filled channel with oscillating side walls, a soft lid, and a fixed bottom
wall. The channel dimensions are Wch = 440 µm and Hch = 200 µm. The acoustic pressure
field is plotted as a surface plot from minimum (blue) to maximum value (red) symmetric
around zero (white) at fres,0 = 2.51MHz. The acoustic radiation force Frad is evaluated
for 4.8-µm-diameter polystyrene particles. The Frad is plotted as a vector plot (green
arrows) with lengths proportional to the magnitude. The boundary conditions used in the
analytical model are indicated on each boundary, and the side-wall actuation is indicated
with magenta arrows.



Chapter 5

Characterization of acoustofluidic
device components

In Section 4.1, the concept and challenges of polymer-based acoustofluidics were discussed
and illustrated with model examples, motivating the need for well-characterized device
components and well-determined material parameters for reliable modeling. This chapter
presents an in-depth analysis and characterization of each device component for ultrasound
acoustofluidic applications, including the piezoelectric transducer, the coupling layer, and
the microfluidic chip, in combination, comprising an acoustofluidic device.

The content structure is similar to Paper III [3], in which the UEIS method was devel-
oped, providing an easy-to-execute method for determining complex-valued elastic moduli.
The chapter will be divided into three sections: the first section is dedicated to the char-
acterization of piezoelectric transducers involving electrical characterization and piezoce-
ramic material determination. The material parameters are validated by laser-Doppler
velocimetry, comparing simulated and measured displacement amplitudes at several fre-
quencies.

The second section is dedicated to the transmission and coupling of acoustic waves
through the coupling layer between the transducer and the microfluidic chip. This sec-
tion includes a summary of the main results obtained in Paper II [2] and is followed by a
material characterization of a UV-curable optical adhesive, in which the complex-valued
elastic moduli are determined by the UEIS method.

In the third and final section, the UEIS method will be used to determine a poly-
mer’s complex-valued elastic moduli, which will be used to fabricate an all-polymer-based
acoustofluidic device. The device consists of an all-polymer-based microfluidic chip cou-
pled onto a disk-shaped transducer using the characterized adhesive. The acoustofluidic
device will be characterized in terms of the acoustic response by measuring particle tra-
jectories influenced by the acoustic forces. In this case, all the components are well-
characterized in terms of material parameters enabling the construction of a complete
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and well-characterized model of a polymer-based acoustofluidic device. The model is then
used to simulate the acoustic response and particle trajectories, providing a one-to-one
comparison between simulation and experiment.

5.1 Piezoceramic transducers for acoustofluidic applications

In BAW devices, sound waves are generated by an ultrasound transducer, typically a
piezoceramic element with surface electrodes coupled to a function generator providing a
sinusoidal electrical signal at MHz frequencies. In turn, the piezoelectric coupling yields a
time-harmonic mechanical displacement field. Since the transducer is the driving mecha-
nism in BAW acoustofluidic devices, any attempt to model a complete system accurately
requires a well-characterized transducer, typically achieved by electrical characterization
techniques.

A piezoceramic in itself is not piezoelectric, but the randomly oriented ceramic grain
polarization can be permanently and uniformly oriented by applying a strong external
electric field defining the polarization direction. The electric field is typically oriented
in the thickness direction of the piezoceramic material, in this case, the z-direction. A
commonly used transducer in BAW acoustofluidic applications is the piezoelectric Pz26
transducer [9, 27, 50, 52, 62, 64–67]. The Pz26 material is a lead-zirconate-titanate (PZT)
based piezoceramic material offering high Curie temperature, high mechanical quality fac-
tor Qm, low dielectric loss, and low aging rate, produced by the company Meggitt. In
addition to the common Pz26, the less popular Pz27 piezoceramic will be considered, of-
fering the same features as Pz26 except for a much lower mechanical quality factor. The
piezoelectric performance can be evaluated in terms of different quantities, such as the
mechanical quality factor Qm, the dielectric loss factor tan(δ33), the electromechanical
coupling factors kpq, the planar coupling factor kp, and the thickness coupling factor kt.
The electromechanical coupling factor squared is the ratio between stored mechanical en-
ergy and electrical energy applied, where the subscript pq refers to the principle directions.
The planar and thickness coupling factors refer to specific modes. These quantities are
tabulated in Table 5.1 for a Pz26 and a Pz27 transducer. Even though the Pz26 has a
much larger mechanical quality factor, the electromechanical coupling factors are compa-
rable.

Often, the transducer thickness mode is matched to the hard-wall half-wave resonance
frequency fλ/2 = c0/(2Wch) for enhanced coupling and to achieve acoustofluidic devices
with large quality factors, which makes the thickness coupling factor kt the preferred
measure when choosing between transducer materials. For the device geometries presented
in Section 4.1, with primary channel dimensions 377 µm and 200 µm, the corresponding
fλ/2 are approximately 2 and 4 MHz. The effective sound speed ct in a piezoelectric
material, given by

ct =

(
ϵ′33ρpzt

C ′
33ϵ

′
33 + (e′33)

2

)−1/2

, (5.1)

can be used to match the transducer thickness t = ct/(2fλ/2) for enhanced coupling.
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Table 5.1: Piezoelectric properties of the Pz26 and the Pz27 piezoceramic. The listed
properties include the mechanical quality factor Qm, the dielectric loss factor tan(δ33), the
electromechanical coupling factors kpq, and the effective sound speed ct. The parameters
are provided by Meggitt [68].

Qm tan δ33 k231 k233 k215 k2p k2t ct
(-) (-) (-) (-) (-) (-) (-) (m/s)

Pz26 3333 0.003 0.107 0.467 0.306 0.325 0.221 4522
Pz27 74 0.017 0.107 0.488 0.371 0.348 0.221 4330

The effective sound speed ct is obtained by considering a 1D model of a piezoceramic
with u1 = u1,z(z)ez, where the z-direction is oriented parallel to the polarization. The
effective sound speed for the Pz26 and Pz27 materials are included in Table 5.1 and are
almost equal in magnitude. The corresponding transducer thickness at 2 or 4 MHz is then
∼ 1 and ∼ 0.5 mm, respectively.

5.1.1 Electrical impedance characterization of piezoceramic transducers

The electrical impedance spectrum Z(f) can be used to characterize and evaluate the
piezoelectric transducer, for example, in terms of resonance frequencies, mechanical quality
factors, and furthermore, to extract piezoceramic material parameters. Only disk-shaped
transducers will be considered in this thesis since the geometry allows for axisymmetric
modeling of the transducer reducing the degrees of freedom substantially. This reduction
enables numerical sweeps, i.e., simulating electrical impedance spectra that would other-
wise have been infeasible in the case of a three-dimensional model.

When measuring the electrical impedance spectrum Z(f), the piezoelectric transducer
was clamped between two spring-loaded pins, carrying the electrical signal, to minimize
the contact force and meet the idealized axisymmetric modeling and boundary conditions
of a free transducer. A photo of the experimental setup is shown in Fig. 5.1(a). The
setup consists of a 3D-printed clamp in which the spring-loaded probes are fitted. Wires
are soldered onto the pins and connected to an impedance analyzer, which is connected
to a laptop through a USB connection—very simple and straightforward. The electri-
cal impedance measurements were performed using a Vector Network Analyzer Bode 100
(OMICRON electronics GmbH, Klaus, Austria) in the frequency interval from 500 Hz
to 5 MHz in steps of 0.5 kHz. The measurements were calibrated by open, short, and
load impedance measurements. To investigate how the clamping affects the electrical
impedance spectrum, the clamping position ∆, measured as the distance away from the
rotational axis, was varied while measuring |Z(f)| for a Pz27-TH0.5-OD10 transducer.
The results are shown in Fig. 5.1(b), and it is seen how the electrical impedance spectrum
is not affected by the clamping position. These results are used to verify the symmetry and
zero-stress boundary condition of a free piezoelectric transducer used in the axisymmetric
model.
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(a) (b)

Figure 5.1: (a) Photo of the simple experimental setup for measuring the electrical
impedance spectrum. The setup consists of a 3D-printed clamp in which spring-loaded
probes are fitted and connected to an impedance analyzer. (b) Measured electrical
impedance spectrum |Z(f)| for a Pz27-TH0.5-OD10 transducer at various clamping posi-
tions ∆ away from the rotational axis. Pictures of the measurements are shown for the
two cases: the perfectly centered ∆ = 0mm and the extreme off-centered ∆ = 3.2mm.

The electrical impedance spectrum is used to compare the Pz26 and Pz27 piezoceramic
materials. The electrical impedance spectrum is measured for a disk-shaped Pz26 and a
Pz27 transducer with nominal geometry. The nomenclature PzXY-TH0.5-OD10 will be
used to distinguish transducers and as a shortened word for a disk-shaped PzXY trans-
ducer of thickness 0.5 mm and diameter 10 mm.

Due to the piezoelectric coupling, a local minimum in the electrical impedance mag-
nitude spectrum |Z(f)| corresponds to a mechanical resonance. Therefore, the represen-
tation of the complex-valued electrical impedance spectrum Z(f) will solely be presented
as the magnitude spectrum |Z(f)| throughout this thesis. Furthermore, the magnitude
|Z(f)| will be plotted on a semi-logarithmic plot since |Z(f)| can vary by six orders of
magnitude when considering a broad frequency spectrum from 500 Hz to 5 MHz.

The measured spectrum for a Pz26-TH0.5-OD10 and a Pz27-TH0.5-OD10 transducer
is plotted in Fig. 5.2, showing multiple local minima indicating several mechanical reso-
nance frequencies. The first minimum corresponds to the first planar mode accompanied
by planar harmonics, whereas the global minimum around 4 MHz corresponds to the pri-
mary thickness mode. For the Pz27-TH0.5-OD10 transducer, the planar harmonics are
almost completely attenuated as the frequency is increased up to 3 MHz. In contrast,
the Pz26-TH0.5-OD10 resonances are weakly attenuated and much more rippled around
the thickness mode. Usually, the thickness resonance frequency is chosen to match the
hard-wall resonance frequency in the fluid channel for enhanced coupling of modes. Due to
the higher quality factor, the Pz26 transducer is much more peaked around its resonances,
whereas the Pz27 spectrum is much smoother.
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planar harmonics

1st thickness mode1st planar mode

Figure 5.2: Measured electrical impedance spectra |Z(f)| for a Pz26-TH0.5-OD10 and
a Pz27-TH0.5-OD10 transducer, both disk-shaped and of nominal geometry. The planar
modes are indicated together with the first thickness mode.

Reproducibility is a crucial feature for the commercialization and design optimization
of acoustofluidic devices for biomedical platforms. Here the electrical impedance spectrum
is used to evaluate the variations in transducer behavior with nominal dimensions. In
Fig. 5.3(a) and (b), the impedance spectrum is plotted for three Pz26 transducers from
the same batch and with nominal dimensions. Fig. 5.3(b) shows a zoom-in on the thickness
resonance, and even though the Pz26 transducers are taken from the same batch, we see
variations in features, magnitudes, and resonance frequencies. A similar plot is given
in Fig. 5.3(c)-(d), but for the Pz27 material, this material shows much fewer in-batch
variations; features, magnitudes, and resonance frequencies are almost identical, however
slightly shifted presumably due to small variations in the thicknesses. So even though
Meggitt promises low batch-to-batch variations, we see in-batch variations, especially for
the Pz26 transducers around the primary thickness mode.

Figure 5.3: Measured electrical impedance spectra |Z(f)| for six disk-shaped transducers
of nominal dimensions but different materials. The three Pz26-TH0.5-OD10 spectra are
plotted in (a), and a zoom-in near the thickness mode is given in (b). The transducers
are taken from the same batch indicated with suffixes A, B, and C. Figure (c) and (d) is
similar to (a) and (b) but for three Pz27-TH0.5-OD10 transducers.
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5.1.2 UEIS-determined piezoelectric material parameters

Modeling a piezoceramic transducer belonging to the ∞mm symmetry class, which is the
case for both Pz26 and Pz27, requires the knowledge of the ten complex-valued material
parameters contained in Eq. (2.34). There exist standardized methods for the determi-
nation of piezoceramic parameters [69, 70]. The basic principle behind the methods is
to decouple and identify fundamental modes and their resonance frequencies using spe-
cific transducer geometries with certain aspect ratios, including disks, bars, and cylinders.
Again, the resonance frequencies are identified as minima in the electrical impedance spec-
trum. One example is the determination of the stiffness component C13; according to the
CENELEC standard [70], a disk-shaped transducer with an aspect ratio of at least ten is
needed to decouple and separate the thickness mode from other modes. As shown in the
textbook [71] (p. 128-137), this requirement is not good enough; for a complete separa-
tion of modes, the aspect ratio should be at least 50. Furthermore, determining certain
parameters within the CENELEC method requires the knowledge and input of other pa-
rameters, which means that errors contained in those will propagate into other parameters,
effectively providing an inaccurate set of parameters. So the standardized methods are
flawed by insufficient geometry requirements and propagating errors. Here, an alternative
method is used, namely the ultrasound-electrical-impedance-spectrum (UEIS) method,
which only requires a single disk-shaped transducer. The method was developed in Pa-
per III [3] and supplements dynamic techniques for material characterization, involving
resonant ultrasound spectroscopy [72], transmission techniques [59, 73], impulse excitation
[74], laser velocimetry, and triangulation [36, 75]. The UEIS method will be summarized
in this and the following section. For further details, see Paper III [3] enclosed in Chapter 6.

The UEIS method uses the optimization algorithm fminsearchbnd to match the sim-
ulated electrical impedance spectrum Zsim(f) with the measured Zexp(f). The fmin-
searchbnd algorithm is a bounded version of the Nelder–Mead algorithm described in
Chapter C. The matching is obtained by varying the piezoceramic material parameters Pi
in the simulation, including the five complex-valued stiffness components C = C ′ + iC ′′,
the three real-valued piezoelectric coupling components e = e′, and the two complex-
valued dielectric components ϵ = ϵ′ + iϵ′′, in total 17 independent parameters plus the
mass density.

The optimization algorithm requires three choices, (i) initial values P0
i for the opti-

mization parameters Pi, (ii) upper and lower bounds for Pi, and (iii) a cost function C
to minimize by varying the parameters contained in Pi. Even though the standardized
methods can be flawed, the obtained set of parameters can be used as initial values to the
UEIS method in combination with values in the literature. The bounds are chosen to be
±30% from the initial values, and the cost function C is given as

C =
√∑

i

[
log10

(
|Zexp(fi)|

)
− log10 (|Zsim(fi)|)

]2
, (5.2)

corresponding to the L2-norm of the logarithmic difference between measured |Zexp(fi)|
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and simulated |Zsim(fi)| spectra. The logarithmic difference is used since the electrical
impedance magnitude is peaked and varies by several orders of magnitude. The subscript
i indicates a discrete set corresponding to the sampled frequencies in the measurements.

Furthermore, for each evaluation of the cost function C, it is required that the dissipa-
tion is positive to check if the complex-valued parameters suggested by the algorithm are
feasible. This condition is fulfilled when

K = Im

(
−C eT

e ϵ

)
, (5.3)

is positive definite, and if not we set C =∞. The derivation of this constraint is presented
in Chapter A.

Choosing a disk-shaped transducer for effective axisymmetric modeling, i.e., numerical
speed, comes by the cost of low sensitivity to certain parameters including ϵ′11, C

′′
12, C

′′
13,

C ′′
44, and ϵ′′33. Therefore, the fitting procedure used in the UEIS method is divided into

three subroutines where the parameters are grouped according to the relative sensitivity
measure

S(Pi) = Pi
∂C
∂Pi
≈ C(1.1Pi)− C(0.9Pi)

1.1− 0.9
, Pj = P0

j for j ̸= i. (5.4)

Parameters are highly sensitive if S(Pi) > 1, medium sensitive if 0.1 < S(Pi) < 1, and
minor sensitive if S(Pi) < 0.1. The complex part of the dielectric parameter ϵ′′33 was
not included in the fitting procedure since S(ϵ′′33) ≈ 0, other transducer geometries might
give another picture in terms of the sensitivity measure. The UEIS method requires the
geometry and the density to be well-characterized; an error in either will propagate into
the UEIS-determined material parameters.

After measuring the electrical impedance spectrum, the measurements are loaded into
the UEIS script, and after running the fitting procedure for approximately ten hours, the
parameters are provided. In Fig. 5.4, the measured and simulated spectrum for a Pz26-
TH0.5-OD10 and a Pz27-TH0.5-OD10 transducer is plotted when using the parameters
provided by the manufacturer Meggitt and the fitted parameters obtained by the UEIS
method. The parameters are provided in Tables B.1 and B.2 as an average computed from
several UEIS fitting procedures.

From Fig. 5.4, it is evident that the material parameters provided by Meggitt, for
both the materials, are insufficient for accurate modeling of the piezoelectric transducers.
Therefore, combined with the low in-batch variation and the achieved numerical accuracy,
we have chosen to continue our studies favoring the Pz27 transducer.
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p2 p4 p5 p6

t1

Figure 5.4: Comparison between measured and simulated electrical impedance spectrum
|Z(f)| given the parameters from the manufacturer Meggitt [68] (Meggitt sim.) and the
UEIS-determined parameters (UEIS fit sim.), for a Pz26-TH0.5-OD10 transducer in panel
(a) and (b) and a Pz27-TH0.5-OD10 transducer in panel (b) and (d). The modes used
for the laser-Doppler velocimetry validation are indicated with a ”p” or a ”t” referring to
planar or thickness and a subscript referring to the harmonic.

5.1.3 Validation by laser-Doppler velocimetry

The simulated impedance spectrum for the Pz27 transducer fits the measured, so the
UEIS-fitted parameters provide an adequate estimate of the Pz27 material. To further
support and validate the UEIS-determined Pz27 parameters, the simulated mechanical
displacement field at resonance is compared to measurements obtained by a single-point
laser-Doppler vibrometer system VibroFlex Connect (Polytec, Waldbronn, Germany), to
which I had access to during my external research stay at the Department of Biomedical
Engineering, Lund Univerity. The LDV technique utilizes the Doppler frequency shift
caused by a wave reflected by a vibrating surface. The velocity of the vibrating surface
can be inferred from the frequency shift at a known wavelength obtained by laser interfer-
ometers. The LDV technique can be used to measure surface vibrations down to picometer
displacement amplitudes.

The single-point LDV system is used to measure point vibrations. However, by mount-
ing the sample on a motorized stage, the mechanical displacement field can be spatially
resolved. Furthermore, by probing the current, the phase can be extracted from the elec-
trical signal providing temporal resolution.
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The mechanical displacement field ũ1,z(x, y, t) normal to the electrode surface of a
Pz27-TH0.5-OD10 transducer was measured at chosen frequencies. The chosen frequencies
corresponded to certain resonances as indicated by ”p2,4,5,6” or ”t1” in Fig. 5.4 referring
to the planar harmonic or the primary thickness mode, with an applied peak-to-peak
voltage of Vpp = 2V. For each of those frequencies, the simulated and measured normal
displacement amplitude |u1,z| is compared in Fig. 5.5. At each frequency, the measured
and simulated displacement amplitude |u1,z| is plotted on the same scale, in which the
simulated amplitudes deviate between 3% and 10% from the measured. With the UEIS-
fitted Pz27 parameters, not only the features but also the magnitude is captured within
10% in the simulated modes. Furthermore, the time evolution for the fifth planar mode at
fp5 = 1.370MHz is compared in Fig. 5.6, where the simulated and measured ũ1,z(x, y, t)
is plotted, respectively. By opening this document using Adobe Reader, Fig. 5.6 can
be watched as an animation, showing the time-harmonic vibration of the measured and
simulated ũ1,z(x, y, t) undergoing a full cycle. This validation provided confidence in the
UEIS method for piezoceramic material determination. It also paved the way and led
to the extended UEIS procedure in which the electrical impedance spectrum of a loaded
and already-characterized transducer is used to determine the elastic moduli of the loaded
material.

0
x

y

x

z
y

probe probeprobe probe

Figure 5.5: Simulated (top-row) and measured (bottom-row) normal displacement am-
plitude |u1,z(x, y)| for a Pz27-TH0.5-OD10 transducer actuated at different frequencies
(columns) with an applied peak-to-peak voltage of Vpp = 2V. The displacement ampli-
tude |u1,z| range from 0 to max umax depending on the frequency and indicated for each
column. The first four modes corresponds to the planar harmonics p2, p4, p5, and p6.
The last column corresponds to the primary thickness mode t1 as indicated in Fig. 5.4(c).
The displacement amplitude was measured on the top electrode surface as indicated with
a blue selection in the lower right corner. The electrode probe was shadowing the laser
marked as a gray region.
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Figure 5.6: Simulated and measured normal displacement field ũ1,z(x, y, t) for a Pz27-
TH0.5-OD10 piezoceramic transducer actuated with a peak-to-peak amplitude of Vpp =
2V at fp5 = 1.370MHz corresponding to the fifth planar harmonic. The displacement
field was measured on the electrode surface. The figure can be watched as an animation
showing the time-harmonic displacement field undergoing a full cycle. This requires the
document to be opened with Adobe Reader. The static figure shows ũ1,z(x, y, t) at the
phase with maximum amplitude.

5.2 Characterization of coupling layers for acoustofluidic
applications

This section is dedicated to the coupling layer between the transducer and the microfluidic
chip for acoustofluidic applications. The section is divided into two parts; in the first
section, the results obtained in Paper II [2] will be summarized, including a structural
analysis of coupling layers between the transducer and microfluidic chip for acoustofluidic
applications. This is followed by a section in which the UEIS method is used to determine
the elastic moduli of a UV-curable optical adhesive.

5.2.1 Structural analysis of coupling layers

In Paper II [2], the structural influence of the coupling layer between the transducer and
the microfluidic chip for acoustofluidic applications was studied by numerical modeling.
The model includes a water-filled microfluidic chip coupled onto a piezoelectric transducer,
including the coupling layer in-between. By numerical simulations, we studied how the
coupling layer influences the acoustic response for two classical and widely used acousto-
fluidic device designs, similar to those considered in Section 4.1 and sketched in Fig. 4.1.
Two coupling layer materials were considered for both devices; a solid epoxy glue and a
viscous glycerol layer.

Coupling layers in layered resonators

The first device considered in Paper II [2] was the layered glass-based capillary tube cou-
pled onto a small transducer as sketched in Fig. 4.1(b). This type of acoustofluidic device
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was studied in Refs. [7, 60–62, 76] for local and in-plane acoustic trapping of particles. The
model used to study the coupling layers for layered resonators was three-dimensional and
included the transducer, the water-filled glass capillary, and the coupling layer resembling
the entire acoustofluidic device shown in Fig. 4.1(b). The model extends the 1D modeling
of layered acoustic resonators in Refs. [32, 33].

In the simplest case, a layered resonator consists of five layers, the transducer, the
coupling layer, the matching layer, the fluid layer, and the reflector layer. In this case,
the coupling layer directly influences the acoustic response since the combined layer dy-
namics is what gives the acoustic response. Therefore, in an ideal layered resonator, the
thickness of each domain should be carefully chosen to match the desired motion inside
the fluid layer. Take, for example, the case of the glass-based capillary-tube trap in which
a resonating standing acoustic pressure half-wave, parallel to the transducer actuation, is
utilized to focus particles toward the horizontal pressure node located at the channel mid-
height. Ideally, the half-wave resonance in the fluid should be matched to the half-wave
thickness mode in the piezoelectric transducer, which in turn gives the coupling, matching,
and reflector layer thicknesses. According to this 1D-layer principle, the layer thicknesses
should correspond to half a wavelength in the transducer and the fluid layer, a quarter
wavelength in the reflector layer, and in combination, the coupling and the matching layer
should correspond to a quarter wavelength, see for example Ref. [77].

When the layer thicknesses deviate from the ideal 1D principle, as is the case for the
glass-based capillary-tube trapping device studied in Refs. [7, 60–62, 76], the required sym-
metry for the standing half-wave pressure resonance is broken. In this case, the acoustic
pressure resonances are asymmetric, and instead of the ideal anti-symmetric half-wave res-
onance frequency, two asymmetric resonance frequencies appear as observed in Paper II [2]
and also in Fig. 4.3(b). In this case, an increased coupling layer thickness will either result
in a sustained or attenuated coupling according to the simple phase criterion

sustained coupling if Φcrit > π, (5.5a)

attenuated coupling if Φcrit < π, (5.5b)

where Φcrit is given by the sum of phases in the layers below the fluid layer

Φcrit =
∑

i

ω

c
(i)
lo

Hi, for i = transducer, matching. (5.6)

The criterion is only valid for Φcrit <
3π
2 . In Paper II [2], the criterion in Eq. (5.5) was

accompanied with the coupling-layer attenuation length scale

∆0 =
Zcl,mlc

(cl)
lo

2ωres
cot

(
ωresHml

c
(ml)
lo

)
, where Zcl,ml =

ρ(cl)c
(cl)
lo

ρ(ml)c
(ml)
lo

, (5.7)

at which the resonance is attenuated. The length scale ∆0 is a function of the angular fre-
quency at resonance ωres, the matching layer thickness Hml, the acoustic contrast between
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coupling and matching layer Zcl,ml, and the longitudinal sound speeds in the coupling c
(cl)
lo

and the matching layer c
(ml)
lo . The expression in Eq. (5.7) was derived in the limit of thin

coupling layers Hcl ≪
c
(cl)
lo
ωres

. Furthermore, the matching and reflector layer is assumed to
be of the same thickness and material.

Together with the criterion in Eq. (5.5), the expression in Eq. (5.7) can be used to
design robust layered devices avoiding attenuation caused by the coupling layer thickness
and choice of material. Notice how ∆0 is directly proportional to the acoustic impedance in
the coupling layer, signifying that acoustically hard coupling-layer materials are preferred
for robust devices.

Coupling layers in transverse resonators

For the classical acoustophoresis device shown in Fig. 4.1(a), the resonance is generated
perpendicular to the primary thickness-mode-actuation direction, and the device is said
to be a transverse resonator. Opposite to the layered resonator, these devices rely on
horizontal half-wave pressure resonances, ideal for fluid-particle separation in continuous
flow and lab-on-chip integration. Typically, the transverse resonator is designed according
to the hard-wall resonator principle, where the resonance frequency can be approximated
by the channel dimensions. Similar design principles, as for the layered resonator, can be
used to match the motion by specific chip and channel dimensions for enhanced coupling,
again see Ref. [77]. However, 1D design principles are less useful in this case since two-
dimensional modes predominantly generate and drive the transverse resonances.

Since the transverse resonator relies on an anti-symmetric half-wave pressure reso-
nance, the symmetric thickness mode of the transducer driving the resonance must be
broken. Usually achieved either by off-centering the transducer as in Ref. [50], but can
also be achieved by skew channel dimensions or by a split-electrode design as in Ref. [1, 31].
For transverse resonators, the coupling layer serves as a transmission layer. In the first
case, where the symmetry breaking is achieved by off-centering the transducer, the trans-
mission of shear waves is wanted for enhanced driving of the half-wave resonance in the
fluid. Again, two coupling layers were included in the simulation of the acoustophoresis de-
vice: a solid epoxy and a viscous glycerol layer. Since a fluid cannot sustain a shear wave,
the glycerol coupling layer will cause an insufficient coupling for transverse resonators.
In Paper II [2], the model results showed that in transverse resonators, the resonance
was attenuated at a very thin coupling-layer thickness around 100 nm for a glycerol cou-
pling layer. In contrast, the solid epoxy coupling layer provides a sustained coupling for
coupling-layer thicknesses below 20 µm.

The coupling layer influences the resulting acoustic response for both layered and trans-
verse resonators. The layered resonator can sustain a solid epoxy and a viscous glycerol
coupling layer. However, as the coupling layer thickness increases, the resonance will either
sustain or attenuate according to Eq. (5.5). This attenuation happens on a length scale
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that depends on the resonance frequency, the matching layer thickness, and the coupling
and matching layer material parameters. Transverse resonators are very sensitive to fluid
coupling layers since the resonance requires the transmission of transverse waves for strong
coupling, and in this case, solid coupling layers are preferred.

For both devices, the microfluidic chip material was either glass or silicon/glass.
Turning to polymer-based acoustofluidics only complicates the system resonances due
to the lower sound speeds compared to glass and silicon. The glue layer must be well-
characterized and considered for a complete and accurate model. The following section
will be dedicated to the material characterization of glues and polymers using the UEIS
method, enabling accurate modeling of polymer-based acoustofluidic devices.

5.2.2 UEIS-determined elastic moduli of a UV-curable adhesive

In Section 5.1.2, the Pz26 and Pz27 piezoceramic material parameters were fitted by
matching the simulated electrical impedance spectrum to the measured. This procedure
was only the first out of two steps in the complete UEIS method developed in Paper III [3].
The first step involving piezoceramic material determination by numerical fitting proce-
dures is, to a large extent, similar to the procedures in Refs. [35, 37, 38, 78]. In the second
step, the characterized transducer is loaded by gluing on a ring-shaped material. Then,
the resulting electrical impedance spectrum is matched to the simulated by varying the
loaded material parameters while keeping the UEIS-fitted piezoelectric parameters fixed.

The two-step procedure, including the determination of the complex-valued elastic
moduli of the loaded material, makes the UEIS method new and different from the pro-
cedures studied in Refs. [35, 37, 38, 78].

The second step starts by co-axially gluing an isotropic ring-shaped material onto the
already-characterized disk-shaped transducer, as sketched in Fig. 5.7. The ring-shaped
loading allows accessibility to the electrodes. Furthermore, the ring-shaped loading allows
the model geometry to be reduced to a two-dimensional axisymmetric model domain for
numerical efficiency and speed. Similar to the first step, the simulated electrical impedance
spectrum is matched to the measured by varying the material parameters used in the
simulation. The measured electrical impedance spectrum is obtained by clamping the
transducer in-between two point contacts as shown in Fig. 5.7(c). The experimental setup
is very simple and consists of a 3D-printed sample holder, in which the sample is clamped
between two spring-loaded contacts. The contacts are connected to an impedance analyzer
driven by a laptop. A photo of the setup is shown in Fig. 5.7(d).

In the second step, the UEIS-fitted piezoceramic material parameters are fixed in
the simulation. The optimization algorithm only varies the loaded material parameters,
including the two complex-valued stiffness components C11 and C44. The fitting procedure
is similar to the one used for the piezoceramic characterization; initial values are provided
for C11 and C44 using an average of literature values or values provided by the supplier,
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(a)

Pz27 disk
NOA86H layer

NOA86H ring

(d)(c)(b)

Figure 5.7: (a) System sketch showing the NOA86H ring glued onto a disk-shaped
Pz27 transducer. A quarter of the geometry is left out to show the different layers.
(b) Axisymmetric model geometry in the rz plane, including a structured mesh. (c)
Experimental sample holder for electrical impedance measurements. (d) Photo of the
experimental setup, including the 3D-printed sample holder and the impedance analyzer
connected to a laptop. The figures are modified and adapted from Paper III [3].

the bounds are set to ±40% relative to the initial values, and the cost function C defined in
Eq. (5.2) is minimized by the optimization algorithm. For each cost function evaluation,
it is checked if

Kiso = Im (−C) = −C ′′, (5.8)

is positive definite. The check is similar to Eq. (5.3) and provides a condition to check if
the imaginary parts are physically allowed for the dissipation not to be negative valued.
This check is accompanied by the inequality 2C ′

44 ≤ C ′
11 derived from Poisson’s ratio ν

being conditioned to 0 < ν ≤ 1/2 for a linear isotropic material.

In this case, the UEIS method was used to determine the complex-valued elastic mod-
uli of the UV-curable optical adhesive NOA86H provided by Norland Products Inc. This
was achieved by casting the adhesive using a 3D-printed ring mold covered with a release
agent followed by UV-curing. Afterward, the NOA86H ring was released from the mold
and glued onto an already-characterized Pz27 transducer using the same NOA86H adhe-
sive. While curing the NOA86H ring onto the Pz27 transducer, the ring was co-axially
held in place using a 3D-printed mount. Then, before gluing together the components, the
ring dimensions and density were carefully measured. The dimensions of the ring follow
the same notation as for the PzXY nomenclature, so in this case, a ring-shaped trans-
ducer of outer diameter 19 mm, inner diameter 1.9 mm, and thickness 1.5 mm is written
as NOA86H-TH1.5-OD19-ID1.9.

Before running the UEIS procedure, the stability of the NOA86H adhesive, after fi-
nalized curing, was evaluated by measuring the electrical impedance spectrum every hour
for a period of 39 hours in ambient conditions. The results are shown in Fig. 5.8. It is
seen how the impedance spectrum is constant during the 39 hours in ambient conditions,
signifying that the NOA86H adhesive is fully cured and stable under ambient conditions.
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Figure 5.8: (a) Measured electrical impedance spectrum |Z(f)| for a NOA86H-TH1.5-
OD19-ID1.9 ring glued onto a Pz27-TH0.5-OD10 transducer. (b) Surface plot of NOA86H-
loaded transducer spectrum as a function of time in ambient conditions after finalized
assembling. The measurements were sampled every hour for a period of 39 hours. The
color scheme follows a logarithmic scale, as indicated in (a).

The measured electrical impedance spectrum was then loaded into the UEIS fitting
software, and after ten hours, the complex-valued elastic moduli of the NOA86H adhesive
were provided. The NOA86H parameters obtained by the UEIS method are provided in
Table B.3, and the fitted spectrum is plotted in Fig. 5.9 together with the loaded and
unloaded measured electrical impedance spectrum. By looking at Fig. 5.9, it is seen how
the loading of a transducer affects the impedance spectrum. Notice how the Pz27 reso-
nances are damped (larger impedance values) by the NOA86H-ring loading, but also how
new resonances appear at frequencies 75, 169, and 231 kHz for the NOA86H-loaded Pz27
system. The first appearing modes are primarily transverse and the resonance frequencies
at which the first modes appear can be approximated by the ring diameter 19 mm and the

transverse sound speed c
(noa86h)
tr = 984m/s, in this case, f = 19mm/984m s−1 = 52 kHz.

Figure 5.9: Measured and UEIS-fitted electrical impedance spectrum |Z(f)| for a ring-
shaped NOA86H-TH1.5-OD19-ID1.9 glued onto a UEIS-characterized Pz27-TH0.5-OD10
transducer, plotted together with the unloaded Pz27-TH0.5-OD10-transducer spectrum.
The figure also includes selected modes at 75, 169, and 231 kHz. The modes are shown
as inserts, and the color plot indicates the mechanical displacement amplitude |u1| at
Vpp = 2V from min (dark) to max (light), where the maximum amplitudes are 9, 17, and
10 nm respectively.
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Section summary: At this point, the UEIS method has been successfully used to char-
acterize disk-shaped transducers together with an optical adhesive. In the proceeding
section, the UEIS method will be used to determine the elastic moduli of a polymer. The
polymer will be used to fabricate an all-polymer-based acoustofluidic device, in which all
the components’ material parameters are known and determined by the UEIS method,
enabling a complete and accurate model of ultrasound acoustofluidic devices without free
parameters.

5.3 Characterization of a polymer used for acoustofluidic
device fabrication

In previous sections, the UEIS method was used to determine piezoceramic material pa-
rameters for disk-shaped Pz26 and Pz27 transducers. The UEIS-determined material
parameters for the disk-shaped Pz27 transducer were used to determine the elastic moduli
of a NOA86H optical adhesive by gluing a UV-cured NOA86H ring onto the Pz27 trans-
ducer and performing the UEIS fitting procedure. By using the NOA86H adhesive to glue
on the already-cured NOA86H ring, the system only comprised two materials, the Pz27
piezoceramic, and the NOA86H adhesive.

A well-characterized glue enables loading and characterization of other materials, e.g.,
a polymer as in Paper III [3], where the loaded system consists of a PMMA ring glued
onto a disk-shaped Pz27 transducer using the NOA86H adhesive. Now the system com-
prises three materials: a Pz27 piezoceramic, a NOA86H adhesive, and a polymer. In
Paper III [3], two different PMMA-ring diameters (20 mm and 25 mm) with a thickness
of 1.4 mm were considered together with two different Pz27-transducer-disk diameters
(6.35 mm and 10 mm) with a thickness of 0.5 mm in combination a total of four different
configurations. Conducting the UEIS fitting procedure for the four different configura-
tions provided less than 1% relative errors for the real parts C ′

11 = 7.18(4)GPa and
C ′
44 = 1.553(8)GPa, and less than 6.5% for the imaginary parts C ′′

11 = −0.183(5)GPa
and C ′′

44 = −0.111(7)GPa. The UEIS-determined elastic moduli of the PMMA were val-
idated by ultrasonic-through-transmission (UTT) measurements. The UTT technique is
a time-of-flight-based method for measuring sound speeds. The principle is simple: a
pulse is transmitted through a media with known sound speed c0, e.g., water, afterward
a sample is submerged in between the transmitter and the receiver, and the difference in
arrival times is used to calculate the sample sound speed. The longitudinal sound speed
clo is obtained at normal incidence and for incident angles above θcrit = sin−1 (c0/clo) only
transverse waves are transmitted, for details see Refs. [3, 73, 79]. The difference between
UEIS and UTT-determined parameters was less than 1.5% for the real parts and less than
12% for the imaginary.

Furthermore, the UEIS-determined elastic moduli of the PMMA were validated by
laser-Doppler velocimetry (LDV): the measured displacement amplitudes were compared
to simulated displacement amplitudes using the UEIS-determined material parameters as
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input to the model. The validation was similar to Section 5.1.3, where the mechanical
displacement ũ1,z, normal to the transducer electrode, of an unloaded Pz27 transducer
was measured at different frequencies. In this case, the ũ1,z for a PMMA-TH1.4-OD25-
ID2.0 ring glued onto a Pz27-TH0.5-OD10 Pz27 disk was measured at frequencies 58 and
164 kHz with a peak-to-peak voltage of Vpp = 2V. The PMMA surface was sputtered
with a thin layer of gold for increased intensity of the reflected laser signal. After gluing
the PMMA onto the Pz27 transducer, a slight offset of 0.4 mm was observed, disrupting
the axisymmetry. The breaking of symmetry was observed in the LDV measurements, and
the offset was included in the simulation. The LDV measurements are shown in Fig. 5.10
together with the simulated values for the normal displacement amplitude |u1,z| at fre-
quencies 58 and 164 kHz. Again, the features matches, and the maximum displacement
amplitudes agree within 10% for both frequencies, even when the axisymmetry is broken
by the off-centered gluing of the PMMA ring onto the Pz27 transducer. Finally, the char-
acterized PMMA was used to fabricate a microfluidic chip for acoustofluidic application
studied in the proceeding section.
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Figure 5.10: Measured and simulated normal displacement amplitude |u1,z| from 0 (dark)
to 8 nm (light) for a PMMA-TH1.4-OD25-ID2.0 ring glued onto a Pz27-TH0.5-OD10
transducer. The displacement field was measured at two frequencies, f = 58 kHz in (a)
and f = 164 kHz in (b) at a peak-to-peak voltage amplitude Vpp = 2V. The green dashed
line separates the measured (pixelated) and simulated (smooth) data. The blue dashed
line indicates the disk-shaped Pz27 perimeter. The normal displacement amplitude was
measured on the PMMA-surface half-plane as indicated with a blue selection in the lower
right corner.

5.3.1 Particle tracking in a polymer-based acoustofluidic device

In this section, a polymer-based acoustofluidic device will be analyzed in terms of measured
and simulated particle trajectories influenced by the acoustic radiation force in stop-flow
conditions. The polymer used to fabricate the device is the PMMA (Diakon TD525, Lu-
cite International, Rotterdam, Netherlands) studied and characterized in Paper III [3] and
summarized in the preceding section. The PMMA-based microfluidic chip was fabricated
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by milling a 400-µm-deep cavity in a PMMA slide comprising the base, and afterward,
the base and the cover were cut out using a lathe. The in- and outlet were drilled in the
PMMA cover. The chip geometry was limited by the PMMA slide sample thicknesses of
1.4 mm, defining the cover and base thickness. The measured dimensions are given in
Table 5.2, and the device is shown in Fig. 5.11. The glue layer thicknesses were obtained
by subtracting the total layer thickness with the Pz26, base, and cover thickness.

This device is used as a proof-of-concept, showing that the UEIS method can be used
to characterize material parameters enabling accurate and precise modeling of ultrasound
acoustofluidic systems. Unfortunately, at this point, the Pz27 transducers were out-of-
stock. Instead, we decided to move on with a Pz26 transducer compromising the model
accuracy. All the materials were characterized using the UEIS method: including the
Pz26-TH1.0-OD25 transducer, the UV-curable NOA86H adhesive, and the PMMA. The
material parameters are provided in Chapter B.

The device assembling process consisted of a two-step procedure:

I. First, the PMMA base was glued onto the Pz26 transducer using the UV-curable
NOA86H adhesive. The two parts were squeezed together to get as thin a glue layer
as possible, and excess glue was wiped off before UV curing.

II. In the second step, the PMMA cover was carefully glued onto the PMMA base. A
syringe was used to spread the glue evenly on a thin rim to avoid glue leaking inside
the cavity,

afterward, the cavity was filled with milli-Q water using a syringe.

(a)

(b)

inlet
outlet

(c)

xy
z

Figure 5.11: (a) Sketch of the PMMA-based acoustofluidic device comprising a PMMA-
based cavity (beige) glued onto a disk-shaped Pz26 transducer (gray). (b) Exploded view
of the device, showing each device component: a PMMA cover (beige) glued onto a PMMA
base (beige) glued onto a Pz26 transducer (gray). The components were glued together
using the NOA86H adhesive (yellow). (c) Picture of the experimental setup for measuring
the electrical impedance spectrum.
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Table 5.2: Measured dimensions for the PMMA-based acoustofluidic device components.
The in- and outlet were positioned at ±6.81mm from the center axis with a diameter of
2 mm.

Thickness Outer diameter Inner diameter Cavity
(mm) (mm) (mm) (µm)

Pz26 1.028 25.028 - -
NOA86H 0.015 - - -

PMMA base 1.447 25.025 16.025 396
NOA86H rim 0.020 - - -
PMMA cover 1.429 25.025 - -

Each step was assessed by the measured electrical impedance spectrum and compared
to simulations as shown in Fig. 5.12. The features at kHz frequencies are well-captured by
the simulated curves. However, at the primary thickness mode around 2 MHz, the mea-
sured and simulated curves deviate due to inaccurate modeling of the Pz26 transducer as
was previously shown in Fig. 5.4.

In step II, the PMMA cover was glued onto the PMMA base, which was already glued
onto the transducer, resulting in a system that is no longer axisymmetric due to the
in- and outlet. However, a 2D axisymmetric model was used to simulate the impedance
curves in Fig. 5.12(b)-(c). After step II, the cavity was filled with water, and by looking
at Fig. 5.12(c), the measured and simulated curves match reasonably well, both having
a global minimum at f = 1.98MHz. Likewise, it is assumed that the acoustic response
and dynamics match reasonably, so the simulated results can be used for insight into the
acoustofluidic device dynamics.

Figure 5.12: Measured and simulated impedance spectrum |Z(f)| for each assembling
step: (a) Step I: PMMA-base glued onto the Pz26 transducer. (b) Step II: PMMA cover
glued onto the PMMA base, and (c) a water-filled cavity without tubings. The system
configuration is shown as inserts for each step in the corresponding figure.
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In Fig. 5.13(a), the energy density spectrum Eac(f) is compared between a 2D axisym-
metric model and a 3D model, both resembling the PMMA-based acoustofluidic device.
The simulated spectra are almost identical in magnitude and features: the main reso-
nance frequencies deviate by 0.5% with a value of 1.98 MHz in the 2D axisymmetric
model and 1.99 MHz in the 3D model. The acoustic energy density is 3% larger in the
2D axisymmetric case, most likely due to the inclusion of in- and outlet in the 3D model.
The rubber-like tubings fitted in the in and outlet, as shown in Fig. 5.11(c), are modeled
as perfectly matched layers, representing attenuated outgoing waves. The acoustic pres-
sure field p̃1 and the vertical displacement field ũ1,z at resonance frequency are plotted in
Fig. 5.13(b)-(c) for the 2D axisymmetric and the 3D model, respectively. The simulated
modes are very similar and almost invariant and uniform in the radial direction resembling
a 1D layered resonator with a half-wave in the transducer, base, and channel, together
with a full wave in the cover. At this frequency the longitudinal wavelength in the PMMA
is λlo = 1.25mm and the acoustic wavelength in the water is λ0 = 0.75mm. Even though
the device is no longer axisymmetric, the 2D axisymmetric model seems a good approxi-
mation due to the system’s nearly axisymmetric geometry with small asymmetries at in-
and outlet.
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Figure 5.13: Simulated acoustic energy density spectrum Eac(f) for the PMMA-based
cavity device and acoustic field plots. (a) A comparison between the acoustic energy den-
sity spectrum Eac(f) obtained for a 2D axisymmetric model and a full 3D model near the
main resonance at 1.99 MHz. (b) Simulated acoustic pressure p̃1 and vertical displacement
ũ1,z at f = 1.99MHz, for the 2D axisymmetric model. The fields are evaluated at a phase
where the pressure amplitude is at a maximum. (c) Similar to (b), but for the full 3D
model evaluated on the xz mirror plane.
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The acoustofluidic response was further analyzed by tracking spherical 10-µm-diameter
fluorescent polystyrene particles influenced by the acoustic forces in stop-flow conditions.
The spherical 10-µm-diameter particles were submerged in an OptiPrep/water solution,
a commonly used fluid/particle solution for acoustofluidic experiments to mimic red and
white blood cells. OptiPrep was added to milli-Q water at a 20% V/V ratio to match the
density of the polystyrene particles, i.e., to obtain a neutrally buoyant solution avoiding
sedimentation. To make the water/OptiPrep/particle solution, 300 µL of a PS-Fluo-Red-
Fi317 particle solution with a concentration of 45 × 103 particles per µL was added to
30mL of the OptiPrep/water solution yielding a particle concentration of 450 particles
per µL. The tubings were fitted in the in- and outlet and sealed with the UV-curable
NOA86H adhesive. The open-source DefocusTracker software [80] was used to track and
calculate the particle positions and velocities.

Experimental setup for particle tracking: The PMMA-based acoustofluidic cavity
was mounted on a motorized stage using a 3D-printed holder. The Pz26 transducer was
probed with a four-terminal sensor; two wires were used to apply the electrical signal. The
two others measured the electric potential directly over the transducer. The electrical sig-
nal was generated by an Analog Discovery 2 function generator. The fluorescent particles
were illuminated with an LED through an objective, and the fluorescent signal was passed
through a cylindrical lens and captured with a camera. A syringe pump was used for flow
control. The experimental setup is shown in Fig. 5.14.

Figure 5.14: Picture of the experimental setup for fluorescent particle tracking. The
setup consists of a motorized stage, a signal generator, a 3D-printed device mount, an
objective, a four-terminal sensor, an LED, a cylindrical lens, and a syringe pump.

Experimental procedure for particle tracking: The OptiPrep/water/particle solu-
tion was injected with a syringe pump. The fluorescent particles were illuminated with an
LED and observed through a cylindrical lens, and captured with a camera. The particle
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trajectories were measured under stop-flow conditions. The electrical signal was provided
at a constant voltage amplitude of Vpp = 2V and was triggered by the camera’s signal to
match the time. The images used for the particle tracking were captured at 25 fps during
7 s. This procedure was conducted in a frequency interval from 1.8 to 2.2 MHz in steps
of 10 kHz, near the predicted resonance at f = 1.99MHz as shown in Fig. 5.13(a). The
device was flushed between each frequency to bring in new particles.

The equation of motion for a particle in a fluid influenced by the acoustic forces is solved
numerically to compare the measured and simulated particle velocities. The equation of
motion for a spherical particle of radius a, mass mp = 4

3πa
3ρp, and mass density ρp

submerged in a quiescent and neutrally buoyant fluid influenced by the acoustic radiation
force Frad and a drag Fdrag = 6πη0a(v

d
2 − vp) is

mp

dvp
dt

= Frad + Fdrag = Frad + 6πη0a(v
d
2 − vp) = Frad + Fstr − 6πη0avp. (5.9)

To obtain a characteristic velocity scale we assume a constant Frad and Fstr, so
Eq. (5.9) simplifies to an ordinary differential equation for vp with a terminal velocity

scale vt =
|Frad|+|Fstr|

6πη0a
, and so the particle Reynolds number can be defined as Rep = 2ρ0avt

η0
.

For a standing pressure wave, the acoustic radiation force scale as Frad = 4πΦk0a
3Eac

(see Eq. (2.24)) and the acoustic streaming scale as |vd
2 | = 3

2
Eac
ρ0c0

see for example the

acoustofluidic scaling laws presented in Ref. [81]. For the simulated response shown in
Fig. 5.13 having Eac = 0.63Pa at f = 1.99MHz and with the parameters provided in Ta-
ble 2.1 and in Table 5.3 for a 10-µm-diameter polystyrene particle in an OptiPrep/water
solution, the terminal velocity scale is vt = 15 µm/s and the particle Reynolds num-
ber becomes Rep = 2 × 10−4. Furthermore, the acoustic radiation force is dominating
|Fstr|/|Frad| = 0.04, and by these means, the inertial term and the acoustic streaming
drag in Eq. (5.9) can be neglected, so Eq. (5.9) is approximated as an ordinary first order
differential equation

drp
dt

= vp =
Frad

6πη0a
, (5.10)

in terms of the particle position rp(t). By using the Comsol module ”Particle Trac-
ing for Fluid Flow”, the particle trajectories rp(t) is solved by numerical integration

rp(t) =
∫ t
0 vp

(
r(t′)

)
dt′.

The calculated particle trajectories was simulated in the same region as in the ex-
periment, corresponding to the center-region −1.25mm < x < 1.25mm and −1.0mm <
y < 1.0mm given by the cameras field-of-view. The number of particles in the simulation
matched the number of successful tracks in the experiment, typically in the order of 300
tracks. As shown in Fig. 5.13(c), a vertical pressure node is formed near the center of the
channel, so the particle velocities will be dominated by the forces in the vertical z-direction.
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Table 5.3: Acoustic scattering properties for spherical 10-µm-diameter-polystyrene par-
ticles in a 20% V/V OptiPrep to water solution, including the mass density ρp, the com-
pressibility κp, the monopole f1 and dipole f2 scattering coefficients, and the acoustic
contrast factor Φ. [17]

ρp κp f1 f2 Φ

(kg/m3) (1/TPa) (-) (-) (-)

1050 249 0.44 0 0.15

To compare the measured particle velocity profiles vz,i in the z-direction with the
simulated, using a single measure, we define an averaged velocity measure

Vz(t) =
1

N

N∑

i=1

|vz,i(t)|, (5.11)

where the subscript i refers to the particle track, and t is the time after the electrical
signal was applied to the transducer at time t = 0 s. The absolute value accommodates
particles moving in opposite directions due to the standing half-wave-like acoustic pres-
sure field observed in Fig. 5.13(b)-(c). Each of the vertical particle-velocity profiles vz,i(t)
are calculated by numerical differentiation of the corresponding measured vertical particle
tracks rz,i.

A relevant timescale is found by considering the particle velocity in an idealized stand-
ing pressure half-wave. The time tfoc it takes to migrate a particle from z0 to zf can be

approximated by integrating dz
dt = Frad(z)/(6πη0a). Using the expression for the radiation

force Eq. (2.24) for a standing pressure wave, the result is

tfoc =
3

4

η0

Φk20a
2Eac

{
ln
[
tan

(
k0zf

)]
− ln [tan (k0z0)]

}
. (5.12)

For a standing acoustic pressure half-wave with acoustic wavenumber k0 =
π

Hch
in a channel

of height Hch, the time it takes for a particle to travel from z0 =
Hch
8 to zf = 3Hch

8 is

tfoc ≈
3

2

η0

Φk20a
2Eac

. (5.13)

For the water and particle parameters provided in Table 2.1 and Table 5.3, respectively,
the focusing time is tfoc = 8.2 s for the simulated resonance shown in Fig. 5.15 having
Eac = 0.63Pa at f = 1.99MHz.

The averaged particle velocity measure Vz(t) was evaluated after t = 1.3 s correspond-
ing to approximately one-sixth of the focusing timescale tfoc = 8.2 s. In Fig. 5.15, the
measured and simulated Vz(t) are compared, providing a frequency-resolved one-to-one
comparison between experiment and simulation, without free parameters.
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Figure 5.15: (a) Measured and simulated Vz(f) spectrum evaluated after one-sixth of
the focusing time tfoc/6 ≈ 1.3 s for the polymer-based acoustofluidic cavity actuated at
a constant peak-to-peak voltage amplitude of Vpp = 2V. (b) Plot of the 40 vertical
particle tracks, at f = 1.98MHz, with the largest net displacement in a channel of height
Hch = 396 µm. The tracks are plotted as the z-position versus time in units of the focusing
time tfoc = 8.2 s. (c) 3D plot of the simulated ũ1,z and p̃1 at f = 1.98MHz evaluated at
the phase corresponding to the maximum pressure amplitude. (d) Simulated particle
trajectories after tfoc = 8.2 s, actuated at f = 1.98MHz with a peak-to-peak voltage of
Vpp = 2V. The particles are confined to the camera’s field-of-view region (2× 2.5) mm2.

The measured Vz peak is located at 1.98 MHz with a value of Vz(1.3 s) = 13.5 µm/s,
whereas the simulated is also at 1.98 MHz with a value of 15 µm/s. A perfect match in
frequency and a mismatch of 11% in magnitude. However, in the simulated spectrum, two
extra peaks appear at 2.09 and 2.14 MHz, and only a single peak at 2.12 MHz is visible
in the measured spectrum, presumably because of the inaccurate modeling of the Pz26
transducer. The 40 vertical particle tracks, at f = 1.98MHz, with largest net displacement
are plotted in Fig. 5.15(b). The banded pattern indicates a snaky vertical pressure node,
as was also the case for the simulated response in Fig. 5.13(c).

Chapter summary: In this chapter, the UEIS method was used to characterize each
component used to fabricate an acoustofluidic device, enabling precise and accurate mod-
eling of a polymer-based acoustofluidic device. When the Pz27 transducer is available,
we plan to carry out an identical experiment replacing the Pz26 transducer with a Pz27,
for increased numerical accuracy, together with repeated experiments to obtain statistical
measures. In the following chapter, the papers are presented in versions identical to the
published versions in chronological order. The papers are followed by a chapter includ-
ing preliminary results involving a 3D-printed polymer-based acoustofluidic device. In
which the UEIS method will be used to determine the complex-valued elastic moduli of a
3D-print resin enabling fast, easy, and accurate prototyping.
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Abstract: We present a numerical model for the recently introduced simple and inexpensive
micromachined aluminum devices with a polydimethylsiloxane (PDMS) cover for microparticle
acoustophoresis. We validate the model experimentally for a basic design, where a microchannel
is milled into the surface of an aluminum substrate, sealed with a PDMS cover, and driven
at MHz frequencies by a piezoelectric lead-zirconate-titanate (PZT) transducer. Both experimentally
and numerically we find that the soft PDMS cover suppresses the Rayleigh streaming rolls in the bulk.
However, due to the low transverse speed of sound in PDMS, such devices are prone to exhibit
acoustic streaming vortices in the corners with a relatively large velocity. We predict numerically that
in devices, where the microchannel is milled all the way through the aluminum substrate and sealed
with a PDMS cover on both the top and bottom, the Rayleigh streaming is suppressed in the bulk
thus enabling focusing of sub-micrometer-sized particles.

Keywords: acoustofluidics; microparticle acoustophoresis; numerical modeling; aluminum
microdevices; polydimethylsiloxane (PDMS) covers

1. Introduction

Acoustofluidic devices based on bulk acoustic waves for microparticle handling are traditionally
made by microfabrication in acoustically hard materials, such as silicon or glass, yielding
acoustic resonators with relatively high Q values [1]. Such devices can be fabricated controllable
and with high accuracy, but may suffer from a high production cost. Several solutions have been
proposed and successfully demonstrated to achieve simple and inexpensive acoustofluidic devices.
Simple mass-produced glass capillary tubes have been used for trapping of microparticles [2–7]
and even nanoparticles [8,9]. The first attempts of using polymer-based devices have been
published showing applications such as focusing of polymer beads [10–13], lipids [10], and red
blood cells [11,14], as well as blood-bacteria separation [15] and purification of lymphocytes [16].
Although a cheaper material, polymers are difficult to use in acoustofluidics due to their low
acoustic contrast relative to water, but recently it was shown how to circumvent this problem
by use of the whole-system-resonance principle [17]. According to this principle, the acoustic
contrast between the ambient air and the whole device allows the excitation of specific whole-system
vibrational resonance modes, which support strong acoustofluidic responses in a given embedded
liquid-filled cavity, without the corresponding acoustic pressure being a localized cavity resonance as
in conventional devices.

Another solution is to combine acoustically hard materials with the soft rubber polydimethylsiloxane
(PDMS). In 2012, Adams et al., presented experiments and simulations of a high-throughput, temperature-
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controlled microchannel acoustophoresis device made by rapid prototyping. The device was based
on a PDMS-gasket defining the side-walls and shape of the acoustofluidic chamber, which then was
sealed using standard microscope slides [18]. Also Xu et al., used such a glass-PDMS-glass structure in
their recent device for isolation of cells from dilute samples using bead-assisted acoustic trapping [19].
Similarly in 2018, Gautam et al., designed, fabricated, and tested simple and inexpensive micromachined
PDMS-covered aluminum-based microfluidic devices for acoustic focusing of particles and cells [20].
These devices appear to be versatile and truly simple to fabricate, as the desired microchannel system
is micromilled into the surface of an aluminum base and bonded with a PDMS cover. Since neither theory
nor simulation was presented by Gautam et al. [20], we develop in this work a numerical model for such
devices and validate them experimentally: In Section 3 for a basic design similar to that in Ref. [20],
where a microchannel is micromilled into the surface of an aluminum base and sealed with a PDMS cover
as sketched in Figure 1 and with the dimensions given in Table 1; and in Section 4 for a geometrically
symmetric, but anti-symmetrically ac-voltage-actuated device.

In the main part of our work, we use the validated numerical model to predict the answer
to the following three questions: (1) Does the exceptionally low transverse speed of sound ∼100 m/s
in the nearly incompressible PDMS imply a singular behavior of the acoustic streaming near
the PDMS-aluminum corners of the device? (2) Does anti-symmetric excitation using a split-top-electrode
configuration as in Ref. [17] lead to better acoustophoresis? And finally, (3) does the use of the acoustically
soft PDMS cover lead to a suppression of the bulk-streaming rolls generated by the water-PDMS interface,
and if so, would PDMS covers sealing both the top and bottom part of devices, where the microchannel
is milled all the way through the aluminum base, lead to a suppression of all bulk-streaming rolls in
the device? The answers to these questions turn out to be predominantly affirmative.

PDMS
Pz26

Water

Aluminum

(a) (b)inlet

outlet

Figure 1. (a) 3D sketch drawn to scale of the single-PDMS-cover (beige) aluminum-based (light gray)
device driven by a piezoelectric PZT-Pz26 transducer (dark gray, placed on a protrusion next to the
PDMS) with silver electrodes (not shown). The inlet and outlet channels are marked by small circles.
(b) Cross-sectional view of the device at the vertical center plane, used in the 2D model presented in
Section 3, where the 9-µm-thick electrodes of the Pz26 transducer are connected to ground (purple)
and to the driving ac-voltage (red). The gap between the Pz26 and the PDMS cover is 1

8 Wfl.

Table 1. Dimensions of the two chip geometries shown in Sections 1 and 4.

Chip Units Pz26 Electrodes Al (Main) Al (Side) PDMS Channel

Length mm 25 25 60 30 60 44
Section 1 Width mm 5 5 5 4 5 0.44

Height mm 1 0.009 0.4 0.4 1.5 0.2

Length mm 25 25 60 – 60 44
Section 4 Width mm 10 10 5 – 5 0.44

Height mm 1 0.009 0.4 – 1.5 0.2

2. Theory: The Governing Equations and Boundary Conditions

We follow the work by Skov et al. [21] in our theoretical and numerical modeling
of the acoustofluidic system sketched in Figure 1. The continuum fields of the model are the
following: An electric potential scalar field ϕ̃(r, t) is present in the piezoelectric domain (Pz26),
an elastic displacement vector field ũ(r, t) is present in all four solid domains (Pz26, aluminum, silver
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electrodes, and PDMS), and an acoustic pressure scalar field p̃1(r, t) as well as a steady acoustic
streaming velocity vector field v2(r) and pressure p2(r) are present in the water-filled microchannel.
As in typical experiments, the system is driven by a time-harmonic ac-voltage V0 e−iωt of amplitude
V0 and angular frequency ω = 2π f , where f is the ultrasound frequency, applied to the silver
electrodes of the Pz26 transducer. Consequently, to first order in the applied voltage, all fields acquire
a time-harmonic phase factor e−iωt and a complex-valued spatially varying amplitude,

ϕ̃(r, t) = ϕ(r)e−iωt, ũ(r, t) = u(r)e−iωt, and p̃1(r, t) = p1(r)e−iωt. (1)

In the following, the common phase factor e−iωt is left out of the linear equations. Only the
space-dependent amplitudes are computed, but multiplying them by e−iωt recovers the time dependence.

2.1. The Piezoelectric Transducer

We model a standard lead-zirconate-titanate (PZT) transducer of type Pz26 polarized in
the z direction. The mechanical stress tensor σ and the electric displacement field D are given in terms
of the gradients of the elastic displacement field u and the electric potential ϕ by the electromechanical
coupling matrix. Using the compact Voigt notation, this constitutive relation is given by




σxx

σyy

σzz

σyz

σxz

σxy

Dx

Dy

Dz




=




C11 C12 C13 0 0 0 0 0 −e31

C12 C11 C13 0 0 0 0 0 −e31

C13 C13 C33 0 0 0 0 0 −e33

0 0 0 C44 0 0 0 −e15 0
0 0 0 0 C44 0 −e15 0 0
0 0 0 0 0 C66 0 0 0
0 0 0 0 e15 0 ε11 0 0
0 0 0 e15 0 0 0 ε11 0

e31 e31 e33 0 0 0 0 0 ε33







∂x ux

∂y uy

∂z uz

∂yuz + ∂z uy

∂xuz + ∂z ux

∂xuy + ∂y ux

−∂x ϕ

−∂y ϕ

−∂z ϕ




. (2)

Here, Cik are the elastic coefficients, εik are the electric permittivities, and eik are the piezoelectric
coupling constants. The remaining components of σ are given by the symmetry relations σik = σki.

The governing equations in the piezoelectric Pz26 material of mass density ρsl are the Cauchy
equation for the elastic displacement field u and, for frequencies less than 100 MHz in systems smaller
than 1 m without free charges, the quasi-static Gauss law for the electric potential ϕ,

−ω2ρslu = ∇ · σ, ∇ · D = 0. (3)

The boundary conditions for the Pz26 domain with surface normal vector n are continuity of ϕ,
u and σ · n across the elastic solid interfaces to the silver electrodes, and zero stress as well as zero
electric charge on surfaces exposed to air,

Pz26 domain← charged electrode: ϕ = V0, σ · n and u continuous, (4a)

Pz26 domain← grounded electrode: ϕ = 0, σ · n and u continuous, (4b)

Pz26 domain← air: n · D = 0 and σ · n = 0. (4c)

Here, the notation A← B refers to the influence of B on domain A with outward surface normal n.
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2.2. The Elastic Aluminum Base, PDMS Cover, and Silver Electrodes

The aluminum base, the PDMS cover, and the silver electrodes on the Pz26 transducer can
all be described as isotropic, linear elastic materials. Again using the compact Voigt notation,
the corresponding constitutive equation relating the strain and the stress are given by




σxx

σyy

σzz

σyz

σxz

σxy




=




C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44







∂x ux

∂y uy

∂z uz

∂yuz + ∂z uy

∂xuz + ∂z ux

∂xuy + ∂yux




. (5)

For isotropic materials only C11 and C44 are independent, since the constraint C12 = C11− 2C44 applies.
The transverse and longitudinal speed of sound becomes clo =

√
C11/ρsl and ctr =

√
C44/ρsl, respectively.

The governing equation for the displacement field u in an elastic solid with mass density ρsl
is the Cauchy equation

−ω2ρslu = ∇ · σ. (6)

The boundary conditions for the elastic solid domains with surface normal vector n are continuity
of u and σ · n across the elastic solid interfaces, and zero stress on surfaces exposed to air,

solid domain← adjacent solid: σ · n and u continuous, (7a)

solid domain← air: σ · n = 0. (7b)

The boundary conditions for the fluid-solid interfaces are given below.

2.3. Pressure Acoustics in the Water-Filled Microchannel

The governing equation for the acoustic pressure p1 inside a fluid with mass density ρfl, speed
of sound cfl, dynamic viscosity ηfl, and bulk viscosity ηb

fl is the Helmholtz equation

∇2 p1 +
ω2

c2
fl

(
1 + i

Γfl
2

)
p1 = 0, where Γfl =

(
4
3

ηfl + ηb
fl

)
ωκfl and κfl =

1
ρflc2

fl
. (8)

The acoustic velocity v1 in the bulk of the fluid is a potential flow given by the acoustic pressure p1,

v1 = −i
1− iΓfl

ωρfl
∇p1. (9)

The boundary conditions for the fluid-solid interface are continuity of the stress and the
velocity. In Ref. [21] the explicit form of these boundary conditions were derived taking into account
the viscous boundary layer in the fluid. By introducing the shear wavenumber ks = (1 + i)/δ, where
δ =

√
2ηfl/(ωρfl) is the thickness of the viscous boundary layer, and expressing the displacement

velocity as vsl = −iωu, the fluid-solid boundary conditions become,

Solid domain← fluid: σ · n = −p1n + iksηfl(vsl − v1
)
, (10a)

Fluid domain← solid: v1 · n = vsl · n +
i

ks
∇‖ · (vsl − v1)‖ . (10b)

Here, the viscous loss in the fluid is taken into account in the boundary conditions, and it appears
through the slip velocity vδ = (vsl − v1).
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2.4. Acoustic Streaming in the Water-Filled Microchannel

Steady acoustic streaming arises in the fluid due to the inherent nonlinear fluid dynamics,
here the time-average of products of time-harmonic fields. Following Bach and Bruus [22],
the streaming velocity v2 is governed by a real-valued incompressible Navier–Stokes equation with a
body force due to the real part of the acoustic energy-flux density,

∇ · v2 = 0 and 0 = −∇p2 + ηfl∇2v2 +
Γflω

2c2
fl

Re
{

p∗1v1
}

. (11)

The no-slip condition on the fluid-solid interface requires that v2 = − 〈(u ·∇) v1〉, which leads
to the boundary condition for the acoustic streaming v2 at the fluid-solid interface,

v2 = (A · e‖) e‖ + (B · e⊥) e⊥, (12a)

A = − 1
2ω

Re
{

vδ0∗
1 ·∇

(
1
2

vδ0
1 − iv0

sl

)
− iv0∗

sl ·∇v1

+

[
2− i

2
∇ · vδ0∗

1 + i
(
∇ · v0∗

sl − ∂⊥ (v1 · e⊥)∗
) ]

vδ0
1

}
, (12b)

B =
1

2ω
Re{iv0∗

1 ·∇v1}, (12c)

where the superscript “0” indicates a field evaluated along the fluid-solid interface. The subscripts
‖ and ⊥ and the unit vectors e‖ and e⊥ refer to the parallel and normal direction to the solid
wall respectively. The steady pressure p2 accompanying v2 is governed by the continuity for v2,
and since it only appears as a gradient in Equation (11), we must fix the level of p2 by the constraint∫

Ωfl
p2 dydz = 0.

2.5. The Acoustic Radiation and Drag Force on Suspended Microparticles

Suspended spherical particles of radius a and mass density ρpa will experience the radiation
force Frad due to acoustic scattering, which is given by the potential Urad with monopole and dipole
scattering coefficients f0 and f1, respectively [23],

Frad = −∇Urad where Urad =
4
3

πa3
(

1
4

f0κfl |p1|2 −
3
8

f1ρfl |v1|2
)

. (13)

The velocity vpa of a suspended particle at position r(t) in the water is determined by a balance
between the Stokes drag force Fdrag = 6πηfla(v2 − vpa), the acoustic radiation force Frad, and the
buoyancy force Fbuoy = − 4

3 πa3(ρpa − ρfl)gez,

vpa(r) = v2(r) +
Frad(r)
6πηfla

− 2
9

a2

ηfl
(ρpa − ρfl)gez. (14)

The particle trajectory is then given by integration in time as rpa(t) =
∫ t

0 vpa
(
r(t′)

)
dt′. Inertia is

neglected here, because the largest particle with radius a = 2.4 µm moves slower than vpa < 1 cm/s
yielding a small particle Reynolds number, Repa = 1

ηfl
ρflavpa ≈ 0.03� 1.

We define the horizontal y axis such that the channel is centered around y = 0. To determine
at which frequencies f acoustic resonance modes appear that leads to good particle focusing towards
the vertical center plane located at y = 0, we introduce the focusing figure of merit F ( f ). This is
a modified version of the figure of merit R defined in Ref. [17], as follows: F should be large,
when at the same time the average acoustic energy density Eac is large, and the acoustic radiation force
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Frad has the property that its average horizontal y component is large and points toward the center,
whereas its average vertical z component has a small magnitude,

F ( f ) =

∫
Ωfl

sgn(−y) Frad,y dydz
∫

Ωfl

∣∣Frad,z
∣∣ dydz

Eac, where Eac =

∫
Ωfl

[ 1
4 κfl |p1|2 + 1

4 ρfl |v1|2
]

dydz
∫

Ωfl
1 dydz

. (15)

Here, sgn(−y) designates minus the sign of the y coordinate.

3. Numerical Implementation and Experimental Validation of the Single-PDMS-Cover Model

To illustrate the numerical implementation of the model, we choose the geometry as sketched
in Figure 1, with the dimensions listed in Table 1, and the material parameters given in Appendix A.
This device geometry is similar to the one in Ref. [20], namely an aluminum-based device with a straight
channel and a single PDMS cover. Our general numerical modeling is then validated experimentally
for this device and further supported by the results presented in Section 4, for the anti-symmetric
actuated design.

3.1. Model Implementation in COMSOL Multiphysics

The model system of Figure 1 as well as its governing equations and boundary conditions given in
Section 2, are implemented in the commercial finite-element method software COMSOL Multiphysics 5.4 [24]
using the weak form PDE module, closely following the method presented in Ref. [21]. We use quartic
Lagrange shape functions for p1, cubic for u, ϕ, and v2, and quadratic for p2. For simplicity,
we approximate the device by an infinitely long straight channel, and thus restrict the computation
to the 2D cross section. The material parameters used in the model are given in Appendix A.
The simulations were performed on a workstation with a 3.5-GHz Intel Xeon CPU E5-1650 v2 dual-core
processor and with 128 GB RAM.

3.2. Manufacturing Method of the Chip for the Experimental Validation

A sketch of the device fabrication method is shown in Figure 2. A more detailed description
of the process steps is given in the following.

Plasma activation

Thin film PDMS cover
(1a)

Figure 2. Schematic showing the sequence in the fabrication of the aluminum devices with
PDMS covers. Production of a thin PDMS cover on a Mylar sheet by (1a) spinning and curing
followed by (2a) bonding to the aluminum base by plasma activation and removal of the Mylar sheet.
(1b) Production of a thick PDMS cover by mould casting followed by (2b) bonding to the aluminum
base by plasma activation. (3) Fabrication of the channel in the aluminum base by micromilling.
(4) Attachment of silicone tubes and the Pz26 transducer.

The aluminum base. A microchannel was milled in an aluminum substrate (alloy 6061,
McMaster-Carr, Los Angeles, CA, USA) using a CNC milling machine (Solectro AB, Lomma, Sweden).
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The micromachined substrate was cleaned with acetone, ethanol, and Milli-Q (Millipore Corporation,
Burlington, MA, USA), and dried on a 140 ◦C hotplate for 2–3 min prior to bonding with the PDMS
film covering the channel. This constitutes the base of the device.

The PDMS covers. Sylgard 184 silicone elastomer (Dow Corning, Ellsworth Adhesives,
Germantown, WI, USA) was mixed with the curing agent at the commonly used weight ratio of 10:1
and degassed. Two types of covers were made: (a) Thin PDMS-film covers, by deposition of 1 mL
of elastomer on a 100-µm-thick 100-mm-by-100-mm plastic transparency sheet (Mylar), followed
by spin-coating and curing at 65 ◦C for 15–30 min, and (b) 1.5-mm-thick PDMS covers by conventional
mould casting.

Device assembly. Afterwards, the cured PDMS film and cleaned aluminum substrates were
treated with air plasma in a Zepto plasma cleaner (Diener electronic GmbH + Co. KG, Ebhausen,
Germany) for 60 s. PDMS and aluminum were subsequently bonded together and cured at 80 ◦C
for 4 min. After curing, the Mylar sheet was removed from the PDMS-aluminum assembly. For flow
connections, silicone tubes with inner diameters that match 1/16” Teflon tubings, were glued to the base
of the device. A PZT ceramic transducer (Pz26, Meggitt A/S, Kvistgaard, Denmark) designed
for 2 MHz actuation was superglued to the final device.

3.3. Experimental Validation of the Numerical Model

The electrodes of the Pz26 transducer were coupled to an ac-voltage generator operating
at 20 V peak-to-peak (V0 = 10 V) at frequencies ranging from 1.5 to 2.5 MHz. After stopping
the particle-loading flow, the position and velocity vpa of fluorescently-marked polystyrene particles
(see Table A3 in Appendix A) was measured using the single-camera general defocusing particle
tracking (GDPT) technique [25,26] with fluorescent polystyrene beads. We use a 10 µm× 5 µm grid
size and a recorded image frame rate of 10 Hz, and the motion of 2a = 4.8, 2.0, and 1.0 µm-diameter
tracer particles is tracked for 30, 60, and 120 s, respectively. During the data processing, the outliers
were filtered out by limiting the displacement deviation of all the particles, by limiting the velocity
magnitude, and by restricting the particle count to 2 in each grid.

To validate our 2D model, we compare in Figure 3 simulated and measured particle behavior.
The top row show top-view micrographs of the microchannel under flow-through condition, where
4.8-µm-diameter particles in bright-field are seen to focus in the center, Figure 3a. This resonance
mode is called “S” for “side actuated” and was located at f = 2.048 MHz. This focusing is confirmed
by the fluorescent image Figure 3b, which however also reveals particles accumulating near the corners
of the device. In Figure 3c,d, we show measured and simulated particle velocities vpa in the vertical
cross section for different particle diameters. It is seen that the 2D model captures the following
five main features in the measured particle velocity field, even though the 2D model geometry of
Figure 1b assumes a translational invariant cross section along the x direction, which the experimental
3D geometry of Figure 1a clearly does not have. (1) The numerically predicted resonance is located at
f = 1.803 MHz, only 12% below the experimental value. (2) As expected, for large particles 2a = 4.8 µm
the motion is dominated by the radiation force, which is partly focusing in the vertical nodal plane at
y = 0 and partly pointing towards the soft PDMS cover and the top corners. As the particle size is
reduced to 2a = 2.0 µm and then further to 2a = 1.0 µm, acoustic streaming becomes more dominant
for the particle motion. This cross-over is clearly seen both in model and measurement of Figure 3c,d
in the form of streaming flow rolls. (3) Near the hard aluminum bottom, the classical pair of
counter-rotating Rayleigh streaming rolls appears. (4) Near the soft PDMS cover, the acoustic streaming
rolls are confined to the top corners where it reaches its maximum value. This is a consequence of the
low transverse speed of sound ∼100 m/s in PDMS, or equivalently, the nearly incompressible nature
of PDMS. Finally, (5) The magnitude vpa = 40 µm/s of the simulated particle velocity matches that of
the measured one for the 4.8-µm-diameter particles, whereas it is roughly 30–50% smaller for the 2.0-
and 1.0-µm-diameter particles.
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0 0 0

(c)

(a) (b)

y y

z

y

(d)

Figure 3. (a) Bright-field micrograph under flow-through condition showing acoustophoretic focusing
of 4.8-µm-diameter polystyrene particles at the center (gray band). (b) Similarly for fluorescently-marked
particles, but now also revealing that some particles are accumulating at the upper corners
of the channel. (c) Vector plot (black arrows) and color plot ranging from 0 µm/s (white) up to
40 µm/s (red) of the particle velocities vpa in the vertical cross section measured by GDPT at resonance
mode “S”, f = 2.048 MHz, for different particle diameter 2a = 4.8 µm, 2.0 µm, and 1.0 µm. (d) Same
vector and color plot as (c) but for the simulated results of vpa in the 2D geometry shown in Figure 1b
at the numerically determined resonance frequency f = 1.803 MHz (12% lower).

4. Modeling of Single-PDMS-Cover Devices with Anti-Symmetric Voltage Actuation

Following the results of Ref. [17], we investigate numerically, if better acoustophoresis, quantified
by the focusing figure of merit F defined in Equation (15), is obtained by exciting the half-wave
resonance mode (which is anti-symmetric around the nodal plane at y = 0). This is achieved by splitting
the top electrode and applying an anti-symmetric ac voltage, as sketched in Figure 4 for a device with
a split-gap of size 50 µm× 40 µm cut into the top surface of the Pz26 transducer. Here, the PDMS, the
channel, and the aluminum base are translational invariant along the x direction.

(a) (b)
PDMS
Aluminum

Pz26

(c)

Figure 4. (a) 3D sketch drawn to scale of the proposed device driven by an anti-symmetric ac
voltage. (b) The vertical cross section showing the thickness Hpd of the PDMS cover. (c) Zoom-in
on the water-filled microchannel showing the PDMS cover, the aluminum base, the Pz26 transducer,
and its 9-µm-thick silver electrodes, with ground on the bottom electrode (purple) and anti-symmetric
ac voltage positive/negative (blue/red) applied to the split top electrode.

4.1. Numerical Optimization of the Thickness of the PDMS Cover

To illustrate how the thickness Hpd of the PDMS cover affects the resonances, we vary Hpd,
and for each value, we sweep the frequency f from 1.5 MHz to 2.5 MHz in steps of 5 kHz to locate
the resonances in terms of peaks in the focusing figure of meritF versus f . Such a spectrum is plotted in
Figure 5a, where the area of each point is proportional toF . For the same cover thickness Hpd = 1.5 mm



Micromachines 2020, 11, 292 9 of 15

as in the side-actuated mode “S” of Figure 3 with Eac = 8.9 J/m3, we find a resonance mode “A′”
at f = 2.095 MHz with Eac = 4.6 J/m3. An even better resonance mode can be found. In Figure 5a
a strong resonance, which depends on the PDMS-cover thickness, is indicated by the blue curve.
The optimal cover thickness along this curve is found to be Hpd = 80 µm at f = 2.070 MHz, identified
as resonance mode “A”, which yields an acoustic energy density of 96 J/m3, twenty times larger
than “A′”.

A'

(a) (b)

(c)

(d)

00

0

0

0

Figure 5. (a) Resonance peaks in the single-PDMS-cover aluminum-based device with anti-symmetric
voltage actuation, Figure 4, as a function of the actuation frequency f and the thickness Hpd

of the PDMS cover. The area of the points is proportional to the focusing figure of merit F defined
in Equation (15). The “A′” marks the resonance mode for Hpd = 1.5 mm as in mode “S” of Figure 3.
The “A” marks the resonance for the optimal cover thickness Hpd = 80 µm. The blue curve indicates
resonances sensitive to Hpd. (b–d) Color and vector plot of the measured (left column) and simulated
(right column) acoustophoretic particle velocity vpa of mode “A′”, for particle diameters 4.8, 2.0,
and 1.0 µm, respectively. The measured resonance frequency was f = 2.052 MHz and the simulated
was found at f = 2.095 MHz (2% higher). All color plots range from 0 µm/s (white) up to vmax

pa (red)
with values 38 or 19 µm/s as indicated in each panel.

In Figure 5b–d are shown experimental and simulated acoustophoretic particle velocities vpa

for three different particle diameters 2a = 4.8, 2.0 and 1.0 µm in mode “A′”. The magnitude vpa =

38 µm/s for a = 2.4 µm in Figure 5b is similar to that for mode “S”, vpa = 40 µm/s in Figure 3c. As for
mode “S” in Figure 3, also Figure 5 shows the well-known cross-over from radiation-force-dominated
focusing motion of the largest particles to the streaming-roll-dominated motion of the smallest particles.
Particular to the single-PDMS-cover device is, firstly, that in Figures 3c and 5d there is only one pair of
counter-rotating vortices near the bottom aluminum wall, the other pair near the top-PDMS-cover is
suppressed as anticipated, and secondly, very strong localized vortices appear in the top corners of the
channel where the PDMS-cover joins the aluminum base.

For both mode “S” in Figure 3 and the anti-symmetric mode “A′” in Figure 5b–d there is good
qualitative agreement between particle velocities vpa and resonance frequencies f measured in 3D
and simulated in 2D assuming translational invariance. Quantitatively, the agreement in f is better
for mode “A′” (+2%) than for mode “S” (−12%), presumably because the translational invariance is
more severely broken in the latter case. In both cases the velocity magnitudes agrees within 30–50%.
The skew (white) zero-velocity band observed in Figure 5b (left) indicates that the experimental device
was not completely symmetric as in the model Figure 5b (right). The agreement between measured and
simulated particle velocities vpa implies that our model can provide reliable estimates of the acoustic
energy densities Eac in the devices.
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4.2. The Role of Variations in the PDMS Material Properties

We suspect that the strong top-corner vortices appearing in Figures 3 and 5 are due to the nearly
incompressible nature of PDMS, or equivalently, the very low transverse speed of sound in PDMS.
To investigate this hypothesis, we define an artificial polymer alloy of PDMS and Poly(Methyl
MethAcrylate), PDMSxPMMA1−x with mixing ratios x. In Figure 6 we study the four mixing ratios
x = 1.0, 0.99, 0.95, and 0 in covers 80 µm thick. For each case, the resonance peak with the largest figure
of merit F was found, and in close-up views of the channel are shown the corresponding particle
velocity vpa in the water and the displacement u in the surrounding solid.

In the case of a pure PDMS cover Figure 6a, a large displacement is narrowly confined to the top
corners, this was also evident in Figures 3 and 5, where the maximum particle velocity was seen near
the top corners. Already at 99% PDMS and 1% PMMA, Figure 6b, the transverse speed of sound in
the polymer is two times greater than in pure PDMS, and the displacement field at the polymer-water
interface is now more evenly distributed. This is even more pronounced for the case of 95%
PDMS and 5% PMMA, Figure 6c, similarly for pure PMMA, Figure 6d. Note that in the latter
case, the displacement in the cover is also resonating close to its transverse half-wave frequency.
In conclusion, the low transverse speed of sound in PDMS seems to imply the appearance of strong
streaming vortices localized near the PDMS-aluminum corners of the device.

(a)

(c)

(b)

(d)

Figure 6. Zoom-in on the resonance modes for four different mixing ratios x of the artificial polymer
alloy PDMSxPMMA1−x with (a) x = 1.00, (b) x = 0.99, (c) x = 0.95, and (d) x = 0.0. For each case,
the resonance frequency fres is noted together with the average acoustic energy density Eac, and the
transverse wavelength λtr in the artificial PDMS-PMMA polymer cover. The color plots indicates
the particle velocity magnitude

∣∣vpa
∣∣ in the water ranging from 0 (white) to the maximum value

vmax
pa = 258 µm/s (red), and of the displacement u in surrounding solids ranging from 0 (dark blue)

to 70 nm (yellow). The deformation is scaled 500 times to be visible.

5. Modeling Dual-PDMS-Cover Aluminum Devices with Anti-symmetric Voltage Actuation

In Figures 3c,d and 5d showing the acoustophoretic velocity fields for small microparticles
suspended in the single-PDMS-cover device, we notice that whereas the usual Rayleigh flow rolls
are present near the bottom aluminum wall, they seem to be suppressed near the PDMS cover.
We therefore study the dual-PDMS-cover device sketched in Figure 7a to examine if both sets
of Rayleigh flow rolls near the top and bottom wall can be suppressed. In Figure 7b we show
one example of plotting the focusing figure of merit F of Equation (15) as a function of frequency f ,
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here for the specific case of Htop = Hbot = 110 µm. The strongest resonance is found at f = 2.302 MHz
and is marked “B”. A point with an area proportional to the computed value of F is then plotted
at (Htop, Hbot) = (110 µm, 110 µm) in the scatter plot of Figure 7c. Similarly, the strongest resonances
are found and plotted in the scatter plot for three different parametric sweeps in the two cover
thicknesses: (1) Hbot varies for fixed Htop = 80 µm (blue line), (2) Htop varies for fixed Hbot = 110 µm
(yellow line), (3) the equal cover thicknesses Htop = Hbot varies (cyan line). The strongest resonance or
best value of the focusing figure of merit F is found at the peak “B” corresponding to the equal cover
thicknesses Htop = Hbot = 110 µm driven at the frequency f = 2.302 MHz.

(b)

(c)

(a)

Figure 7. (a) Zoom-in on the channel in the dual-PDMS-cover setup, indicating the top cover thickness
Htop and the bottom cover thickness Hbot. (b) Plot of the focusing figure of merit F versus frequency
computed for the case Htop = Hbot = 110 µm leading to the identification of a strong resonance peak
“B” at f = 2.302 MHz. (c) Scatter plot with area of the points proportional to the focusing figure of merit
F for the strongest resonances identified in parametric sweeps of Hbot for fixed Htop = 80 µm (blue
line), of Htop for fixed Hbot = 110 µm (yellow line), and for equal cover thicknesses Htop = Hbot (cyan
line). The configuration with the highest focusing quality is indicated with an encircled B.

In Figure 8, we study if indeed the streaming flow rolls are suppressed in the dual-PDMS-cover
device compared to the single-PDMS-cover device. We compute the position of 400 1-µm-diameter
polystyrene particles at discrete time steps (black dots) starting at a uniform distribution at time t = 0,

where the acoustic field is turned on, and ending at time tfocus =
3

2Φ
c2

fl
ω2a2

ηfl
Eac

(red dots), the so-called
focusing time determined by the acoustic contrast factor Φ given in Table A3 in Appendix A. Inertial
effects can be ignored since the Reynolds number Repa =

ρflavpa
ηfl

< 0.03 for the given particles
and acoustic fields.

Comparing the particle trajectories of mode “A” in the single-PDMS-cover device Figure 8a
to those of mode “B” in the dual-PDMS-cover device Figure 8b, we clearly see that in the latter
case the streaming flow rolls are suppressed. The dual-PDMS-cover device is therefore predicted
to be a good candidate system for controlled focusing of sub-micrometer-sized particles. For this
to work, it is of course essential that the focusing time is sufficiently short. For the given device
actuated at V0 = 10 V, the focusing time of the 1-µm-diameter particles is prohibitively long, namely
tfocus = 23.6 s. Raising the driving voltage by a factor

√
20 ≈ 4.5 to V0 = 45 V would lower the focusing

time to tfocus ≈ 1 s, because tfocus ∝ V2
0 .
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A B(a) (b)

Figure 8. The positions (black dots) of suspended 1-µm-diameter polystyrene particles at discrete time
steps from initial time t = 0 to final time t = tfocus in anti-symmetrically actuated devices at selected
resonance modes. The final positions at time t = tfocus are marked by red dots. (a) Resonance mode
“A” of Figure 5 with Eac = 96 J/m3 and tfocus = 4.3 s with two large vortices extending from the hard
bottom aluminum-water interface, two small ones near the PDMS-aluminum corners and poor focusing.
(b) Resonance mode “B” of Figure 7 with Eac = 14 J/m3 and tfocus = 23.6 s exhibiting four small
vortices near the corners and good focusing.

6. Conclusions

We have developed a model for analyzing the single-PDMS-cover aluminum-base device with
side actuation, recently introduced by Gautam et al. [20]. The model, currently restricted to the
case of a constant 2D cross section in a translational invariant device, is validated experimentally
with fair qualitative and quantitative agreement by fabricating and characterizing two types of
single-PDMS-cover aluminum-base devices: One which is actuated with a symmetric ac-voltage
on a Pz26 transducer placed at the side of the channel, and another with an anti-symmetric ac-voltage
on a transducer placed right under the channel. Both numerical simulations and experiments support
our hypothesis that using a soft PDMS cover of the acoustophoresis channel, the boundary driven
acoustic streaming is suppressed in the bulk. The developed model can thus predict the streaming
patterns in such devices, and we subsequently used it to show three aspects: (1) The incompressible
nature of the soft PDMS cover introduces strong streaming rolls confined near the corners where the
PDMS cover joins the aluminum base, while maintaining the conventional large Rayleigh streaming
rolls extending from the aluminum-water interface; (2) An optimal thickness of the PDMS cover can
be determined by simulation; (3) In devices with a dual-PDMS cover, the model predicts that the
conventional Rayleigh streaming flow rolls should be suppressed and changed into vortices confined
near the corners of the channel. Experimental work is in progress to verify these predictions.
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Appendix A. Material Parameters

The following three tables contain the parameter values used in the numerical modeling
of the PDMS-cover aluminum-based devices.

Table A1. Parameters for PZT transducer Pz26 [27] with damping coefficient Γsl = 0.02 [28].

Parameter Value Parameter Value Parameter Value

ρsl 7700 kg/m3 ε11 828 ε0 ε33 700 ε0
C11 168 GPa C33 123 GPa e31 −2.8 C/m2

C12 110 GPa C44 30.1 GPa e33 14.7 C/m2

C13 99.9 GPa C66 29.0 GPa e15 9.86 C/m2

Table A2. Parameters used in the linear-elastics modeling of aluminum, silver, and PDMS.

Aluminum Silver PDMS (10:1)
Parameter Symbol 6061 [29] [30] Cured at 65 ◦C [31] Unit

Mass density ρsl 2700 10,485 1029 kg/m3

Elastic modulus C11 102 (1− iΓsl) 134 (1− iΓsl) 1.08− i0.016 GPa
Elastic modulus C44 25.9 (1− iΓsl) 25.9 (1− iΓsl) 0.0075− i0.0079 GPa
Damping coefficient Γsl 0.0013 0.0004 – –

Table A3. Parameters for water and polystyrene tracer particles at 25 ◦C. The scattering coefficients

are calculated in terms of the mass densities and compressibilities as f0 = 1− κpa
κfl

and f1 =
2
(

ρpa
ρfl
−1
)

2
ρpa
ρfl

+1

which in turn gives the acoustic contrast factor Φ = 1
3 f0 +

1
2 f1.

Water [32] Polystyrene Particles [33]
Parameter Symbol Value Parameter Symbol Value

Mass density ρfl 997.05 kg/m3 Mass density ρpa 1050 kg/m3

Compressibility κfl 447.7 TPa−1 Compressibility κpa 238 TPa−1

Dynamic viscosity ηfl 0.890 mPa·s Monopole coefficient f0 0.468
Bulk viscosity ηb

fl 2.485 mPa·s Dipole coefficient f1 0.034
Speed of sound cfl 1496.7 m/s Contrast factor Φ 0.173
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ABSTRACT:
By numerical simulation in two and three dimensions, the coupling layer between the transducer and microfluidic

chip in ultrasound acoustofluidic devices is studied. The model includes the transducer with electrodes, microfluidic

chip with a liquid-filled microchannel, and coupling layer between the transducer and chip. Two commonly used

coupling materials, solid epoxy glue and viscous glycerol, as well as two commonly used device types, glass capil-

lary tubes and silicon-glass chips, are considered. It is studied how acoustic resonances in ideal devices without a

coupling layer are either sustained or attenuated as a coupling layer of increasing thickness is inserted. A simple cri-

terion based on the phase of the acoustic wave for whether a given zero-layer resonance is sustained or attenuated by

the addition of a coupling layer is established. Finally, by controlling the thickness and the material, it is shown that

the coupling layer can be used as a design component for optimal and robust acoustofluidic resonances.
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I. INTRODUCTION

The acoustic impedance matching techniques for piezo-

electric (PZT) sensors and transducers is, in general, a well-

studied field as exemplified by the recent review by

Rathod.1 However, specifically for ultrasound acoustofluidic

devices, the role of the coupling layer (also known as the

carrier or matching layer) between the transducer and micro-

fluidic chip remains poorly understood beyond one-

dimensional (1D) planar systems.2,3 Whereas the function of

a matching layer for 1D traveling waves through layered

structures is simply to couple acoustic energy more effi-

ciently into subsequent layers, its role in resonant 1D acous-

tofluidic systems is less straightforward. As analyzed by

Glynne-Jones et al.,3 the function of the coupling layer may

be more structural to isolate the transducer from the fluid

layer. In the present work, we study the more complex case

of a fully three-dimensional (3D) acoustofluidic system.

Extending the numerical study by Hahn and Dual, given

for one specific device with a 20-lm-thick epoxy glue cou-

pling layer,4 we present 3D numerical simulations of a PZT

transducer coupled to an acoustofluidic chip through a thin

coupling layer of varying thickness, consisting of either a

solid glue or viscous liquid. We consider two commonly

used types of acoustofluidic devices sketched in Fig. 1, glass

capillary tubes and silicon-glass chips. Capillary-tube devi-

ces have been applied as acoustic particle traps, relying on a

small transducer that actuates a vertical resonant pressure

mode locally in the capillary.5–8 Silicon-glass devices have

been applied for continuous-flow focusing and separation of

particle suspensions, relying on the bulk actuation of hori-

zontal resonance modes in embedded microchannels.9–11

The paper is organized as follows. In Sec. II, we present

the basic theory, including governing equations and bound-

ary conditions. In Sec. III, we model the capillary-tube parti-

cle traps and show their dependency on the coupling-layer

thickness. In Sec. IV, a similar analysis is carried out for the

conventional acoustophoresis silicon-glass devices. Finally,

in Sec. V, we present a concluding discussion regarding the

criterion established in Secs. III and IV for designing acous-

tofluidic devices with acoustic resonance modes that are rel-

atively insensitive to the thickness of the coupling layer.

II. THEORY AND MODEL ASSUMPTIONS

In establishing the numerical model, we closely follow

the theory presented by Skov et al.12 Our model consists of

a lead-zirconate-titanate PZT transducer coupled to an elas-

tic solid, which contains the fluid-filled microchannel.

Theoretically, the system is described by three continuous

fields: the electric potential u in the PZT transducer, the

mechanical displacement field u in the elastic solid and the

PZT transducer, and the acoustic pressure p1 in the fluid.

The coupling layer is described by p1 if it is a liquid and u if

it is a solid. Due to the linearity of the governing equations,

all fields have a harmonic time dependence e�ixt with an

angular frequency x ¼ 2pf and frequency f. Thus, a given

field has the structure ~f ðr; tÞ ¼ f ðrÞ e�ixt, and we need only

a)This paper is part of a special issue on Theory and Applications of

Acoustofluidics.
b)Electronic mail: bruus@fysik.dtu.dk, ORCID: 0000-0002-7014-0127.
c)ORCID: 0000-0001-5827-2939.
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determine the complex-valued space-dependent amplitude

f ðrÞ.
The acoustic pressure field p1 is modeled using the

effective pressure acoustic theory by Bach and Bruus,13

where the viscous boundary layers are included analytically

in the effective boundary conditions. Using the effective

theory, the acoustic pressure p1 in a fluid with density q0,

sound speed c0, dynamic viscosity g0, and bulk viscosity gb

is governed by the Helmholtz equation, and the acoustic

velocity v1 is proportional to $p1,

r2p1 ¼ �k2
c p1; v1 ¼ �i

1� iC
xq0

$p1; (1a)

with

k0 ¼
x
c0

; kc ¼ 1þ i

2
C

� �
k0; (1b)

and

C ¼ gb

g0

þ 4

3

 !
xg0

q0c2
0

: (1c)

In cases in which the fluid coupling-layer thickness D is

comparable or smaller than the viscous boundary-layer

length scale dvisc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g0=ðq0xÞ

p
, the effective theory fails,

and the full perturbation model is used instead.14,15

The mechanical displacement field u is governed by the

linear Cauchy equation, involving the stress tensor r,

�q0x
2u ¼ $ � r: (2)

The components rik of r are related to the strain components
1
2
ð@iuk þ @kuiÞ by the stiffness tensor C, which, for linear

isotropic or cubic-symmetric elastic materials, are written in

the Voigt notation as

rxx

ryy

rzz

ryz

rxz

rxy

0
BBBBBBBBB@

1
CCCCCCCCCA
¼

C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44

0
BBBBBBBBB@

1
CCCCCCCCCA

�

@xux

@yuy

@zuz

@yuz þ @zuy

@xuz þ @zux

@xuy þ @yux

0
BBBBBBBBB@

1
CCCCCCCCCA
: (3)

Mechanical damping is implemented as complex-valued

elastic moduli, defined as Cik ¼ ð1� iCslÞcik. In the PZT

transducer, the electric potential u is governed by the quasi-

static Gauss equation, involving the electric displacement D,

$ � D ¼ 0: (4)

Furthermore, in PZT, the complete linear electromechanical

coupling relating the stress and electric displacement to the

strain and electric field is given by the Voigt notation as

rxx

ryy

rzz

ryz

rxz

rxy

Dx

Dy

Dz

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

¼

C11 C12 C13 0 0 0 0 0 �e31

C12 C11 C13 0 0 0 0 0 �e31

C13 C13 C33 0 0 0 0 0 �e33

0 0 0 C44 0 0 0 �e15 0

0 0 0 0 C44 0 �e15 0 0

0 0 0 0 0 C66 0 0 0

0 0 0 0 e15 0 e11 0 0

0 0 0 e15 0 0 0 e11 0

e31 e31 e33 0 0 0 0 0 e33

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

@xux

@yuy

@zuz

@yuz þ @zuy

@xuz þ @zux

@xuy þ @yux

�@xu
�@yu
�@zu

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

: (5)

A. Acoustic energy density

Throughout this study, the time- and volume-averaged

acoustic energy density Eac in the water-filled channel is

used as a measure and indicator of how the acoustic reso-

nances are affected by the coupling layer. In a fluid volume

V, the averaged acoustic energy density is given as

FIG. 1. (Color online) Sketch of the two types of acoustofluidic devices

considered in this study. (a) A glass capillary tube (beige) mounted on a

small PZT transducer (gray) and (b) a silicon-glass chip (black base, beige

lid) mounted on a large PZT transducer (gray). The sketches are drawn to

scale.
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Eac ¼
1

V

ð
1

4
q0jv1j2 þ

1

4
j0jp1j2

� �
dV: (6)

B. Boundary conditions

At the fluid–solid interface, the boundary conditions are

no-slip and continuous stress, together with zero stress on the

free surfaces. Introducing the mechanical displacement velocity

vsl ¼ �ixu and a shear wave number ks ¼ ð1þ iÞ=dvisc, the

effective continuous velocity and stress boundary conditions

become13

n � v1 ¼ n � vsl þ
i

ks
$k � ðvsl � v1Þ; (7a)

r � n ¼ �p1nþ iksg0 vsl þ
i

xq0

$p1

� �
; (7b)

where the unit vector n is the outward surface normal from

the solid domain. In experiments, the electrical signal is

driven by a sine-wave function generator coupled to the

transducer electrodes. This setup is implemented as a

constant-potential boundary condition on the electrode–

transducer interface. Furthermore, we assume no free

charges, which is implemented as a zero flux condition on

the electric displacement field D. In the 3D capillary-tube

device, symmetries are exploited such that the full system

can be reduced to one-quarter. The boundary conditions are

listed in Table I. Except for the symmetry conditions, the

same boundary condition applies for the silicon-glass

device.

C. Unbounded perfectly matched layers

For long systems like the capillary tubes, a no-reflection

boundary condition can be established closer to the origin of

the domain by using the perfectly matched layer (PML)

technique, thus, reducing the computational domain substan-

tially. It involves a complex coordinate transformation of

the form x! xþ ði=xÞ
Ð xhðx0Þ dx0, such that outgoing

waves are attenuated within a distance comparable to the

wavelength. The PML technique requires a choice of damp-

ing function h, and we adopt the one from Berm�udez et al.16

hðxÞ ¼
0; for x� Lcap;

b
Lpml� ðx� LcapÞ

� b
Lpml

; for x> Lcap:

8<
: (8)

The parameters defining hðxÞ are chosen appropriately for a

given system: Lcap is the position of the interface between

the physical capillary tube and PML domain, Lpml is the

length of the PML domain, and b is the damping strength.

The axial coordinate x is complex valued for x > Lcap inside

the PML domain. The function h is classified as a continu-

ous unbounded damping function, and it is effective in terms

of numerical error and reflections at the PML interface

x ¼ Lcap.16

D. Numerical implementation in COMSOL
Multiphysics

The numerical model was implemented in the finite ele-

ment software COMSOL Multiphysics17 using “weak form

PDE” in the mathematics module and closely following Ref.

12, where further implementation details can be found. The

mesh settings are adopted from Ley and Bruus.18 The scripts

were computed on a workstation with a 12 core 3.5 GHz

central processing unit (CPU) processor and 128 GB random

access memory (RAM).

III. CAPILLARY-TUBE PARTICLE TRAPS

As the first example, we investigate the capillary-tube

device that is widely used as a versatile acoustic trap in

many experimental studies.5–8 The corresponding model

system is sketched in Fig. 2, indicating the different domains

together with the PML layer and a zoom-in on the coupling

layer. The dimensions and materials used in the numerical

model are listed in Tables II and III, respectively. The model

system is similar to the one studied by Ley and Bruus,18 but

now the model is extended to include a PZT transducer and

coupling layer. Typically, the capillary-tube device is

TABLE I. List of the boundary conditions used in the modeled acoustoflui-

dic systems. The unit vector n is the surface outward normal with respect to

the solid domain, and t is any of the two tangential unit vectors. V0 ¼ 1 V.

Domain boundary Boundary condition

Solid domain air r � n ¼ 0

Fluid domain solid Eq. (7a)

Solid domain fluid Eq. (7b)

Fluid domain air p1 ¼ 0

PZT domain bottom electrode u ¼ 0

PZT domain top electrode u ¼ V0

Solid domain symmetry u � n ¼ 0; t � r � n ¼ 0

Fluid domain symmetry n � $p1 ¼ 0

FIG. 2. (Color online) One-quarter of the capillary-tube-based model sys-

tem with a zoom-in on the coupling layer of thickness D. The model system

includes a water-filled glass capillary coupled to a PZT transducer with sil-

ver electrodes. The top electrode is coupled to a time-harmonic function

generator and the bottom electrode is grounded.
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characterized by having a standing half-wave-like resonance

in the vertical direction. This is achieved with a PZT trans-

ducer having a predesigned mode at 5 MHz as used in pre-

liminary experiments by the Laurell group at Lund

University.

A. The specific PML

We implement no-reflection boundary conditions using

a PML layer with parameter values b ¼ 2c
ðglÞ
lo ¼ 11:294 m/s

and Lpml ¼ 413 lm. The superscript refers to the material,

in this case, glass (gl), and c
ðglÞ
lo and kðglÞ

lo are the longitudinal

sound speed and wavelength, respectively. The numerical

error introduced by using the PML is shown in Fig. 3 in

terms of the convergence parameter C, which for a given

field solution g is defined by

CðgÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
jg� gref j2dVð
jgref j2dV

vuuuuut ; (9)

where gref is a reference solution. The integration domain is

taken as the transducer region for x � Lpzt=2 as defined in

Fig. 2. In Fig. 3, the error measure C is evaluated at six dif-

ferent geometries at a fixed frequency f ¼ 3:84 MHz with

kðglÞ
lo ¼ 1:47 mm. The reference solution is taken as

Lcap ¼ 1:35kðglÞ
lo . We choose the system length Lcap

¼ 1:07kðglÞ
lo such that the maximal numerical error due to the

unbounded PML is estimated to be C ¼ 3� 10�4.

B. Coupling-layer analysis in 3D and 1D models

Continuing with the physics studies, we consider two

coupling materials: a viscous mixture of 99% volume-per-

volume (v/v) glycerol and 1% v/v water, and a solid ED-20

epoxy resin, which from now on will be referred to as glycerol

and epoxy for brevity. The coupling material parameters used

in the simulations are listed in Table IV.

In practice, the glycerol coupling allows for reuseability

of the acoustofluidic chip and/or transducer, whereas the

epoxy is used to ensure a well-defined but permanent cou-

pling.9,24–27 These layers are reported to have a thickness in

the range from 5 to 20 lm.6,7,28–31 Here, we investigate the

effect of the coupling layer by calculating the resonances as

a function of coupling-layer material and thickness D using

the 3D model. For each coupling-layer thickness D, the

TABLE II. The length (L), width (W), and height (H) of the glass capillary

tube (cap), channel (ch), PZT transducer (pzt), and silver electrodes (el).

The curvatures of the outer and inner rounded corners are 240 lm and

25 lm, respectively. The bottom (Hgl;bot) and top (Hgl;top) glass-wall thick-

nesses are both 140 lm.

Symbol Value Symbol Value

Lcap 1573 lm Lch 1573 lm

Wcap 2280 lm Wch 2000 lm

Hcap 480 lm Hch 200 lm

Lpzt 1160 lm Lel 1160 lm

Wpzt 3350 lm Wel 3350 lm

Hpzt 400 lm Hel 9 lm

TABLE III. List of parameters used in the numerical simulations. Note that

C12 ¼ C11 � 2C44 for the isotropic materials. Isotropy in the xy-plane
implies C66 ¼ 1

2
ðC11 � C12Þ for the PZT.

Parameter Symbol Value Unit

Water at 25 �C (Ref. 19)

Mass density q0 997.05 kg m�3

Speed of sound c0 1496.7 m s�1

Compressibility j0 447.7 TPa�1

Dynamic viscosity g0 0.890 mPa s

Bulk viscosity gb 2.485 mPa s

Isotropic Pyrex borosilicate glas (Ref. 20)

Mass density qsl 2230 kg m�3

Elastic modulus c11 69.7 GPa

Elastic modulus c44 26.2 GPa

Mechanical damping coeff. Csl 0.0004 —

Isotropic silver (Ref. 21)

Mass density qsl 10 485 kg m�3

Elastic modulus c11 133.9 GPa

Elastic modulus c44 25.9 GPa

Mechanical damping coefficient Csl 0.0004 —

Cubic-symmetric silicon (Ref. 22)

Mass density qsl 2329 kg m�3

Elastic modulus c11 165.7 GPa

Elastic modulus c44 79.6 GPa

Elastic modulus c12 63.9 GPa

Mechanical damping coefficient Csl 0.0001 —

Pz26 PZT ceramic (Refs. 4 and 23)

Mass density qsl 7700 kg m�3

Elastic modulus c11 168 GPa

Elastic modulus c12 110 GPa

Elastic modulus c13 99.9 GPa

Elastic modulus c33 123 GPa

Elastic modulus c44 30.1 GPa

Coupling constant e15 9.86 C/m2

Coupling constant e31 �2.8 C/m2

Coupling constant e33 14.7 C/m2

Electric permittivity e11 828 e0

Electric permittivity e33 700 e0

Mechanical damping coefficient Csl 0.02 —

FIG. 3. (Color online) Numerical convergence C for u, p1, and u in the

PML of Fig. 2 at frequency fres ¼ 3:84 MHz with wavelength

kðglÞ
lo ¼ 1:47 mm, PML length Lpml ¼ 413 lm, and the physical system

length Lcap is varied as Lcap=k
ðglÞ
lo ¼ 0:53, 0.67, 0.80, 0.94, 1.07, and 1.21.
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average acoustic energy density Eac in the water-filled chan-

nel is computed as a function of the frequency from 3.0 to

4.5 MHz. Resonances are then identified as peaks in the

acoustic energy spectrum Eacðf Þ. The resonances are illus-

trated in the scatterplot of Fig. 4, where the points represent

resonances at a frequency f for a coupling-layer thickness D
in the range from 0 to 100 lm with point areas proportional

to Eac=E0
ac, where E0

ac is the acoustic energy density without

a coupling layer. The D-independent resonance frequencies

of the unloaded PZT resonances are plotted to indicate

where the transducer is most active.

The 3D model reveals a distinct behavior for both glyc-

erol and epoxy coupling layers: As the coupling layer D
increases, one resonance is attenuated (Eac decreases) and

has a large downshift in frequency, whereas another is sus-

tained (Eac increases) and has a small downshift in fre-

quency. This behavior is also observed in an idealized 1D

layer model along the vertical z axis with seven domains:

electrode, PZT, electrode, coupling layer, glass, water, glass

of respective thicknesses Hel; Hpzt; Hel, D, Hgl;bot; Hch, and

Hgl;top. This 1D model takes into account only z-compo-

nents, z-dependencies, densities, and longitudinal sound

speeds in the governing equations. The 1D model resonan-

ces are plotted together with the 3D resonances in Fig. 4. Of

course, Fig. 4 reveals that the 3D model exhibits more reso-

nances than the 1D model due to the extended degrees of

freedom in the transverse directions and shear waves.

In Fig. 4, we have selected eight 3D resonance modes

enumerated 1–8 (magenta numbers). For each of these

modes, we have computed an animated gif-file that shows

the temporal behavior and is given in the supplementary

material.36 The five 3D resonance modes 1, 5, 6, 7, and 8,

which are close to the 1D modes indicated by the orange-

dashed lines in Fig. 4, indeed appear as 1D-like with a

prominent standing wave in the vertical z-direction in the

region above the transducer. This indicates that the attenu-

ated and sustained resonance-mode effect represented by the

3D modes 1-5-7 and 6-8, respectively, can be explained by

this 1D fluid-like model. The other three 3D resonance

modes 2, 3, and 4, lying farther away from the 1D modes,

have a more clear 3D nature with waves in all three spatial

directions.

C. A design criterion for coupling layers

As the layer thickness D is changed from 0 to 100 lm,

the sustaining and attenuating behaviors of the zero-layer

resonances are elucidated by studying the pressure profiles

for each of the resonances in the 1D model. For each profile,

we choose a temporal phase factor e�ixt that gives the maxi-

mum positive amplitude in the PZT domain.

In Fig. 5(a), the 1D resonance pressure profiles are eval-

uated at three different epoxy coupling-layer thicknesses D
¼ 0, 20, and 50 lm for the sustained resonance. In Fig. 5(b),

the same is shown for the attenuated resonance. Without

the coupling layer, the fluid–solid interface is located at

z0 ¼ Hpzt þ 2Hel þ Hgl;bot ¼ 558 lm and has a coupling

layer at zD ¼ z0 þ D. As a result, the value of the pressure

p1ðzDÞ is decreasing. In Fig. 5(a), labeled “sustained,” we

have p1ðzDÞ < p1ðz0Þ < 0, yielding an increased magnitude
of the pressure as D is increased. In contrast, in Fig. 5(b),

labeled “attenuated,” we have 0 < p1ðzDÞ < p1ðz0Þ, yielding

a decreasing magnitude of the pressure for increasing D.

Clearly, if a given zero-layer resonance has a negative (posi-

tive) value of p1ðz0Þ for the specified temporal phase factor,

the resonance is sustained (attenuated). The sign of p1ðz0Þ is

determined by the accumulated spatial phase factor Uðz0Þ of

the fluid-solid value p1ðz0Þ relative to the surface value

TABLE IV. List of the coupling layer parameters for glycerol (a 99% v/v

glycerol and 1% v/v water mixture) and epoxy at 20 �C. The coefficient C12

of the epoxy is obtained through the relation C12 ¼ C11 � 2C44.

Parameter Symbol Value Unit

Glycerol (Ref. 32–34)

Mass density qglc 1260.4 kg m�3

Speed of sound cglc 1922.8 m s�1

Compressibility jglc 214.6 TPa�1

Dynamic viscosity gglc 1.137 Pa s

Bulk viscosity gb
glc 0.790 Pa s

Epoxy (Ref. 35)

Mass density qsl 1205 kg m�3

Elastic modulus c11 9.583 GPa

Elastic modulus c44 2.164 GPa

Mechanical damping coefficient Csl 0.01 —

FIG. 4. (Color online) Resonance frequencies in the capillary-tube device

as a function of increasing coupling-layer thickness D for (a) glycerol and

(b) epoxy. The 3D and 1D model resonance frequencies are plotted as filled

and empty circles, respectively, with an area proportional to Eac=E0
ac. The

dashed lines represent the 1D resonance frequencies, indicating a sustained

or attenuated behavior. The solid green lines indicate unloaded PZT reso-

nances with a linewidth proportional to the logarithm of the acoustic energy

density in the PZT. Animated gif-files of the eight modes enumerated 1–8

(magenta numbers) are given in the supplementary material (Ref. 36).
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p1ð0Þ. In the 1D model, Uðz0Þ is given by the wave number

ki and layer thickness Hi of each layer (i ¼ PZT, electrodes,

and glass placed at z < z0). Consequently, we arrive at the

criterion

sustaining coupling if Uðz0Þ > p; (10a)

attenuating coupling if Uðz0Þ < p; (10b)

with

Uðz0Þ ¼
X

i

kiHi ¼
X

i

x

c
ðiÞ
lo

Hi: (10c)

Note that this criterion is only valid for jUðz0Þj < 3
2
p.

For the given capillary-tube device, the values of Uðz0Þ for

the sustained and attenuated zero-layer resonance are

3:32 ¼ 1:06p and 2:77 ¼ 0:88p, respectively. The criterion

[Eq. (10)] is an extension of previous 1D analyses2,3 here

shown to apply in a 3D analysis, and it is one of the main

results of the paper. It can be used to design optimally cou-

pled capillary devices with minimum attenuation caused by

the coupling layer.

D. Characteristic coupling-layer attenuation
thickness D0

Based on the 1D model, we derive a semi-analytical

estimate for the characteristic thickness D0 at which the

acoustic energy is attenuated for the abovementioned attenu-

ated zero-layer resonance modes. The pressure solution p1;i

to the Helmholtz equation in each domain i is written as

p1;i ¼ pa;i sin ðkizþ /iÞ for z 2 Xi: (11)

At the interface between domain i and i þ 1, the acoustic

pressure and velocity must be continuous,

p1;iþ1 ¼ p1;i;
1

qiþ1

@zp1;iþ1 ¼
1

qi

@zp1;i: (12)

This results in an iterative formula for the amplitude pa;i and

phase /i with coefficients biþ1;i; aiþ1;i, and biþ1;i,

pa;iþ1 ¼ biþ1;i pa;i; (13a)

/iþ1 ¼ /i � kiþ1

Xi

j

Hj þ arctanðaiþ1;i=biþ1;iÞ; (13b)

biþ1;i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos2

�
ki

Xi

j

Hj þ /i

�
ðZ2

iþ1;i � 1Þ

vuut ;

(13c)

aiþ1;i ¼ b�1
iþ1;i sin

�
ki

Xi

j

Hj þ /i

�
; (13d)

biþ1;i ¼ b�1
iþ1;iZiþ1;i cos

�
ki

Xi

j

Hj þ /i

�
; (13e)

Ziþ1;i ¼
qiþ1c

ðiþ1Þ
lo

qic
ðiÞ
lo

: (13f)

For a coupling layer (cl) made of either epoxy or glycerol,

we have a mismatch Zcl;pzt � 1 in the acoustic impedance,

and the pressure amplitude p1ðz0Þ at the interface z0 can,

therefore, be approximated as

p1ðz0Þ � p0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q
sin ðkclHpztÞ

� sin ðarctanða=bÞ þ kglHglÞ þ OðZcl;pztÞ;
(14a)

with

a ¼ Zgl;cl sin ðkclDÞ and b ¼ cos ðkclDÞ: (14b)

By further assuming Eac / p2
1ðz0Þ and k2

clD
2 � 1, the lowest

order functional dependence in the layer thickness D becomes

Eac / p2
0 sin2ðkclHpztÞ cos2ðkglHglÞ � Zgl;clkclD sin ð2kglHglÞ

� �
:

(15)

By setting Eac ¼ 0, we extract the characteristic thickness

scale D0 at which the resonance is attenuated

D0 ¼
Zcl;glc

ðclÞ
lo

2x
cot

xHgl

c
ðglÞ
lo

 !
: (16)

In Fig. 6, the normalized acoustic energy density EacðDÞ=E0
ac

is plotted as a function of the normalized coupling-layer

FIG. 5. (Color online) Plots of normal stress rzzðzÞ and pressure p1ðzÞ in the

1D model with an epoxy coupling layer for the three layer thicknesses D
¼ 0, 20, and 50 lm for (a) the sustained and (b) attenuated zero-layer reso-

nance modes. The profiles are plotted at a phase where the amplitude is at a

maximum. The accumulated phase U is calculated without a coupling layer

at the fluid–solid interface at z0 ¼ Hpzt þ 2Hel þ Hgl;bot (brown arrow).
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thickness D=D0. The acoustic energy is seen to be attenuated

on the length scale D0 as predicted by Eq. (16) with

D0 ¼ 12:1 lm and 24:8 lm for glycerol and epoxy, respec-

tively. For both coupling materials, we observe an approxi-

mate exponential decay, EacðDÞ=E0
ac ¼ e�D=D0 . Figure 6 also

shows that the attenuation computed in the 3D model is cap-

tured fairly well by the 1D model, including good quantita-

tive agreement within 7% between the estimated

characteristic length scale D0 in the 1D and 3D models,

respectively.

IV. ACOUSTOPHORETIC BULK DEVICES

We now move on to the second type of acoustofluidic

devices, namely, the bulk silicon-glass devices used in many

lab-on-a-chip applications as reviewed by Lenshof et al.37

As sketched in Fig. 1(b), these devices consist of a silicon-

glass-based acoustofluidic chip coupled to a bulk PZT

transducer. In contrast to the capillary-tube devices, the

manipulation of the particles in the silicon-glass chip relies

on horizontal half-wave pressure resonances. Because the

pressure half-wave is anti-symmetric around the vertical center

plane of the channel, the symmetric motion actuated by a usual

PZT transducer must be broken. This is normally done geo-

metrically by placing the transducer off-center9,15,38 or split-

ting the top electrode of the transducer and actuated it by an

anti-symmetric voltage actuation.27,39 The symmetry break-

ing could also be achieved by incorporating side walls with

different angles or curvatures. In this work, we use the first

method and displace the silicon-glass chip by y0 ¼ 1 mm

with respect to the (xz)-mirror-plane of the PZT transducer;

see Fig. 7.

A. Coupling layer analysis in 2D

It is well known that even with an ideal long straight

channel in such devices, axial variations and acoustic hot

spots appear along the channel.40 However, when studying a

region in the channel near a local maximum in the acoustic

field where the axial gradients are vanishing small, 2D mod-

els describe the acoustic fields very well.15,40 In this

analysis, we, therefore, study the silicon-glass device in a

2D model as shown in Fig. 7. As introduced in Sec. II, the

PZT transducer is a z-polarized Meggitt-Pz26 transducer

(Meggitt A/S, Kvistgaard, Denmark) but now with a thick-

ness of 1000 lm with a resonance mode near 2 MHz. The

materials and dimensions used in the silicon-glass-device

simulations are listed in Tables III and V, respectively.

The coupling layer analysis is analogous to the one in

Sec. III. The acoustic resonances are located as peaks in the

acoustic energy density spectrum Eacðf Þ in the frequency

range 1.5–2.5 MHz as a function of the coupling material

(glycerol or epoxy) and layer thickness D from 0 to 100 lm.

Similar to Fig. 4, in Fig. 8(a), we show a scatterplot in

which the points represent resonances at the frequency fres

for a coupling layer of thickness D in the range from 0 to

100 lm with point areas proportional to Eac=E0
ac. Multiple

resonances are identified, however, the resonance at fres

¼ 1:940 MHz stands out with E0
ac being more than 60 times

larger than any other zero-layer peak. The frequency of this

resonance is nearly independent of the coupling material

and layer thickness D. However, in Fig. 8(b), we see a fun-

damental difference between the two coupling materials:

For glycerol, the normalized acoustic energy density

Eac=E0
ac decreases by one order of magnitude at a length

scale 	100 nm, whereas for epoxy, Eac=E0
ac stays nearly

constant up to D 	 1 lm, followed by a slow drop to 0.75 at

D ¼ 10 lm and 0.2 at D 	 50 lm. This behavior may be

explained by the geometry of the acoustics and fundamental

mechanical difference between elastic solids and viscous

fluids. In the silicon-glass device, the direction of the stand-

ing pressure half-wave is orthogonal to the transducer polar-

ization, and to excite this resonance mode, the transmission

of shear waves from the transducer to the microchannel is

required. However, only a solid coupling layer and not a vis-

cous fluid can support such a transmission of shear waves.

FIG. 6. (Color online) The normalized acoustic energy density Eac=E0
ac for

the attenuated capillary-tube resonance versus the normalized coupling-

layer thickness D=D0 for glycerol and epoxy, simulated in the 3D and 1D

models. The exponential function e�D=D0 (black) is inserted as a guide to

the eye.

FIG. 7. (Color online) Cross section in the vertical yz-plane of the silicon-

glass device in Fig. 1(b), showing the PZT transducer, coupling layer, and

silicon-glass chip with the microchannel (blue). The chip is displaced from

the PZT center plane by y0 ¼ 1 mm. The sketch defines the 2D model; see

Table V.

TABLE V. The width (W) and height (H) of the silicon base (si), glass

cover (gl), channel (ch), PZT transducer (pzt), and silver electrodes (el); see

Fig. 7.

Symbol Value Symbol Value

Wsi 2520 lm Hsi 350 lm

Wgl 2520 lm Hgl 1130 lm

Wch 377 lm Hch 157 lm

Wpzt 12 000 lm Hpzt 982 lm

Wel 12 000 lm Hel 9 lm
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In Fig. 8(b), we have selected ten 2D resonance modes

enumerated 9–18 (magenta numbers). For each of these

modes, we have computed an animated gif-file, given in

the supplementary material,36 that shows the temporal

behavior. When studying the morphology of the modes

through the animated gif-files, we find that the morphology

of the sustained mode 16 without a coupling layer,

D ¼ 0 lm, is maintained as a solid epoxy coupling layer of

increasing thickness D is introduced, so mode 16 ’ mode

17 ’ mode 18. In contrast, the evolution of the attenuated

mode 9 without a coupling layer, D ¼ 0 lm, is more com-

plex. For mode 9, the vertical displacement uz along the

top of the microchannel is nearly anti-symmetric. As a

fluid glycerol coupling layer of increasing thickness D is

introduced, the symmetry of uz evolves through modes 10,

11, and 12 to become nearly symmetric for mode 13 with

D ¼ 1 lm. At the same time, the horizontal displacement

uy, which undergoes a nearly full wave oscillation along

the vertical edges y ¼ 6 1
2

Wgl of the chip, changes from

having nodes at the top and bottom of the chip to having

anti-nodes. This morphology is maintained for a further

increase in D, so mode 13 ’ mode 14 ’ mode 15. In the

following analysis, valid for very thin coupling layers,

D� 0:1 mm, we can explain the weakening of the reso-

nance strength going from mode 9 to mode 13, but not the

regaining of strength that sets in for the thicker coupling

layer going from mode 13 to mode 15.

B. Dissipation in the glycerol coupling layer

The critical glycerol coupling-layer thickness

Dcrit ¼ 100 nm, observed in Fig. 8(b), requires a physical

explanation as this length scales is far from any of the geo-

metrical sizes or acoustic wavelengths in the system. The

small thickness D < 0:1 mm of the coupling layer implies

large shear strain rates and a large amount of viscous dissi-

pation. We assume that Dcrit is the coupling-layer thickness,

where the time-averaged viscous dissipation power hPvisc
crit i

in the glycerol coupling layer equals the time-averaged

acoustic power hPaci delivered to the half-wave pressure

resonator. For an ideal resonator of length Lch, width Wch,

height Hch, average acoustic energy density Eac, and quality

factor Q, together with a coupling layer of thickness Dcrit,

width Wglc ¼ Wgl, and dynamic viscosity gglc, we obtain

hPaci ¼ hPvisc
crit i; (17a)

hPaci ¼
ð
hp1v1 � ni dA ¼ 16p

Q
c0EacHchLch; (17b)

hPvisc
crit i ¼

ð
h$v1 : si dV �

4p2gglcEac

Q2q0Dcrit

WglcLch: (17c)

Solving for Dcrit, we obtain

Dcrit ¼
pgglcWglc

4Qq0c0

Hch: (18)

The effect of the surrounding silicon-glass chip is included

in the quality factor Q ¼ fres=Df , found from the resulting

full-width Df at half maximum of the corresponding reso-

nance peak Eacðf Þ at the resonance frequency fres. The esti-

mate for Dcrit is validated numerically by varying the

material and geometrical parameters in Eq. (18). The chosen

material and geometric variations are listed in Table VI

together with the resulting critical thickness Dcrit and quality

factor Q. Using the 2D model, the acoustic energy density

Eac is simulated, and the result is normalized by E0
ac, which

is the value without a coupling layer. In Fig. 9, the simulated

FIG. 8. (Color online) Scatter plots with point areas proportional to Eac=E0
ac

of responses to the increasing coupling-layer thickness D simulated in the

2D model of the silicon-glass device. (a) Resonance frequencies fres and (b)

normalized acoustic energy density Eac=E0
ac are shown. Animated gif-files

of the ten modes enumerated 9–18 (magenta numbers) are given in the sup-

plementary material (Ref. 36).

TABLE VI. 2D simulations of the critical coupling-layer thickness Dcrit and

quality factor Q for the standard configuration c0 defined in Fig. 7 and

Tables III–V with a coupling layer of viscosity g0
glc ¼ 1:137 Pa s and width

W0
gl ¼ 2520 lm, and a microchannel of height H0

ch ¼ 157 lm, containing a

fluid of density q0
0 ¼ 997:05 kg m�3. Eight other configurations c1–c8 are

obtained from c0 by changing one of the four parameter values as listed.

Configuration
gglc

g0
glc

q0

q0
0

Hch

H0
ch

Wgl

W0
gl

Dcrit

ðnmÞ Q

c0 1.0 1.0 1.0 1.0 68.5 140

c1 0.05 1.0 1.0 1.0 3.4 140

c2 0.1 1.0 1.0 1.0 6.9 140

c3 0.2 1.0 1.0 1.0 13.7 140

c4 0.5 1.0 1.0 1.0 34.3 140

c5 2.0 1.0 1.0 1.0 137.0 140

c6 1.0 2.0 1.0 1.0 73.0 140

c7 1.0 1.0 0.5 1.0 202.2 95

c8 1.0 1.0 1.0 0.5 38.5 125
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ratio Eac=E0
ac is plotted versus the normalized coupling-layer

thickness D=Dcrit, and for the wide range of parameters, it is

seen that, indeed, Eac=E0
ac decays on the critical coupling-

layer thickness scale Dcrit.

The obtained values for Q listed in Table VI range from

95 to 140, which is in line with values reported in the litera-

ture: For a acoustofluidic device with a thin glycerol layer

with unspecified thickness, Barnkob et al. measured Q
¼ 209 for one main resonance,9 and in their thorough 3D

analysis of the dissipation in the various parts of an acousto-

fluidic device with a 20-lm-thick epoxy coupling layer,

Hahn and Dual computed Q ¼ 166 and found that 40% of

the loss per cycle was due to the epoxy layer.4

V. CONCLUSION

We have developed a numerical 3D model to study the

role of coupling layers in acoustofluidic devices. The model

includes the PZT transducer with electrodes, coupling layer,

and acoustofluidic chip with the fluid-filled microchannel.

The model is used to study two well-known types of acous-

tofluidic devices: a glass capillary tube and silicon-glass

chip, classified as vertical and horizontal resonators, respec-

tively, relative to the polarization axis of the transducer. For

each device, a viscous glycerol and solid epoxy coupling

layer was studied.

For vertical resonators, such as the capillary-tube

device, we have found that for a given zero-layer resonance,

the coupling layer can either result in a sustaining or attenu-

ating resonance. We have established the criterion [Eq. (10)]

to predict which of the two behaviors will occur, based on a

relation involving the phase of the acoustic wave. For the

attenuated waves, we have derived expression (27) to esti-

mate the characteristic layer thickness D0 at which the reso-

nance is attenuated. The computed values for D0, as shown

in Fig. 6, are between 10 and 25 lm, which demonstrates

the direct relevance of our analysis for glass-capillary-tube

experiments, because the measured coupling-layer thickness

D is reported in the literature to lie in the range from 5 to

20 lm.6,7,28–31

For horizontal resonators, such as the silicon-glass

device, the acoustic resonances are partially powered by the

shear-wave transmission through the coupling layer. For the

device with an epoxy coupling layer, the slow weakening of

the sustained resonance mode 16 of Fig. 8(b), which sets in

at a layer thickness around 10 lm for mode 18, also happens

at the experimentally relevant length scale given above.

However, for the device with a glycerol coupling layer that

cannot sustain shear waves, the coupling layer works as a

strongly dissipative element that suppresses the resonance.

For this case, a critical viscous dissipation thickness Dcrit

was presented in Eq. (18), based on scaling arguments in a

1D two-component model. All of the computed values for

Dcrit listed in Table VI are smaller than 0:2 lm, which is

apparently much smaller than the experimentally relevant

layer thickness. Nevertheless, the expression for Dcrit and its

numerical verification in Fig. 9 elucidate the physical mech-

anism from a theoretical point of view, although this regime

may be difficult to access experimentally. How thin a glyc-

erol layer can be in an acoustofluidic experiment is not

known to us. In many research papers, where such layers are

used, they are just stated to be thin without being assigned a

measured value.

The simulation results presented have led to the formu-

lation of design rules for choosing an optimal coupling layer

between the PZT transducer and acoustofluidic device. The

design rules involve material parameters, geometrical

parameters, and information about the orientation of the

given acoustic resonance mode relative to the polarization

axis of the transducer. We hope that these rules will prove

useful and their limitations will be understood better by

experimental validation.
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Supplementary material for details on the eighteen resonance modes enumerated in Figs. 4
and 8 as well as an animated gif-file of each mode.

S1. PARAMETERS OF THE RESONANCE MODES

In Table S1 are listed the parameters characterizing
the eight 3D and ten 2D resonance modes enumerated in
Figs. 4 and 8 of the paper, respectively: the device type,
the coupling-layer material, the resonance frequency fres,
the coupling-layer thickness ∆, the peak-to-peak ac-
tuation voltage Vpp, the acoustic energy density Eac,

the maximum displacement amplitude max(|u|), and
the maximum pressure amplitude max(|p1|). Animated
movies in gif-format of each resonance mode are given in
the Supplementary Material zip-file SuppPub2.zip. In
these animations, the nm-sized displacement has been
multiplied by a factor 105 to be visible in the mm-sized
device simulations.

TABLE S1. Parameters characterizing the eighteen resonance modes 1-18 in Figs. 4 and 8 of the paper: the mode name, the

device type, the coupling-layer material, the resonance frequency fres, the coupling layer thickness ∆, the peak-to-peak actua-

tion voltage Vpp, the acoustic energy density Eac, the maximum displacement amplitude max(|u|), and the maximum pressure

amplitude max(|p1|). Animations of each resonance are given in the Supplementary Material zip-file SuppPub2.zip.

Mode Simulation dimension Coupling fres ∆ Vpp Eac max(|u|) max(|p1|)
[.gif] and device type material [MHz] [µm] [V] [J/m3] [nm] [MPa]

mode 01 3D glass capillary tube – 3.83 0 2.0 1.8 0.83 0.14
mode 02 3D glass capillary tube – 4.12 0 2.0 0.2 1.40 0.11
mode 03 3D glass capillary tube – 4.17 0 2.0 0.1 1.50 0.10
mode 04 3D glass capillary tube – 4.30 0 2.0 0.9 1.92 0.11
mode 05 3D glass capillary tube Glycerol 3.69 10 2.0 1.5 1.07 0.23
mode 06 3D glass capillary tube Glycerol 4.14 100 2.0 2.6 0.92 0.17
mode 07 3D glass capillary tube Epoxy 3.78 10 2.0 1.1 0.92 0.11
mode 08 3D glass capillary tube Epoxy 4.19 100 2.0 2.2 1.38 0.21

mode 09 2D silicon-glass chip Glycerol 1.94 0.01 2.0 15.8 1.85 0.57
mode 10 2D silicon-glass chip Glycerol 1.94 0.03 2.0 11.0 1.84 0.54
mode 11 2D silicon-glass chip Glycerol 1.94 0.1 2.0 4.5 1.81 0.48
mode 12 2D silicon-glass chip Glycerol 1.94 0.3 2.0 1.3 1.88 0.32
mode 13 2D silicon-glass chip Glycerol 1.94 1 2.0 0.5 2.12 0.23
mode 14 2D silicon-glass chip Glycerol 1.94 3 2.0 0.7 2.23 0.18
mode 15 2D silicon-glass chip Glycerol 1.94 10 2.0 2.2 2.52 0.17
mode 16 2D silicon-glass chip Epoxy 1.94 0.01 2.0 19.4 1.92 0.42
mode 17 2D silicon-glass chip Epoxy 1.94 1 2.0 18.9 1.93 0.41
mode 18 2D silicon-glass chip Epoxy 1.93 10 2.0 13.8 1.99 0.36
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Determination of the complex-valued elastic moduli of polymers by electrical
impedance spectroscopy for ultrasound applications
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A method is presented for the determination of complex-valued compression and shear elastic
moduli of polymers for ultrasound applications. The resulting values, which are scarcely reported in
the literature, are found with uncertainties typically around 1% (real part) and 6% (imaginary part).
The method involves a setup consisting of a cm-radius, mm-thick polymer ring glued concentrically
to a disk-shaped piezoelectric transducer. The ultrasound electrical impedance spectrum of the
transducer is computed numerically and fitted to measured values as an inverse problem in a wide
frequency range, typically from 500 Hz to 5 MHz, both on and off resonance. The method was
validated experimentally by ultrasonic through-transmission around 1.9 MHz. The method is low
cost, not limited to specific geometries and crystal symmetries, and, given the developed software,
easy to execute. The method has no obvious frequency limitations before severe attenuation sets in
above 100 MHz.

I. INTRODUCTION

Numerical simulations play an important role when op-
timizing and predicting piezoelectric device performance
in applications including ultrasonic cleaning [1], energy
harvesting [2], inkjet printing [3], and acoustofluidics
[4, 5]. To perform precise, accurate, and predictive sim-
ulations, well-characterized material parameters such as
the complex-valued elastic moduli are required. Whereas
material databases exist [6], and manufactures may pro-
vide some of the required parameters, it is often not suf-
ficient when attempting to perform reliable simulations
and predictions. Polymers are in this regard a particu-
larly challenging class of materials, since the elastic mod-
uli of a given polymer may depend on unspecified param-
eters such as the distribution of polymer chain lengths
and fabrication processes.

There exist a range of techniques to characterize an
unknown material or substance mechanically. Dynamic
techniques such as resonant ultrasound spectroscopy [7],
transmission techniques [8, 9], impulse excitation [10],
laser vibrometry and triangulation [11, 12], as well as
static techniques, such as four-point bending, are widely
used in various industries [13]. Those methods how-
ever often rely on a few mechanical eigenmodes or res-
onance frequencies of the material under study, a broad
frequency spectrum due to a narrow pulse in the time
domain, or even static or low-frequency measurements.
Applications requiring actuation frequencies in the MHz-
range however require material properties that were mea-
sured in similar frequency intervals for an accurate de-
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†
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scription of the system.

In this work we aim to extend the field of ultrasound
spectroscopy [12, 14] by utilizing an electrical impedance
spectrum spanning a frequency range of several MHz to
obtain a full set of complex-valued elastic moduli of poly-
mers. With this technique, labeled ultrasound electri-
cal impedance spectroscopy (UEIS), a piezoelectric disk,
driving vibrations in an attached polymer ring, is used
to characterize the complex-valued elastic compressional
and shear moduli of the polymer ring. Similar techniques
have been used in the past to fit piezoelectric material pa-
rameters by an inverse problem and numerical optimiza-
tion procedures on a free oscillating piezoelectric trans-
ducer [8, 12, 14–18]. Here, the same principles are used to
fit elastic material parameters. From the UEIS spectrum
of a mass-loaded transducer, an inverse problem is con-
structed to deduce the elastic moduli of the mass load.
The method is similar to those of Refs. [12, 19, 20], but by
including an automated whole-spectrum fit and complex
parameter values, it extends the previous method as sug-
gested in the conclusion of Ref. [20]. Instead of a thin-film
transducer and manual fitting of few selected resonance
peaks in the impedance spectrum, the UEIS method
makes use of several hundred impedance values mea-
sured on a mechanically-loaded bulk transducer in the
frequency range from 500 Hz to 5 MHz, to extract both
real and imaginary parts of the complex-valued elastic
moduli, and not just the real parts obtained in Ref. [20].
The UEIS technique enables low-cost and in-situ mea-
surements of elastic moduli over a wide frequency range
from low kHz to several MHz. It is easy to execute,
requiring only a disk-shaped piezoelectric transducer, a
ring of the unknown polymer sample, an impedance an-
alyzer, and the developed fitting software.

The paper is organized as follows. In Section II a
brief overview of the relevant theory is given, before in
Section III the experimental and numerical methodology
of the UEIS technique is described in detail for polymer,
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glue, and transducer. In Section IV we provide vali-
dation data based on ultrasonic-through-transmission
(UTT) measurements, before we in Section V present
the main results of the UEIS method in terms of the
complex-valued electromechanical parameters of the un-
loaded piezoelectric transducer and the complex-valued
elastic moduli of the UV-cured glue and the polymer
ring. We conclude in Section VI.

II. THEORETICAL BACKGROUND

We follow Ref. [21] and describe isotropic polymers
using the standard linear theory of elastic solids in
the Voigt notation, in terms of the displacement vec-
tor u of a given material point away from its equi-
librium position, and the 1 × 6 strain s and stress σ
column vectors with the 6 × 1 transposed row vectors

sT = (∂xux, ∂yuy, ∂zuz, ∂yuz +∂zuy, ∂xuz +∂zux, ∂xuy +

∂yux) and σT = (σxx, σyy, σzz, σyz, σxz, σxy), respec-
tively. Representing the elastic moduli Cik by the tensor
C, the constitutive equation for an elastic solid in the
∞mm-symmetry class is [22],

σ = C · s, (1a)

C =




C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C66



. (1b)

For an isotropic polymer C33 = C11, C66 = C44, and
C13 = C12 = C11 − 2C44, so here, C is given only by
the two complex-valued elastic moduli C11 and C44, each
with a real and imaginary part, Cik = C ′ik + iC ′′ik, relat-
ing to the propagation and attenuation of sound waves,
respectively. Many amorphous polymers, such as the
injection-molded PMMA in this work, are isotropic, but
if not, such as semi-crystalline polymers [23], a C ten-
sor with the appropriate lower symmetry must be used.
Since only positive power dissipation is allowed, the elas-
tic moduli are restricted by the constraint that the matrix
Im(−C) must be positive definite [24].

We also model the piezoelectric lead-zirconate-titanate
(PZT) transducer in the ∞mm-symmetry class [22],
again following the notation of Ref. [21]. Here, u, S,
σ, and C are supplemented by the electric potential ϕ,
the electric field E = −∇ϕ, the dielectric tensor ε, the
electric displacement field D = ε ·E, and the piezoelec-
tric 3 × 6 coupling tensor e. The constitutive equation
becomes,
(
σ
D

)
=

(
C −eT
e ε

) (
S
E

)
= M ·

(
S
E

)
(2a)

e =




0 0 0 0 e15 0
0 0 0 e15 0 0
e31 e31 e33 0 0 0


, ε =



ε11 0 0
0 ε11 0
0 0 ε33


.

(2b)

In the ∞mm-symmetry class, C66 = 1
2 (C11 − C12), so

the coupling tensor M is given by the five complex-
valued elastic moduli C11, C12, C13, C33, and C44, with
Cik = C ′ik + iC ′′ik, the two complex-valued dielectric con-
stants ε11 and ε33 with εik = ε′ik+iε′′ik, and the three real-
valued piezo-coupling constants e31, e33, and e15 with
eik = e′ik + 0i. Since only positive power dissipation is
allowed, the coupling constants are restricted by the fol-
lowing constraint on the matrix K [24],

K = Im

(
−C eT

e ε

)
must be positive definite. (3)

We limit our analysis of the linear system to the time-
harmonic response for a given angular frequency ω =
2πf , where f is the excitation frequency of the system.
Thus, any physical field Fphys(r, t) is given by a complex-

valued amplitude F (r) as Fphys(r, t) = Re
[
F (r) e−iωt],

and we need only to compute F (r). In our model of a
polymer sample mounted on a PZT transducer having a
bottom and top electrode, the system is excited by the

excitation voltage ϕphys
top = Re

[
ϕtop e−iωt] as follows,

ϕbot = 0 V and ϕtop = 1 V. (4)

By introducing the density ρ as an additional mate-
rial parameter, the governing equations for the time-
harmonic displacement field u in the polymer and in the
PZT and for the quasi-electrostatic potential ϕ in the
non-magnetic PZT without free charges, become

∇ · σ = −ρω2u and ∇ ·D = 0. (5)

We neglect the effect of gravity in this formulation, as it
only leads to a minor deformation of the geometry. The
stress- and charge-free boundary conditions are imposed
on free surfaces

σ · n = 0 and n ·D = 0. (6)

The current density J in the PZT transducer is given by
the polarization P as

J = ∂tP = −iω(D − ε0E). (7)

Consequently, the electrical impedance Z central to the
UEIS method can be computed via the flux integral of J
through the surface ∂Ωtop with surface normal n as,

Z =
ϕtop − ϕbot

I
, with I =

∫

∂Ωtop

n · J dA. (8)

III. METHODOLOGY

The ultimate goal is to develop and test a method for
determination of the complex-valued elastic moduli of
polymers. However, to achieve an accuracy level of about
1-5%, we need also to determine the mechanical and elec-
tromechanical parameters of the piezoelectric transducer
as well as the elastic moduli of the glue used to mount
the polymer sample on the transducer.
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A. Experimental procedure

Measurements of the electrical impedance spectrum
Zexp(f) were performed using a Vector Network Ana-
lyzer Bode 100 (OMICRON electronics GmbH, Klaus,
Austria) in a linear interval with 10.000 steps between
500 Hz and 5 MHz, each frequency sweep taking less
than 4 minutes. In a first step, the electrical impedance
of an unloaded Pz27 disk (Meggitt A/S, Kvistgaard, Den-
mark) was characterized. The top and bottom electrode
of the piezoelectric disk were contacted through spring-
loaded pins in a custom-made sample holder, minimizing
the contact force and area to a point in the center of
the disk. In the following step, using a thin layer of the
UV-curable glue NOA 86H (Norland Products, James-
burg (NJ), USA), a polymer ring of known dimensions
was glued on top of a Pz27 disk. This ring was made
from either the NOA 86H glue itself or from polymethyl
methacrylate (PMMA Diakon TD525, Lucite Interna-
tional, Rotterdam, Netherlands). We aimed at making
the glue layer as thin (15-25 µm) and uniform as possi-
ble to reduce its influence on the combined system, as
studied by Bodé et al. [25]. This was achieved by gently
squeezing the system for a few seconds after assembly,
just before curing the glue by UV illumination. The glue
was cured at a UV-intensity of 15 mW/cm2 at 365 nm
for 167 s to achieve strong bonding between the trans-
ducer disk and the polymer ring. The glue NOA 86H
was selected after performing experiments with several
different adhesives, as it enables good adhesion between
the PZT and the polymer and allows for good acoustic
coupling due to acrylic-like properties in the cured state
with an attenuation comparable to that found for the
polymer ring. After curing, the electrical impedance of
the polymer-loaded transducer was measured. The small
hole of the polymer ring allows contacting the transducer

TABLE I. Measured thickness (TH) and outer diameter (OD)
of the Pz27 disks (named Pz27-TH-OD). Measured TH, OD,
and inner diameter (ID) of the rings made by the glue NOA
86H (named NOA86H-TH-OD) and of the polymer PMMA
(named PMMA-TH-OD). Letters A, B, C are used as labels
for samples with the same nominal dimensions. The precision
is given as the standard deviation from six measurements.

Sample TH OD ID
(mm) (mm) (mm)

Pz27-0.5-6.35-A 0.510(1) 6.594(5) –
Pz27-0.5-6.35-B 0.502(1) 6.587(2) –
Pz27-0.5-10-A 0.500(1) 10.037(7) –
Pz27-0.5-10-B 0.492(2) 10.039(3) –
Pz27-0.5-10-C 0.505(2) 10.039(5) –
NOA86H-1.4-20 1.5(2) 19.22(6) 1.90(2)
PMMA-1.4-20-A 1.428(2) 19.981(5) 1.98(1)
PMMA-1.4-20-B 1.440(4) 20.017(8) 1.94(1)
PMMA-1.4-25-A 1.427(5) 24.98(1) 1.92(1)
PMMA-1.4-25-B 1.437(5) 24.94(1) 1.94(2)

TABLE II. The measured glue-layer thickness of the five
studied PMMA-ring-on-Pz27-disk configurations.

Pz27 disk Polymer ring Glue layer

Pz27-0.5-6.35-A PMMA-1.4-20-A 15 µm
Pz27-0.5-6.35-B PMMA-1.4-25-A 24 µm
Pz27-0.5-10-A PMMA-1.4-25-B 21 µm
Pz27-0.5-10-B PMMA-1.4-20-B 12 µm
Pz27-0.5-10-C NOA86H-1.4-20 15 µm

disk using the above-mentioned spring-loaded pins. The
average of three impedance measurements, taking less
than 12 minutes to obtain, was used both for the un-
loaded and loaded case.

The diameter and thickness of the polymer ring and
the Pz27 disk were measured before assembling the sys-
tem using an electronic micrometer with an accuracy of
±4 µm. The glue-layer thickness was obtained as the
measured total thickness of the assembled system minus
the sum of the individual thicknesses of the Pz27 disk
and the polymer ring. The impedance measurements
were performed at 24 ◦C using a combination of two dif-
ferent nominal transducer dimensions (diameter 6.35 mm
and 10 mm, thickness 0.5 mm) and two different nominal
polymer ring dimensions (diameter 20 mm and 25 mm,
thickness 1.4 mm), yielding four transducer-polymer sys-
tems with the dimensions listed in Tables I and II.

B. Numerical model

The weak formulation of the finite element method
(FEM) is used to implement the governing equations
in the software COMSOL Multiphysics [26] to simulate
the electrical impedance spectrum Zsim(f) unloaded or
loaded PZT transducer. In particular, we use the weak
form PDE interface as described in our previous work
[5, 21, 25]. The simulations are computed on a worksta-
tion with a 12-core, 3.5-GHz central processing unit and
128 GB random access memory. Third-order Lagrange
polynomials are used as test functions for both u and ϕ.
The model consists of three domains: a piezoelectric disk,
a glue layer, and a polymer ring. Given the cylindrical
geometry of the assembled stack and the axisymmetric
structure of the coupling tensors C and M in Eqs. (1b)
and (2a), the system can be reduced to an axisymmet-
ric model as shown in Ref. [27] and illustrated in Fig. 1.
This axisymmetrization reduces the computational time
substantially. A suitable mesh element size is found by
the mesh convergence study presented in Sec. S1 of the
Supplemental Material [28], where in addition in Sec. S2,
a COMSOL sample script is presented.

Using the “LiveLink for MATLAB”-interface provided
by COMSOL, the MATLAB optimization procedures
fminsearchbnd and patternsearch are used to fit
the material parameters such that Zsim(f) is as close
to Zexp(f) as possible. The fminsearchbnd algo-
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FIG. 1. (a) A 3D sketch of the system consisting of a polymer
ring (light gray) glued (green) to a transducer disk (dark gray)
whit a quarter cut away for visibility. (b) The inset shows the
2D axisymmetric domain in the r-z plane used for numerical
simulations. The structured mesh is the one used at 5 MHz.

rithm [30] allows a bounded search in parameter space.
The patternsearch algorithm (part of the Global
Optimization Toolbox) makes twice as many function
evaluations, but it covers a larger region in parameter
space and is better to locate the global minimum for
poor initial values. Both algorithms use a gradient-free
direct search and are therefore well suited for non-smooth
numerical optimization procedures. The algorithms re-
quire three inputs: (i) initial values, (ii) upper and lower
bounds, and (iii) a cost function to minimize. Based on
the measured and simulated electrical impedance values
Zexp(fi) and Zsim(fi) obtained at ∼ 500 frequencies fi,
we define the cost function C as

C =

√∑

i

[
log10

(
|Zexp(fi)|

)
− log10

(
|Zsim(fi)|

)]2
. (9)

Here, we use the logarithm, because Z(fi), having many
peaks, varies by orders of magnitude as a function of fi.

C. Sensitivity analysis

To enhance the performance of our fitting procedure,
we group the parameters into sets of similar sensitiv-
ity based on the following sensitivity analysis of the
cost function C on each of the sixteen material param-
eters (p1, p2, . . . p16)pz27 = (C ′11, C ′12, C ′13, C ′33, C ′44,
ε′11, ε′33, e′31, e′33, e′15, C ′′11, C ′′12, C ′′13, C ′′33, C ′′44, ε′′33)
for the Pz27 disk and on the four polymer parameters

(p1, . . . p4)polym = (C ′11, C ′44, C ′′11, C ′′44). The sensitivity
analysis is performed in the frequency range from 500 Hz
to 5 MHz, with the initial value p0

i taken from literature
for a given parameter pi, and therefore the individual
sensitivity values represent averages over the entire fre-
quency range. A more detailed study of the frequency
dependency of the sensitivity is shown in Sec. S2 of the
Supplemental Material [28]. We use a discrete approx-
imation of the relative sensitivity S(pi) = pi∂pi

C(pi) of

C(pi) based on a ±10% variation of pi around p0
i , while

FIG. 2. The relative cost function sensitivity S(pi) for the
17 piezoelectric material parameters pi obtained as an average
from four Pz27 disks in the frequency interval 500 Hz−5 MHz
is shown in the left side of the figure. S(pi) for the four
PMMA parameters, calculated from the average of four Pz27–
PMMA–systems, are shown on the right. Corresponding real
and imaginary parts are visualized in the same color, and
the regions of high (S(pi) > 1), medium (0.1 < S(pi) <
1) and low (S(pi) < 0.1) sensitivity are highlighted by gray
shadows. The sensitivity of the parameter ε

′′
11 is close to zero,

as indicated by a black arrow.

keeping the remaining parameters fixed at p0
j ,

S(pi) =
C(1.1pi)− C(0.9pi)

1.1− 0.9
, pj = p0

j for j 6= i. (10)

The obtained sensitivities S for the ppz27
i and ppmma

i pa-
rameters for Pz27 and PMMA, respectively, are shown
in Fig. 2. The Pz27 parameters are classified in three
groups of high S(pi) > 1, medium 0.1 < S(pi) < 1, and
low S(pi) < 0.1 sensitivity, respectively, and as described
in the following section, a robust fitting is obtained by
fitting the parameters group by group sequentially in de-
scending order from high to low sensitivity. Since all four
PMMA parameters have a medium-to-high sensitivity we
fit them simultaneously in a single, undivided group.

D. The UEIS fitting procedure

The first step in the UEIS fitting procedure is to mea-
sure and simulate the electrical impedance Zexp(f) and
Zsim(f), respectively, of an unloaded Pz27 transducer
disk and then following Refs. [16–18] to fit the sixteen

Pz27 parameters ppz27
i in the form of an inverse problem

by minimizing the cost function C. In the second step,
a characterized Pz27 disk is loaded by gluing on a given
polymer ring using the UV-curable glue NOA 86H. To
characterize the glue, the first studied polymer ring is
made by the glue itself, and Z(f) is used to similarly fit

the four glue parameters pglue
i . Subsequently, using the

characterized glue, a PMMA ring is glued to a character-
ized Pz27 disk, and Z(f) is used to similarly fit the four
PMMA parameters ppmma

i . See the flow chart in Fig. 3.
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FIG. 3. A flow chart of the steps in the fitting procedure
to obtain complex-valued elastic moduli for a polymer sam-
ple. First, the electrical impedance spectrum Zexp(f) of a
Pz27 transducer disk is measured in the range 500 Hz <
fi < 5 MHz. Then, the Pz27 parameters p

pz27
i are fitted

in the same frequency range with increments of ∆f = 10 kHz
based on their sensitivities in descending order, with ini-
tial values from Ref. [18]. Next step is the measurement of
Zexp(f) for the PMMA ring glued to the Pz27 disk in the
range 500 Hz < fi < 5 MHz. Then, coarse fitting of the
p
pmma
i is performed in the range 500 Hz < fi < 1 MHz with

∆f = 2 kHz stepping, taking the initial values to be the aver-
age values of Refs. [31–37]. Lastly, a final fitting of p

pmma
i is

done in the the range 3.5 MHz < fi < 5 MHz combined with
previous range using steps of ∆f = 10 kHz. A MATLAB-
COMSOL sample script for the PMMA fitting procedure is
presented in Sec. S2 of the Supplemental Material [28].

For the unloaded Pz27 disk, the initial values of ppz27
i

are taken from Ref. [18], and the kth iteration in the fit
is divided into four sub-steps: (1) Fit the six parameters
C ′11, C ′12, C ′13, C ′33, ε′33, and e′33 of highest sensitivity
S > 1 using the fminsearchbnd algorithm in the range
500 Hz < fi < 5 MHz in increments of 10 kHz with the
bounds set to ±30 %, while keeping the remaining eleven
parameters fixed. (2) Check whether the cost function Ck

of iteration k deviates less than 1 % relative to Ck−1 (the

fit is converged and ppz27
i have been determined) or not

(the fitting continues). (3) Similarly, fit the five param-
eters C ′44, e′31, e′15, C ′′11, and C ′′33 of medium sensitivity
0.1 < S < 1. (4) Likewise, fit the last six parameters ε′11,
C ′′12, C ′′13, C ′′44, ε′′11, and ε′′33 of low sensitivity S < 1 and
move on to iteration k + 1. If during the fit a value of
ppz27
i is within 5 % of the pre-defined bound, the latter

is changed by 50 %. Furthermore, for each evaluation
of the cost function C, it is checked if K in Eq. (3) is
positive definite, and if not we set C =∞.

For the glue ring, the initial values of the four param-

eters pglue
i are Cglue

11 = (4.7 − 0.47i) GPa and Cglue
44 =

(0.9 − 0.09i) GPa inferred from Young’s modulus of
Ref. [38], the assumed value 0.38 of Poisson’s ratio,
and C ′′ik = 0.1C ′ik. Moreover, the density of the glue
ring is measured. The fitting is divided into two sub-
steps to increase robustness and speed: (1) A coarse
fit of the four parameters C ′11, C ′44, C ′′11, and C ′′44 us-
ing the patternsearch algorithm in the limited range
500 Hz < fi < 1 MHz in increments of 2 kHz with
the bounds set to be ±40 % covering the typically ob-
served range for polymers [9, 35]. (2) A final fit of C ′11,
C ′44, C ′′11, and C ′′44 using the fminsearchbnd algorithm
in the combined ranges of 500 Hz < fi < 1 MHz and
3.5 MHz < fi < 5 MHz in increments of 2 kHz and
10 kHz, respectively, with the bounds set to ±40 %, and
with the coarse-fit values used as initial values. If during

the fit a value of pglue
i is within 5 % of the pre-defined

bound, the bound is changed by 5 %, see the Supple-
mental Material [28]. Furthermore, for each evaluation
of the cost function C, it is checked if Im(−C) is positive
definite, and if not we set C =∞.

For the PMMA ring, the initial values of ppmma
i

are taken to be the average of the values reported in
Refs. [31–37]. This average is used due to the lack of
parameter values provided by the manufacturer of our
selected PMMA polymer. Since this PMMA consists of
a toughened acrylic compound, we expect that it devi-
ates from standard PMMA grades. Therefore we chose to
use the average literature values only as initial values in
our fitting routine, and we refrain from comparing them
with the resulting UEIS values. Otherwise, the fitting
procedure for the PMMA ring is the same as the one for
the glue ring.

Note that for the selected materials in the studied fre-
quency range from 500 Hz to 5 MHz, and measured with
relative accuracies from 1% to 5%, the experimental re-
sults in Sections IV and V show that it is adequate to as-

sume frequency-independent parameters ppz27
i , pglue

i and
ppmma
i . See further discussion in Section V C.

IV. ULTRASONIC-THROUGH-TRANSMISSION
(UTT) VALIDATION DATA

For the polymer PMMA, we have carried out
ultrasonic-through-transmission (UTT) measurements
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[8, 37] to acquire data for experimental validation of the
UEIS method. In UTT, a pulse, with center frequency fc
and width ∆f in the frequency domain and width ∆t in
the time domain, is transmitted through a polymer slab
of thickness d with its surface normal n tilted an angle θi
relative to the incident pulse and emerged in water hav-
ing the sound speed c0. We have used fc = 1.90 MHz,
∆f ≈ 1 MHz, and ∆t ≈ 2 µs. The UTT-method relies
on the fact that at normal incidence only longitudinal
waves are transmitted, whereas above a critical tilt angle
θcrit = sin−1(c0/clo) only transverse waves are transmit-
ted in samples with clo > c0. The longitudinal and trans-
verse speed of sound, clo and ctr, and the corresponding
attenuation coefficients, αlo and αtr, of the slab can be
determined based on the difference ∆τ of arrival times,
with and without the slab placed in the water,

clo =
[
1 +

c0
d

∆τ
]−1

c0, (11a)

ctr =
[

sin2 θi +
(c0
d

∆τ + cos θi
)2]− 1

2

c0, (11b)

αlo = α0 +
1

d
ln

[
TloA0

Alo

]
, (11c)

αtr = α0 cos (θs − θi) +
1

d
ln

[
TtrA0

Alo

]
cos θs. (11d)

Here, Tlo and Ttr are the longitudinal and transverse
transmission coefficients, θs is the refractive angle of the
shear wave, A0 is the amplitude of the direct signal, and
Alo and Atr are the longitudinal and transverse ampli-
tudes of the transmitted signal after passing through the
sample. Using the parameter values of water listed in
Ref. [39], the attenuation coefficient α0 of water is,

α0(T, f) = 2π2

[
4

3
η0(T ) + ηb(T )

]
f2

ρ0c
3
0

≈
[
1− 0.0249

T − 25 ◦C

1 ◦C

]
0.0217f2

1 MHz2

Np

m
. (12)

As we do not control the room temperature in our
UEIS measurements, but simply monitor it with a 1 ◦C
uncertainty, we have used the UTT experiments to deter-
mine the temperature dependence of the elastic moduli
of our PMMA sample. To this end, the UTT tank was
filled with warm water at temperature T = 31 ◦C. Then
over a period of 6 hours, as the water steadily cooled to
T = 23 ◦C, the elastic moduli were measured at regular
intervals, corresponding to steps in temperature of about
−0.5 ◦C. As shown in Sec. S4 of the Supplementary Mate-
rial [28], the resulting longitudinal and transverse speed
of sound (clo and ctr) and attenuation coefficients (αlo

and αtr) of PMMA at the frequency fc = 1.90 MHz are

found to depend linearly on temperature T (in ◦C) as,

c1.90 MHz
lo (T ) =

[
− 11(2)

T

1 ◦C
+ 2743(46)

]
m

s
, (13a)

c1.90 MHz
tr (T ) =

[
− 4.5(4)

T

1 ◦C
+ 1267(9)

]
m

s
, (13b)

α1.90 MHz
lo (T ) =

[
1.7(4)

T

1 ◦C
+ 25(10)

]
Np

m
, (13c)

α1.90 MHz
tr (T ) =

[
7(2)

T

1 ◦C
+ 146(43)

]
Np

m
. (13d)

Here, the digits in the parentheses indicate 1σ uncer-
tainties computed from on the sum-of-square differences
between measured data and regression-line fits.

V. RESULTS OF THE UEIS METHOD

A. UEIS-fitted material parameters for Pz27

First, we determine the sixteen material parameters
ppz27
i for the four unloaded Pz27 disks with nominal outer

diameters 6.35 mm and 10.0 mm and the measured di-
mensions listed in Table I. Using the UEIS method de-
scribed in Section III involving the measured and fitted
impedance spectra Zexp(f) and Zsim(f), we obtain the
resulting parameters listed in Tables III and IV. In Ta-
ble III we compare the real part of the obtained UEIS
parameters to those provided in the literature (lit, [18])
and by the manufacturer (manf, [40]). The relative dif-

ference ∆lit
UEIS between UEIS and literature values is in

the range ∼2-8 %, whereas ∆manf
UEIS is higher, typically in

the range ∼5-40 %. The deviations are overall significant
compared to the relative standard deviation σ̂UEIS . 2 %
of the mean of the UEIS values.

Similarly, in Table IV we compare the imaginary parts
of the obtained UEIS parameters to those provided in the
literature (lit, [18]). Note that ε′′11 is set to zero due to its
low value and sensitivity, and that e′′mj = 0 by assump-
tion. In general, the imaginary parts are more difficult
to measure than the real parts, which is reflected in the

high values of σ̂UEIS (.10 %), ∆lit
UEIS (∼5-50 %), but

still with significant deviation between UEIS values and
the values provided in the literature and by the manu-
facturer. The errors on the imaginary parts are about
one order of magnitude larger than the errors on the real
parts. This is in line with the previously found lower
sensitivities of the former compared to the higher sensi-
tivities of the latter shown in Fig. 2. Relative deviations
of the initial values from the fitted values range from
as little as 1.4 % for C ′′13 and up to 50 % for C ′′12 and
above 200 % for ε′′33. Despite those deviations from the
initial values, we find good convergence on the cost func-
tion and an excellent agreement between the measured
and fitted impedance spectrum for the Pz27 disk. The
uniqueness of the sixteen material parameters ppz27

i is not
guaranteed, but the simulated impedance spectrum fits
the measured one, and thus they provide an adequate
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(b)

(c) (d) (e) (f)

(a)

Pz27

FIG. 4. (a) Semilog plot of the measured (black) and sim-
ulated UEIS |Z(f)| of an unloaded Pz27-0.5-10 disk. In the
simulations are used the UEIS-fitted (orange) and initial liter-
ature (blue) Pz27 parameters listed in Tables III and IV. The
gray region indicates the frequency range used in the fitting.
(b) The logarithmic difference ∆

exp
sim = log10(|Zexp|/|Zsim|) be-

tween measured and simulated impedance spectrum. (c)-(f)
Zoom-in on different regions showing the measured and sim-
ulated spectrum on a linear and re-normalized scale. Each
region is indicated by a frame in both (a) and (b).

estimate for the subsequent determination of the poly-
mer parameters ppmma

i . In Fig. 4, an example is shown
of the measured UEIS spectrum and the resulting simu-
lated UEIS spectrum for a Pz27 disk of diameter 10 mm
and thickness 0.5 mm.

B. UEIS-fitted material parameters for glue

The parameters pglue
i of the used UV-cured NOA 86H

glue were determined by the UEIS method as described
in Section III D using a UV-cured glue ring glued to a
Pz27 disk with the dimensions listed in Tables I and II.
The resulting values for C11 and C44 are presented in
Table V together with the corresponding values for the
sound speeds clo and ctr, the attenuation coefficients αlo

and αtr, as well as Young’s modulus E and Poisson’s
ratio ν. The expressions for these additional param-
eters, valid for any isotropic elastic material, are ob-
tained by assuming frequency-independent moduli C11

and C44 in the limit of weak attenuation,
∣∣C ′′11

∣∣ � C ′11

and
∣∣C ′′44

∣∣� C ′44, and by introducing the complex-valued
wavenumbers klo = ω/clo + iαlo and ktr = ω/ctr + iαtr,

clo =

√
C ′11

ρ
, αlo(f) = π

√
ρ

(
C ′11

)3
∣∣C ′′11

∣∣ f, (14a)

(a)

(b)

(c) (d) (e) (f)

PMMA
Glue
Pz27

FIG. 5. (a) Semilog plot of the measured (black) and simu-
lated UEIS |Z(f)| of a PMMA-1.4-25 ring glued to a Pz27-0.5-
10 disk by a 21-µm-thick layer of NOA 86H glue. The UEIS-
fitted simulation (orange) is computed using the UEIS pa-
rameter values listed in Tables III, IV, V, and VI. The initial-
value simulation is shown in blue. The gray regions indicate
the frequency ranges used in the fitting. (b) The logarithmic
difference ∆

exp
sim = log10(|Zexp|/|Zsim|) between measured and

simulated impedance spectrum. (c)-(f) Zoom-in on different
regions showing the measured and simulated spectrum on a
linear and re-normalized scale. Each region is indicated by a
frame in both (a) and (b).

ctr =

√
C ′44

ρ
, αtr(f) = π

√
ρ

(
C ′44

)3
∣∣C ′′44

∣∣ f, (14b)

ν =
1
2C
′
11 − C ′44

C ′11 − C ′44

E =
3C ′11 − 4C ′44

C ′11 − C ′44

C ′44. (14c)

C. UEIS-fitted material parameters for PMMA

With the characterization of the Pz27 transducer disk
and the glue completed, we move on to the determination
of the complex-valued elastic moduli C11 and C44 for
PMMA, which in principle could have been any other
elastic polymer. We studied four PMMA polymer rings
with the dimensions listed in Table I, all around 1.4 mm
thick and with diameters of 20 or 25 mm, and glued to
Pz27 disks with the dimensions listed in Table II.

The resulting UEIS-fitted parameters C ′11, C ′44, C ′′11,
and C ′′44 at 24 ◦C for the PMMA are listed in Table VI
together with the corresponding values obtained by the
UTT technique. The relative standard deviation σ̂UEIS

on the real parts is low (∼0.5 %), and an order of mag-
nitude higher on the imaginary parts (3-6 %). We find
good agreement between the UEIS and the UTT values,

in all cases with relative deviations ∆UTT
UEIS < 3σ̂UEIS. In
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TABLE III. The real part (single prime) of the material parameters p
pz27
i of the four Pz27 disks of Table I obtained by the

UEIS method with initial values from the literature [18]. The digits in brackets denote one standard deviation, σ̂UEIS is the

relative standard deviation of the UEIS mean, and ∆
lit
UEIS and ∆

manf
UEIS is the relative deviation from UEIS of the values given by

Ref. [18] (lit) and by the manufacturer (manf) [40], respectively. The density of Pz27 was measured to be ρpz27 = 7.7(1) g/cm
3
.

Pz27 disk C
′
11 C

′
12 C

′
13 C

′
33 C

′
44 ε

′
11 ε

′
33 e

′
31 e

′
33 e

′
15

(GPa) (GPa) (GPa) (GPa) (GPa) (ε0) (ε0) (C/m
2
) (C/m

2
) (C/m

2
)

Pz27-0.5-6.35 (A) 127 80.1 82.3 121 20.3 963 780 −5.3 16.4 11.8
Pz27-0.5-6.35 (B) 126 78.8 81.4 122 20.7 957 753 −5.2 15.9 11.0
Pz27-0.5-10 (A) 123 75.6 77.3 117 20.8 993 839 −5.0 16.4 10.8
Pz27-0.5-10 (B) 121 74.7 76.5 117 21.3 1015 842 −5.1 16.4 10.4

Mean of UEIS 124(3) 77(3) 80(3) 119(3) 20.8(4) 982(27) 804(44) −5.2(1) 16.3(3) 11.0(6)
Literature [18] 117.64 73.66 73.46 110.17 20.41 959.10 816.61 −5.19 16.06 11.59

Manufacturer [40] 147(4) 105(3) 94(2) 113(3) 23.0(6) 1130(113) 914(91) −3.1(2) 16.0(8) 11.6(6)

σ̂UEIS(%) 1.1 1.7 1.8 1.1 1.0 1.4 2.8 −1.5 0.8 2.6

∆
lit
UEIS(%) −5.2 −4.7 −7.5 −7.6 −1.8 −2.3 1.6 0.6 −1.3 5.5

∆
manf
UEIS(%) 18 36 18 −5.2 11 15 14 −40 −1.7 5.5

TABLE IV. The imaginary part (double prime) of the material parameters p
pz27
i of the four Pz27 disks of Table I obtained by

the UEIS method with initial values from the literature [18] and the parameters ε
′′
11, e

′′
31, e

′′
33, and e

′′
15 set to zero by assumption.

The digits in brackets denote one standard deviation, σ̂UEIS is the relative standard deviation of the UEIS mean, and ∆
lit
UEIS is

the relative deviation from UEIS of the values of Ref. [18] (lit).

Pz27 disk C
′′
11 C

′′
12 C

′′
13 C

′′
33 C

′′
44 ε

′′
11 ε

′′
33 e

′′
31 e

′′
33 e

′′
15

(MPa) (MPa) (MPa) (MPa) (MPa) (ε0) (ε0) (C/m
2
) (C/m

2
) (C/m

2
)

Pz27-0.5-6.35 (A) −709 370 121 −280 −582 0 3.9 0 0 0
Pz27-0.5-6.35 (B) −628 442 122 −377 −596 0 2.5 0 0 0
Pz27-0.5-10 (A) −558 448 112 −518 −488 0 0.0 0 0 0
Pz27-0.5-10 (B) −510 510 90.7 −538 −486 0 6.3 0 0 0

Mean of UEIS −601(87) 442(57) 112(15) −428(122) −538(59) 0 3(3) 0 0 0
Literature [18] −460 220 110 −400 −400 − 10.72 − − −
σ̂UEIS(%) −7.2 6.4 6.6 −14 −5.5 − 41 − − −
∆

lit
UEIS(%) −23 −50 −1.4 −6.6 −26 − 235 − − −

terms of the derived sound speeds, clo and ctr, and the
derived Young’s modulus E and Poisson’s ratio ν, the rel-
ative deviation of UTT values from UEIS values is around
0.5 %. For the longitudinal and transverse attenuation
αlo and αtr coefficients, the relative deviations of UTT
values relative to UEIS values are higher, around 7-15 %.

Again, likely due to the lower sensitivity of the C ′′11

and C ′′44 coefficients, it proves more difficult to obtain
the imaginary parts of the elastic moduli than the real

TABLE V. The material parameters at 24
◦
C of the UV-cured

NOA 86H glue determined by the UEIS method. The density
of the glue was measured to be ρ = 1.3(2) × 10

3
kg m

−3
,

and the attenuation coefficients are for the center frequency
fc = 1.90 MHz of the UTT method described in Section IV.

Parameter Parameter Parameter

C
′
11 = 4.65 GPa clo = 1891 m/s E = 3.20 GPa

C
′
44 = 1.21 GPa ctr = 965 m/s ν = 0.32

C
′′
11 = −0.51 GPa αlo(fc) = 346 Np/m

C
′′
44 = −0.12 GPa αtr(fc) = 613 Np/m

parts. Deviations of the UTT values from the UEIS
values, may in part be explained by the fact that the

TABLE VI. The UEIS-fitted and UTT-measured elastic
moduli for PMMA at 24

◦
C with a measured density ρ =

1162(4) kg/m
3
, and αlo and αtr evaluated at 1.90 MHz. For

UEIS, σ̂UEIS is the relative standard deviation of the UEIS
mean. For UTT, the errors are based on 1σ-prediction inter-
vals around linear regression fits. ∆

UTT
UEIS is the deviation of

the UTT values relative to the UEIS values.

Param. Unit UEIS σ̂UEIS (%) UTT ∆
UTT
UEIS (%)

C
′
11 GPa 7.18(4) 0.6 7.1(1) −1.1

C
′′
11 GPa −0.183(5) 2.9 −0.19(1) 3.8

C
′
44 GPa 1.553(8) 0.5 1.56(1) 0.5

C
′′
44 GPa −0.111(7) 6.3 −0.098(6) −11.7
clo m/s 2486(8) 0.3 2469(19) −0.7
ctr m/s 1156(4) 0.3 1160(4) 0.3
αlo Np/m 61(2) 3.2 66(4) 8.2
αtr Np/m 370(24) 6.4 322(18) −13.0
E GPa 4.23(2) 0.5 4.25(3) 0.5
ν – 0.362(1) 0.4 0.358(3) −1.1
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UTT technique uses a frequency pulse with a width of
1 MHz around the center frequency 1.90 MHz, whereas
UEIS is based on an entire frequency spectrum from
500 Hz to 5 MHz using a single frequency at a time.
However, whereas different models exist, which assume
a frequency-dependence of the elastic moduli of PMMA
[12], similar to the frequency dependencies measured in
PDMS [9], we do find it sufficient in the UEIS method to
neglect the frequency-dependence of the complex-valued
elastic moduli of PMMA.

In Fig. 5 is shown an example of the measured and the
simulated UEIS spectra for a PMMA ring glued to a Pz27
disk. We find a good agreement between the measured
and the fitted simulated UEIS spectrum, and it can also
be seen, how even smaller features of the experimental
impedance curve are captured in the simulated frequency

spectrum. Relative deviations ∆exp
sim = log10

|Zexp|
|Zsim| up to

20 % are found in regions near resonance peaks. How-
ever, zoom-ins there show how a frequency-shift of a few
percent can lead to high deviations ∆exp

sim, while still main-
taining good agreement between measurement and sim-
ulation. For example, shifting a Lorentzian peak with a
Q-value of Q = 250 by 1% of its resonance frequency,
results in a relative deviation ∼ 10%.

We furthermore studied the impact of small deviations
in the thickness and elastic moduli of the glue on the
obtained coefficients for the polymer ring. A change of
the Young’s modulus Eglue by ±1 % leads to changes

in the real-valued coefficients C ′11 and C ′44 by less than
0.05 %, while the C ′′11 and C ′′44 coefficients change by
0.4 % and 0.6 % respectively. In a separate numerical
study, when changing the thickness of the glue layer from
12 µm to 8 µm, a relative deviation of 33.3 %, we observe
a decrease in the real-valued coefficients C ′11 and C ′44 by
0.8 % and 0.2 % respectively. The relative changes for
the imaginary-valued coefficients C ′′11 and C ′′44 are slightly
higher by +2.4 % and −1.3 %, respectively, but still much
lower when compared to the relative change in thickness
and well in line with the identified uncertainties of the
parameters listed in Table VI.

As a further validation of the UEIS method, we use
the UEIS-fitted values ppmma

i to simulate selected reso-
nance modes in the PMMA ring. Subsequently, as shown
in Sec. S5 in the Supplemental Material [28], we have
successfully compared these predicted modes with direct
measurements of the corresponding modes obtained by
using a single-point laser-Doppler vibrometer system Vi-
broFlex Connect (Polytec, Waldbronn, Germany).

VI. CONCLUSION

We have developed a method based on measured and
simulated ultrasound electrical impedance spectroscopy
(UEIS) able to determine the frequency-independent
complex-valued elastic moduli of polymers. The method
is a two-step procedure: Firstly, the material parame-

ters of the used, unloaded piezoelectric transducer disk
are fitted by an inverse problem, matching the measured
and simulated electrical impedance spectrum. Secondly,
a polymer ring is glued onto the transducer, and the same
technique is used to fit the complex-valued elastic mod-
uli of the polymer. To evaluate its reproducibility, the
method was applied on four different system geometries
involving the polymer PMMA, achieving a relative error
below 0.5 % for Young’s modulus and Poisson’s ratio, and
below 7 % for the attenuation coefficients. The method
was validated experimentally within the 3σ-level using
ultrasonic through-transmission on PMMA samples.

It is noteworthy that the model assumption of fre-
quency-independent elastic moduli Cik leads to simulated
UEIS spectra Zsim(f) that predicts the measured UEIS
spectra Zexp(f) so well in the entire frequency range from
500 Hz to 5 MHz as shown in Figs. 4 and 5 for Pz27 and
PMMA, as well as for the UV-curable glue NOA 86H (not
shown). This frequency independence leads to the linear
frequency dependence of the attenuation coefficients αlo

and αtr exhibited in Eq. (14), a linearity which can be

contrasted with the f2-dependence of α0 in Newtonian
fluids, Eq. (12), and the non-integer powers observed in

typically softer materials, such as the f1.456-dependence
of αlo and the f0.924-dependence of αtr observed in the
rubber PDMS [9]. It is straightforward to include such
frequency-dependency of the elastic moduli in the UEIS
model, should materials with that property be studied.
One simply modify the respective moduli and coupling
coefficients in the constitutive equations (1) and (2) at
the cost of extending the list of parameters pi with the
necessary parameters needed to describe the frequency
dependency. For the relatively stiff polymer PMMA, the
elastic modulus tensor C can be taken as frequency inde-
pendent, whereas modeling softer, rubber-like materials,
the frequency dependency of C must be taken into ac-
count [41].

The UEIS technique extends the existing field of reso-
nance ultrasound spectroscopy by making use of the elec-
trical impedance spectrum over a wide frequency range
of several MHz involving both on-resonance and off-
resonance frequencies, it has no obvious frequency limi-
tations before severe attenuation sets in above 100 MHz,
and it contains information of all relevant parameters
of the piezoelectric transducer disk, the glue layer, the
polymer ring, and the geometry of the assembled stack.
Experimentally, the technique is low-cost, easy-to-use,
simple, and well-suited for materials used in ultrasound
applications. The recording of a given impedance spec-
trum takes less than 4 minutes. Afterwards, within about
1 minute, the impedance spectrum can be loaded into our
MATLAB script, and the automated UEIS fitting proce-
dure is executed. After a run time of about 10 hours,
the resulting UEIS-fitted impedance spectrum and the

parameter values ppz27
i , pglue

i , or ppmma
i are delivered by

the software.
The UEIS technique is not limited to the chosen exam-

ples of Pz27, glue, and PMMA, but it can in principle be



10

used on other classes of elastic materials including rub-
bers, glasses, and metals. We believe that the presented
UEIS technique will become a valuable and easy-to-use
tool in the ultrasound application fields mentioned in
the introduction, by providing well-determined param-
eter values for the materials used, namely the relevant
complex-valued elastic moduli at the relevant ultrasound
frequencies.
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Supplementary material for details on the mesh convergence analysis, a study on the sensitivity
versus elastic moduli and frequency range, sample MATLAB and COMSOL scripts for the UEIS
fitting procedure, the corresponding data for the impedance spectra, and the validation of the UEIS
method by UTT and laser-Doppler vibrometry.

S1. MESH CONVERGENCE

Third-order Lagrange polynomials are used as test
functions for both u and ϕ. The model consists of three
domains: a piezoelectric transducer disk, a glue layer,
and a polymer ring. For each domain Ωk, the maximum

mesh element size is given as h(k)
max = c

(k)
tr /(sf), where s

is a dimensionless mesh-size parameter, and f is the fre-
quency. A mesh convergence is performed at f = 5 MHz
by sweeping in s and computing the error err(g) defined
by the L2-norm for the solution g(r),

err(g) =

√√√√
∫

Ωk
|g − g0|2 da

∫
Ωk
|g0|2 da

, (1)

where g0 refers to the solution with the best resolved
mesh obtained by the given computational resources. Re-
sults of the mesh convergence are shown in Fig. S1, where
the numerical error is seen to be below 1 % and expo-
nentially decaying for s > 2.2 .
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FIG. S1. Mesh convergence analysis presented as a semilog
plot of the errors err(u) (blue) and err(ϕ) (red) versus the
mesh size parameter s.
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S2. SENSITIVITY OF Z(f) VERSUS THE
ELASTIC MODULI AND FREQUENCY RANGE

In Eqs. (9) and (10) of Sec. III-C in the main paper,
we defined the sensitivity of the UEIS method as the log-
arithmic derivative S(pi) = pi∂pi

C(pi) of the cost func-
tion C with respect to the material parameters pi, where
C involves the difference between the measured and the
simulated impedance spectrum Z(f) averaged over the
entire frequency range. Here, following the procedure
in a similar study of the material parameters of a PZT
transducer by Pérez et al. [1], we study the dependency
on the elastic moduli of Z(f) in two frequency ranges,
the low-frequency range 0.5 - 1000 kHz and the high fre-
quency range 3.5 - 5.0 MHz.

In Fig. S2, the changes of Z(f) of a PMMA-loaded
Pz27 transducer disk are observed, as the normalized

elastic moduli C̃ik = Cik/C
ueis
ik of the PMMA ring are

changed by from 0.80 to 1.20 in steps of 0.01, where

Cueis
ik are the values determined by the UEIS method,

see Table VI. It is seen that the spectrum Z(f) is nearly

independent of C̃ ′11 in the low frequency range (vertical

ridges in the C̃ ′11-f plane), and that it has a high sen-
sitivity in the 3.5-5.0-MHz high frequency range (angled

FIG. S2. Surface plot from 7 Ω (bright) to 128 kΩ (dark),
using a logarithmic color scale, of the simulated electrical
impedance spectrum |Z(f)| of a Pz27-0.5-10 disk loaded by
an on-glued PMMA-1.4-25 ring as a function of the fre-
quency f and of the normalized real-part elastic moduli of
PMMA, C̃

′
11 = C

′
11/C

′ueis
11 and C̃

′
44 = C

′
44/C

′ueis
44 . Here

C
′ueis
11 = 7.18 GPa and C

′ueis
11 = 1.553 GPa are the values

determined by the UEIS method, see Table VI.
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FIG. S3. Surface plot from 0.63 (bright) to 1.58 (dark),
using a logarithmic color scale, of the simulated normalized
electrical impedance spectrum |Z(f)|/|Z1(f)| of a Pz27-0.5-10
disk loaded by an on-glued PMMA-1.4-25 ring as a function of
the frequency f and of the normalized imaginary-part elastic
moduli of PMMA, C̃

′′
11 = C

′′
11/C

′′ueis
11 and C̃

′′
44 = C

′′
44/C

′′ueis
44 .

Here, |Z1(f)| is the reference spectrum calculated at C̃
′′
11 =

C̃
′′
44 = 1, and C

′′ueis
11 = −0.183 GPa and C

′′ueis
44 = −0.111 GPa

are the values determined by the UEIS method, see Table VI.

ridges in the C̃ ′11-f plane). In contrast, Z(f) has a small

sensitivity to C̃ ′44 in the low frequency range and is al-
most insensitive to C̃ ′44 in the high frequency range. Sim-
ilarly, Fig. S3 shows that Z(f) is insensitive to C̃ ′′11 in the
low frequency range, but sensitive in the high frequency
range (large amplitude variations for fixed frequency).

Conversely, Z(f) is sensitive to C̃ ′′44 in the low frequency
range and insensitive in the high frequency range.

S3. MATLAB AND COMSOL SCRIPTS FOR
UEIS-FITTING OF PMMA PARAMETERS

In the Supplemental Material, we have included the
sample files listed in Table S1. Using these files,

TABLE S1. List of the files provided in the Supplemental
Material for redoing the UEIS fitting of the elastic moduli
C11 and C44 of PMMA and for plotting Zexp(f) and Zsim(f)
described in Section S3, as well as the animated gif files of
the laser-Doppler vibrometer measurements presented in Sec-
tion S6.

File name File contents
UEIS polymer script.m UEIS MATLAB script
UEIS polymer comsol model.mph UEIS COMSOL script
UEIS fit function.m Support MATLAB script
Holland check elastic iso.m Support MATLAB script
Holland check pzt infmm.m Support MATLAB script
experiment unloaded.txt Data for Zexp(f), Fig. 4
simulated fit unloaded.txt Data for Zsim(f), Fig. 4
experiment loaded.txt Data for Zexp(f), Fig. 5
simulated fit loaded.txt Data for Zsim(f), Fig. 5
Animation Fig S7.gif Animation of Fig. S7
Animation Fig S8a.gif Animation of Fig. S8(a)
Animation Fig S8b.gif Animation of Fig. S8(b)
Animation Fig S8c.gif Animation of Fig. S8(c)
Animation Fig S8d.gif Animation of Fig. S8(d)

the reader can redo the UEIS fitting procedure, de-
scribed in Section V of the main paper, for the poly-
mer PMMA based on the measured UEIS spectrum
of a PMMA ring glued to a Pz27 transducer disk.
The main MATLAB script UEIS polymer script.m is
opened using the “LiveLink for MATLAB”-interface pro-
vided by COMSOL Multiphysics. It loads the COM-
SOL 6.0 script UEIS polymer comsol model.mph to-
gether with the data points of the measured impedance
spectrum experiment loaded.txt of the PMMA-ring-
glued-on-Pz27-disk system. It also calls the function
UEIS fit function.m, which computes and minimizes
the cost function C defined in Eq. (9) in the main pa-
per, and which calls Holland check elastic iso.m and
Holland check pzt infmm.m to check if Im(−C) and K
are positive definite. The main script requires the follow-
ing user-input parameters: initial values and bounds for
the polymer ring, the Pz27 parameters ppz27

i , the glue-

layer parameters pglue
i , and the dimensions of the disk,

the ring, and the glue layer.
Regarding the UEIS fitting, the path in parameter

space during the fitting procedure of the complex-valued
elastic moduli of PMMA is illustrated in Fig. S4. The
path consists of (1) the initial values, (2) the results from
the coarse fit using patternsearch, and (3) the final set
of fitted PMMA parameters using fminsearchbnd, as il-
lustrated in the flowchart of Fig. 3 in the main paper.
The initial values are indicated by a single circle with a
dot in the center, whereas the final fitted parameters are
represented by a colored, star-shaped marker.

FIG. S4. The path in parameter space during the fitting
procedure of the complex-valued elastic moduli C11 = C

′
11 +

iC
′′
11 and C44 = C

′
44 + iC

′′
44, for four different Pz27-PMMA

systems. (a) The path for the real parts C
′
44 and C

′
11. The

light-red shaded region indicates typical polymer values [2],
PMMA and polystyrene (PS) are annotated. (b) The path of
the imaginary parts C

′′
44 and C

′′
11. The gray frame indicates

the region in parameter space, where the fitting procedure
will expand the upper and lower bounds used in the last step.
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FIG. S5. The measured (Exp) and four simulated electrical
impedance spectra |Z(f)| for a PMMA-1.4-25 ring glued onto
a Pz27-0.5-10 transducer disk. The four simulations labeled
’(Pz27 parameters)/(PMMA parameters)’ uses either the ini-
tial or the UEIS values as parameter values, for the Pz27 and
the PMMA, respectively.

S4. SIMULATED ELECTRICAL IMPEDANCE
FOR DIFFERENT MATERIAL PARAMETERS

In Fig. S5 is shown a comparison between a mea-
sured impedance spectrum and four simulated electrical
impedance spectra using the four cases of material pa-
rameters obtained by combining either the initial values
(init) or the final UEIS values (UEIS) of the Pz27 trans-
ducer disk with either the initial values (init) or the fi-
nal UEIS values (UEIS) of the PMMA ring. Referring to
Pz27 first and PMMA second, the four simulated spectra
are labeled ’UEIS/UEIS’, ’init/UEIS’, ’UEIS/init’, and
’init/init’. Clearly, ’UEIS/UEIS’ fits the experimental
curve best, and ’init/UEIS’ comes close. Thus the final
PMMA values are not so sensitive to the Pz27 values.

S5. VALIDATION DATA BY
ULTRASOUND-TROUGH-TRANSMISSION

An ultrasonic-through-transmission (UTT) technique
was used to validate the material parameters determined
by the UEIS method. The UTT data is presented in
Fig. S6, showing the temperature dependency of the lon-
gitudinal and transverse speed of sound (clo and ctr) and
the attenuation coefficients (αlo and αtr) for PMMA. The
material parameters were measured at regular time inter-
vals while the water cooled down from 31 ◦C to 23 ◦C.
Linear regression (LR) was performed based on the mea-
sured data points and a 1σ prediction interval (PI) as
well as ±1σ error bars were calculated based on the sum-
of-square difference between regression line fit and the
measured data points. The final UTT values of the elas-
tic moduli C11 and C44 of PMMA are obtained by in-
serting the obtained UTT values for clo, ctr, αlo, and αtr

into expression (14), and they are listed in Table VI.

FIG. S6. Validation data obtained for a PMMA slab in water
cooling steadily from 31

◦
C to 23

◦
C over a period of 6 hours

using UTT measurements with a pulse of center frequency
fc = 1.90 MHz and width ∆f ≈ 1 MHz. The longitudinal
and transverse sound speed (clo and ctr) and the attenuation
coefficients (αlo and αtr) of the PMMA are plotted versus
temperature T . Linear regression (LR) and 1σ-prediction in-
tervals (PI) are represented by red and blue lines, respectively.
Error bars indicate the ±1σ uncertainty based on the sum-of-
square differences between measured data and the LR.

S6. VALIDATION DATA BY
LASER-DOPPLER VIBROMETRY

Using a single-point laser-Doppler vibrometer system
VibroFlex Connect (Polytec, Waldbronn, Germany), the
normal displacement uz was measured on the top-surface
of an unloaded Pz27 transducer disk or of a PMMA ring
glued to a Pz27 disk held in the point-contact sample
holder shown in Fig. 2 of the main paper and brought into
a resonance mode by applying a peak-to-peak voltage of
Vpp = 2 V. The PMMA surface was sputtered with a
thin gold layer (approximately 14 nm thick) to increase
the signal strength of the reflected signal.
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Simulation Experiment
(a) (b)

probe

FIG. S7. (a) Simulated and (b) measured normal displace-
ment amplitude

∣∣uz

∣∣ of an unloaded Pz27-0.5-10 transducer
disk (blue dashed line) driven by a 2-V peak-to-peak AC volt-
age at the resonance frequency fres = 1.37 MHz.

TABLE S2. Details of the vibrometer measurements includ-
ing resonance frequency fres, stepping size, and data acquisi-
tion time tacq for each measured resonance mode.

System Pz27 Pz27+PMMA Pz27+PMMA
fres (MHz) 0.058 0.164 1.370
x-y step size (mm) 1 0.5 0.25
tacq (min) 23 81 110

The vibrometer measurements were limited by the
stepping-motor range (x from 0 to 100 mm and y from 0
to 12 mm). The step-size and the data acquisition time
can be found in Table S2 for each experiment. Note that
there are no free parameters in the simulation, since the
geometry, the material parameters, and the amplitude
and frequency of the excitation voltage are all known.

Figs. S7 and S8, and the corresponding animations of
the time-dependent displacement field listed in Table S1,
show a comparison between the measured and the
no-free-parameter-simulated normal displacement am-
plitude at the selected resonances. The good qualitative
and quantitative agreement in the three cases Figs. S7,
S8(b), and S8(d) provide an experimental validation of
the UEIS method supplementing the UTT validation.
Note in Fig. S8 the improved agreement between simula-
tion and experiment, when the actual off-center position
∆ = 0.4 mm of the Pz27 disk relative to the PMMA
ring is taken into account in the simulation.
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FIG. S8. Simulated and measured normal displacement am-
plitude

∣∣uz

∣∣ of a PMMA-1.4-25 ring glued to a Pz27-0.5-10
disk (blue dashed line) driven by a 2-V peak-to-peak AC volt-
age at the two resonance frequencies fres = 58 and 164 kHz,
respectively. The Pz27 disk was measured to be off-centered
relative to the PMMA ring by ∆ = 0.4 mm. In each panel,
the simulation (smooth) is above the green dashed line and
the experiment (pixelated) is below. (a) fres = 58 kHz and an
axisymmetric simulation with ∆ = 0 mm. (b) as (a) but ∆ =
0.4 mm in a nonsymmetric simulation. (c) fres = 164 kHz
and an axisymmetric simulation with ∆ = 0 mm. (d) as (c)
but ∆ = 0.4 mm in a nonsymmetric simulation.
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Chapter 7

A 3D-printed polymer-based
acoustofluidic device

Until this chapter, the UEIS method has been used to determine complex-valued mate-
rial parameters for piezoelectric transducers, a UV-curable adhesive, and a polymer. In
addition to those, the UEIS method will be used to determine the complex-valued elastic
moduli of a 3D-print resin. Having a well-characterized 3D-print resin with known mate-
rial parameters allows us to perform accurate computer-aided engineering of acoustofluidic
devices, in which the design is only limited by the 3D printer’s accuracy and capacity. Fur-
thermore, using a 3D printer to fabricate acoustofluidic devices provides cheap and fast
prototyping.

In addition to the acoustic fields, the model is extended to include a steady flow
solution to the stationary velocity v0(r) and pressure field p0(r). With this model, we
are able to simulate acoustophoresis. The device will be evaluated in terms of acoustic
energy density, throughput capacity, and separation efficiency by numerical simulations.
This is an ongoing study, and the preliminary results will be presented here. The printer
is currently under maintenance, so the chapter will only include numerical results for the
stationary flow and the acoustophoresis response. Finally, by linking the Comsol model
to MATLAB, the design is optimized in terms of the acoustophoresis performance, using
built-in MATLAB-optimization algorithms.

7.1 3D-print material characterization and device design

At the DTU workshop, we have access to a Stratasys J35 Pro 3D printer, with an ac-
curacy of 150 µm, a print capacity of 1,174 cm2× 15.5 cm, and a minimal print layer
thickness of 18.75 µm. Furthermore, the printer is compatible with different types of resin
materials with different optical and mechanical properties. In this study, a transparent
acrylic-like resin named VeroClear (VC) will be used, allowing optical measurements and
visual inspection. Before designing the device geometry, the VC material was character-
ized, enabling the use of the 1D-layered design principle relying on the longitudinal sound
speed in each layer.

111
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Again, the UEIS method was used to determine the complex-valued elastic moduli of
the VC resin: a 3D-printed VC ring with dimensions VC-TH1.4-OD25-ID2.0 was glued
onto a Pz27-TH0.5-OD10 transducer using the already-characterized NOA86H adhesive.
The loaded electrical impedance spectrum was loaded into the UEIS fitting software, and
after ten hours, the complex-valued elastic moduli of the VC were determined. The param-
eters are provided in Table B.3. The resulting UEIS-fitted electrical impedance spectrum
is plotted in Fig. 7.1 together with the measured spectrum. In Fig. 7.1(b)-(c), the electri-
cal impedance spectrum is plotted on a linear scale in specific frequency intervals. All the
features are captured in the UEIS-fitted spectrum but up to 20% deviations in amplitude.
However, minor deviations in the resonance frequencies can result in large relative devia-
tions due to the electrical impedance spectrum being peaked at resonances. Consider, for
example, a Lorentzian-shaped peak with a quality factor of 20; in this case, a 1% shift in
resonance frequency causes a 16% relative deviation in amplitude.

Figure 7.1: (a) Measured and UEIS-fitted electrical impedance spectrum |Z(f)| for a VC-
TH1.4-OD25-ID2.0 ring glued onto a Pz27-TH0.5-OD10 transducer using the NOA86H
adhesive. (b) Zoom-in from 0.1-0.6 MHz on a linear scale. (c) Similar to (b) but in the
frequency range 3.5-5 MHz. The zoom-in regions are indicated in (a) with corresponding
colors.

In Section 5.3, the acoustofluidic chip design was limited by the PMMA-slide thickness.
In this case, the design is only limited by the print capacity, accuracy, and print-layer
thickness. The acoustofluidic device design is shown in Fig. 7.2. The microfluidic chip
design consists of a VC cover, with an in- and outlet, glued onto a VC base containing
an elliptical cavity and a bottom outlet. The final device is assembled by gluing the VC-
based microfluidic cavity onto a Pz27 transducer. The elliptic cavity channel geometry is
designed to cover the active region above the transducer. The two outlets are necessary
for the separation of particles. The design is inspired by the acoustophoresis devices in
Refs. [27, 29, 64] and relies on a so-called quarter-wave resonator principle as sketched in
Fig. 7.3(a). The design builds on the 1D-layered-resonator principle, as was discussed in
Section 5.2.1 and outlined here; the base and cover motion is matched to the quarter-wave
in the fluid and the half-wave in the transducer, corresponding to a quarter-wave in the
base and a half-wave in the cover. The quarter-wave resonator can be used to separate
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particles from a fluid, e.g., separating plasma from whole blood. The working principle
is simple: the acoustic radiation force moves the particle toward the top outlet while
transported by the flow. If the particle has crossed the mid-height before reaching the
outlets, the particle will be separated into the top outlet, as illustrated in Fig. 7.3(b).
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Figure 7.2: (a) Sketch of the 3D-printed quarter-wave design for acoustophoresis particle
separation. (b) Exploded view, showing each device component: a VC cover with in- and
outlet (beige), a VC base (beige) with an elliptic channel geometry and a single outlet, a
Pz27 transducer (gray), and in-between NOA86H glue layers (yellow). (c) A cross-section
view of the design in the xz mirror plane.
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Figure 7.3: (a) Sketch of the 1D-layered principle used to design the VC-based quarter-
wave acoustophoresis device. The idealized velocity/displacement profile (red line) is
sketched as a function of the vertical coordinate z. (b) Sketch of the basic acoustophoresis
principle in a quarter-wave resonator: a particle (green dot) gets transported by the drag.
At the same time, the acoustic radiation force forces the particle toward the cover and the
top outlet. The idealized positive-valued vertical radiation force amplitude is illustrated
by a surface plot from minimum value (yellow) to maximum value (red).
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Usually, an acoustofluidic device design is constrained by the accessibility to the trans-
ducer’s top and bottom surface electrode for electrical actuation. However, using a wrap-
around transducer-electrode configuration, as shown in Fig. 7.4(b), both the electrodes
can be accessed from a single surface. The Pz27-TH1.0-OD25 transducer with wrap-
around electrodes was characterized by the UEIS method. The fitted spectrum is shown
in Fig. 7.4(a) together with the measured. Notice how the planar harmonics are ”killed”
by the electrode configuration. The primary thickness mode remains at ft = 1.913MHz,
and the quarter-wave resonator principle can be used to determine the thicknesses of each

component: Hch = c0/(4ft), Hbase = c
(base)
lo /(4ft), and Hcover = c

(cover)
lo /(2ft), the values

are provided in Table 7.1.

x
z

y

Top

Bottom

(b)

Figure 7.4: (a) Measured and UEIS-fitted electrical impedance spectra |Z(f)| for a Pz27-
TH1.0-OD25 transducer with wrap-around electrode configuration. (b) Sketch of a Pz27-
TH1.0-OD25 transducer (dark gray) with wrap-around electrode (light gray) configuration
for single-side actuation.

Table 7.1: 3D-printed quarter-wave design dimensions used in the simulation. The inner
and outer diameters of the in- and outlet fittings are 1.5 and 2.5 mm, respectively, and
positioned ±15mm from the center axis. The tube fittings extend Hin = 4.3mm from the
cover. Both NOA86H glue-layers are 17 µm thick.

Thickness Diameter Semi-major Semi-minor
(µm) (mm) (mm) (mm)

VC cover 665 39.2 - -
Cavity 196 - 17.6 8
VC base 332 39.2 - -
Pz27 1,045 25.27 - -
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7.2 Acoustic response

As shown in Fig. 7.2, the model consists of a VeroClear cover with in- and outlet tube
fittings. The VeroClear cover is glued onto a VeroClear base with an outlet tube fitting,
comprising the microfluidic chip, which is glued onto a Pz27-TH1.0-OD25 transducer with
a wrap-around electrode configuration. By gluing together the components co-axially, the
model geometry can be reduced to one-half given by the xz-mirror-plane, using the sym-
metry boundary conditions in Table 3.2. However, even though the model geometry can
be reduced to one-half by the mirror symmetry, the system is too large for calculating
wide-ranged frequency spectra.

In Fig. 5.13, it was evident how the PMMA-based cavity with a nearly axisymmet-
ric device geometry was well-approximated by a 2D axisymmetric model, which in turn
allows calculations of wide-ranged frequency spectra due to the substantial reduction in
degrees of freedom. The same approach will be applied here: the energy density spectrum
Eac(f) will be calculated using a 2D axisymmetric model to locate the main resonance.
Afterward, a narrow-range spectrum is calculated using the mirror-symmetry-reduced 3D
model. The results are shown in Fig. 7.5(a). Again, the 2D axisymmetric model turns
out to be a good approximation to the nearly axisymmetric geometry, and by looking
at Fig. 7.5(b)-(c), the response is almost identical and invariant in the radial direction,
resembling a 1D layered quarter-wave resonator. In both cases, the acoustic resonance is
located at f = 1.91 identical to the transducer thickness mode ft, and the acoustic energy
density agrees within 5% with a value of Eac = 0.55Pa for the full 3D model.

r

z
(b)
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z
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60-6 1000-100

Figure 7.5: (a) Acoustic energy density spectrum Eac(f) for the 2D axisymmetric and the
full 3D model near the main resonance frequency located at f = 1.91MHz. (b) Simulated
response at resonance frequency f = 1.91MHz, for the 2D axisymmetric model. The
response is illustrated with surface plots of the acoustic pressure field p̃1 and the vertical
displacement field ũ1,z, at a phase with maximum pressure amplitude. (c) Similar to (b),
but for the full 3D model. The surface plots are evaluated on the xz mirror plane.
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The acoustic response, combined with the flow, determines the acoustophoresis perfor-
mance. In the following sections, the stationary flow field will be solved numerically, and
in combination with the simulated acoustofluidic response, we will be able to simulate the
acoustophoresis performance.

7.3 Stationary flow solution

The stationary flow variables are solved numerically to evaluate the throughput efficiency
in continuous-flow conditions. Since the steady flow field v0 is much slower than the
sound speed |v0|/c0 ∼ 10−6, the acoustic and the steady flow fields are decoupled and
solved separately. Furthermore, this condition implies that the steady flow field can be
considered as an incompressible flow, so the conservation of mass simplifies to

∇ · v0 = 0, (7.1)

and the conservation of momentum simplifies to the steady-state incompressible Navier–
Stokes equation

ρ0 (v0 ·∇)v0 = ∇ · σ0 = ∇ ·
{
−p0I + η0

[
∇v0 + (∇v0)

T
]}

. (7.2a)

The gravitational body force term ρ0g is canceled by the hydrostatic pressure included
in p0. These equations can be re-written as a strong form ∇ · J − F = 0 used for the
implementation in Comsol Multiphysics. For the pressure field p0, the strong form
reads

J (p0) = 0, and F (p0) = ∇ · v0, (7.3)

and
J (v0) = σ0, and F (v0) = ρ0 (v0 ·∇)v0, (7.4)

for the velocity field v0. The flow is driven by a pressure difference ∆p0 between the
in- and outlet. Numerically, this is implemented as a Dirichlet boundary condition. The
no-slip condition for the flow field v0 is also implemented as a Dirichlet boundary condition
on the fluid-solid interface. Furthermore, the in-plane velocity components at the in- and
outlet are set to zero to enforce an axisymmetric velocity profile at the in- and outlets.
This condition is also implemented as a Dirichlet boundary condition.

In a laminar flow, the flow profile is fully developed inside the inlet before reaching
the microfluidic cavity. Numerically, this is ensured by an inlet longer than the entrance
length L = max

(
ain,

Re
12 ain

)
, given by the inlet radius ain and the Reynolds number Re, as

shown in Ref. [81]. To estimate the Reynolds number, the flow rate Q0, given the pressure
difference ∆p0, is estimated by a series of hydraulic resistors

Q0 ≈
1

2Rcirc +Rplate
∆p0 ≈

1

R0
∆p0, where (7.5a)

Rcirc =
8η0Hin

πa4in
, and Rplate =

12η0L

H3
chWch

. (7.5b)
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Inserting the inlet height Hin = 4.3mm, the channel height Hch = 196 µm, the channel
width Wch = 8mm, the inlet radius ain = 0.75mm, and the length between in- and
outlet L = 30mm yields R0 = 5.4GPa s/m3. With this estimate, a pressure difference
of ∆p0 = 10Pa yields Q0 = 112 µL/min and Re = ρ0Q0

πainη0
= 0.9, so the laminar flow

profile is well-established before reaching the entrance since L = ain < Hin. The steady
flow solution for ∆p0 = 10Pa is shown in Fig. 7.6. Instead of the estimated flow rate of
112 µL/min we find Q0 = 93 µL/min and Re = 0.8.
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Figure 7.6: Pressure-driven steady-flow solution v0 for the 3D-printed quarter-wave
microfluidic design driven at ∆p0 = 10Pa between in- and outlet. (a) 3D-view showing
the streamlines (red lines) together with the flow’s z-component v0,z evaluated on the
xz-mirror-plane and the x-component v0,x at the channel mid-height. (b) Top-view of (a).

7.4 Simulated acoustophoresis performance

In this section, the numerical solution to the steady flow will be combined with the acous-
tic response, enabling the simulation of acoustophoresis behavior, i.e., particle trajectories
influenced by acoustic forces in a continuous flow.

As illustrated in Fig. 7.3(b), the resulting acoustic radiation force in a quarter-wave de-
vice forces the particles toward the cover and the top outlet due to the quarter-wave-shaped
acoustic pressure field, with maximum pressure near the bottom and vanishing pressure
near the top. The time tfoc it takes to move a particle at start-position z0 = Hch/8 to
end-position zend = 5Hch/8 in an idealized quarter-wave resonator with acoustic pres-
sure field p1 = pa cos(k0z) and wavenumber k0 = π

2Hch
is identical to Eq. (5.13). In this

case the simulated resonance was located at f = 1.91MHz with Eac = 0.55Pa, and from
the 10-µm-diameter polystyrene particle parameters provided in Table 5.3 the focusing
time is tfoc = 10 s. The time tfoc is also the minimum period of time the particles are
allowed inside the cavity, above the actuation region, before being successfully separated
into the top outlet. This period of time can be used to estimate an average critical velocity
vcrit =

dtrans
tfoc

= 2.45mm/s at which speed the particles can travel and still be separated af-
ter traveling a distance dtrans = 25mm corresponding to the transducer diameter. The av-
erage critical velocity corresponds to a critical flow rate of Qcrit = πa2invcrit = 260 µL/min.
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In Section 5.3.1, the particle equation of motion for a quiescent fluid was solved numer-
ically by using the Comsol module ”particle tracing for fluid flow”, in this case, the force
balance is extended by including the drag induced by the steady-flow v0. As in Eq. (5.10),
the equation of motion was simplified, inferring the low particle Reynolds number. Here,
the particle Reynolds number Rep = 2ρ0a(vt+vcrit)

η0
acquires an extra contribution due to

the flow yielding Rep = 0.03 and the ”massless” equation of motion

drp(t)

dt
= vp =

Frad

6πη0a
+ v0, (7.6)

is still a good approximation. The particle trajectories rp(t) are simulated by numerical

integration of rp(t) =
∫ t
0 vp(r(t

′))dt′ according to Eq. (7.6).

All the constituents required to simulate and evaluate the acoustophoresis performance
of the suggested 3D-printed polymer-based acoustofluidic device are in place. To evaluate
the acoustophoresis performance and the separation efficiency, we define the transfer ratio

T =
Ntop

Ntop +Nbot
, (7.7)

to be the ratio between the number of particles reaching the top outlet Ntop to the sum
of particles in the top and bottom outlet Ntop +Nbot. The particle trajectories are calcu-
lated during a period of T = 3Temp = 3Vch/Q0, i.e., the time it takes to empty the channel
volume three times, determined by the channel volume Vch = 62 µL and the flow rate Q0.
The particles are released at the inlet at random positions in steps of T/1000, and the
total number of particles released Ntot matches the particle concentration cN = 450 µL−1

used in Section 5.3 that is Ntot = 3cNVch = 83,700. The acoustophoresis performance is
evaluated by simulating 10-µm-diameter polystyrene particle trajectories and calculating
the transfer ratio T at different flow rates at a constant voltage amplitude of Vpp = 2V.
The results are tabulated in Table 7.2 together with the flow Reynolds number and the
laminar entrance length.

Assuming following proportionality

Qcrit ∝ vcrit ∝
1

tfoc
∝ Eac ∝ V 2

pp, (7.8)

we can provide a peak-to-peak voltage amplitude V̂pp required to achieve a throughput
of 1 L/hour, the values are provided in Table 7.2 and ranges from 8 to 19 V. In Ref. [27]
Adams et al. achieved a flow rate of 1 L/hour at Vpp = 55V with a transfer ratio of 0.8,
for a glass-based device. However, possible heating and non-linear effects set in at these
voltage amplitudes, so the proportionality might not hold. These results are still to be
verified by experiments when the 3D printer is up and running.



7.5. Numerical design optimization 119

Table 7.2: Tabulated values for numerically evaluated separation efficiency including the
flow rate Q0 in units of Qcrit = 260 µL/min, the particle counts Ntop and Nbot, the transfer
ratio T , the Reynolds number Re, and the laminar entrance length condition L/ain. The
values are obtained at a peak-to-peak voltage amplitude of Vpp = 2V. The amplitude V̂pp

corresponds to the required peak-to-peak voltage amplitude to achieve Q0 = 1L/hour.

Q0 Ntop Nbot T Re L/ain V̂pp

(Qcrit) (-) (-) (-) (-) (-) (V)

0.69 4,465 33 0.99 3 0.17 19.3
1.38 10,556 700 0.94 5 0.17 13.6
2.07 10,395 951 0.92 8 0.17 11.1
4.14 32,501 6,523 0.83 17 0.25 7.9

7.5 Numerical design optimization

By using the Comsol built-in ”LiveLink for MATLAB” module, our model can be linked
with MATLAB and the built-in optimization algorithms in MATLAB can be used in
model-optimization routines. In this case, the fminsearchbnd algorithm (described in
Chapter C) is used to optimize the acoustofluidic device design. The same algorithm was
also used in Paper III [3] to fit the electrical impedance spectrum, and it is a gradient-free
method based on a direct and bounded simplex search.

The optimization routine is time-consuming and requires many iterations, which is
infeasible for a full 3D model. Instead, a 2D axisymmetric model corresponding to the
yz cross-section is used, resembling the nearly axisymmetric device. As was shown in
Fig. 5.13 and Fig. 7.5 the 2D axisymmetric model turned out to be a good approximation
to the full 3D model.

Using a 3D printer to fabricate the device, the geometry and device dimensions are
only limited by the resolution and the print capacity. In this case, the device design is
optimized in terms of the cover thickness Hcover, the base thickness Hbase, the channel
height Hch, and the semi-minor cavity radius bch, constituting the set of optimization
variables

P = {Hcover, Hbase, Hch, bch} . (7.9)

The semi-major cavity radius ach is fixed since the in- and outlet require space. The
fminsearchbnd requires initial-values Pinit for the optimization variables

Pinit =
{
λcover

2
,
λbase

4
,
λ0

4
, 0.32dtrans

}
. (7.10)

The initial values for the thicknesses are given in terms of the wavelengths according to the
1D principle illustrated in Fig. 7.3. The values are provided in Table 7.1. The initial-value
for the semi-minor radius is 32% of the transducer diameter bch = 0.32dtrans = 8mm. The
upper and lower bounds were set to ±50% from the initial values.
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For each geometry iteration, controlled by the fminsearchbnd algorithm, the figure of
merit

F =

∫
Frad,z dV∫
|Frad,r| dV

AEac = RAEac, (7.11)

is calculated as a function of frequency f in the interval from 1.8 to 2.1 MHz in steps
of 5 kHz, so each optimization-function evaluation includes 61 computations. Here, a
modified version of the figure of merit Eq. (4.4) is used, suitable for vertical focusing toward
the top outlet and minimal forces in the radial direction. Furthermore, it is weighted by
the channel area A = Hchbch and the acoustic energy density Eac for increased volume
and throughput capacity. The cost function

C = −max [F(f)] , (7.12)

is defined as the negative maximum value of F(f). The fminsearchbnd tries to mini-
mize the cost function (maximizing max [F(f)]) by varying the optimization variables P
according to algorithm presented in Chapter C. The initial-values yields F = 30 µN with
R = 15, Eac = 1.2Pa, A = 1.7mm2. After 127 iterations, 237 function evaluations, and
14,457 computations, the optimization reaches a value of Ffit = 99 µN, with R = 36,
Eac = 1.1Pa, A = 2.5mm2, given the following set of optimized parameters

Popt = {0.90, 0.62, 1.18, 1.24}Pinit = {600 µm, 208 µm, 230 µm, 10.0mm} . (7.13)

The cost function C is plotted as a function of iterations in Fig. 7.7(a), together with the
acoustic response at resonance in Fig. 7.7(b)-(c) given the initial and optimized geometry.
Even though the acoustic energy density in the optimized design is similar to the initial
geometry, the focusability R has increased by a factor of 2.4, and the area A has increased
by a factor of 1.5.
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(c)
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Figure 7.7: (a) Cost function C as a function of optimization iterations. (b) Simulated
acoustic response at resonance for the initial 2D geometry, showing the vertical displace-
ment ũ1,z and the acoustic pressure p̃1 at the phase with maximum pressure amplitude.
(c) Similar to (b) but for the optimized 2D design.
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Following the same procedure as in Section 7.4, the transfer ratio was calculated using
a full 3D model with the optimized 2D device geometry. The transfer ratio is plotted
in Fig. 7.8 for the initial and optimized device designs as a function of flow rate. The
optimized design achieves the same transfer ratios at flow rates approximately two times
larger than the initial design. However, these results are purely numerical, but the corre-
sponding experiments will be carried out when the 3D printer is up and running.

x
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Figure 7.8: (a) Simulated transfer ratio T versus flow rateQ0 for the initial and optimized
designs. (b) Final particle positions at flow rate Q0 = 326 µL/min after running the flow
for 3Temp = 91 s, for the optimized design. Particles above the channel mid-height are
plotted as blue dots, whereas the red-colored particles are below the channel mid-height.
(c) Similar to (b) but at Q0 = 1956 µL/min after time 3Temp = 15 s.

Chapter summary: The results presented in this chapter are an excellent example of
how the UEIS method enables us to model acoustophoresis phenomena and assess perfor-
mance in polymer-based acoustofluidic devices without free model parameters. Further-
more, the UEIS method provided the necessary material parameters to model a 3D-print
resin, enabling accurate and fast prototyping of polymer-based acoustofluidic devices to-
gether with computer-assisted optimization routines. However, these results are still to be
verified by experiments when the 3D printer is up and running.





Chapter 8

Conclusion and outlook

8.1 Conclusion

Polymer-based acoustofluidic devices suffer from complex system resonances and weak
acoustofluidic response, and to compete with ideal glass/silicon-based acoustofluidic res-
onators requires optimization. Numerical models can be used to test, evaluate, and op-
timize device designs but require well-characterized material parameters. Otherwise, the
model results can be inaccurate and misleading. Even though sometimes provided by the
supplier, the parameters are often insufficient for a complete description lacking complex-
valued elastic moduli. Surprisingly enough, in most cases, only the real-valued Young’s
modulus is provided, and we need to guess the Poisson ratio and the complex part. To
overcome this, we have developed the UEIS method able to determine complex-valued
piezoelectric and elastic material parameters for ultrasound applications.

The method is based on a fitting procedure matching measured and simulated electri-
cal impedance spectra by varying the material parameters used in the model. Experimen-
tally, the technique is low-cost, easy to run, and requires only simple equipment such as
an impedance analyzer, a piezoelectric transducer, a sample holder, and a ring made out
of the elastic material of interest. The recording of a given electrical impedance spectrum
takes less than four minutes. Afterward, within about one minute, the impedance spec-
trum is loaded into the automated MATLAB script, and the fitting procedure is executed.
Simulation-wise, a complete UEIS-fitting run-time is approximately ten hours for either
the unloaded or the polymer-loaded transducer. After the fitting procedure has finished,
the resulting UEIS-fitted impedance spectrum and the fitted elastic moduli are provided
by the script. The method extends the field of resonance ultrasound spectroscopy for ma-
terial characterization by including on- and off-resonance frequencies in a wide frequency
range 500 Hz to 5 MHz and by providing complex-valued elastic moduli. The method is
automatized and easy to execute.
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In this thesis, the UEIS method was used to characterize device components for ul-
trasound acoustofluidic applications, including piezoelectric transducers, an adhesive, a
polymer, and a 3D-print resin.

First, the UEIS method was used to determine the piezoelectric material parameters
of two piezoceramic materials, a Pz26 and a Pz27. The Pz26 transducers showed in-batch
variations, and the achieved UEIS-fitted electrical impedance spectrum was disappointing;
both features and amplitudes were off. However, with the Pz27 transducers, we observed
minor in-batch variations and achieved fitted spectra matching all features with minor
deviations in amplitude. By these means, we decided to proceed with the Pz27 trans-
ducer despite having a smaller mechanical quality factor than Pz26. The modeled Pz27
transducer dynamics were further verified by laser-Doppler velocimetry measuring the
displacement amplitude at different frequencies. The measured displacement amplitude
was then compared to simulated results in which the UEIS-determined Pz27 parameters
were used as input. Again, the features contained in the mechanical displacement were
captured by the simulation, and the amplitudes agreed within 10% for five different fre-
quencies corresponding to different mechanical modes.

Having a well-characterized and accurate model of the Pz27 transducer enabled the
determination of loaded material parameters. A similar procedure, as for the determina-
tion of the unloaded Pz27 transducer, was used to determine the complex-valued elastic
moduli of the UV-curable NOA86H adhesive. The procedure is simple: a NOA86H ring
is glued onto a disk-shaped Pz27 transducer, and the electrical impedance spectrum is
measured and loaded into the automated UEIS script. After approximately ten hours,
the fitted spectrum is provided together with the NOA86H complex-valued elastic mod-
uli. The stability of the adhesive was evaluated by measuring the impedance spectrum in
ambient conditions for several hours.

The UEIS-determined adhesive and transducer material parameters further enabled
the determination of a third material, in this case, the complex-valued elastic moduli of
a polymer. This was achieved by gluing a PMMA ring onto a disk-shaped Pz27 trans-
ducer using the NOA86H adhesive. The UEIS method was applied to the polymer-glue-
transducer-stacked system to determine the polymer parameters—this procedure consti-
tutes the complete UEIS method. Ultrasound-through transmission and laser-Doppler
velocimetry experiments verified the UEIS-determined elastic moduli of the PMMA.

The PMMA was then used to fabricate a cylindrical microfluidic cavity, which was
glued onto a disk-shaped Pz26 transducer comprising an acoustofluidic device for which
all the material parameters are determined by the UEIS method. The polymer-based
acoustofluidic device was further analyzed by particle tracking in stop-flow conditions.
The results were compared to simulated particle trajectories resulting from the acoustic
radiation force, providing a frequency-resolved one-to-one comparison between experiment
and simulation. These experiments were carried out while the Pz27 transducer was out-
of-stock. We continued with a Pz26 transducer compromising the model accuracy.
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However, we were still able to match the resonance frequency and the average par-
ticle velocity magnitude within 11%. These results showed that the complexity of the
system resonances is reduced for layered acoustofluidic resonators with an axisymmetric
geometry and large channel aspect ratio. Furthermore, the resonance mimics that of 1D
layered resonators, almost invariant in the radial direction, different from WSUR observed
in transverse resonators with a small channel aspect ratio. These findings can be used to
design ideal, robust, and well-behaved polymer-based acoustofluidic devices.

Finally, the UEIS method was used to characterize a 3D-print material, enabling fast,
cheap, and reliable prototyping of acoustofluidic device designs. The UEIS-determined
3D-print resin parameters were used as input parameters in our numerical model. The
model included a full acoustophoresis simulation where the acoustic fields were combined
with the stationary flow enabling the simulation of particle trajectories in a continuous
and steady flow. The acoustophoresis performance was evaluated in terms of acoustic
response and transfer ratio involving numerical particle tracking in realistic flow condi-
tions. The device design was optimized by varying the channel and chip geometry while
minimizing a cost function suitable for this type of acoustophoresis application. The op-
timization was achieved by linking our Comsol model to MATLAB, enabling the use of
built-in MATLAB optimization algorithms. The optimized design was evaluated in terms
of acoustophoresis performance and compared to the initial design. The optimized design
achieved the same transfer ratios at two times higher flow rates than the initial design.
The optimized polymer-based design is competitive, providing transfer ratios comparable
to glass-based devices.

We have developed a numerical model capable of modeling complex acoustofluidic
systems, including an ultrasound transducer, a coupling layer, and a fluid-filled microfluidic
chip. The model includes the electric potential, the mechanical displacement, the acoustic
pressure, and the acoustic streaming. Furthermore, the model also includes a stationary
flow solution. Combined with the acoustic fields, this provides the necessary variables
to simulate acoustophoresis phenomena, i.e., particle trajectories affected by drag and
acoustic forces. In combination with the UEIS method, the model provides an accurate and
precise prediction of the acoustofluidic dynamics providing frequency-resolved one-to-one
comparisons without free parameters—successfully bridging simulation and experiment.

8.2 Outlook and perspectives

The UEIS is a versatile technique. It is not limited to the chosen examples of Pz27, glue,
and PMMA. In principle, the method can be used to characterize other classes of isotropic
elastic materials, e.g., glass and metals. The method is easily extended to anisotropic
materials by changing the stiffness tensor description accordingly. However, this might
result in tensor symmetries for which the axisymmetric model is not applicable, and a 3D
model is necessary, compromising numerical speed. In our case, the complex-valued elastic
moduli were assumed independent of frequency. However, any frequency dependence can
easily be included in the UEIS method, adding to the list of fitting parameters.
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Similarly, adding and determining material parameters’ temperature dependency is
possible. A temperature-controlled two-step UEIS procedure can achieve this: first, the
piezoceramic material parameters are determined at different temperatures. Afterward,
the material of interest is glued onto the same transducer, and the UEIS procedure is
executed at different temperatures. Furthermore, it is possible to include and characterize
a fourth component, e.g., a fluid, again adding to the list of fitting parameters. I will
repeat myself; the UEIS method is versatile, and it is easily expanded and evolved.

In this thesis, the UEIS method was used to characterize a 3D-print resin. This enables
cheap and accurate prototyping by 3D-printed microfluidic chips for acoustofluidic appli-
cations assisted by numerical modeling. In combination with the fast-evolving 3D printer
technology, this method supports and provides the necessary tool for the next generation
of polymer-based acoustofluidics. Potentially, the UEIS method will lower the entry bar-
rier for people aspiring to study acoustofluidics or ultrasound applications in general.

The UEIS method was used to characterize materials for ultrasound acoustofluidic ap-
plication. Nevertheless, the method can be applied to other ultrasound applications where
accurate and precise modeling is wanted, such as ultrasonic cleaning, energy harvesting,
and inkjet printing, just to mention some.

The method also provides inside into fabrication and assembling procedures and can
be used to assess material stability, e.g., UV exposure and curing time for curable adhe-
sives and 3D-print resins. However, the UEIS method suffers from low sensitivity toward
complex-valued material parameters, which remains a shortcoming and an obvious sug-
gestion to improve upon. Suggestions for circumventing and studying this problem: alter-
native cost functions and different geometries. Both of which can be studied numerically.
In our case, we have used a simple optimization algorithm; it will be interesting to see
how alternative procedures and more evolved algorithms can improve the UEIS method.

I believe and hope that the UEIS method will be a valuable tool for computer-aided
engineering when designing and optimizing devices for ultrasound applications. The devel-
opment of the UEIS method was driven by our pursuit of accurate modeling of polymer-
based acoustofluidic devices. As other people’s work inspired us, I hope the UEIS method
will also inspire and drive new research either as a tool or as inspiration for new tech-
niques. I hope this thesis will provide insight and inspiration to people aspiring to work
with polymer-based acoustofluidics or material science.



Appendix A

Dissipation in a piezoelectric
material

In the following derivation the Voigt notation is used implicitly. Following Ref. [108],
the generalized Poynting vector S for time harmonic fields (∂t → −iω) in a piezoelectric
material can be written as

S = [E ×H − σ · (−iωu1)] . (A.1)

The total dissipation density Pd can be calculated as the time-averaged divergence of (−S)

Pd = −∇ · ⟨S⟩ = −∇ · 1
2
Re
(
E ×H∗ − σ · (−iωu1)

∗)

= −∇ · 1
2
Re
(
E ×H∗ − iωσ · u∗

1

)
.

(A.2)

The divergence of E ×H∗ can be related to the electrical displacement field D using
Maxwell’s equations

∇ · (E ×H∗) = (∇×E) ·H∗ −
(∇×H∗) ·E

= −∂tB ·H∗ − (∂tD)∗ ·E

= iωB · B
∗

µ0
− iωD∗ ·E.

(A.3)

The divergence of the mechanical Poynting vector can also be re-written in terms of the
strain s

∇ · (−iωσ · u∗
1

)
= −iω

[
σ : ∇u∗

1 + u∗
1 · (∇ · σ)

]

= −iω
[
σ : s∗ + u∗

1 ·
(
ρsl∂

2
t u1

)]

= −iω
[
σ : s∗ − u∗

1 ·
(
ω2ρslu1

)]
.

(A.4)
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Returning to Eq. (A.2) the dissipation density now reads

Pd = −1

2
Re

{
iωB · B

∗

µ0
− iωD∗ ·E − iω

[
σ : s∗ − u∗

1 ·
(
ω2ρslu1

)]}

= −1

2
Re
(
−iωD∗ ·E − iωσ : s∗

)
=

ω

2
Re
(
iD∗ ·E + iσ : s∗

)

= −ω

2
Im
(
D∗ ·E + σ : s∗

)
= −ω

2
Im
(
D∗ ·E − σ∗ : s

)

=
ω

2
Im
(
−D∗ ·E + σ∗ : s

)
.

(A.5)

Using the constitutive relation in Eq. (2.33) and the Voigt notation the dissipation can be
written as a matrix product.

Pd =
ω

2
Im

[(
s
E

)(
C∗ −

(
eT
)∗

−e∗ −ϵ∗

)(
s∗

E∗

)]
= FpM

∗
pqF

∗
q , (A.6)

where Mpq = M ′
pq + iM ′′

pq, so Re(Mpq) = M ′
pq and Im(Mpq) = M ′′

pq. Similar as Ref. [108]
the phase between Fp and Fq is defined as θpq, expanding the sum in Eq. (A.6) yields

Pd =
ω

2
Im

(∑

p

∑

q

|Fp||Fq|(M ′
pq − iM ′′

pq)(cos θpq − i sin θpq)

)

= −ω

2

∑

p

∑

q

|Fp||Fq|M ′′
pq cos θpq.

(A.7)

Since the fields are independent, it is possible to define a basis where cos θpq = 0, so

Pd = −ω

2
|Fp||Fq|M ′′

pq cos θpq =
ω

2
|Fp||Fq|Kpq cos θpq, (A.8)

where we have defined the matrix

K = −M ′′ = Im

(
−C eT

e ϵ

)
. (A.9)

Finally arriving to the constraint: in order for the dissipation density to be always positive,
the matrix K has to be positive definite. A similar constraint can be imposed for an elastic
solid by replacing K with Kiso = Im(−C).
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Material parameters

B.1 UEIS material library

Table B.1: Real part of the UEIS-determined material parameters for disk-shaped Pz26
and Pz27 transducers. The standard error of the mean is given in parenthesis provided N
samples.

ρsl C ′
11 C ′

12 C ′
13 C ′

33 C ′
44 ϵ′11 ϵ′33 e′31 e′33 e′15 N

(kg/m3) (GPa) (GPa) (GPa) (GPa) (GPa) (ϵ0) (ϵ0) (C/m2) (C/m2) (C/m2) -

Pz26 7700 172(8) 115(5) 94(5) 122(3) 30.1(1) 780(48) 727(26) −2.92(5) 14.8(3) 10.4(1) 2
Pz27 7700 122.3(6) 75.1(4) 76.1(6) 117.8(3) 21.4(1) 973(12) 812(5) −5.19(5) 16.29(5) 11.6(3) 32

Table B.2: Imaginary part of the UEIS-determined material parameters for disk-shaped
Pz26 and Pz27 transducers. The standard error of the mean is given in parenthesis
provided N samples.

C ′′
11 C ′′

12 C ′′
13 C ′′

33 C ′′
44 ϵ′′11 ϵ′′33 e′′31 e′′33 e′′15 N

(GPa) (GPa) (GPa) (GPa) (GPa) (ϵ0) (ϵ0) (C/m2) (C/m2) (C/m2) -

Pz26 −0.056(7) −0.028(5) −0.028(2) −0.046(7) −0.009(1) 0 2.3(2) 0 0 0 2
Pz27 −0.58(5) 0.1(3) 0.11(3) −0.48(4) −0.66(7) 0 2.88(8) 0 0 0 32

Table B.3: Complex-valued elastic moduli C11 and C44 obtained by the UEIS method
for different elastic materials. Also including the sounds speeds clo and ctr, the Young’s
modulus E, the Poisson’s ratio ν, and the Lamé parameters λ and µ.

ρsl C11 C44 clo ctr E ν λ µ

kg/m3 GPa GPa m/s m/s GPa - GPa GPa

PMMA 1162(4) 7.18(4)− i0.183(5) 1.553(8)(4)− i0.111(7) 2486(8) 1156(4) 4.23(2) 0.362(1) 4.1 1.6
Noa86H 1300 4.65− i0.51 1.21− i0.12 1929 984 3.2 0.32 2.2 1.2
VeroClear 1120 7.3− i0.3 1.3− i0.06 2544 1072 3.6 0.39 4.7 1.3
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Relation between real-valued elastic moduli

Formulas relating the real-valued elastic moduli are provided. The formulas relate the
real-valued stiffness components C ′

11 and C ′
44, to the sound speeds clo and ctr, the Young’s

modulus E and Poisson’s ratio ν, and the Lamé parameters λ and µ.

C ′
11 and C ′

44 to clo and ctr

clo =

√
C ′
11

ρsl
, and ctr =

√
C ′
44

ρsl
. (B.1)

C ′
11 and C ′

44 to E and ν

E = C ′
44
3C ′

11 − 4C ′
44

C ′
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Appendix C

Nelder–Mead simplex algorithm
(fminsearch)

The Nelder–Mead algorithm uses the simplex search method of Lagarias et al. [119]. The
algorithm requires initial values P0 and iterates until certain stopping criteria are met.

The initial simplex is formed by adding 5% to the initial values. In the following the
algorithm is outlined for a two-dimensional parameter space in which case the simplex
forms a triangle with corresponding cost function values Ci.

1. The current simplex is generated by the set of points P i, where i = 1, 2, 3.

2. The points P i are ordered in ascending order according to the corresponding Ci i.e.
C1 < C2 < C3

3. Generate a reflected point Pr = 2m−P3 where m = 1
3

∑3
i P i and calculate Cr.

4. If C1 ≤ Cr < C3, accept Pr to form the new simplex P i = {P1,P2,Pr} and iterate.

5. If Cr < C1 expand the point Pe = m+Pr and calculate Ce

(a) If Ce < Cr accept Pe as the new point, otherwise accept Pr and iterate.

6. If C ≥ C2 perform a contraction either

(a) If Cr < C3 calculate the contracted point Pc = m+ Pr−m
2 , if Cc < Cr accept Pc

to form the new simplex P = {P1,P2,Pc} otherwise continue to step 7.

(b) If Cr ≥ C3 calculate Pci = m + P3−m
2 , if Cci < C3 accept Pci to form the new

simplex P = {P1,P2,Pci} and iterate. Otherwise continue to step 7.

7. Calculate three new points according to the iterative procedure P i = P1 +
Pi−P3

2
to from the new simplex and iterate.
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Let Cn correspond to the cost function for the current iteration with corresponding simplex

Pn, if
|Cn−1−Cn|
1+|Cn−1|

< ∆C and
|Pn−1−Pn|
1+|Pn−1|

< ∆p terminate the algorithm. Here, ∆C and ∆p

are set to 1 × 10−4. The bounded version fminsearchbnd with upper and lower bounds
P+ and P− respectively, utilizes a transformation C(P) → C(f(P)) where f(P) takes
any P and maps it onto [P−,P+]. In this case the transformation uses a sinusoidal
transformation defined as

f(P) =
sin(P) + 1

2

(
P+ −P−

)
+P−. (C.1)
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