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Summary
Nitrogen-vacancy (NV) centers are crystal defects in diamond which, even unshielded
at room temperature, are highly sensitive to magnetic fields. The biocompatibility of
diamond makes for promising applications in biophysics, where nerve signals can be
sensed and imaged at close range.

In this work, a practical, compact magnetic sensing device is presented, which
contains the key elements of an NV sensor in a box that fits in the palm of one’s
hand.

Then, in exploration of the limits of its sensitivity, improvements are demonstrated
with two approaches. First, optimal control methods are used to better manipulate
the quantum spin state of diverse NV centers. Then laser beam shaping is used to
improve the measurement of their spin states by the fluorescence they emit. These
results indicate a promising approach for heightened sensitivity of future NV-based
devices.
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Resumé
Nitrogen-vakance (NV) centre er defekter i diamant, der er meget følsomme til mag-
netfeltet, selv ved stuetemperatur. Da diamant er en hård, ugiftig materiale, findes
der mange anvendelser i biofysik, hvor f.eks. nerve signaler kan måles.

I denne afhandling er en praktisk, kompakt magnetometer presenteret. Den in-
deholder de vigtige elementer af en NV sensor i en beholder der kan sidde i ens
håndflade.

Næste, for at øge følsomheden i sådanne NV magnetometre, er der implementeret
to fremgangsmåder. For det første er optimal kontrol metoder brugt til at bedre
manipulere det kvante spin af diverse NV centre. For den anden er laser beam om-
formning brugt til at forbedre aflæsning af NV centrenes spin via deres fluorescens.
Disse resultater indikerer en vej til dybere følsomhed af fremtidige NV-baseret anord-
ninger.
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AC Alternating Current

AOM Acousto-optic modulator

BS Beam-splitter

CMR Common Mode Rejection

DC Direct Current

HWP Half-Wave Plate

IQ In phase- / Quadrature- (modulation)

MW Microwave

NMR Nuclear Magnetic Resonance

NV Nitrogen Vacancy

PBS Polarizing Beam-splitter

SNR Signal:Noise Ratio

TEM Transverse Electric Magnetic

ZFS Zero-Field Splitting
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Introduction
0.1 Magnetic Sensing

Wherever electric charge moves, magnetic fields are created. This occurs in familiar
cases, like Earth’s magnetic field created by currents of molten iron in its core, or in
bar magnets via the alignment of the quantum motion of electrons and nuclei. But
electric charge moves in all sorts of processes from the exotic flows of space plasma
to the intimate muscular contractions of our hearts.

There are many niches for magnetism in modern technology, such as data storage
in hard disk drives, but the area which most directly motivates this work is in medical
imaging and diagnostics.

0.2 NV centers

Nitrogen Vacancy centers in diamond consist of a substitutional nitrogen atom and a
lattice vacancy inside the carbon lattice of a diamond, as shown in Fig. 0.1. NV centers
can be addressed by light and resonant microwaves to sense ambient magnetic fields
as well as other environmental conditions. They are the workhorse of this project.

0.3 Thesis overview

This work is structured around three articles representing the main results of the
project presented in Part II. In the first, a compact magnetometry setup was de-
veloped, with an aim to be used in the real-life settings that motivate the study of
NV center magnetometry for biophysics and medical use. In the compact setup, we
used continuous-wave magnetometry techniques, which are theoretically less sensitive
than pulsed magnetometry techniques, but are nevertheless used for record-setting
measurements with large ensembles of NV centers. The remainder of the project was
aimed at alleviating the limitations of pulsed magnetometry for setups like our com-
pact magnetometer which rely on addressing a large ensemble of NV centers. The
second article focuses on the use of optimal control methods to improve the unifor-
mity of the effect of the microwave pulses used to manipulate the spin states of many
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Figure 0.1. Nitrogen Vacancy center shown inside diamond lattice. Image from NIST,
Public Domain, via Wikimedia Commons

diverse NV centers throughout the ensemble. The third article considers how the in-
homogeneity of the laser beam used to address the ensemble impacts the sensitivity of
the spin readout process. In all, substantial improvements in sensitivity with pulsed
magnetometry schemes were measured by using the techniques explored in the second
and third articles, which can be of use in a next iteration of an applied magnetometry
device. Part 1 contains the background information that should contextualize the
main results and serve as a useful reference while reading Part II.



Part I
Background concepts





CHAPTER1
NV center properties

1.1 Diamond

Diamond, the host material for the nitrogen-vacancy center, consists of a crystal lat-
tice of carbon atoms. It is very hard, nontoxic, thermally conductive, and transparent.
It has an index of refraction of 2.417 for visible light.

Diamonds used in laboratory settings are typically synthetic and made through ei-
ther high pressure high temperature (HPHT) fabrication or chemical vapor deposition
(CVD). CVD allows for finer control of the diamond’s composition of isotopes and
impurity doping, and is the therefore more commonly used in the field of quantum
sensing [1]. The diamonds used in the work presented here were both synthesized by
CVD. Briefly stated, the technique of CVD is to heat a plasma of carbon atoms and
other gases over a substrate onto which the carbon binds in a diamond lattice.

The crystallographic structure of diamond (depicted in Fig. 0.1) has four axes
along which any two nearest neighbors in the lattice can be separated. The vector
from the nitrogen towards the vacancy determines the NV center’s axis about which
it has C3v symmetry. It is the projection of environmental magnetic fields along
the NV axis to which an NV center is sensitive. Under conventional irradiation and
annealing techniques, the axes of the created NV centers are randomly distributed
between the four diamond crystallographic axes with equal probability. The vector
magnetic field can be sensed by using NV centers in all four crystallographic orienta-
tions simultaneously [2], though typically only those aligned along one axis are used
for ensemble sensing [3].

The most common carbon isotope is 12C, representing 99 % of carbon atoms. 13C
make up most of the remaining 1 %. Diamonds can be synthesized via CVD from
isotopically purified CO2, and otherwise have roughly 1 % of the lattice made of 13C
atoms. This is relevant for magnetometry because, unlike the spinless 12C, 13C have
a spin of 1

2 which can add noise by magnetic coupling to the NV center spin [4, 5].
The density of NV centers in diamond is usually given in parts-per-billion/million

(ppb/ppm), as in per C atom in the diamond lattice. 1 ppb is equal to 176 µm−3 at
room temperature. Low concentrations of NV centers < 10 ppb can be made during
CVD by introducing N2 during growth [1]. This also creates nitrogen defects in the
diamond, roughly 100× as many as NV centers, and it is the deleterious effects of too
much nitrogen on the growth of the diamond crystal that limits the possible density.
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After diamond synthesis, nitrogen defects can be converted into NV centers by first
creating lattice vacancies through high energy electron or ion irradiation, and then
annealing the diamond at high temperature to let the vacancies diffuse and associate
to the nitrogen. In this way, ∼ 1 ppm of NV centers has been demonstrated in a CVD
diamond [6].

1.2 Electronic structure
The negatively charged NV center, NV−, has six electrons forming a spin S = 1
system [7]. It has a 3A2 ground state triplet with an allowed spin-conserving 1.945 eV
optical transition to a 3E excited state triplet [8]. Typically, and exclusively in this
work, this transition is driven by an off resonant 532 nm (green) optical field. The 3E
state can decay radiatively to the 3A2 state [9] with zero-phonon emission [10], which
perfectly matches the transition energy, at 638 nm (red) [11]. Typically this decay has
a broad fluorescence spectrum due to phonon-assisted decay paths for mostly longer-
wavelength photon emission. Two other states are permitted for the NV−: the 1A1
and the 1E singlets [12], which together form an alternate decay path from 3E back
to 3A2, shown in Fig. 1.1. The 1E state is metastable, with a lifetime much longer
than the other excited states [13]. Because the 1A1 and 1E states are not spin S = 1
multiplets, the spin is not conserved in the 3E→1A1 →1E→3A2 decay path [13,14].

ms=0

ms=0

ms=-1
ms=+1

ms=-1
ms=+1

1A1

1E

3A2

3E

Figure 1.1. NV− level diagram with labeled transitions. Green arrows are spin-conserving
excitation by absorption of a green photon. Red arrows are spin-conserving decay with
emission of a red photon. Purple arrows are non-spin-conserving decays which do not radiate
visible light, where a thicker line indicates a relatively faster decay rate.

The neutral charge state NV0 has only five electrons, and the resulting allowed
electron configurations are not magnetically sensitive [7]. Transitions are possible
between the NV0 and NV− when e.g. a green photon is absorbed from the optical
excited state (3E for the NV−), and an electron is excited into the conduction band of
the diamond, from which it can rejoin with a nearby charge donor, such as a nitrogen
defect [15].
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ms=0

ms=±1

ZFS

ms=+1

ms=−1

2γB mI=−1

mI=+1

mI=0
δI

Figure 1.2. Level diagram of the splitting in the NV− 3A2 multiplet including the Zeeman
effect and 14N hyperfine splitting. The brown dashed lines show the available MW transitions
between the ms=0 and ms=-1 states addressed experimentally in this work.

The finer structure of the 3A2 multiplet is shown in Fig. 1.2. There is a temperature-
[16,17] and pressure-dependent [18] zero field splitting (ZFS) of ≈2.88 GHz + 77 kHz/K
+ 15 Hz/kPa due to lattice strain, which raises the energy of the ms=±1 spin states
aligned along the NV crystallographic axes. The Zeeman effect raises/lowers the en-
ergy of electron spin aligned with/against a magnetic field, which splits the ms=±1
levels [19]. The adjustment in energy follows from the electron gyromagnetic ratio
γ = 28 GHz/T, which for the ∼ 3 mT bias magnetic field used in this work corre-
sponds to ∼ 90 MHz. The nitrogen nucleus has a S = 1 or S = 1

2 spin for the 14N and
15N isotope respectively, which creates a local magnetic field in the vicinity of the
NV electron, affecting its energy level [7]. For the more common 14N isotope in the
diamonds used in this work, the hyperfine splitting by which the nuclear spin adjusts
the NV electron energy is δI = 2.16 MHz [20].

1.3 Optically detected magnetic resonance

The ability to use NV centers as quantum sensing devices relies on the ability to trans-
late the frequency difference between the ms=±1 and ms=0 states, which depends on
external parameters including the magnetic field, into a legible signal. When the spin
is encoded into the optical signal of the NV centers’ fluorescence to sense the magnetic
field, the technique is called optically detected magnetic resonance (ODMR) [21].

The electron spin is converted into a fluorescence signal via the spin-selective decay
through the singlet states 1A1 and 1E, which happens with about 15 % probability for
the ms=0 state and about 55 % probability for the ms=±1 states of the 3E excited
state [13]. Because the optical excitation and radiative decay between the 3A2 and
3E states are spin conserving, we use the “ms=0 state” to refer to both the ms=0
state of the 3A2 and of the 3E. The ms=0 is the bright spin state and the ms=±1
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are the dark spin states, because the latter are less likely to emit a red photon after
optical excitation.

In addition to being detectably darker, the ms=±1 states have a greater propensity
to non-spin-conserving decay via the singlet states [22], which polarizes the NV centers
into the ms=0 state. Every time the NV center electron decays through the singlet
states, it gets a random new spin with somewhat higher probability of being ms=0,
and the ms=±1 states take that chance more often. Therefore, if the NV center is
only driven optically, it reaches an equilibrium ∼ 80 % polarization into ms=0 [12,14].

A resonant (i.e. frequency-matched) microwave (MW) control field can be used to
drive the transition between the ms=0 and ms=±1 states [19]. There is some contrast
between the fluorescence signal measured with or without a given MW control field,
and this ODMR contrast is greater the better tuned the field is to the transition
frequency [23]. There are many different protocols for applying MW control fields
and reading out the spin, which will be elaborated in the next chapter. Here, it
suffices to grasp that in all ODMR protocols, the fluorescence contrast indicates the
detuning of the MW control field from the ms=0 ↔ ms=±1 transition frequency,
which is a function of the magnetic field.



CHAPTER2
Coherent control

The ability to transfer population from the ms=0 state to the ms=±1 states for
performing ODMR is one specific case of the general ability to coherently control
the quantum spin state in the 3A2 multiplet. When the spin is measured, the result
must be in one of the three allowed ms={-1,0,1} levels, but between measurements,
the spin state can be in a superposition of multiple levels. Commonly in NV sensing
and exclusively in this work, only one of the ms=±1 states is addressed, leaving a
two-level system of, in our case, the ms=0 and ms=-1 states.

The quantum state of a two-level system is more than a distribution of probability
between the two levels, say a 40 % chance of having ms=0 spin and a 60 % chance
of having ms=-1 spin. It also contains a relative phase between the two levels. The
full information of the state can be represented geometrically as a vector pointing
somewhere on the surface of a Bloch sphere as shown in Fig. 2.1, where the value
along the ẑ direction is the population in one or the other level, and the azimuthal
angle is the quantum phase [24,25].

As the system evolves, the quantum phase advances with the frequency that corre-
sponds to the energy between the two levels; the vector precesses around the ẑ axis of
the Bloch sphere at the transition frequency. Under the influence of the MW control
field, the spin state vector is pushed counterclockwise about the direction the MW
field’s magnetic component points. The MW field’s magnetic component oscillates
along its axis at the frequency of the MW drive. If the MW drive frequency matches
the transition frequency, then it will stay in sync with the spin state’s precession and
continue to rotate it in the same direction period after period as it oscillates. In such
a case, the MW control field is resonant with the two-level system.

Coherent control allows for arbitrary rotation operations on the Bloch sphere
via the adjustments accumulated period after period of the resonant control field’s
oscillation in a discrete control pulse. When describing the effect of a control pulse, a
rotating frame can be used as the coordinate system on the Bloch sphere, where the x̂
and ŷ axes of the Bloch sphere rotate around with the frequency of the MW drive. If
the MW pulse is in phase with the rotating frame (that is, if the timing of where it is
in its oscillatory cycle matches the arbitrarily defined starting point), then it rotates
the spin state vector about the x̂ axis, and if it is delayed or advanced by 90° (a
quarter of an oscillatory period), it rotates the spin state vector about the ŷ axis on
the Bloch sphere. In-phase/quadratude (IQ) modulation is a way of neatly shaping
a MW control pulse according to these rotation operations about x̂ and ŷ. Where
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x
y

| 1

|0
Figure 2.1. Bloch sphere of the ms=0 and ms=-1 two-level system with an example state
shown in black and its projection onto the transverse plane shown by the black dashed line.
The results of π rotations of the example state about the x and y axes in the rotating frame
of reference are shown in blue and red.

the MW pulse is fully described by the in-phase amplitude I(t) and the quadrature
amplitude Q(t) that are proportional to the rate of rotation about the x̂ and ŷ at
each moment in time t [26].

2.1 Rabi oscillations
If a resonant MW pulse with constant amplitude and phase is applied, it will rotate
the spin state on the Bloch sphere about an axis on the transverse plane from pole to
pole on the Bloch sphere. This corresponds to oscillations in the ms=0 and ms=-1
state populations, known as Rabi oscillations. The Rabi frequency Ω is the rate of
these oscillations, or how fast the spin state is driven around the Bloch sphere, and
it is quadratic with the applied MW power. [24]

If the frequency of the MW drive fMW does not match the transition frequency of
the NV center spin fNV, then they drift out of sync during the application of a MW
control pulse. In the rotating frame of the Bloch sphere, this is described as the spin
state precessing at the frequency detuning ∆ = fNV − fMW. If the spin state begins
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polarized in the ms=0 direction on the Bloch sphere, it cannot be rotated all the way
to ms=-1 by an off-resonant MW pulse of constant phase and amplitude, because
once it precesses out of phase with the MW drive, it is pushed in the wrong direction,
following a smaller circle around the Bloch sphere and returning to ms=0 sooner
than otherwise. The Rabi frequency Ω is therefore faster for ∆ ̸= 0, not because
the MW pulse drives the spin state faster around the Bloch sphere, but because the
path around the Bloch sphere is shorter. My animated illustration can be found via
Appendix A.

2.2 Coherence times

The NV center spin state, like quantum systems in general, cannot be manipulated
indefinitely. The quantum coherence (the property of there being a phase between
level populations rather than merely a statistical mixture) decays over time. The
decay is characterized by three different durations T1, T2 and T ∗

2 which correspond
to the rates of different decay mechanisms.

The decay time T1 describes thermal relaxation, where the longitudinal component
(along the ẑ axis) of the state on the Bloch sphere decays towards 0 [27, 28]. This is
the result of decay towards thermal equilibrium via a net gain/loss of energy with the
surrounding lattice. Generally this is by far the slowest decay mechanism, though T2
can be comparable in extreme cases [29,30].

The decay time T2 characterizes the irreversible decay of the transverse component
(the magnitude perpendicular to ẑ) of the spin state, also called dephasing [21]. In this
decay process, there is no change in energy; instead the system “loses track” of how
much phase accumulated since initialization due to interaction with extraneous spins.
The erasure of phase information is a decay towards an even probability distribution
through the range [0, 2π], in which case there is no net transverse component.

Closely related to the dephasing process characterized by T2 is the bulk field
dephasing characterized by T ∗

2 . An ensemble of NV centers spread throughout a
volume has an inhomogeneous transition frequency due to any inhomogeneities in
the magnetic field or strain in the diamond. The ensemble gets out of sync as each
individual NV center spin precesses at its own transition frequency, and this causes
a decay of the net transverse component of the ensemble-averaged spin state. T ∗

2 is
the characteristic time of the decay of the total ensemble-averaged spin state, from a
combination of this effect and the T2 relaxation [31]. For the low frequency sensing
with large ensembles that is the focus of this work, T ∗

2 is the limiting coherence time.
Typical values of the coherence times are on the order of ∼ms for T1, 0.1-10µs for

T ∗
2 , and roughly ∼10× larger for T2 than T ∗

2 [31], up to a record T2 ≈ 2.4 ms [32],
depending on the presence of 13C and other crystal defects in the diamond.
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2.3 Experimental implementation

Coherent control allows for rotation operations to be applied to the spin, i.e. to
transform initial spin states into final spin states by a user-selected function. It does
not allow for an arbitrary spin state to be selected; without initial spin polarization
in a given direction, it cannot produce a final spin state polarized in a new chosen
direction. The spin state can be initialized with ∼ 80 % polarization (as we show
in Chapter 5) into ms=0 by application of an optical excitation laser pulse via the
selective decay mechanism discussed in Section 1.2. In this work, and with few ex-
ceptions in NV magnetometry, the laser beam is blocked during application of MW
control pulses so that the state can be manipulated without interruption by optical
excitation (see [33] for a rare counterexample). After the MW control pulse sequence
is complete, the projection of the final spin state onto the ẑ axis of the Bloch sphere
(the probability of being in the ms=0 or ms=±1 eigenstates) can be read out by
applying another laser pulse and detecting the strength of the NV fluorescence. The
general form of the sequence is shown in Fig. 2.2.

Pl

PMW

PMW

init read

time

PMW,i−1 PMW,i

Pl,i−1 Pl,i

Figure 2.2. (left) example protocol for initialization, coherent control via the MW pulse,
and spin state readout. (right) repeated control protocol, where the (i − 1)th readout pulse
also serves as the ith initialization.

The optical spin readout for an NV center is not deterministic [34]; it is necessary
to repeat a spin readout measurement many times with identical state preparation
(spin initialization and coherent control) in order to accumulate statistical information
about the probability distribution of the spin state after the control sequence [35,36].
Because the spin readout and the initialization both rely on a laser pulse, repeated
control sequences can use each optical excitation pulse for both purposes as shown in
Fig. 2.2.

2.4 Common control sequences

A simple case of coherent control is pulsed ODMR [37], where the MW pulse sequence
consists of a single π-pulse. When the pulse is perfectly resonant (∆ = 0), the π-pulse
rotates the spin from the ms=0 to the ms=±1 state, maximally reducing the NV
center fluorescence. When off-resonant, the final spin state is farther from ms=±1
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the greater the detuning ∆ is, until the detuning is great enough that the MW control
pulse has no effect. A pulsed ODMR spectrum is shown in Section 5.2 Fig 10.

Pl

PMW

Ramsey
πx
2

πx
2

τ

init read

time

Hahn Echo
πx
2 πy

πx
2

init read

τ τ

Figure 2.3. Illustrated Ramsey and Hahn echo measurement protocols.

The Ramsey sequence [38], shown in Fig. 2.3, has long been used in nuclear
magnetic resonance (NMR) experiments and is applicable to low-frequency magnetic
field sensing with NV centers [21, 39]. It begins with a pulse to rotate the spin state
by π/2 about the x̂ axis from ms=0 to the equator of the Bloch sphere. Then, the
spin state precesses about the Bloch sphere in the rotating frame of the MW drive at
the detuning frequency ∆ for a wait period τ . Finally, a second π/2 pulse rotates the
spin state about the x̂ axis, projecting the amount of phase accumulated during the
wait period (∆τ) onto the population along the ẑ direction. It is limited by the T ∗

2
coherence time because the NV centers with inhomogeneous ∆ precess at different
rates and fall out of sync.

The Hahn echo sequence [40], shown in Fig. 2.3, is like the Ramsey sequence,
but with the addition of a π rotation about the ŷ axis of the Bloch sphere half way
through the waiting duration. The effect of this π pulse is to reverse the direction of
precession, so that after an identical wait period τ has elapsed, the fastest and slowest
precessing NV center spins will have resynchronized [21]. It is therefore limited by
the T2 coherence time instead of the shorter T ∗

2 [41]. However, the sequence is only
sensitive to magnetic fields which reverse direction between the two waiting periods,
i.e. high frequency AC fields [36]. Due to the fact that T2 > T ∗

2 , AC measurements
with Hahn- and other echo sequences are generally capable of greater sensitivity than
DC measurements [42].
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CHAPTER3
Magnetic sensing

3.0.1 Continuous wave and pulsed measurement schemes

Pulsed ODMR [37], Ramsey magnetometry [39], and Hahn echo [42] sequences all
require the ability to apply laser and MW pulses to the NV ensemble. This entails
the use of a pulsed laser or an acousto-optic modulator (AOM) to switch a con-
tinuous wave (CW) laser, some fast hardware for MW switching, and likely some
programmable hardware for generating modulation signals. Pulsed sensing also re-
quires sufficient laser and MW intensity [43] to limit the measurement overhead (time
spent not sensing during the measurement protocol), and as we explore in Chapters 5
and 6, sufficient homogeneity of control fields throughout the ensemble. Therefore,
pulsed sequences have typically been limited to use in small ensembles or single-NV
experiments.

NV ensemble magnetometry can also be performed with CW ODMR [20, 44–46],
in which a laser beam is continually applied, and MW control fields drive the ms=0 →
ms=±1 transition during optical excitation. This approach suffers from broadening
of the resonance linewidth [37, 47] which reduces the conversion of fluorescence into
information about the magnetic field.

3.0.2 Lock-in detection

There is often a strong source of noise in the frequency range that a measurement
needs to be taken. For example, the diode-pumped solid state lasers used to pump
the NV centers in our measurements has substantial variations in power output in
the frequency range < 100 Hz. Because this overlaps with the freuquency range of
the signals we measure, it can be mixed up with the magnetic signal we are interested
in. Lock-in detection is a method of shifting the frequency of a measurement into a
less noisy region of the noise spectrum, i.e. where it can’t be confused with the low
frequency laser noise.

The technique consists of first modulating a parameter of the setup that correlates
with the fluorescence signal (e.g. the MW amplitude or frequency, or the laser inten-
sity) and then demodulating the detected signal by the same frequency. For example,
in a CW ODMR scheme without lock-in detection, the voltage driving the antenna
to produce the MW control field is V (t) = A cos(ωt) and the NV flourescence signal
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S(t) = B(t) is linear with the low frequency magnetic field, ignoring noise. Now
the MW field can be amplitude modulated by M(t) = 1 − cos(2πft)/2, so that
V (t) = A cos(ωt)M(t). The noiseless NV fluorescence signal is then S(t) = B(t)M(t),
so the part of the fluorescence signal which needs to be measured is also modulated
at the frequency f . To demodulate the NV center fluorescence signal, it is multiplied
by M(t):

Sdemod(t) = B(t)M(t)2,

which is proportional to

Sdemod(t) ∝ B(t)1 + cos(4πft)
2

.

With a low pass filter to remove the fast oscillating term, B(t) is recovered [20,48].
This technique can be implemented in a hardware device, as in Chapter 4, or in

software by digitally sampling S(t) and M(t), as in Chapter 5.

3.1 Sensitivity

The signal:noise ratio (SNR) is a measure of how much a measured signal stands out
from the uncorrelated noise in its measurement context. It is necessary to have a
SNR of at least 1 to be able to detect that there is a signal at all. The sensitivity of
a sensing device is defined as the magnitude of the signal for which there is a SNR of
1, i.e. the smallest possible to detect.

3.1.1 Shot noise

When the fluorescence of the NV centers is detected, it is turned into an electrical sig-
nal by a photodiode through absorption of discrete packets of optical energy, photons.
There is no guarantee that photons are absorbed at a given rate; there is only a given
probability per time for a single photon to be absorbed, and the noise that results
from this probabilistic behavior is called shot noise. The shot noise of N discrete
events (e.g. the absorption of N photons) has a standard deviation of

√
N .

Other sources of noise in a NV center magnetometry setup can often be amelio-
rated, for example by common mode rejection (CMR) of laser noise, lock-in detection
to avoid low frequency thermal and mechanical noise, and higher-quality amplifiers
and detectors to reduce electronic noise. Shot noise is fundamental to the detection
of incoherent fluorescence from NV centers and cannot be reduced. It also increases
with a larger fluorescence signal (with more photons N being collected per time), so
in the regime of the large ensembles of NV centers used in this work, it is often the
dominant source of noise. Achieving a shot noise-limited measurement means that
sensitivity cannot be improved by further reducing other sources of noise.
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3.1.2 Time scaling
The measurement context where the SNR is defined includes the bandwidth consid-
ered, where the contributing noise is integrated over the measured bandwidth. The
consequence is that the noise can be decreased (and therefore the SNR increased) by
restricting the measurement bandwidth. An intuitive example is the case of a DC
(zero frequency) measurement. For a measurement taken in a finite amount of time
t, there is a finite bandwidth from 0 Hz to 1

2t Hz. The mean of the signal collected
over a given duration includes less noise as the duration is extended because more
low frequency noise is removed.

The noise term in the SNR is the standard deviation of the noise present, which
for noise sources evenly distributed in frequency like shot noise, is proportional to
the square root of the measurement’s bandwidth. Because the bandwidth (or mea-
surement duration) can be freely chosen and adjusted, sensitivity η is defined with a
normalization over the bandwidth, in units of T/

√
Hz for measurements of the mag-

netic field. The reader should note that it would not be useful to measure for example
the average magnetic field with very fine precision over the course of one year. The
bandwidth of the measurement must match the bandwidth of the signal one wants to
detect, and the sensitivity with that bandwidth must be below the signal’s magnitude.

3.1.3 Common sensitivity definitions
The low frequency sensing protocol with the best per-NV center sensitivity scaling is
Ramsey magnetometry, which has a shot noise limited sensitivity of

η ≈ 1
γCRe−(τ/T ∗

2 )
√

N

√
tI + τ + tR

τ

for the electron gyromagnetic ratio γ, the readout contrast CR, the wait period τ , the
dephasing time T ∗

2 , the photon count per readout N , the readout duration tR and
the addition time for reinitializing the NV electron spin tI [43]. Comparatively, the
shot noise limited sensitivity of a CW ODMR scheme is

η ≈ 4
3
√

3
1
γ

∆ν

CCW
√

R

for the resonance linewidth ∆ν, the CW contrast CCW which differs from CR, and
the photon count rate R [43]. The numerical factors have to do with the shape of the
resonance in the ODMR spectrum.

Whether a given setup can produce more sensitive measurements with Ramsey or
with CW magnetometry depends on the interrelated terms that appear in the above
expressions and is therefore rather opaque. The important thing to understand when
comparing them is the

√
tI +τ+tR

τ term of the Ramsey magnetometry sensitivity. In
the small overhead limit, where τ ≫ tI + tR, this reduces to 1√

τ
, and the optimal
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waiting duration is τ = T ∗
2 /2. With extended coherence times [5], the shot noise-

limited sensitivity of Ramsey magnetometry can be continuously improved, while the
CW ODMR linewidth would remain limited by other sources of broadening.

3.2 Laboratory implementation

3.2.1 Optical excitation

The NV center electron is excited from the 3A2 to the 3E states by absorption of a
photon with a higher energy than the optical transition frequency. For this to occur,
there must be an optical beam, e.g. from a laser, incident on the diamond with some
intensity I in the vicinity of the NV center. Intensity has the units of Wm−2, which
for a given photon energy is proportional to the photons per area per time. This
is converted to the optical pump rate Γ, the probability of absorption per time, by
the absorption cross section σ of units m2. That is, Γ = Iσ, so with more optical
intensity, the NV center will be excited faster into the 3E states [49,50].

The NV center spin is initialized by optical excitation. That means that from
an arbitrary state of the NV center spin, it decays towards the equilibrium ms=0
polarization [13, 14]. This occurs due to the probabilistic decay from 3E down to
3A2, either by a direct spin-conserving radiative decay, or via the 1A1 and 1E states.
This is a series of discrete excitation-decay events, and with each one, the probability
distribution of the spin state becomes closer to the probability distribution of the
equilibrium polarization, set by the relative rates of the decay paths. The lifetimes
of the 3E states are on the order of ∼ 1 µs, so for low optical pump rates Γ ≪ 1 MHz,
the population of the 3A2 states dominates. In this low intensity regime, the rate of
excitation-decay events is roughly linear with Γ.

3.2.2 Laser beam shape

The distribution of optical intensity is generally not uniform. The transverse electric-
magnetic mode TEM00 is commonly produced by laboratory lasers. A beam with a
dominant TEM00 mode is also called a gaussian beam, due to the gaussian distribution
of intensity in its transverse plane. This shape is easy to produce with spherical
mirrors in the laser cavity, and is useful because of its lower divergence than higher
order TEMij modes. The intensity distribution of a TEM00 beam as a function of
radial distance from the center of the transverse plane r and axial distance from the
beam waist z is

I(r, z) = I0

(
r0(0)
r0(z)

)2

exp
(

− 2r2

r2
0(z)

)
for the beam radius r0 [51].
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3.2.3 Bias magnetic field
When sensing with an ensemble containing randomly oriented NV centers, it is im-
portant to apply a magnetic field along one of the crystallographic axes. This shifts
its frequency away from the ZFS and distinguishes its resonance from the other NV
centers in the ODMR spectrum [20, 52]. A strong field can be used as long as it is
well aligned to the NV axis to avoid spin mixing due to the misaligned field compo-
nents [53]. For our measurements, the strength of the field was chosen such that the
NV electron resonance matched the resonance frequency of the MW antenna.
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Part II
Experimental results





CHAPTER4
Compact NV

Magnetometry
4.1 Background
The value of NV ensemble sensing compared to other magnetic sensing techniques is
that an NV ensemble is sensitive at room temperature with a high dynamic range
without shielding from large static fields (such as Earth’s magnetic field) in a solid
state host material that can be very near to the target of sensing. The state of the
art technology for high-sensitivity magnetic measurements has been superconducting
quantum interference devices (SQUIDs) [54–56], which have reached fT/

√
Hz sensi-

tivity and require large, magnetically shielded setups with cryogenic cooling. An-
other relevant technology for comparison is optically pumped magnetometers based
on atomic vapor cells [57]. Optically pumped magnetometers can have also reached
fT/

√
Hz near-zero field sensitivity at room temperature [58] and have been demon-

strated in other operational modes in Earth’s magnetic field without shielding [59].
The purpose of this work was to take NV ensemble magnetometry techniques that

had been demonstrated in bulky laboratory setups and to implement them in a user-
focused context, where the robustness of NV sensing in can be advantageous. We
continued the work of [60,61] to build a second iteration of the compact sensing setup
and took the measurements presented in this article. Our approach was to make all
of the setup elements that must be near the diamond such as the MW antenna, bias
magnets, laser beam delivery optics, and fluorescence detection optics into a box of
a comfortable size to hold in one hand. The laser light was sent into the box by
an optical fiber, the MW power was delivered via a coaxial cable, and the detected
fluorescence signal was retrieved by another cable.

It is worth briefly comparing this work to [62], which was published while this
work was in progress. They achieve slightly better sensitivity in a much smaller
integrated device, which uses an LED to optically excite the ensemble rather than a
fiber-coupled laser. This work should not be seen as presenting a competitive device,
but as a proof of concept, where the magnetic sensitivity achieved in the sensor head
was comparable to that achievable on a laboratory table given the same low NV
density and isotopically unpurified diamond.
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Where sensor size and spatial resolution are a premium, fiberized sensor heads
such as [63,64] are a better approach, and they can benefit from efficient fluorescence
collection and cavity enhancements [20,65] for CW magnetometry.

4.2 Article
This work resulted in a publication titled “Nanotesla Sensitivity Magnetic Field Sens-
ing Using a Compact Diamond Nitrogen-Vacancy Magnetometer” in Applied Physics
Letters, presented here.
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ABSTRACT

Solid state sensors utilizing diamond nitrogen-vacancy (NV) centers are a promising sensing platform that can provide high sensitivity and
spatial resolution at high precision. Such sensors have been realized in bulky laboratory-based forms; however, practical applications demand
a miniaturized, portable sensor that can function in a wide range of environmental conditions. Here, we demonstrate such a diamond NV
magnetic field sensor. The sensor head fits inside a 11� 7� 7 cm3 3D-printed box and exhibits sub-10 nT/

ffiffiffiffiffiffi

Hz
p

sensitivity over a 125Hz
bandwidth. We achieve efficient fluorescence collection using an optical filter and diode in contact with the diamond, which is cut at the
Brewster angle to maximize the coupling of 532 nm pump light. We discuss the potential of this flexible approach to achieve sub-nT/

ffiffiffiffiffiffi

Hz
p

shot noise limited sensitivity suitable for detection of a wide range of low-level magnetic fields, particularly those from electrical power sys-
tems and from biological sources.

VC 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5095241

Quantum sensing using nitrogen-vacancy (NV) centers in dia-
mond has attracted widespread interest in recent years due to the
extraordinary high sensitivity and high precision sensory capability of
materials under ambient conditions.1 Sensing of electric fields,2 tem-
perature,3 strain fields,4 and pressure5 has been demonstrated. In par-
ticular, research has focused on detection of magnetic fields with a
high spatial resolution down to the nanoscale6–8 and on samples in
environmental conditions that cannot be addressed by alternative solid
state magnetometers.

The sensing mechanism is based on electron spin resonance via
optical detection of fluorescence from an ensemble of NV centers
which is sensitive to local magnetic and electric fields, in addition to
the background conditions (e.g., temperature). The sensor sensitivity
depends on various parameters, in particular, the number of active
NV centers and the spin coherence time T�

2 . These parameters depend
on diamond type and the growthmethod: high pressure high tempera-
ture vs chemical vapor deposition, the isotopic composition of the dia-
mond (purified 12C vs 13C), and the defect nitrogen isotope.9

Numerous studies on NV based sensors have focused on increas-
ing the sensitivity via higher photon collection efficiency,10–12 using
novel excitation schemes,13,14 optimized measurement protocols,15

and diamond structures.16 Most realizations have been large, bulky
setups allowing for maximum optimization and sensitivity in a fixed
position. However, as sensor sensitivity now approaches a stage where
new interesting applications become possible (e.g., in biodiagnostics),
it is of great importance to design and develop miniaturized and mov-
able versions. Recent work has been dedicated to the development of
rugged, stable, transportable, and miniaturized diamond sensors to
realize such applications.17–19

In this article, we present the design and construction of such a
miniaturized, handheld diamond magnetic field sensor based on read-
ily available off-the-shelf and 3D printed components. Using a spe-
cially cut and coated (but commercially available) diamond sample
combined with a cheap microwave (MW) antenna, an optical filter,
and a photodiode, we demonstrate a compact NV excitation and fluo-
rescence collection strategy which in turn enables the construction of a

Appl. Phys. Lett. 114, 231103 (2019); doi: 10.1063/1.5095241 114, 231103-1
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compact hand-held magnetometer head, coupled to an external
microwave and laser source. We show that such a sensor can achieve
7 nT/
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Hz
p

sensitivity over a bandwidth of 125Hz, highly suitable for
low field, low frequency sensing applications. A NV magnetometer
measures external magnetic fields through the Zeeman shift of its
spin-triplet 3A ground state (ms¼ 0, 61), as shown in Fig. 1. A mag-
netic field induces an energy shift in the ground triplet state ofmsceBz;
where Bz is the magnetic field along an NV symmetry axis and ce is
the gyromagnetic ratio (28Hz/nT). A measurement of the ms¼61
NV ground state energy shift thus reveals information about the
strength of the magnetic field along an NV axis.

The field-induced energy shift in the triplet is measured using the
technique of optically detected magnetic resonance (ODMR), where the
NV centers are both optically excited and driven by a microwave (MW)
source. When driven with MW frequency corresponding to the spin
splitting of the triplet state, relaxation can occur via a singlet state, as
shown in Fig. 1. This results in a detectable dip in red�637nm fluores-
cence output at a frequency that depends on the Zeeman shift and
hence the magnetic field. Intersystem crossing from the singlet shelving
state to the ms¼ 0 triplet ground state polarizes the spins in the ms¼ 0
ground state. Under optical pumping with green laser light, this com-
pletes a loop that allows continuous detection of the ODMR fluores-
cence dip.20 Detection of ODMR can be via a pulsed scheme, using a
Ramsey or spin-echo sequence9 or, as in this work, a simpler, robust
continuous wave (CW) approach with constant laser andMW power.

There are two primary obstacles to achieving high sensitivity in
an NV-based sensor. First, it is necessary to efficiently excite the NV
centers. The low NV center absorption cross section requires a high

power pump laser, pump trapping,13 or an optical cavity.21 Second,
fluorescence light must be efficiently captured, despite the high refrac-
tive index of diamond meaning much of it is trapped by total internal
reflection. Different schemes to maximize fluorescence collection
include using a parabolic collection lens,12 collection at the diamond
edges,7 and using a dielectric antenna.11

In this work, we have addressed these two challenges by using an
approach with angled cut diamond end facets that allow a high power,
tightly collimated pump beam to travel laterally through the entire dia-
mond width. This is outlined schematically in Fig. 2(a). In addition,
we maximize the collection of this light by attaching (using immersion
oil) a photodiode to the front surface of the diamond after a thin opti-
cal filter while reflective coating the back.

The simplified and compact setup design is presented in Fig.
2(b). We used a commercially available single crystal diamond, grown
via chemical vapor deposition with the natural 13C content, with
dimensions of 6� 6� 1.2mm3 from Element 6. The sample had
[14N] < 1 ppm, and the natural [14NV] concentration was determined
to be �0.2 ppb.21 We used a p-polarized pump laser (Cobolt 05–01)
with a maximum power of 0.5W at 532nm, which can be fiber cou-
pled into the sensor head. The pump beam was collimated to a mode
field diameter of approximately 45lm and focused on one of the edge
cut facets of the diamond. The two edge facets for the 532nm pump
beam were cut by Almax easyLab to the Brewster angle of 67�60:1�,
respectively, facilitating efficient entry of the pump beam into the

FIG. 1. NV energy level scheme. The NV center is optically pumped at 532 nm into
the excited triplet state 3E and decays back into the ground state 3A with fluores-
cent red emission. For the ms¼ 0 sublevel, emission occurs within the triplet only.
For the ms¼61 levels, intersystem crossing into a singlet state 1E can lead to
decay nonradiatively (or via 1042 nm infrared emission) via the singlet ground state
1A. This results in a dip in fluorescence output. By transferring the populations
between ms¼ 0 and ms¼61, through absorption of resonant MWs at �2.8 GHz,
dependent on the Zeeman shift of the 3E levels, this drop in fluorescence can be
directly observed (ODMR). The electronic transitions are hyperfine split by the 14N
nuclear spin.

FIG. 2. (a) Schematic of the specially cut diamond crystal, optical coatings and fil-
ter, attached photodiode, and MW antenna. We use two cut surfaces, one at the
diamond Brewster angle (67�) to ensure maximum transmission of a beam perpen-
dicular to the diamond front surface and a second cut at 22:7� to direct the beam
laterally through the entire width of the diamond, exciting the maximum number of
NV centers as possible and exiting at an identically cut facet on the opposite side.
(b) Labeled photograph of the opened handheld sensor head.
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diamond. We estimate the pump beam to propagate inside at least the
full width of the diamond (�6mm). As indicated in Fig. 2, the back
side of the diamond was coated with a highly reflective (HR, R> 99%)
coating covering the spectrum 500–800nm, while the front side was
HR (R> 99%) coated for 532nm and antireflective coated (R< 1%)
for 600–800nm. We attach a 550nm long pass optical filter (Thorlabs
FELH0550, cut to size) before the photodiode to reject stray pump
light.

The diamond was mounted onto a printed circuit board with a
MW split-ring resonator22 with a diamond loaded design resonance
frequency of 2.89 GHz confirmed by a S11 reflection measurement.
Microwaves were delivered from an external source (Stanford SG380
with Minicircuits ZHL-16W-43þ amplifier) at a 500 kHz width fre-
quency modulation at 33.3 kHz. For the magnetic field measurements,
we applied a MW drive with three frequency components separated by
the 14NV hyperfine frequency of fhf¼ 2.16 MHz to boost sensitivity.21

For optical detection, we used photodiodes (PDB-C160SMCT-
ND, Advanced Photonix), 15V battery reverse biased. The photodiode
responsivity was R532nm¼ 0.2A/W at 532 nm and R637nm¼ 0.37A/W
at 637nm. By using a small polarizing beam splitter and half-wave
plate, we sampled a fraction of the 532nm pump laser beam and
directed this onto a secondary, identical photodiode in a balanced
detection scheme in order to perform common mode rejection (CMR)
of pump laser technical noise. The resulting signal was passed into a
lock-in amplifier (Stanford Research 850), external to the sensor head,
locked to the MWmodulation frequency (33.3 kHz), with output digi-
tized by an external analog-to-digital converter (NI-DAQ 6221) allow-
ing precise detection of the ODMR spectrum. We consider that in an
updated design, these components could be readily incorporated in
the sensor head.

We optimized our setup by first measuring the DC photocurrent
Ipc directly using an ammeter from the primary photodiode on the dia-
mond as a function of pump laser power from 30 mW up to 0.5W.
We also measured the amplitude spectral density (ASD) of the
detected modulated (fm¼ 33.3 kHz) fluorescence signal using only the
primary photodiode and by CMR via balanced detection. This was
done by a fast-Fourier transform of a 1 s signal digitized at 125 kSa/s,
taking the average level up to the �3 dB filter roll-off imposed by the
lock-in time constant (1ms). The ASD as a function of Ipc can be seen
in Fig. 3 alongside the shot noise level, calculated from the DC photo-
current, and the electronic noise floor. We define the electronic noise
floor as the noise level from the detection electronics with zero pump
and ambient illumination. The single and balanced photodiode data
therefore include this electronic noise. The measurements demonstrate
the dominance of technical noise from the pump laser over all other
sources of noise. CMR of technical noise was able to reduce the noise
level by >�10 vs single diode detection. Using CMR, we were able to
obtain near shot noise limited fluorescence detection, the difference
being due to the limitations of our manual (optical) balancing scheme.
We measured photocurrent to scale linearly with pump power, indi-
cating better photodetection sensitivity at high power (due to the scal-
ing of shot noise with the root of laser power). Using maximum laser
power (0.5W), we then measured the ODMR spectrum from the dia-
mond. In order to resolve the 14NV hyperfine structure, we use a fixed
offset field �1mT from two rare earth magnets. The optical magnetic
resonance spectrum was recorded by sweeping the MW frequency,
measuring the modulated photovoltage using a lock-in amplifier. The

plotted spectrum in Fig. 4 arises from the deliberate permanent mag-
net alignment along one of the four h111iNV axes and clearly shows
the 14NV hyperfine splitting. By a linear fit to the ODMR spectrum,
we determine a slope of 25lV/Hz corresponding to 0.7 mV/nT
assuming a shift of 28Hz/nT. This slope was optimized by repeating
the ODMR spectrum as a function of MW drive power. The optimum
power prior to amplification was 4 dBm and �2 dBm for the main
and 2.16 MHz drive, respectively, giving�6W from the amplifier. We
note importantly no saturation of the ODMR contrast with laser
power, an issue that can limit NV sensor sensitivity.23 With the sensi-
tivity determined from the ODMR spectrum, we measured magnetic
sensitivity as a function of magnetic field frequency, again by fast-

FIG. 3. Mean amplitude spectral density of the optical signal over the 125 Hz sens-
ing bandwidth, plotted as a function of photocurrent, Ipc for a single photodetector
(the primary photodiode on the diamond), at 330 mW and 0.5W for two photodetec-
tors in a balanced configuration to reject common mode noise (with CMR). We also
plot the shot noise for a single detector calculated from Ipc ð�

ffiffiffi
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for CMR) and the
electronic noise floor.

FIG. 4. Optically detected magnetic resonance (ODMR) spectrum, recorded as a
function of MW drive frequency with CMR on. We observe the ms ¼ 0 $ þ1 elec-
tron spin transition and hyperfine splitting arising from 14NV. By a linear fit to the
slope of the ODMR spectrum, we determined the relation between signal voltage
and frequency shift to be 25 lV/Hz, from which we determined the magnetic field
sensitivity using the relation ceBz; assuming ce¼ 28 Hz/nT.
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Fourier transform of 1 s of digitized signal at 125 kSa/s. The magnetic
noise density spectrum is plotted in Fig. 5. We compare sensitivity with
CMR on and off and at MW drive frequencies of 2.905 GHz and 2.908
GHz, corresponding to the points of maximum (least) magnetic field
sensitivity as determined from the maximum slope (peak) of the ODMR
spectrum. We plot the ultimate electronic noise floor, defined by our
amplifier and analog-to-digital converter, located at� 2 nT=
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Hz
p

.
The amplitude spectrum shows a noise floor of � 150 nT=
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without CMR and �7 nT=
ffiffiffiffiffiffi
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p

with CMR turned on. This highlights
how essential rejection of laser technical noise is in diamond magne-
tometry. When magnetically sensitive, we observed peaks primarily at
50Hz and 150Hz. Such peaks were not observed when at a magneti-
cally insensitive drive frequency (2.908 GHz). These frequencies corre-
spond clearly to direct detection of the magnetic field produced by
nearby electrical transformers: the strong 3rd harmonic at 150Hz is a
frequency component of the transformer magnetic field produced by
magnetic hysteresis in the transformer core. Were we detecting spuri-
ous mains electrical noise, the 2nd harmonic at 100Hz would also be
strongly present. Peaks at 60Hz and higher harmonics were traced to
inbuilt components in United States-purchased equipment.

Based on the detected photocurrent, we calculate the total optical
power detected by the primary photodiode to be 3.6 mW. This corre-
sponds to an estimated shot noise limited sensitivity of � 3 nT=

ffiffiffiffiffiffi

Hz
p

.
The absorption cross section at 532nm for a single 14NV center is
reported24 to be rNV¼ 3.1� 10�15 mm2. Taking a NV density of
6.4� 1013 cm�3, a NV quantum efficiency of g � 0.9,25 and a propaga-
tion length inside the diamond of 6mm, the fluorescence power from
the ensemble is 0.53 mW at the maximum pump power (0.5W). This
is significantly lower than the measured fluorescence power of 3.6 mW.
This illustrates that the majority of the photocurrent is due to leakage
of pump light past the filter and into the photodiode. It also highlights
the minimal single pass absorption of the pump light by our diamond
with this level of NV defects. Such absorption can be enhanced by

boosting defect density via optimized doping, irradiation, and anneal-
ing or by use of an optical cavity around the diamond.25

Our current design has potential to be improved to subnanotesla
sensitivity and in compactness and size. The primary limitation of our
sensor head size was the internal focusing optics, which could be fur-
ther miniaturized. Increasing the NV concentration in combination
with 12C purification has been shown to improve ODMR contrast and
reduce linewidth.9 Leakage of pump light, in a wide range of incidence
angles, proved difficult to fully reject in our sensor using available
commercial filters. Further improvement in filter composition and
structure is required in this geometry. Moving the filter away from the
diamond surface to narrow the incidence angle of scattered pump light
would help, but at the expense of sensor miniaturization. An ideal filter
rejecting all pump light reduces the shot noise by approximately a fac-
tor of 2–3. Electronic balancing of the detection and CMR would
reduce our electronic noise floor. In the shot noise limit, simply
increasing laser power would improve sensitivity (3.3W pump power
has been demonstrated26). We note that our bandwidth is not imposed
by the physics of our sensor and could easily be increased in order to
detect higher frequency fields, limited only by relaxation time T�

2 . A
noise source not considered here is temperature variation, dependent
on heat dissipation and the local environment. It has been demon-
strated that such temperature effects can be efficiently corrected by
driving simultaneously at both the ms¼61MW resonances.27

Several recent efforts have been made to produce a miniaturized
NV magnetometer as an integrated package,18,19 with onboard light
and MW sources, of sensitivity in the 30–100 nT/
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range. We
show that to achieve subnanotesla level sensitivity may require pump
power of the order of several Watts for a millimeter-scale diamond
with a sufficiently large NV ensemble at currently achievable NV
defect densities and levels of material strain. This factor suggests that
having a sensor head(/s) into which laser and MWs can be coupled (a
setup common in, e.g., medical devices) may be preferable for high
sensitivity operation, since it may be difficult to generate enough
power at low electronic noise in an integrated package within the sen-
sor head.

The level of sensitivity we demonstrate in this work should per-
mit many new applications. We particularly highlight applications in
sensing of weak (nanotesla, picotesla scale) magnetic fields from bio-
logical sources, such as living tissue or samples in solution. This can be
difficult for alternative techniques, e.g., unencapsulated magnetoresis-
tive sensors, relying on electrical readout. Biocompatibility of diamond
allows high proximity with a sample, assisting field detection given the
rapid (cubic) drop in field strength with distance. Competing techni-
ques may need to be positioned relatively far (many millimeters) from
the sample. Of particular interest is sensing of bioelectric signals by
their magnetic field that cannot otherwise be easily accessed by electri-
cal probes (for example, magnetoencephalography of the brain) where
current magnetometers—superconducting quantum interference
(SQUID) devices or recently demonstrated atomic vapor cells28—are
expensive and cumbersome and have poor spatial resolution.

High spatial resolution in diamond NV sensors can be readily
achieved by imaging fluorescence with a camera and has been demon-
strated elsewhere in, e.g., geological samples29 and magnetic bacteria
to the micrometer scale.30 Biological signals are typically observed in
the hundreds of hertz to low-kilohertz frequency range, over which we
demonstrate excellent sensitivity in this work. Other low frequency

FIG. 5. Magnetic noise frequency spectrum at 0.5W pump power, plotted as ASD
in nT/

ffiffiffiffiffi

Hz
p

. We show the noise density without balanced detection (CMR off), with
CMR on and the detector magnetically sensitive (2.905 GHz) and insensitive (2.908
GHz). We also show the electronic limit (pump off). We observe a mean noise floor
of 7 nT/

ffiffiffiffiffi

Hz
p

when rejecting laser technical noise. We observe the same high fre-
quency peaks at 400-1 kHz on all data, from the power supplies and cooling fans.
Only when magnetically sensitive do we clearly observe 50/150 Hz peaks from
mains transformer field.
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magnetic signals of interest include diagnostics of mains power sys-
tems (transformers, motors) operating at DC or single/three phase
50/60Hz.

In conclusion, we have developed a diamond magnetometer with
a handheld sensing head, with a sensitivity of 7 nT/

ffiffiffiffiffiffi

Hz
p

and an ulti-
mate noise floor of 3 nT/

ffiffiffiffiffiffi

Hz
p

. We demonstrate robust, flexible sens-
ing using diamond NV centers which is not limited to fixed benchtop
applications. We discuss a route to achieving sub-nT/

ffiffiffiffiffiffi

Hz
p

sensitivity
through improvements in the NV-concentration, optical filtering, and
detection and by implementing pulsed measurement schemes.
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CHAPTER5
Optimal control of an

NV ensemble
5.1 Background

At the stage of the project after completion of the compact magnetometry measure-
ments presented in Chapter 4, we attempted to adapt the compact setup for mag-
netoneurography of a human median nerve to produce a proof-of-concept as earlier
demonstrated with SQUIDs [66]. We were ultimately unable to detect a signal due
to limited sensitivity, primarily because of the low NV concentration and poor coher-
ence times (due to 13C) of the diamond itself. Nevertheless, we were able to address
a large enough volume in the diamond that the necessary sensitivity could have been
in reach. In parallel with acquiring another diamond, we considered how to better
utilize the sensing volume of the diamond we had.

Sensing with either Ramsey magnetometry (cite) or pulsed ODMR [37] should
have a greater possible sensitivity than CW ODMR methods. Moreover, there are
sensitivity-enhancing techniques only available to pulsed measurements schemes such
as Double Quantum magnetometry [67] or other spin readout methods such as spin-
charge state conversion [34,35].

Pulsed sensing relies on discrete MW control pulses to apply π and/or π/2 rota-
tions around the Bloch sphere of the NV center electron spin as described in Chap-
ter 2.4. Because the degree of rotation on the Bloch sphere for a MW pulse of fixed
duration is a function of the MW power, the homogeneity of the MW field throughout
the NV ensemble volume is more critical for pulsed sensing than for CW ODMR. The
detuning ∆ can also vary throughout the ensemble in an inhomogeneous magnetic
bias field [65] or with strain in the diamond [5]. This is a key reason why pulsed
measurements are typically limited to smaller ensembles or single NV centers. In
this work, we aimed to make pulsed sensing techniques applicable to large ensembles
by using optimal control methods [26, 68, 69] to correct for the inhomogeneous ap-
plication of MW power and the greater inhomogeneity of resonance frequency that
followed from the large ensemble volume.
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5.2 Article
This work resulted in the following article titled “Optimal control of a nitrogen-
vacancy spin ensemble in diamond for sensing in the pulsed domain”, which we have
submitted to Physical Review B. It is currently under review. The article is presented
here as submitted followed by its Supplementary Information.



Optimal control of a nitrogen-vacancy spin ensemble in diamond for sensing in the
pulsed domain

Andreas F.L. Poulsen,1, ∗ Joshua D. Clement,1, ∗ James L. Webb,1, † Rasmus H.
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Technical University of Denmark, Kgs. Lyngby, Denmark
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Defects in solid state materials provide an ideal, robust platform for quantum sensing. To deliver
maximum sensitivity, a large ensemble of non-interacting defects hosting quantum states with long
coherence is required. Control of such an ensemble under realistic conditions is challenging due to
the spatial variation in both the defect energy levels and in any control field across a macroscopic
sample. In this work, we experimentally demonstrate that we can overcome these challenges using
Floquet theory and optimal control optimization methods to efficiently and coherently control a large
defect ensemble, suitable for sensing. We apply our methods experimentally to a spin ensemble of up
to 1 × 109 nitrogen vacancy (NV) centers in diamond in a 0.01 mm3 sensing volume. By explicitly
including the hyperfine interaction to the intrinsic 14N nuclear spin in the optimization, we design
shaped microwave control pulses that can outperform conventional (π-) pulses when applied to
sensing schemes, with a sensitivity improvement between 11 and 78%. Through simulation of the
ensemble dynamics, we shed light on the bandwidth limitations of large-ensemble reinitialization
and propose new routes for further improvement.

I. INTRODUCTION

Solid state defects constitute a promising platform
for quantum sensing, where purely quantum mechanical
properties such as superposition and entanglement can
be utilized to overcome the traditional limitations [1].
Particularly in semiconductors, where they can be con-
trollably created and manipulated, solid state defects can
host quantum states that are both long-lived and sen-
sitive to the environmental parameters. A typical and
extensively used defect system is the nitrogen-vacancy
(NV) center in diamond. It consists of a substitutional
nitrogen atom and an adjacent lattice vacancy, having
discrete electronic and nuclear spin states with long co-
herence times at room temperature [2]. The optical and
electronic properties of the negatively-charged NV cen-
ter (NV−) are highly sensitive to a range of parameters
including magnetic field [3–7], electric field [8], temper-
ature [9, 10] and pressure (strain) [11], and applications
include scanning-tip nano-microscopy [12, 13], nanoscale
nuclear magnetic resonance (NMR) and electron spin res-
onance (ESR) [14, 15] and in detection of biophysical sig-
nals [16–19], where robustness and high biocompatibility
of diamond makes it an ideal platform for sensing, even
within biological samples [20, 21].

The level structure of the NV−, illustrated schemati-
cally in Fig. 1(a) consists of electron spin triplet ground
3A2 and excited 3E states and metastable spin singlet
levels [5, 22–25]. After absorbing a green pump pho-

∗ These authors contributed equally to this work
† jaluwe@fysik.dtu.dk
‡ alexander.huck@fysik.dtu.dk
§ ulrik.andersen@fysik.dtu.dk

ton, an NV center can emit red fluorescence in the ra-
diative decay from 3E to 3A2. Nonradiative decays may
occur through non-spin-conserving singlet state transi-
tions, and this is more likely from the ms=±1 levels.
Therefore, the (bright) maximally fluorescent |ms=0>
state can be distinguished from the (dark) minimally flu-
orescent |ms=±1> spin states under green pump illumi-
nation, and the state is reinitialized into |ms=0> in the
readout process. In this work, we simplify the notation
of these spin states to |0〉 and |±1〉 respectively. The
spin states can be controlled coherently by applying res-
onant microwaves (MW), where the resonance frequency
depends on the external magnetic field via the Zeeman
effect and on the hyperfine coupling to the 14N or 15N
impurity atom’s nuclear spin [26]. Together, this allows
for optically detected magnetic resonance (ODMR) spec-
troscopy by sweeping the microwave frequency and not-
ing the decrease in fluorescence output when more pop-
ulation is transferred to the dark |±1〉 states, yielding
a typical contrast C of up to 30 % for a single NV [25]
or ∼1-2 % for a large ensemble without preferential NV
alignment [27]. By fixing the microwave drive frequency
on or close to one resonance, a level shift of ms=±1 rel-
ative to ms=0 caused by magnetic field, electric field or
local temperature can be detected.

Sensing using NV centers can be performed with a vari-
ety of measurement protocols, the simplest being contin-
uous wave (CW) with a constant intensity of microwave
and laser irradiation [23, 28]. Alternatively, by treating
one of the spin transitions (e.g. |0〉 ←→ |−1〉) as a two-
level quantized system [29], discrete laser and microwave
pulses can be used to coherently control and read the
spin state [25, 30], offering improvement over CW meth-
ods through increased contrast and reduced power broad-
ening of the resonance frequency. More advanced tech-
niques relying on coherent control such as Ramsey in-
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FIG. 1. Color online. (a) Simplified level diagram for a
single NV− center within the diamond bandgap, with the
ground state levels shown in detail. At zero magnetic field
there is a splitting of 2.87 GHz (ZFS) between the ms=0 and
ms=±1 states. At finite field B, the Zeeman effect shifts
the ms=±1 states in energy by γB. The ms=±1 states are
further split into 3 hyperfine levels (mI=0,±1) separated by
δI = 2.16 MHz. (b) Bloch sphere representation depicting
this ms = {0,−1} two-level system and the time evolution
and result vector for a shaped optimal control MW pulse ap-
plied to the initial ground state (|0〉, black arrow). Here we
show the time evolution for each of the hyperfine resonances
mI .

terferometry [31, 32] and Hahn echo-type sequences have
been demonstrated [33, 34], e.g. realizing single molecule
sensitivity in nanoscale diamond NMR experiments [35–
37].

Pulsed schemes are used in single- or few-NV sys-
tems mostly in confocal microscopy setups [38–40] as
well as arbitrarily large macroscopic spin ensembles [41].
Large ensembles are necessary to maximize bulk sensi-
tivity where spatial resolution is not required, since the
shot noise-limited sensitivity scales as 1/

√
N , with N the

number of defect centers [3]. The simplest method to co-
herently control an NV ensemble for sensing is to use
MW pulses with constant amplitude and phase, which
we refer to in this work as flat pulses. Ensemble NV
sensing performed with flat pulses suffers from nonuni-

form pulse operation. Due to differences in their local
environment caused by e.g. strain, bias field gradients or
the presence of 13C nuclear spins, different NV centers
in an ensemble will have different resonance frequencies
for the driven transition, resulting in a distribution of
detuning from the ensemble mean, commonly referred to
as inhomogeneous broadening. In addition, the near-field
microwave drive can vary in intensity across the ensem-
ble, depending on the antenna design and microwave cou-
pling to the diamond [42]. These deviations in resonance
frequency and field intensity respectively cause the mi-
crowave control pulse to be detuned for some of the NV
centers and to over- or under-rotate spins with respect
to a desired operation with a detrimental impact on the
resulting ensemble-averaged spin state.

When sensing is limited by the negative impact of these
ensemble inhomogeneities on flat microwave pulse perfor-
mance, shaped microwave pulses with time-varying phase
and amplitude can be used to compensate for the en-
semble inhomogeneities. Optimal control methods have
been used to select parameters for control pulses of var-
ious parameterizations to be maximally robust against
these inhomogeneities [33, 43–45]. Such optimal control
pulses have been used with an ensemble of NV centers
in a �1 µm3 volume for Hahn-echo measurements in a
confocal setup [33, 46], for wide field MRI measurements
applying an XY16 sequence to an ensemble in a volume
of ∼ 10 µm3 [47], to improve the robustness and tem-
perature sensitivity of the D-Ramsey scheme in nanodi-
amonds [48], to extend the coherence time of a single
NV by controlling the surrounding spins [49], and to im-
prove the accuracy of entanglement operations between
two proximal NV centers [50].

In this work, we demonstrate the use of shaped mi-
crowave pulses produced by optimal control methods
combined with Floquet theory to improve coherent con-
trol of an ensemble of ∼ × 109 NV centers in a vol-
ume of ∼0.01 mm3. This is a substantial increase com-
pared to ensemble volumes in the µm3 range in previous
demonstrations [47]. Our optimal control pulses are de-
rived including the hyperfine interaction with 14N nuclear
spins, and we experimentally show improved slope of the
ODMR contrast by up to 11% compared to a conven-
tional flat π-pulse sensing scheme. In the experiment,
we used off-the-shelf, optical grade diamond material,
and we demonstrate operation at low Rabi frequencies
smaller than the 14N hyperfine splitting, typical of those
achievable using low-power microwave amplification e.g.
in a portable sensor device [51]. Though we used NV
centers in diamond, our technique is widely adaptable to
a range of solid state systems where large ensembles of
two-level quantum systems can be realized.

The paper is structured as follows. In Section II, we
outline the basic methodology we use to construct and
generate our shaped microwave pulses using optimal con-
trol theory, including our derivation for explicitly includ-
ing the hyperfine interaction in the optimization algo-
rithm. We describe a number of key control parameters,
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the limits of which we discuss in Section II B. In Sec-
tion II C, we describe in detail our experimental setup
and methodology. In Sections III A and III B, we demon-
strate the use of optimized shaped pulses for ODMR
spectroscopy, compare to a conventional π-pulse scheme
using a flat microwave pulse, and analyze and discuss
the optical behavior and how this relates to the physical
dynamics of the NV ensemble.

II. METHODS

A. Optimal Control

Our optimal control algorithm maximizes a functional
that describes the desired transfer of one quantum state
to another [23, 33, 44, 45, 52]. We define our state trans-
fer functional as:

Fst =
∣∣∣〈ψf ∣∣∣Û(tp)

∣∣∣ψi〉∣∣∣2 , (1)

where Fst is the fidelity, of value between 0 and 1,
which describes how well the pulse transfers the system
from an initial state |ψi〉 to a final state |ψf 〉. A fidelity
of 1 represents a complete transfer to the desired state.
The influence of the pulse is described by the unitary
time evolution operator Û(tp), where tp is the control
pulse duration.

To represent the state transfer of an experimental en-
semble, we calculate Fst for each member of a repre-
sentative ensemble of defects with a specified range of
frequency detuning ∆̂ and relative control amplitude α̂.
These factors are set to be representative of the variation
across a real ensemble. The relative control amplitudes
αi represent the drive field inhomogeneity across the en-
semble, and each value is the ratio between the Rabi
frequency at which a given single defect is driven (due
to drive field inhomogeneity) and the Rabi frequency at
which the pulse is designed to drive the defects. The val-
ues of αi thus vary around unity across the representative
ensemble. The relative control amplitude only relates to
the changes in Rabi frequency caused by drive field inho-
mogeneity and does not include the effects of frequency
detuning on the Rabi frequency. The detuning is included
in the optimization separately via the ∆i values, which
represent the inhomogenous broadening. We thus assign
each defect in the representative ensemble a value of αi
and ∆i within the specified range ∆̂ and α̂ and seek a
pulse that maximizes the average fidelity of the entire
representative ensemble. Using this model assumes that
interaction between defects is minimal, such that each
defect can act as a single, isolated quantum system.

We assume our detunings ∆i follow a Gaussian distri-
bution centered at zero. The full width at half maximum
(FWHM) of this Gaussian distribution is set equal to half
of the width of the considered detuning range ∆̂. The αi
values are assumed to follow a flat distribution over the

considered range α̂. The weight of each defect in the rep-
resentative ensemble is thus equal to the weight of its ∆i

value. These are normalized such that the sum of the
weights of all defects in the representative ensemble is
equal to 1. We therefore also use a weighted average of
the fidelity. For numerical optimization, we use through-
out this work a representative ensemble of size 12x12 (12
values to cover the ranges ∆̂ and α̂, respectively). This
was based on a series of simulations of the performance
of pulses transferring state |0〉 to |−1〉 (Fig. 1(b)) opti-
mized using different representative ensembles. As shown
in Fig. 2, 12x12 more than ensures convergence of the fi-
delity, while minimizing computational time.
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FIG. 2. Color online. The simulated weighted average fi-
delity of optimal control pulses, Fst, optimized with differ-
ent ensemble sizes as a function of representative ensemble
size for three values of the maximum allowed Rabi frequency
Rlim. The pulses were optimized for ∆̂/2π = ±1 MHz de-
tuning, α̂ = 1 ± 0.1 amplitude variations and a duration of
tp = 1.85 µs with the indicated values of R = Rlim.

For the design of our shaped microwave pulses, we
use smooth optimal control. Here we choose a basis of
periodic functions with the same periodicity T and dis-
cretized frequency components, resulting in the shaped
pulses becoming smooth in time [43]. In this work, we use
a basis of sine functions with a fundamental frequency
determined by the pulse duration tp [33]. Smooth op-
timal control has the advantages over alternatives such
as gradient ascent pulse engineering (GRAPE) [53] that
the bandwidth and the individual frequency components
are known in advance, and the number of high frequency
components in the pulse Fourier spectrum is reduced,
making modulation in experiments less technically de-
manding [43]. Our smooth optimal control pulse has the
general form:

S(t) = I(t) cos (ωDt) +Q(t) sin (ωDt) , (2)
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FIG. 3. Color online. Plot of I(t) and Q(t) in units of Rabi
frequency for two optimal control pulses that were optimized
by including state transfer using all three 14N hyperfine levels.
The pulses were optimized for ∆̂/2π = ±1 MHz detuning and
α̂ = 1 ± 10 % amplitude variations with a duration of tp =
1.85 µs and a maximum allowed Rabi frequency Rlim of (a)
1.4 MHz and (b) 3.0 MHz.

where

I(t) =
Nf∑
j=1

2ajx sin (jΩf t) ,

Q(t) =
Nf∑
j=1

2ajy sin (jΩf t) .

(3)

Here, ωD is the central driving frequency, Ωf = 2π/(2tp)
is the fundamental frequency, Nf is the number of fre-
quency components, and the real ajk-values are control
amplitudes. The bandwidth of such a pulse is thenNfΩf .
The fundamental frequency is not related to the Rabi
frequency and purely serves to enforce the desired pe-
riodicity of T = 2tp. The ajk-values are, defined in
units of Rabi frequency R by which the jth frequency
component’s kth quadrature drives the spin. As an ex-
ample, Fig. 3 shows the in-phase and quadrature com-
ponents I(t) and Q(t) used to modulate the microwave
carrier for two of the specific pulses that we designed. In
our experiments, the microwave carrier has a frequency
ωD/2π ≈ 2.8 GHz corresponding to the splitting between
the ms=0 and ms=-1 levels of the NV center 3A2 ground
state with an applied bias magnetic field.

It has been previously shown[46] that the performance
of smooth optimal control pulses improves with increas-

ing Nf until it saturates for Nf ≥ 7. We use Nf = 10 for
all of our pulses to ensure that we are in the saturated
regime. This yields 20 different control amplitudes ajk
per shaped pulse, and these are the parameters that are
optimized by the control algorithm. The optimization is
carried out iteratively by stepping along the gradient of
the fidelity with respect to the control amplitudes with
a step size β. Starting with initial control amplitudes
ajk = ajk0, we compute the resulting Û(tp), Fst and
∂Fst
∂ajk

, before updating each control amplitude by adding
β ∂Fst
∂ajk

. This process is then repeated until Fst converges.
The choice of time-periodic basis functions yields a time-
periodic Hamiltonian that can be solved using Floquet
theory [43, 54, 55].

In this work, we extend previous methods to include
the effects of hyperfine splitting during the optimization.
Although we specifically calculate for diamond NV cen-
ters here, this method is generally adaptable and appli-
cable to any such level structure. The goal is to create
a shaped pulse that causes the state transfer |0〉 to |−1〉
simultaneously and with as high fidelity as possible for
each of the mI hyperfine levels. For an NV center ensem-
ble, this results in a higher ODMR contrast than would
be otherwise achievable by acting on only one mI level.
This approach is analogous to continuous wave methods
driving multiple hyperfine lines previously described in
the literature [56]. In order to explicitly account for the
hyperfine splitting, it is necessary to modify the expres-
sion for the Fourier components of the Hamiltonian that
make up the Floquet matrix. The Fourier components of
the Hamiltonian are generally defined as

Ĥn = 1
T

∫ T

0
exp (−inΩf t) Ĥ(t) dt, (4)

where T = 2tp is the periodicity of the Hamiltonian
and Ĥ(t) is the time-domain Hamiltonian that describes
the system to be optimized. The nitrogen in an NV can
be either 14N with I = 1 (highest natural abundance) or
15N with I = 1/2, yielding either three or two hyperfine
levels, respectively, as illustrated in Fig. 1(a). We assume
hyperfine interaction between the 14N nuclear spins and
the NV electron spins in the ensemble so that three hy-
perfine states are possible. The nuclear spins are assumed
to be in a thermal state such that all mI hyperfine lev-
els are equally represented in the ensemble. The ODMR
spectrum then contains three resonances separated by
δI = 2.16 MHz, corresponding to the three hyperfine res-
onances mI=-1,0,1. We also assume that the different
NV electron spins do not interact and that the ms=±1
levels are clearly split by a static magnetic bias field. A
single set of three NV centers that each correspond to one
of the hyperfine transitions can then be reasonably ap-
proximated as three independent two-level systems. The
drift Hamiltonian thus has the form
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Ĥ0 =
3∑
k=1

ω0,k

2 σz,k, (5)

where ~ = 1, ω0,k is the transition frequency of hyper-
fine transition k, and σz,k is a Pauli spin-z matrix that
is specific to transition k. Note that the above expres-
sion applies to any two-level defect with three equidis-
tant hyperfine resonances that fulfills the underlying as-
sumptions. The transition frequencies are related via
ω0,1 = ω0,2 − δI and ω0,3 = ω0,2 + δI . Given that the
states of the three two-level systems can be completely
described by a single vector of length 6, the σz,k-matrices
can also be represented by 6-by-6 matrices. (See Ap-
pendix A). The same is true of the σx,k- and σy,k-
matrices. The control Hamiltonian describes the inter-
action between the control pulse of the form given in
Eq. (2) and the three allowed transitions.

Assuming the control field is linearly polarized in the
x-direction, which is perpendicular to the NV defect axis,
the control Hamiltonian can be written in the form

Ĥc =
3∑
k=1

σx,k [I(t) cos (ωDt) +Q(t) sin (ωDt)] , (6)

and the total Hamiltonian thus reads

Ĥ(t) =
3∑
k=1

(ω0,k

2 σz,k

+σx,k [I(t) cos (ωDt) +Q(t) sin (ωDt)]) . (7)

We can simplify the rest of the calculations by working in
a rotating frame given by the unitary rotation operator

R̂ = exp
( 3∑
k=1

iωDtσz,k/2
)
, (8)

which will commute with every term in Ĥc except
for σx,k. More precisely, [σz,k, σx,k′ ] = 2iσy,kδk,k′ and
[σz,k, σy,k′ ] = −2iσx,kδk,k′ .

The Baker-Campbell-Hausdorff lemma thus allows us
to write

R̂ĤcR̂† =
3∑
k=1

(σx,k cos (ωDt) + σy,k sin (ωDt))

× [I(t) cos (ωDt) +Q(t) sin (ωDt)] . (9)

Using this expression and defining the detuning, ∆ =
ω0,2 − ωD, as the difference between the transition fre-
quency of the central hyperfine transition, ω0,2, and the
central driving frequency, ωD, we obtain the expression

Ĥ′ =
3∑
k=1

(
∆ + wkδI

2 σz,k

+ (σx,k cos (ωDt) + σy,k sin (ωDt))
× [I(t) cos (ωDt) +Q(t) sin (ωDt)]) , (10)

where w1 = −1, w2 = 0 and w3 = 1. Expanding by
using trigonometric relations, the above expression can
be simplified by using the rotating wave approximation
to eliminate the fast-oscillating terms

Ĥ′ =
3∑
k=1

(
∆ + wkδI

2 σz,k + I(t)
2 σx,k + Q(t)

2 σy,k

)
.

(11)
Combining Eq. (11) with Eq. (3) and inserted into
Eq. (4), the Fourier components of the Hamiltonian be-
come

Ĥn =
3∑
k=1

1
T

T∫
0

exp (inΩf t)
(

∆ + wkδI
2 σz,k

+
Nf∑
j=1

[ajxσx,k + ajyσy,k] sin (jΩf t)

 dt. (12)

The above expression can be further simplified by using
the exponential form of a sine and the integral form of
a Kronecker delta. Doing so yields the final expression
for the Fourier components of the Hamiltonian when the
effects of hyperfine splitting are taken into account

Ĥn =
3∑
k=1

(
∆ + wkδI

2 σz,kδn,0

+
Nf∑
j=1

1
2i [ajxσx,k + ajyσy,k] · [δn,j − δ−n,j ]

 . (13)

We use Eq. (13) in the construction of the Floquet ma-
trix for the computation of Û(tp) and ∂Fst

∂ajk
as part of the

update step of the optimal control algorithm. We include
the corresponding derivation for two hyperfine levels (15N
for NV centers) in the Supplementary Information. Con-
trol amplitude variations are included by multiplying the
control amplitudes ajx, ajy by the αi-value for the given
defect in the representative ensemble.

In order to ensure the optimization of our control am-
plitudes converges while remaining within experimentally
achievable limits, we include a penalty functional

Fpen = −ptp
∑
j,k

a2
jk (14)

in our algorithm, applied at each update step. The
penalty functional includes a specified penalty constant
p > 0 and scales with the control amplitudes. We opti-
mize using the gradient of the sum of the penalty func-
tional and the state transfer fidelity Ftot=Fpen+Fst. Af-
ter each update step, the maximum amplitude of the
optimal control pulse is computed in units of Rabi fre-
quency, and if it exceeds the maximum allowed Rabi fre-
quency Rlim, the penalty constant is increased by a step
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size ∆p. If the maximum amplitude of the optimal con-
trol pulse does not exceed Rlim, the penalty constant is
reduced by ∆p. Rlim is one of the inputs to the algorithm
and is limited by the maximum achievable experimental
Rabi frequency Rmax. This method also helps to prevent
the algorithm from remaining in local maxima compared
to optimizing without a penalty functional.

As a demonstration of the effect of explicitly including
all three hyperfine levels in the optimization, Fig. 4 shows
a series of simulated fidelity maps for a single NV sub-
ject to a flat π-pulse and optimal control pulses with and
without including the hyperfine components. The fidelity
of a |0〉 to |−1〉 state transfer is directly proportional to
the resulting ODMR contrast C since the contrast will
be maximal when all NV electron spins are transferred
to the |−1〉 state and minimal when left in the |0〉 state.
All three pulses are in the regime of Rlim < δI . It is
clear that the regular optimal control pulse has superior
performance for a single hyperfine resonance. However,
when considering the average of all three, the shaped
pulse optimized while taking the effects of hyperfine split-
ting into account is significantly better, albeit within a
narrower range of detuning. Fig. 4(f) indicates that the
optimal control pulse including the hyperfine splitting in
the optimization is capable of simultaneously performing
state transfer using all three hyperfine levels with high fi-
delity. The narrow range of high fidelity dropping rapidly
with detuning indicates that the optimal pulse will yield
high contrast when applied with drive frequency ωD/2π
close to any one of the three hyperfine resonances and low
contrast when applied off-resonance. This behavior natu-
rally translates to a high contrast and narrow resonance
linewidth and thus higher sensitivity to magnetic field.
As can be seen in Fig. 4(c,f), as α1 is increased, the |0〉
to |−1〉 fidelity (i.e. ODMR contrast) further improves
in the narrow range of high fidelity without significantly
broadening the range of high fidelity. Therefore, we ex-
perimentally apply our optimal control pulses at higher
MW power (i.e. greater α), selecting the power that re-
sults in the greatest ODMR slope.

B. Optimization Details

All of our pulses were made using an initial value of
the penalty constant p = 1 and ∆p = 0.05. They were
optimized to perform a state transfer from |0〉 to |−1〉.
We used 150 update steps for all of the optimizations,
as this was found to be sufficient to achieve convergence
of Fst. For the first 51 steps, the step size along the
gradient was kept constant at β = 0.007 and for the
remaining steps, the optimal step size was determined
using a line search. This was done to speed up the op-
timization without compromising the quality of the re-
sulting optimal control pulses. We designed pulses us-
ing different values of Rlim, tp and the ranges ∆̂ and
α̂ and tested them experimentally. We determined the
maximum achievable experimental Rabi frequency in our

setup, i.e. the upper limit on the maximum allowed Rabi
frequency Rlim ≤ Rmax = 3.2 MHz. We therefore consid-
ered optimal control pulses generated within a range of
0.8 MHz ≤ Rlim ≤ Rmax. The minimum value of tp nec-
essary to achieve improvements over a comparable flat
pulse was limited by the need to apply sufficient energy
to perform the desired state transfer. We set the lower
limit of tp to be at least twice the duration of a flat
π-pulse with Rabi frequency equal to Rlim. The maxi-
mum value of tp was limited by the T2 coherence time
of a single NV. Based on this, we defined a range of
tp to generate testable optimized shaped pulses for as
1.0 µs ≤ tp ≤ 5.0 µs.

Although the possible values of detuning ∆i are in
principle not limited, higher Rabi frequencies are re-
quired to compensate for higher levels of inhomogenous
broadening. Based on the considered values of Rlim, we
therefore used ∆̂ up to ±2 MHz. The possible values of
αi are similarly not limited in principle, but higher Rabi
frequencies are required to compensate for higher levels
of drive field inhomogeneity. We therefore chose to opti-
mize up to α̂ = 1± 0.2 relative control amplitude range.

Our initial ajk0 values were set using pseudorandom
numbers within a range sufficient to yield a maximum
Rabi frequency of the corresponding initial pulse R >
Rlim. This was done in order to ensure that the optimiza-
tion algorithm approached the region of allowed pulses
from the outside, so that pulses utilizing Rlim were con-
sidered. For this work, the initial Rabi frequency was 2.8
times greater than the maximum allowed Rabi frequency.

C. Experimental Setup

A schematic of our experimental setup is shown in
Fig. 5(a). We used an off-the-shelf, optical-grade dia-
mond (Element 6) with ∼ 0.5 ppb NV− concentration,
of dimensions 5x5x1.2 mm3. For this diamond, we mea-
sured a T ∗2 -limited linewidth of 0.75 MHz and determined
T1, T2 and T ∗2 times as 7.1 ms, 7.0 µs and 0.44 µs re-
spectively, with a maximum achievable and ensemble-
averaged Rabi frequency of Rmax = 3.2 MHz. A bias
field of 2.9 mT aligned along one of the [111] crystallo-
graphic axes was applied by fixed permanent magnets
in order to split the ms=±1 levels. We addressed only
the ms=0 −→ ms=−1 transition to use an effective two-
level system within the antenna’s resonance linewidth of
∼ 100 MHz.

The diamond was optically pumped using a 532 nm
solid state laser (DPSS, Cobolt Samba 1500). The lin-
early polarized beam was focused to a waist diameter of
≈ 120 µm and coupled into the diamond at the Brewster-
angle. We estimate a minimum ensemble size of 1× 109

NV centers in a volume of 0.01 mm3 within half of the
1/e2 beam waist. The peak pump laser power we de-
livered to the diamond was 500 mW. This resulted in
84 µW of red fluorescence escaping the front face of the
diamond as measured by a large detector, of which we
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FIG. 4. Color online. Simulated maps of the state transfer fidelity (Eq. (1)) from |0〉 to |−1〉 for a single NV (i=1) subject to
(a,d) a flat (π-) pulse, (b, e) an optimized shaped pulse and (c, f) a shaped pulse optimized while taking all three hyperfine
levels into account. The top plots (a, b, c) show the fidelity of the transfer experienced by the central hyperfine transition
while the bottom plots (d, e, f) show the average of the transfer fidelities for each of the three hyperfine levels. Each point in
the top plots is the fidelity for a single NV electron spin with the given values of α1 and ∆1. Each point in the bottom plots
is the average of the fidelities for three NV electron spins with the given value of α1 and transition frequencies detuned by ∆1,
∆1 + δI and ∆1− δI , respectively, from the driving frequency. The flat pulse has a Rabi frequency of 1.4 MHz, and the optimal
control pulses were both optimized using ∆̂/2π = ±1 MHz detuning, α̂ = 1± 10 % amplitude variation, Rlim= 1.4 MHz and a
pulse duration tp = 1.85 µs.

collected 9.1 µW with the avalanche photodiode (Thor-
labs APD120A) during measurement, producing an am-
plified analog voltage output Vfl sampled by an analog-
to-digital converter (ADC, Gage Octopus CS8300) at
50 MHz. We amplitude-modulated our pump beam us-
ing an acousto-optic modulator (AOM, Isomet 532C-4) at
fAOM = 2.6 MHz, allowing us to perform software lock-in
detection to minimize noise in the electronic readout. A
fraction of the pump beam was also sampled by a second
detector (Thorlabs PDA10A) to provide a reference Vref
for common-mode noise rejection and spin readout, as
described in the following section.

We generated the shaped optimal control MW pulses
using an arbitrary waveform generator (AWG, Tektronix
5000), in-phase/quadrature (IQ) modulating a Stanford
SG394 MW signal generator. The microwave output was
amplified (Mini-Circuits ZHL-16W-43-S+) and delivered
to the diamond using a near-field antenna based on a
square split-ring design [57, 58]. This antenna was de-
signed for uniformity of near-field intensity in a 5x5 mm2

region centered on the diamond with a resonance at

approximately 2.8 GHz. Our AWG also controlled a
switch (Minicircuits ZASWA-2-50DRA+) through which
the AOM modulation drive was passed, allowing the
pump laser beam to be both pulsed and amplitude mod-
ulated.

D. Pulse Sequencing and Readout

In our experiment, we measured the ODMR contrast
C, which corresponds to the transfer of electron spin pop-
ulation from |0〉 to |−1〉 by the preceding MW control
pulse. C is defined as the fractional change in fluores-
cence output in the initial period of a pump readout
pulse [29, 34, 59] and was measured across an ODMR
resonance feature by varying the microwave drive fre-
quency ωD. We measured this change in fluorescence
signal Vfl after application of either a shaped or flat mi-
crowave pulse, relative to the pump beam reference signal
Vref. We obtained C by integrating Vref − Vfl over a time
window tw=[0.3, 2.7 ms] from the start of each readout



8

AWG
fMW

ADC

Vfl

diamond
antenna

magnet

AOM *

aVref

IQ
trigger

flaser

(a)

time

time
Pl

PMW

PMW,n PMW,n+1

Pl,n−1 Pl,n Pl,n+1

(b)

tl

FIG. 5. Color online. (a) Schematic of our experimental
setup. The pump laser was modulated by the AOM, at
flaser = 2.6 MHz and controlled by the AWG. Microwave
pulses were delivered to the diamond using a near-field an-
tenna. The AWG provided IQ modulation to the signal gener-
ator to create the required control pulses. An ADC, synchro-
nized with the AWG, digitized the analog AOM modulation
signal, the signal from the APD that collected the diamond
fluorescence Vfl, and the signal from an amplified photode-
tector that collected a small amount of the pump laser Vref
balanced with Vfl. (b) Pulsed ODMR sequence as applied in
our measurements, showing the repeating sequence of pump
laser pulses Pl and microwave pulses PMW. This sequence was
repeated continuously by the AWG.

pulse and converting the result into absolute units by a
calibrated scaling factor (see Supplementary Information
for full details). This subtraction method allowed us to
reject both DC and higher-frequency (>kHz) common-
mode noise originating from the laser on the readout sig-
nal within the integration window. Importantly, it also
allowed us to measure the ensemble-averaged spin pop-
ulation transfer from every readout pulse, rather than
measuring a reference with no microwave pulse on ev-
ery second fluorescence readout, thus maximizing the
detection scheme bandwidth. From C we also derived
C

′ = 2π dC
dωD

, the change in contrast with microwave drive
frequency, which provides a measure of the strength of re-
sponse to environmental parameters, e.g. magnetic field
or temperature.

Implementing the protocol shown in Fig. 5(b), we ini-
tialized the NV ensemble into the |0〉 state using pump
laser pulse Pl,n−1 of duration tl. The pump beam was
then blocked by the AOM during application of mi-
crowave control pulse PMW,n of duration tp. A subse-
quent pump pulse Pl,n of the same duration tl was ap-
plied and the state read out via fluorescence emission.
This pulse also acted to reinitialize the system back into

|0〉, ready for the next PMW,n+1, Pl,n+1 pulses to control,
readout, and reinitialize the NV ensemble.

For direct comparison, we performed the same pulse
sequence with the identical readout methods for C us-
ing either optimally shaped microwave pulses or stan-
dard flat pulses. We used the same method for calcu-
lating C throughout our measurements, to ensure accu-
rate comparison between the different control pulses. To
compare the optimal control pulse to the best possible
flat pulse, we tested both single-frequency drive pulses
of the form cos(ωt) and three-frequency drive pulses of
the form

∑
n∈{0,±1} cos((ω + nδI)t+ φn) to drive multi-

ple 14N hyperfine transitions [60]. The latter were gener-
ated using the AWG with randomized phases φn for each
ADC acquisition to eliminate time-dependent artifacts.

III. RESULTS

A. Spin State Readout

Our previous measurements [61] demonstrated long op-
tical reinitialization times, requiring tens of milliseconds
of pump pulse duration to fully return the ensemble to
the |0〉 state along an approximately exponential decay.
For the comparably sized ensemble in the experiments
here, we observed similar exponential behavior with a
time constant of ≈1.4 ms.
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FIG. 6. Contrast as a function of pump laser pulse time tl.
Below 3 ms, tl is too short to sufficiently reinitialize the en-
semble, leading to a reduction in contrast C with shorter read-
out/reinitilization pump pulse duration tl.

Waiting tens of milliseconds per readout would severely
limit the bandwidth and sensitivity. We therefore first
performed experiments varying the pump pulse duration
to determine the shortest duration tl necessary to avoid
hysteresis effects, either from incomplete initialization
or reionization delay during the series of readout pump
pulses [62–64].

Fig. 6 shows the contrast C (recalibrated for each tl
as described in the Supplementary Information) as a
function of pump readout/reinitialization pulse duration
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FIG. 7. Raw fluorescence readout signal Vfl,n and relative
contrast Cr,n(t) = Vref,n − Vfl,n for the first (n=1) and last
(n=110) 3 ms readout pulse in a single acquisition of 110 read-
out sequences. No difference within the readout noise was
observed at this readout duration, as would be expected from
hysteresis effects arising from insufficient reinitialization of
the ensemble. Note that the artifact due to AOM switch-on
is not included in the integration window tw.

tl < 20 ms measured using an optimal control pulse. We
observed C to increase with increasing tl up to 3 ms,
which corresponds to an increasing number of NV centers
getting fully reinitialized into the |0〉 state. For tl > 3 ms,
we observed no further increase in C and negligible hys-
teresis effects in the fluorescence readout. The lack of
hysteresis is supported by Fig. 7, comparing the raw flu-
orescence and relative contrast of the first and last in-
dividual readout pulses in a 110-pulse acquisition using
tl = 3 ms.

We note that the fact we could achieve the same
hysteresis-free behavior and similar contrast for a short
3 ms pump pulse as for one much longer is somewhat sur-
prising given the Gaussian intensity profile of the pump
beam. Due to the Gaussian pump beam profile, the NV
centers at the low intensity periphery require more time
to reinitialize back into the |0〉 state. However, NV cen-
ters at the periphery also contribute far less to the overall
fluorescence output and hence contrast C than those in
the center of the pump beam. To demonstrate quan-
titatively how this mitigates hysteresis dynamics in our
experiment, we implemented a simple physical model of
the NV population dynamics.

Our model consists of a fixed NV density addressed by
a radially (Gaussian-) varying laser beam intensity, with
an NV at a distance r from the beam center receiving
a pump intensity I(r). We then solve a rate equation
model for all NV centers [65, 66], from which we estimate
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FIG. 8. Modelled variation in laser intensity I(r) and the
exponential decay time τR(I(r)) of the spin polarization as a
function of bean radius, relative to r0 the 1/e2 beam width.
τR increases substantially in the lower intensity periphery of
the beam. The four dashed lines show the profile radii chosen
to represent different regimes of beam intensity for hysteresis
simulation in Fig 9(a).
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FIG. 9. (a) Simulated dynamics of the ms=0 population for
NV centers receiving pump beam intensity I(r) at four dif-
ferent increasing values of r/r0 corresponding to Fig 8. The
simulation is initialized in P (|0〉) = 1 and evolved over ten se-
quences of reinitialization and ideal π-pulses as in Fig. 5(b).
(b) The ensemble-averaged |0〉 spin population from the sim-
ulation in (a), weighted by the radial distribution of fluores-
cence emission I(r)r. (c) The steady-state fluorescence con-
trast of the simulated ensemble as a function of tl.
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the relative fluorescence output and ensemble contrast
C. We implement microwave pulses in the simulation as
ideal π-pulses with instantaneous population transfer in
the rate model between levels ms=0 to ms=-1. Further
details of the implementation of the model are given in
the Supplementary Information.

In Fig. 8, we plot the estimated intensity I(r) and the
simulated reinitialization time τR(I(r)), the decay time
of the electron spin polarization of the NV centers at r, as
a function of beam radius r/r0, where r0 represents the
1/e2 beam width. From this simulation, it is clear that
the pump duration used in our ODMR measurements
tl = 3 ms corresponds to near complete reinitialization of
the ensemble in r < 0.5r0.

The simulated reinitilization behavior can be seen in
Fig. 9(a), plotting the time evolution of the |0〉 state
population for the first 10 readout/MW pulses of length
tl = 3 ms for 4 increasing values of r/r0. The steady-state
response to the microwave-laser sequence is reached when
the pump is able to fully return the spin population to
its value prior to the preceding microwave pulse. Below
optical pump saturation, the amount by which the pump
changes an NV center’s spin population within tl is lin-
ear with that NV center’s contribution to the ensemble
contrast C. For r/r0 < 0.5, the steady-state response is
reached immediately after the first microwave pulse, and
contrast is negligibly reduced by the short reinitialization
time tl = 3 ms. For r/r0 > 0.5, hysteretic behavior is
observed, where oscillations about the steady-state pulse
response decay within the first ∼ 10 pulses. Once steady-
state behavior is reached, the contribution to the ensem-
ble contrast of these peripheral NV centers is reduced
due to tl being shorter than their reinitilization time τR.
Due to their weak fluorescence, the hysteretic behavior of
the weakly-pumped NV centers outside of the r < 0.5r0
ensemble is a negligible part of the total signal, especially
when considering averages of more than 100 recordings.
This can be seen in Fig. 9(b), which shows the simulated
total fluorescence emission within r < 2r0 as a function
of time for readout pulses with duration tl = 20 ms and
tl = 3 ms respectively. For the shorter pulse duration, the
peripheral NV centers are not fully reinitialized, slightly
reducing the total fluorescence emission at the end of a
readout pulse and increasing the fluorescence at the be-
ginning even after the steady-state response is reached.
As the pump pulse duration tl is reduced below 3 ms, the
fraction of NV centers not fully reinitialized increases,
resulting in a sharp reduction of the ensemble contrast.
This behavior can be seen in Fig. 9(c) which qualitatively
replicates our experimental data in Fig. 6.

The ability to rapidly read and reinitialize in this man-
ner is an extremely useful result, since it gives a means
to adequately control and read a large NV ensemble with
pump pulses shorter than those required to fully reinitial-
ize every fluorescing defect center. This significantly in-
creases the measurement bandwidth for pulsed quantum
sensing schemes, while still addressing a large number of
defects as required to maximize sensitivity.

B. ODMR Using Shaped Optimal Control Pulses

Using our optimal control algorithm including all 3
hyperfine levels for 14N, we first generated a series of
shaped microwave pulses spanning the parameter space
of ∆̂ and α̂, the Rabi frequency limit Rlim, and the
pulse duration tp. Their performance was then tested
experimentally to explore the limits of these parame-
ters that yield high ODMR contrast C. We found that
extending ∆̂ and α̂ beyond ±1 MHz and ±10 % respec-
tively had negligible impact, likely indicating that the
real ensemble distribution in our setup was within these
ranges. Having found that control pulses generated with
parameters in the range of 1.1 MHz < Rlim < 2.4 MHz
and 1 µs < tp < 2 µs performed well, we experimentally
searched the parameter space by measuring the ODMR
spectrum using each shaped pulse and searching for the
maximum slope C ′ . We also applied each optimal con-
trol pulse with experimental Rabi frequencies through-
out the range Rlim ≤ Rexp ≤ Rmax. We found the
best-performing pulse generated with tp = 1.85 µs and
Rlim = 1.4 MHz, with similar performance from larger
Rlim up to 2 MHz at the same experimentally applied
Rexp. The modulation components I(t) and Q(t) for this
pulse are shown in Fig. 3(a), and the control amplitudes
are given in the Supplementary Information.

The ODMR spectrum measured using our best-
performing shaped control pulse is shown in Fig. 10(a).
By differentiating the spectrum, we also show the ODMR
slope C ′ in Fig. 10(b). Here, the largest possible slope is
desired, since this produces the maximum response and
highest sensitivity. For comparison, we plot in the same
figure the ODMR spectrum obtained using the best-
performing conventional flat three-frequency drive (π-)
pulse. We found the maximum slope to be 11 % higher
for the shaped optimal control pulse than for this con-
ventional flat pulse. Compared to the best-performing
flat single-frequency drive (π-) pulse, we measured a sig-
nificant improvement of 73 %. This corresponds directly
to the same factor of improvement in sensitivity.

We note that the durations of the flat and shaped
pulses that delivered maximum slope were significantly
different. This could potentially lead to the longer shaped
pulse achieving higher performance simply by deliver-
ing more microwave energy over its duration. To en-
sure this was not the case, we compared the optimized
pulse against single- and three-frequency drive flat pulses
over an extended parameter space of pulse durations
(up to tp = 1.35 µs) and applied Rabi frequency (up to
Rexp = Rmax). This data is shown in Fig. 11 for sin-
gle frequency drive and Fig. 12 for three-frequency drive.
As can be seen from these figures, the shaped microwave
pulse we generated using our optimal control methods
always produced an ODMR slope far higher than that
of any flat pulse. This was the case for any pulse length
or microwave power, with the optima for the flat pulses
reached well within experimental limits of Rmax and tp.

For our setup, we can estimate the shot-noise-limited
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the Supplementary Information.

sensitivity using the expression derived in Appendix B:

η ≈
√

2tRtl
γeC ′τR(1− e−tR/τR)

√
R0

, (15)

where we take into account the readout time tR (the du-
ration of the interval tw, in our case tw=[0.3,2.7 ms] ⇒
tR=2.4 ms), reinitialization time tl, reinitialization decay
constant τR, photon detection rate R0, electron gyromag-
netic ratio γe, and measured contrast slope C ′. For our
setup applying the optimal control pulse, we estimate
η ≈ 10 nT/

√
Hz. Although this is lower than state of the

art figures reported elsewhere for magnetic field sensing
with NV center ensembles, we note that our setup is not
optimized for sensitivity due to the standard-grade dia-
mond with low NV concentration we use and our APD
detector with small detection area.

IV. CONCLUSION

In this work, we demonstrate that a large ensemble of
solid state defects in a macroscopic sample can be ma-
nipulated and coherently controlled in a manner bene-
ficial for quantum sensing. We demonstrate this for an
ensemble of NV centers in diamond through the use of
shaped microwave pulses generated using Floquet theory
and optimal control methods. Due to the scaling of sen-
sitivity with the number of defects, such large ensembles
are key for quantum sensing applications, either using
NV centers or other solid state defects. Our overall NV
ensemble volume within half of the estimated Gaussian
beam width (≈ 1 × 109 NV centers in a ≈ 0.01 mm3

volume) was much larger than NV ensembles previously
studied and reported in the literature using optimal con-
trol methods [33, 43, 46–49].
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By including the 14N hyperfine interaction in our op-
timization, we demonstrate an 11 % enhancement in
ODMR slope with an optimally shaped pulse when com-
pared to the best alternative three-frequency drive flat
(π-) pulses and a 78 % improvement over standard single-
frequency drive flat (π-) pulses most commonly used for
coherent control in the literature. These enhancements
in ODMR slope are directly equivalent to the same fac-
tor of sensitivity improvement when used in an applied
sensing scheme. This significant improvement offers po-
tential for wider impact for DC/low-frequency sensing,
for example in precision measurement of slowly vary-
ing temperature where ensemble probe bandwidth lim-
itations imposed by the shaped optimal control pulse
and readout/reinitialization pulse durations would be less
constraining.

We estimate a shot noise-limited sensitivity of
10 nT/

√
Hz using our setup, while noting that neither

the diamond we use nor our detection apparatus were
optimized for sensitivity at this time. Our method is not
specific to the apparatus we used and could be applied
equally well to a sensitivity-optimized setup, for exam-
ple using an isotopically purified diamond with optimized
density of NV centers. By measuring the ODMR contrast
by referring to the signal from an additional photodetec-
tor, we were able to reject more of the laser technical
noise while maximizing the number of contrast measure-
ments we could achieve as compared to alternative time
domain noise rejection methods [34].

Through simulation of the readout and reinitialization
dynamics of the defect ensemble, we show that although
tens of milliseconds are required to fully reinitialize all
NV centers contributing to the fluorescence signal, a sig-
nificantly shorter pump pulse can address and reinitialize
the r < 0.5r0 ensemble which dominates the fluorescence.
By demonstrating consistent contrast measurements free
of hysteresis, we show that these NV centers can be ad-
dressed and controlled reliably. Further work is required
to fully understand the dynamics of the system caused by
the distribution of pump light in the diamond. However,
our measurements suggest the primary limiting factor on
the readout is the Gaussian shape of the pump beam,
hinting at considerable future improvement using a non-
Gaussian beam profile.

The shaped MW pulses we generate in this work likely
represent local maxima of performance in a wide param-
eter space. We consider it very likely that advances in
methods for optimization as well as experimental im-
provements could provide even better solutions in future.
A particular flaw is the assumption of a Gaussian distri-
bution for detuning and a flat distribution for control field
intensity, which possibly are poor representations of the
actual properties of our ensemble. A route forward may
be to use experimental feedback in the optimization algo-
rithm. This would be simplified by producing a more ho-
mogeneous microwave field, increasing the applied Rabi
frequency, and using alternative pump beam profiles to
improve uniformity of initialization and readout. Addi-

tionally, in this work we optimize for state transfer |0〉 to
|−1〉, which aims to maximize contrast C. By instead ex-
plicitly optimizing for the change in contrast in response
to the control field (the slope C ′ in our results above),
optimal control pulses with greater sensitivity could be
generated.

Our work represents an important step in the direction
of using optimal control and other techniques widely used
in nuclear magnetic- and electron spin- resonance exper-
iments to explore the physics of new systems suitable for
quantum sensing. These techniques can be adapted not
only to diamond but also to other defects in both bulk
and 2D quantum materials [67]. Using control pulses
shaped by optimal control methods, which could be ei-
ther microwaves, optical fields or some other means, of-
fers the best route to reach the ultimate T ∗2 -limited sen-
sitivity for any suitable quantum system.
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A. SPIN MATRICES

Below are shown the 6-by-6 matrix representations of
the Pauli spin matrices that are each specific to one of
the three nitrogen-14 hyperfine transitions.

σz,1 =

 1 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , σz,2 =

 0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (16)

σz,3 =

 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 −1

 , σx,1 =

 0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (17)

σx,2 =

 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , σx,3 =

 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

 (18)

σy,1 =

 0 −i 0 0 0 0
i 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , σy,2 =

 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −i 0 0
0 0 i 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (19)

σy,3 =

 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −i
0 0 0 0 i 0

 (20)
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B. ESTIMATION OF SHOT NOISE-LIMITED
SENSITIVITY

Shot noise-limited sensitivity estimation is typi-
cally [29, 60] similar to

η ≈ 1
γe
√
RC ′

with the electron gyromagnetic ratio γe, the photon de-
tection rate R and the (in this case empirically mea-
sured) ODMR slope C ′ = 2π dC

dωD
. This assumes that

each collected photon adds the same amount of informa-
tion, which is the case in a typical pulsed detection setup
where the readout time tR is much shorter than the to-

tal reinitialization time tl, and the contrast barely decays
during tR. We therefore include a factor representing the
mean information collected per photon

1
tR

∫ tR

0
e−t/τRdt = τR(1− e−tR/τR)

tR

with τR as the decay time. We additionally modify R for
clarity, in terms of the maximum photon collection rate at
a peak of the pump beam modulation R0, R = R0tR/2tl,
where the duration of the MW pulse is neglected, and
the 1/2 results from the amplitude modulation. In all,
we obtain

η ≈
√

2tRtl
γeC ′τR(1− e−tR/τR)

√
R0

.
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5.3 Supplementary Information



SUPPLEMENTARY INFORMATION

A. Measurement of Readout Contrast

As shown in the main text Fig. 5, we recorded lock-in demodulated fluorescence Vfl(t) and
balanced reference Vref(t) signals with each readout sequence. The balancing of the reference
signal was such that Vref was rescaled to equal the fluorescence at the end of the laser readout
pulse: Vref(tl) = Vfl(tl). We defined the readout contrast as Cr ≡

∑
t∈tw(Vref(t)−Vfl(t)) where

the difference between the curves was summed over the samples in a window of time tw,
which is bounded by the black dashed lines in Fig. 1(a). The bounds of tw were chosen to
avoid the artifacts of the AOM switching on/off combined with the lock-in demodulation.

The contrast in a pulsed NV center readout scheme is generally defined as the difference in
fluorescence output Vfl(t) with (MW on, Vfl,on(t)) or without (MW off, Vfl,off(t)) a preceding
microwave pulse (for example, see main text ref [28]). It can be reported as the area
between the fluorescence readout curves

∫
Vfl,off(t) − Vfl,on(t) dt in units that leave unclear

the fractional change in fluorescence corresponding to the spin population transferred by the
MW control pulse. The contrast can be reported in absolute units as the peak fractional
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FIG. 1: Illustration of measurement protocol using ∼10000 readout sequences averaged
after demodulation. We measure Cr as shown in (a) by summing over Vref − Vfl within the
window tw. The calibration procedure for converting Cr to C is shown in (b). Exponential
fits of Vref and Vfl are used first to define V ∗ref = lVref with l such that V ∗ref and Vfl converge

as t→∞. The fits are then used to evaluate C, the fractional difference at t = 0.
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difference between the fluorescence curves Cabs ≡ maxt
(
Vfl,off(t)−Vfl,on(t)

Vfl,off(t)

)
. We converted Cr

into a quantity comparable to Cabs by a calibration procedure shown in Fig. 1 and justify
this in the following steps.

Starting in the simpler case where tl is long enough to completely reinitialize the ensemble,
we take Vref(t) = Vfl,off(t). This is justified because the ensemble spin population is already
at equilibrium at the start of the ideal Vfl,off(t = 0) and remains so throughout the readout,
so the fluorescence measured in Vfl,off(t) is linear with the small fluctuations in pump power
throughout the pulse duration: Vref(t) = kVfl,off(t). If the pump pulse is sufficiently long,
the ensemble is reinitialized into the equilibrium spin state population (see Wolf et al. 2015,
citation in main text) by the time t = tl when the reference scaling is defined: Vfl,off(tl) =
Vref(tl) ⇒ k = 1. For complete reinitialization of the ensemble as shown in Fig. 2, we can
therefore use Vref(0)−Vfl(0))

Vref(0) = Cabs.
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FIG. 2: Example measurement of reference and fluorescence readout with complete
reinitialization of the ensemble using a long laser pulse tl = 20 ms.

With microwave pulses applied, we found our fluorescence signal Vfl to be dominated by
a decay constant of τR = 1.4 ms (see Fig. 1(a)). To fully reinitialize the weakly-pumped
peripheral NV centers with slower repolarization rates, a long readout time tl = 20 ms
was necessary. These peripheral NV centers contribute a minority of the fluorescence and
contrast, corresponding to a small contribution from the slower exponential decay terms
present in Vfl in Fig. 2. With a large majority of the contrast information obtained in the
first 3 ms, we used tl = 3 ms for a substantial improvement in bandwidth and sensitivity at
the expense of a small reduction in contrast. As we argue in the main text and show again
in Fig. 4, the peripheral NV centers contribute much less to C than their minority share
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of Vfl for the short tl = 3 ms and can therefore be safely neglected. Because we neglect the
peripheral NV centers, we consider only those within r < 0.5r0 to constitute the ensemble
we address experimentally.

With the short tl = 3 ms, the strongly-pumped NV ensemble within r < 0.5r0 with
τR ≈ 1.4 ms was nearly but not fully reinitialized. In this case, our argument that Vref =
kVfl,off holds, but k = 1 can no longer be justified because the spin population is not at
its equilibrium value at t = tl. To approximate Vfl,off , we therefore fit Vfl and Vref to single
exponential decays and defined V ∗ref = lVref, with l such that the long-time limit of the fit of
V ∗ref is equal to the long-time limit of the fit of Vfl as shown by the green traces in Fig. 1(b).
With the reference value of V ∗ref set to the equilibrium value that Vfl decays towards, we have
lk ≈ 1⇒ V ∗ref ≈ Vfl,off for the addressed ensemble. We defined the contrast C presented for
all contrast data in this work as the peak fractional difference between the exponential fits
of V ∗ref and Vfl

C ≡ V ∗ref(t = 0)− Vfl(t = 0)
V ∗ref(t = 0) .
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FIG. 3: (a) Calibration of scaling from Cr to C. The slope of this fit was used to scale all
Cr measurements to the presented C values. (b) Demonstration of the linear relationship
between the contrast C we present in all ODMR spectra measurements (using tl = 3 ms)
and the absolute contrast Cabs obtained with a fully reinitialized ensemble (tl = 20 ms).

We measured Cr and extracted C across a broad range of experimental contrasts achieved
by applying flat microwave pulses of varying power and length. All C values stated through-
out this work are measurements of Cr scaled by the slope of the calibration fit in Fig. 3(a).

Finally, in Fig. 3(b), we compare the contrast C for tl = 3 ms with the absolute contrast
Cabs obtained by using tl = 20 ms pulses sufficient to fully reinitialize the ensemble. We
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find that our method results in a small, linear decrease of the measured contrast due to the
loss of contrast from the beam periphery, making C a reliable comparative estimate of the
absolute total ODMR contrast Cabs.

B. Modelling of Readout Dynamics

Our model follows from these physically reasonable assumptions:
1. That there is a constant, fixed NV density spread throughout the diamond.
2. That our pump beam has a Gaussian lineshape and that it remains so during passage
through the diamond.
3. That we can therefore model our incident beam intensity I(r) as a Gaussian function,
scaled to the input laser power.
4. That we can use the same incident intensity throughout the diamond, by assuming our
impurity density is sufficiently low such that absorption will not significantly reduce intensity
deeper into the diamond (intensity constant with thickness).
5. Because we are interested in readout properties, coherences in the spin manifold can
be ignored. Therefore, the preceding MW pulse can be modelled as a population transfer
between the ms=0 and ms=±1 states with fidelity F .
6. That this transfer occurs instantaneously, or on a timescale where the microwave pulse
is significantly shorter than the laser readout pulse.
7. That the bias magnetic field is uniform, that the NV detuning varies spatially on a
scale larger than the beam width, and that the MW field and therefore F does not vary
significantly throughout the beam profile (it likely varies with the distance from the antenna,
which is compatible with the model).

We modelled our ensemble by dividing the area of the pump beam cross section within
our diamond into rings of radius r and width dr, with r=0 in the center of the pump
beam profile. We then considered all NVs within the volume contained in these rings Nr to
experience a laser intensity I(r) with a Gaussian profile. We simulated the NV dynamics
using an 8-level system (main text ref [65]), which contained the populations of the NV−

ms ∈ {0, 1} optical ground (N1 and N2) and excited (N3 and N4) states, the singlet shelving
states (N5 and N6), and the NV0 optical ground (N7) and excited (N8) states. The level
model follows the differential equations:
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dN1

dt = −(Wg +WMW )N1 +WMWN2 + k31N3 + k61N6 +WrN8/2
dN2

dt = WMWN1 − (Wg +WMW )N2 + k42N4 + k62N6 +WrN8/2
dN3

dt = WgN1 − (k31 + k35 +Wi)N3

dN4

dt = WgN2 − (k42 + k45 +Wi)N4

dN5

dt = k35N3 + k45N4 − k56N5

dN6

dt = k56N5 − (k61 + k62)N6

dN7

dt = WiN3 +WiN4 −Wg0N7 + k87N8

dN8

dt = Wg0N7 − (k87 +Wr)N8,

where kij are the decay rates given in the cited works. The green pump intensity Ig and
the cross-sections σj determine the rates Wj = σjIgλg/(hc) for the considered processes: Wg

green excitation of the NV−, Wg0 green excitation in the neutral charge state, Wi deioniza-
tion to the NV0 state, and Wr reionization to the NV− state. To simulate the reinitialization
dynamics of the ensemble, we first allowed the system to evolve under constant pump illumi-
nation I(r) until population equilibrium was reached, starting from the arbitrary initial con-
dition of P (N1) = 1 which did not affect the steady state. Then, relaxation was allowed to oc-
cur (N3 → N1, N4 → N2, N5 → N6, k61

k61+k62
N6 → N1, k62

k61+k62
N6 → N2, N8 → N7). To imple-

ment a microwave pulse of fidelity F , we instantaneously transferred NV spins between states
N1 and N2, with the output after the pulse N ′2 = FN1 + (1−F )N2, N

′
1 = FN2 + (1−F )N1.

We then continued to calculate the time evolution with the applied pump laser intensity, up
to a specified laser pulse length tl.

Here, we supplement the results of the simulation presented in the main text with two
findings. First, we consider how the ensemble behaves with realistic fidelity F < 1, since
we concluded from the main text Fig. 9(a) that the hysteresis of the beam periphery was
sufficiently small to be negligible in our measurements in the F = 1 case. In Fig. 4, we
compare the sequence behavior with ideal and sub-ideal fidelity. We find that for F < 1, the
NV centers in the beam periphery reach their steady-state pulse response earlier. The decay
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of the deviation from the steady-state response is hastened by the loss of information with
each imperfect π-pulse, which means the results presented in the main text are a worst-case
scenario for the hysteresis.
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FIG. 4: Simulated time evolution showing the change in hysteresis effects with fidelity
F = 0.8 (a) and F = 1 (b). Ten tl = 3 ms laser pulses separated by relaxation and

microwave pulses of the respective fidelity are simulated.
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FIG. 5: Simulated charge state dynamics in intensity regime of our measurements, using
the same color-matched r/r0 values as in the main text. In (a), the charge state is

initialized, and in (b), it is observed after relaxation and an electron spin flip,
demonstrating that charge state dynamics are negligible.
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The last consideration explored with our model was whether the NV charge state could
contribute to hysteresis effects. We performed two simulations and show their result in
Fig. 5. First the NV0 state population was tracked during evolution from the N1 state
towards equilibrium. Then relaxation and a F = 1 π-pulse was applied to represent the
largest possible change typical during the dark time in our measurements. From here, the
NV0 population was tracked under constant illumination. We found that the equilibrium
NV0 population was nearly independent of the intensity within the beam profile, and that
the deviations after changes in the spin state were only of the order 0.01% in amplitude. We
also note that the long timescales necessary to reach charge equilibrium under low intensity
are not predictive of slow effects in our measurements, because once the charge equilibrium
is reached, it remains near P (NV0) ≈ 0.2676 under all dynamics considered.
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C. NV ensemble characterization

We report the measured decay times of our NV ensemble to be T1 = 7.1 ms, T2 = 7.0 µs,
and T ∗2 = 0.44 µs, from measurements shown in Fig. 6 and 7. The relationship between MW
power and the ensemble-averaged Rabi frequencies we obtain is shown in Fig. 8.
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FIG. 6: T1 decay rate measurement. Instead of the MW pulse in the readout sequence
(main text Fig. 5(b)), the laser was left off for a time represented by the x-axis in (b).
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FIG. 7: Ramsey and Hahn echo measurements to retrieve the coherence times of
T ∗2 = 0.44 µs and T2 = 7.0 µs. The Ramsey measurement (a) was fit to

e−τ/T
∗
2 [cos(2πf1τ + φ1) + cos(2πf2τ + φ2) + cos(2πf3τ + φ3)] + DC to account for the

possible contribution of the three hyperfine resonances. The Hahn echo measurement (b)
was fit to a single exponential decay. We note that the increase in contrast for T < 5 µs in

(b) is typical of echo measurements we perform and exclude this region from the fit.
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FIG. 8: (a) Rabi oscillation measurements from which we determine the scaling between
the set power and ensemble average Rabi frequency. (b) Fit of the time to the initial peaks
Tp for each Rexp in (a), used to estimate the scaling from the set MW power PMW to Rexp,

where Rexp = Rmax

√
PMW/PMWmax, and Tp = 1/2Rexp.
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D. ODMR measurement details

In the main text, the best-performing 3fd pulse is presented for each MW power setting
(in terms of the Rabi frequency Ω). The full exploration of the measured parameter space
is shown here in Fig. 9. For each 3fd pulse attempted, a 2 MHz section of the ODMR
spectrum was measured, with an example shown in Fig. 10, where the error in the slope fit
was propagated from the error statistics we measured for repeated acquisitions. 2 MHz is
sufficient because the hyperfine resonances (separated by 2.16 MHz) are resolved, and the
region of greatest slope is the < 1 MHz range between the center resonance peak and the
adjacent dip. We fit this data to a double-Lorentzian (ignoring the low-frequency hyperfine
resonance peak outside of the measured spectral range)

C = a

1 +
(
f−f0
γ/2

)2 + b

1 +
(
f−f0−2.16MHz

γ/2

)2 + DC

and present the absolute maximum of the slope of the fit function C ′ = dC
df . The error prop-

agation is performed by numerically calculating the Jacobian relative to the fit parameters
J(C ′) =

[
∂C′

∂f0
, ∂C

′

∂γ
, ∂C

′

∂a
, ∂C

′

∂b
, ∂C

′

∂DC

]
at the frequency of the greatest slope, and multiplying by

the fit parameter covariance matrix ΣC, yielding

σ = JΣCJT .
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FIG. 9: Maximum ODMR slope of 3fd pulses across duration and power parameter space,
determined by fitting the ODMR spectrum as described in Fig. 10. The 3fd sensitivity

data shown in the main text are the most sensitive points for each column (Ω) shown here.
The colorbar shows the mean value and ±1σ shaded of the best optimal control pulse

sensitivity for comparison.
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FIG. 10: Measurement and fits for the best 3fd flat pulse. The error bars on the ODMR
data are the standard error of the mean for the number of acquisitions we average. The
slope data are simply the discrete differential of the ODMR data with propagated error

bars and are not used in fitting.
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Including the hyperfine transitions for 15N

The derivation of the Fourier components of the Hamiltonian for the two hyperfine levels
of 15N is similar to the one for the three hyperfine levels of 14N. We assume that the ms=±1
states are clearly split by a static magnetic bias field and no interaction between NV spins. A
single set of two NV centers that each correspond to one of the hyperfine transitions can then
be reasonably approximated as two independent two-level systems. The drift Hamiltonian
thus has the form

Ĥ0 =
∑
u

ω0,u

2 σz,u, (1)

where ω0,u is the transition frequency of hyperfine transition u, and σz,u is a Pauli spin-z
matrix that is specific to transition u. We choose to denote the transitions l and r to avoid
confusion with the terms used for the 14N hyperfine splitting. The states of the two two-level
systems can be completely described by a single vector of length 4, and the σz,k-matrices
can be represented by the following 4-by-4 matrices.

σz,l =
( 1 0 0 0

0 −1 0 0
0 0 0 0
0 0 0 0

)
, σz,r =

( 0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 −1

)
(2)

We again assume a single-frequency control field that is linearly polarized in the x-direction,
which is perpendicular to the NV axis, allowing the control Hamiltonian to be written in
the form

Ĥc =
∑
j

σx,u [I(t) cos (ωDt) +Q(t) sin (ωDt)] , (3)

where σx,u is a Pauli spin-x matrix that is specific to transition u. Similarly to the σz,u-
matrices, the σx,u-matrices can be represented by 4-by-4 matrices.

σx,l =
( 0 1 0 0

1 0 0 0
0 0 0 0
0 0 0 0

)
, σx,r =

( 0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

)
(4)

The σy,u matrices, which are Pauli spin-y matrices that are specific to transition j and will
be used later, can also be represented by 4-by-4 matrices.

σy,l =
(

0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

)
, σy,r =

(
0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

)
(5)

The total Hamiltonian thus has the form

Ĥ(t) =
∑
u

(
ω0,u

2 σz,u + σx,u [I(t) cos (ωDt) +Q(t) sin (ωDt)]
)
. (6)

12



We can simplify the rest of the calculations by working in a rotating frame at ωD. This is
done via the unitary rotation operator

R̂ = exp
(∑

u

iωDtσz,u/2
)

(7)

and in this frame, the Schrödinger equation can be rewritten as i d
dt
|ψ′〉 = Ĥ′ |ψ′〉 with

|ψ′〉 = R̂ |ψ〉 and the Hamiltonian

Ĥ′ = R̂ĤR̂† + i
∂R̂

∂t
R̂†, i

∂R̂

∂t
R̂† = −ωD2

∑
j

σz,j. (8)

The drift Hamiltonian is time-independent and the σz,u matrices all commute with each
other, resulting in

R̂ĤR̂† = Ĥ0 + R̂ĤcR̂
†. (9)

The unitary rotation operator will also commute with every term in Ĥc except for σx,u.
More precisely, [σz,u, σx,u′ ] = 2iσy,uδu,u′ and [σz,u, σy,u′ ] = −2iσx,uδu,u′ . The Baker-Campbell-
Hausdorff lemma then allows us to write

R̂ĤcR̂
† =

∑
u

(σx,u cos (ωDt) + σy,u sin (ωDt)) · [I(t) cos (ωDt) +Q(t) sin (ωMW t)] . (10)

If we insert the above expression in Eq. (8) and furthermore define the detuning, ∆ =
(ω0,l + ω0,r) /2 − ωD, as the difference between the average of the two hyperfine transition
frequencies and the central driving frequency, ωD, we obtain the expression

Ĥ′ =
∑
u

(∆ +muδI/2
2 σz,u+ (σx,u cos (ωDt) + σy,u sin (ωDt))

× [I(t) cos (ωDt) +Q(t) sin (ωDt)]
)
,

(11)

where δI = 3.03 MHz is the splitting between the hyperfine transitions, ml = −1 and mr = 1.
Expanding by using the trigonometric relations

cos (ωDt)2 = 1
2 [1 + cos (2ωDt)] , (12)

sin (ωDt)2 = 1
2 [1− cos (2ωDt)] (13)

and

cos (ωDt) sin (ωDt) = 1
2 sin (2ωDt) , (14)
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one finds

Ĥ′ =
∑
u

(∆ +muδI/2
2 σz,u + I(t)

[
σx,u

1
2 [1 + cos (2ωDt)] + σy,u

1
2 sin (2ωDt)

]
+Q(t)

[
σx,u

1
2 sin (2ωDt) + σy,u

1
2 [1− cos (2ωDt)]

])
,

(15)

which can be simplified by using the rotating wave approximation to eliminate the fast
oscillating terms cos (2ωDt) and sin (2ωDt).

Ĥ′ =
∑
u

(
∆ +muδI/2

2 σz,u + I(t)
2 σx,u + Q(t)

2 σy,u

)
(16)

Combining these equations with those in the main text yields:

Ĥn =
∑
u

1
T

T∫
0

exp (inΩt)
∆ +mu/2δI

2 σz,u +
Nf∑
j=1

[ajxσx,u + ajyσy,u] sin (jΩt)
 . (17)

The above expression can be further simplified by using the exponential form of a sine and
the integral form of a Kronecker delta. Doing so yields the final expression for the Fourier
components of the Hamiltonian when both of the 15N hyperfine transitions are taken into
account,

Ĥn =
∑
u

∆ +muδI/2
2 σz,uδn,0 +

Nf∑
j=1

1
2i [ajxσx,u + ajyσy,u] · [δn,j − δ−n,j]

 . (18)

E. Best Optimal Pulse Control Parameters

The control amplitudes, ajk, that define our best optimal pulse are given (in MHz) in
Table I. This pulse has a duration of 1.85 µs.
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TABLE I: The ajk-values of our best optimal pulse in MHz.

a1x a2x a3x a4x a5x

0.11388948 0.09884733 -0.00809110 -0.00177604 0.00918642

a6x a7x a8x a9x a10x

-0.088628 -0.11101755 0.00940646 0.11946038 0.11709449

a1y a2y a3y a4y a5y

0.09465327 0.08214617 -0.00670811 -0.00148568 0.00772306

a6y a7y a8y a9y a10y

-0.07368535 -0.09219246 0.00782588 0.09930594 0.09733759
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64 5 Optimal control of an NV ensemble

5.4 Revision
The only major issue raised by a reviewer was the lack of a field measurement to back
up our claim to improved magnetic sensitivity. We have remedied this by rebuilding
the setup and taking magnetic field measurements while applying a transient magnetic
field via wire coils placed on either side of the diamond sensor along the axis of the
bias magnetic field. A 17 Hz current was applied to the coils which produced a field
with ∼ 10 µT peak to peak amplitude. The MW drive frequency was set to the value
corresponding to the greatest slope in the ODMR spectrum, and time series of the
ODMR contrast were measured using both the optimal control pulse and the three
frequency drive pulse. The amplitude spectral density is shown in Fig. 5.1, where the
SNR is ∼ 19 % greater with the optimal control pulse.
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Figure 5.1. Amplitude spectral density for magnetic sensing with optimal control and
three frequency drive MW pulses with 17 Hz test field applied.



CHAPTER6
Beam shaping

6.1 Background
While investigating the use of optimal control methods for large ensembles, we col-
lected light from the periphery of the ensemble illuminated by the weak tails of the
laser beam’s intensity distribution. We noticed that this distorted the shape of the
fluorescence curve, which for a single NV center driven by low optical excitation in-
tensity would be a single exponential decay [70]. The weakly excited NV centers in
the beam periphery repolarized slowly enough that the time necessary to repolarize
them fully was nearly an order of magnitude longer than the optimal laser pulse time
for measuring the ODMR contrast [42]. Because they were polarized so little, those
peripheral NV centers did not contribute to the signal to noise ratio of the ODMR
measurement.

This led us to study how the intensity distribution of the laser beam could be
shaped to repolarize the NV ensemble at a more homogeneous rate. We found both
through measurements and through simulation that the SNR of the ensemble ODMR
contrast measurement could be improved with simple beam shaping techniques. We
used a different diamond for this work than for the previous two articles, which had
NV centers distributed throughout the diamond volume, because the beam shaping
optics we used only create a homogeneous intensity profile in an imaging plane. The
diamond used for this work has a 25 µm layer of NV centers with a higher but similar
regime of NV density ∼ 15 ppb.

6.2 Article
This study resulted in the following article, which we will soon submit roughly as
presented here and with the following Supplementary Information.



Beam shaping for homogeneous ODMR contrast readout in large-ensemble
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Quantum sensing with ensembles of solid-state defect centers such as Nitrogen-Vacancy (NV)
centers in diamond relies on optical excitation to readout and to repolarize the ensemble spin. Due
to ease of implementation, TEM00 beams with a gaussian-distributed intensity profile are often
used for optical excitation. We show in this work that the optical spin state readout of an NV
center ensemble addressed by a conventional TEM00 beam suffers from the inhomogeneity of beam
intensity distribution. We find through simulation that in the ideal case, a 26 % improvement in shot
noise-limited readout of the ODMR contrast can be obtained with a homogeneous beam intensity
distribution compared to a gaussian-distributed beam intensity. We use a flat beam shaper to
transform the TEM00 mode into a beam with a more homogeneous intensity distribution in the NV
ensemble and measure a 13 % improvement in the shot noise-limited ODMR contrast SNR.

I. INTRODUCTION

Nitrogen-vacancy (NV) centers in diamond are a
promising and versatile platform for solid state quan-
tum sensing at room temperature[1, 2]. They
are sensitive to temperature[3–5], pressure[6], and
electric[7] and magnetic[8–10] fields. Diamond is
biocompatible, which makes NV sensing particularly
interesting for biophysical measurements[11] such as
magnetoneurography[12], biomagnetic imaging[13], and
detection of metalloproteins[14].

Sensing with negatively charged NV centers can be
performed via optically detected magnetic resonance
(ODMR)[15]. After optical excitation, an NV cen-
ter probabilistically fluoresces with a spin-dependent
probability[16]. The nonradiative decay path is not spin-
conserving, and this results in an equilibrium ∼ 80 % spin
polarization under continuous illumination by green light
at moderate intensity[17]. An electron paramagnetic res-
onance can be driven by resonant microwave (MW) fields,
transferring spin population from the bright spin state
to the dark spin state, creating a contrast in the sub-
sequent fluorescence in proportion with the population
transfer[18].

For applications that can sacrifice spatial resolution,
sensing can be performed with an ensemble of NV cen-
ters, to improve the shot noise-limited signal to noise
ratio (SNR) of the combined fluorescence by scaling with√
N for N the number of addressed NV centers[19, 20].

Laser beams with a dominant TEM00 mode, which have
a gaussian distribution of intensity in the beam’s trans-
verse plane, are commonly used to optically excite NV
center ensembles, even in record-setting ensemble sens-
ing experiments[12]. The inhomogeneity of the beam in-

∗ jaluwe@fysik.dtu.dk
† alexander.huck@fysik.dtu.dk
‡ ulrik.andersen@fysik.dtu.dk

tensity results in differences throughout the ensemble in
the NV electron state dynamics during optical excitation,
which impairs the SNR of the ensemble ODMR contrast
readout by increasing measurement overhead[21].

I I

(a) (b)

FIG. 1. Color online. Example ensembles of NV centers op-
tically excited by (a) a laser beam with a gaussian intensity
profile and (b) by a beam with a homogeneous intensity pro-
file.

We simulated the readout and repolarization dynamics
for a pulsed ODMR contrast measurement over a range
of pulse duration and optical excitation intensity for both
an ensemble optically driven by a beam with a homoge-
neous intensity distribution and one driven by a conven-
tional TEM00 beam with a gaussian intensity distribu-
tion. The result predicts a 26 % improvement in ODMR
contrast SNR with the homogeneous intensity distribu-
tion. We measured the ensemble ODMR contrast over a
similar parameter range with both a conventional TEM00

beam and with a shaped beam with relatively more ho-
mogeneous intensity as depicted in Fig. 1. There was
a qualitative match to the simulated results and a 13 %
improvement with the more homogeneous beam shape.

II. METHODS

A. Setup

Our setup shown in Fig. 2 used a 532 nm 1.5 W laser to
optically excite the NV center ensemble, both to readout
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FIG. 2. Experimental setup for beam shaping and fluores-
cence collection in the measurement of ODMR contrast.

and to polarize the NV center spins. The laser beam was
switched by an acousto-optic modulator (AOM) with the
first order AOM mode selected by a pinhole. The pin-
hole also spatially filtered the transverse profile, leaving
a beam dominated by the TEM00 spatial mode with a
gaussian intensity profile in the far field transverse plane,
throughout this work referred to as a gaussian beam.

After the pinhole, the beam was expanded and colli-
mated with a 4 mm diameter. An Eksma Optics GTH-
4-2.2FA flat-top beam shaper transformed the 4 mm
TEM00 beam into one which created a more homoge-
neous intensity distribution in the image plane of a sub-
sequent lens. The beam shaper was mounted in the beam
path on a flip mount, allowing either the original gaussian
beam or the flat shaped beam to be used. The beam was
finally focused onto the diamond using a lens with a fo-
cal length of 25 mm, which was mounted on a translation
stage to allow for adjustment of the gaussian profile spot
size in the plane of the NV center layer in the diamond.
π rotations of the NV center electron spins from the

bright state to the dark state were induced by MW pulses
delivered by a square split-ring resonator[22] designed to
ensure uniformity of MW field intensity throughout the
ensemble. Fluorescence was collected from the back of
the diamond, separated from the laser beam by both a
dichroic mirror and a long-pass filter. For ODMR con-
trast measurement, a photodiode (PD) was placed in the
image plane of the focused fluorescence as depicted in
Fig. 2. For spatially imaging the beam profile, a charge-
coupled device camera (not shown) was used in place of
the PD to image the NV center ensemble’s fluorescence.

The diamond used in our setup has a 25 µm layer with a
∼15 ppb density of NV centers. The diamond was grown
by CVD and isotopically purified with 12C.

B. Readout

The experimental goal of this study was to characterize
the consequence that the optical excitation beam inten-
sity distribution has on the readout of ODMR contrast in
a finite measurement time. It was necessary to measure
over a range of pulse duration tl and intensity I regimes
to ensure that the optimal parameters were used for each
optical excitation beam shape and to validate that our
simulation results describe the setup behavior across the
parameter space.

We defined the measured ODMR fluorescence contrast

Cm,f (t) in terms of the measured fluorescence signals
Vb(t) and Vd(t) of the NV center ensemble prepared in the
bright and dark spin state respectively. We used the pro-
tocol shown in Fig. 3(a) to measure Vb(t) and Vd(t) across
regimes of tl from much shorter to much longer than the
repolarization time. We continuously applied readout cy-
cles consisting of a (MW control pulse / equivalent delay)
followed by a laser pulse of duration tl, which produced
the fluorescence measured in the signal (Vd / Vb). For
long tl, the spin state can be considered well-initialized
at the end of every laser pulse, having reached the equi-
librium spin polarization into the bright state, which was
then either rotated into the dark state by the MW control
pulse or preserved during the equivalent delay. For short
tl, the ensemble-averaged spin polarization did not reach
its equilibrium by the end of each laser pulse, leaving a
partial memory of the previous spin state preparation.
Therefore the spin initialization differed between Vb and
Vd for short tl. We included a renormalization in the def-
inition of Vb such that Vb(tl) = Vd(tl) and waited for a
sufficient number of readout cycles to reach the steady-
state response (i.e. the fluorescence of the ith readout
differs from the (i− 1)th only by noise) before recording.
The fluorescence contrast Cm,f (t) ≡ Vb(t)− Vd(t) there-
fore captured the difference in the fluorescence readout
that followed from how much the ensemble-averaged spin
state was changed by the MW control pulse immediately
preceeding the readout, which was diminished by the in-
complete repolarization in the regime of short tl.

C. Ensemble repolarization model

We simulated NV center repolarization dynamics using
an 8-level rate equation model adapted from [17, 23] with
rates extracted from[24–27]. The model includes the 3A2

and 3E states for ms=0 and ms=-1, the shelving states
of the nonradiative decay path, and the NV0 ground and
excited states. A level diagram depicting the model and
technical details of the implementation are presented in
the Supplementary Information. We used an ordinary
differential equation (ODE) solver to solve the evolution
of the level populations during optical excitation, and
the resulting fluorescence was calculated from the popu-
lations of the fluorescing states. To simplify the simula-
tions of readout and repolarization without loss of gener-
ality, the relaxation and the optional MW control pulse
between laser pulses were implemented as single-step lin-
ear operations on the system level population vector N .
The relaxation operation transferred all population from
the excited states to ground states in proportion with the
relative decay rates of the available decay paths. The
MW control pulse operation transferred population be-
tween the bright and dark spin states with a linear con-
trol pulse fidelity parameter F , where F = 1 resulted in
mirrored populations compared to the input, and F = 0
resulted in unchanged populations.

We used the simulation protocol shown in Fig. 3(b) to
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FIG. 3. (a) Measurement protocol for Vd and Vb. The time-
resolved fluorescence output Vi(t) from laser pulses Pl,i were
recorded and averaged, i.e. V(d,b)(t) ≡

∑n
i=1 Vi(t)/n. (b) Sim-

ulation protocol for Sd and Sb. The system level population
vector N (t) was evolved from arbitrary initial conditions by
an ODE solver throughout the initial laser pulse Pl,0. Then a
linear relax operation was applied, followed by a MW control
pulse operation in the case of Sd. The subsequent evolution
under optical excitation was solved, and the procedure was re-
peated until the condition c ≡ (Ni(t)−Ni−1(t))/Ni(t) < 1 %
was met for all t. S(d,b)(t) is the simulated fluorescence
output Fi(t) of the last Ni(t) with normalization such that
Sb(tl) = Sd(tl).

produce Sd(t) and Sb(t), the simulated fluorescence sig-
nals after dark and bright spin state preparation respec-
tively, analogous to Vd(t) and Vb(t). Each NV center in
the simulated ensemble was initialized with the equilib-
rium NV0 ground state population with the remainder in
the NV−1 3A2 ms=0 state[28, 29]. Then the ODE solver
was used to evolve its level population vector N under
optical excitation with intensity I for a duration tl. The
relaxation operation (followed by the MW control pulse
operation for Sd) was applied to the output N at the
end of the laser pulse. The resulting N was taken as the
initial condition for the ODE solver in a subsequent laser
pulse, and the simulated readout cycle repeated until the
steady-state was reached, defined by N changing by less
than 1 % for all time steps. This eliminated dependence
on the arbitrary choice of initial state and any potential
spin memory due to short tl. As with Vb, Sb was defined
with a renormalization such that Sb(tl) = Sd(tl) so that
the contrast Cs,f would represent the change in fluores-
cence caused by the last MW control pulse, even for short
tl. Because the NV centers in our diamond are oriented
evenly along the four crystallographic axes and we only
apply MW control pulses those aligned along one axis[15],
we included a factor of 4 in the definition of the simulated
fluorescence contrast: Cs,f (t) ≡ (Sb(t)− Sd(t))/4.

D. Contrast figure of merit

We consider a general case where the goal is to max-
imize the signal to noise ratio (SNR) of a measurement
of the ensemble spin state via the ODMR contrast with
repeated readout sequences in a given total measure-
ment time. The signal consists of the detected fluo-
rescence V (t) which must lie between Vb(t) and Vd(t)
and therefore has a dynamic range equal to Cm,f (t).
When shot noise-limited, the noise term is linear with√
V (t) ≈

√
Vb(tl)[19, 30], leading us to define the shot

noise-scaled contrast Cm,s(t) ≡ Cm,f (t)/
√
Vb(tl).

The SNR of the measurement over the entire pulse
duration as a whole is linear with the total area encom-
passed by the contrast signal divided by the integrated
noise. For a cumulative measurement over an integer
number N of readout pulses with total duration tf ≈ ntl,

SNR ∝
∫ tf
0
Cm,f (t) dt√∫ tf
0
Vb(tl) dt

=
tf

1
tl

∫ tl
0
Cm,f (t) dt√
tfVb(tl)

(1)

where the measurement overhead for relaxation and ap-
plication of MW control pulses is ignored. For a given
tf , the SNR is maximized by maximizing the shot noise-
scaled mean contrast

Cm,s ≡
Cm,f√
Vb(tl)

=
1
tl

∫ tl
0
Cm,f (t) dt√
Vb(tl)

(2)

With limited laser power, there is a tradeoff between
per-NV contribution to Cm,s and the total number of
NV centers N the beam is spread over. In the case of an
ideal homogeneous beam profile, where each addressed
NV center is optically driven with the same intensity,
the shot noise-scaled mean contrast can be expressed in
terms of the individual NV fluorescence contrast C∗m,f (t)
and individual NV contribution to fluorescence readout
voltage V ∗b (t)

Cm,s =
NC∗m,f√
NV ∗b (tl)

(3)

We consider the approximation that the fluorescence in-
tensity is linear with optical excitation intensity, N ≈
α/V ∗b (tl), for an arbitrary factor α including laser power
and various experimental efficiencies. Then we aim to
maximize

Cm,s ≈
C∗m,f

√
α

V ∗b (tl)
∝

C∗m,f

V ∗b (tl)
(4)

In short, the best SNR of an ODMR contrast readout
with a fixed laser power is achieved by maximizing the
fractional (unitless) mean contrast of each NV center
C∗m,u ≡ C∗m,f/V

∗
b (tl).

We show in the Supplementary Information that the
pulse duration and intensity which maximize Cm,u also



4

maximize Cm,s for optical excitation with the gaussian

beam. We therefore use Cm,u as the figure of merit to
indicate performance of the ODMR contrast measure-
ments, and the analogously defined Cs,u ≡ Cs,f/Sb(tl)
for ODMR contrast simulations throughout this work.
The various defined contrast terms are summarized in
Appendix A.

III. RESULTS

A. Beam profile measurements
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FIG. 4. Fluorescence intensity distribution for optical exci-
tation with (a) a flat shaped beam and (b) a gaussian beam.
The area A(Ii) is proportional to the number of pixels corre-
sponding to the intensity bin Ii. The insets show the respec-
tive fluorescence images with the red boundary noting the
ensemble size. The red dashed lines mark the ensemble cutoff
intensity.

We characterized both the gaussian and flat shaped
optical excitation beam profiles by imaging the ensem-
ble fluorescence onto the camera. In Fig. 4, we show
histograms of the distribution of the optical excitation
beam intensity over the area in the NV center layer in
the diamond. These were created from the ensemble flu-
orescence images shown in the insets of Fig. 4 taken with
reduced laser power, under the assumptions that the flu-
orescence intensity was linear with the excitation beam
intensity, and that the spatial distribution of excitation
beam intensity was independent of the total set power.

We neglected the lowest intensity pixels in the fluores-
cence images due to weak background from stray light
and ignored Fresnel reflections on the diamond surfaces.

To compare the sizes of the ensembles optically excited
by different intensity profile shapes, we defined a met-
ric for the intensity below which NV centers are driven
weakly enough to be neglected. Using both intensity dis-
tributions shown in Fig. 4(a,b), we simulated the ODMR
contrast measurement of a representative ensemble of NV
centers with individual intensities Ii corresponding to the
intensity bins, and we weighted their contribution to the
ensemble fluorescence according to the area covered by
the pixels in each intensity bin A(Ii). The cutoff inten-
sity was defined by starting with the fluorescence S(b,d)(t)
from the brightest intensity bin, then including the flu-
orescence from subsequently weaker intensity bins until
the ODMR contrast of the included fluorescence reached
above a threshold fraction of the total ODMR contrast
Cs,f . The intensity of the last included bin is the cut-
off intensity, below which NV centers are not included in
the ensemble. Further details of the ensemble size def-
inition are available in the Supplementary Information.
The areas of the NV center ensembles are 630 µm2 and
1600 µm2 respectively when optically excited by the flat
shaped beam and by the gaussian beam with the spot size
yielding the greatest Cm,u at the maximum laser power.

B. Simulation
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FIG. 5. Simulated fluorescence of an NV center prepared in
the bright spin state Sb(t) and in the dark spin state Sd(t)
with the fluorescence contrast Cs,f (t) shaded in black for (a) a
short tl, (b) the optimal tl, and (c) a long tl for the simulated
intensity of 1 MW/m2.

Through simulations of our readout protocol, we found
two key ways that the inhomogeneous intensity profile
of the gaussian beam impairs the ODMR contrast SNR.
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The first is that for any given intensity I, there is an
optimal pulse duration topt(I) to maximize a single NV

center’s mean fractional contrast C∗s,u. A given measure-
ment uses the same tl for the whole ensemble, so tl differs
from topt(I) for most NV centers in an ensemble opti-
cally driven by a beam with an inhomogeneous intensity
profile. In Fig. 5, we illustrate how a suboptimal tl re-
duces C∗s,u in the low intensity regime I < 100 MW/m2

where the decay from the 3E states is much faster than
the de-ionization, and the charge state populations re-
main constant. For the short tl < topt(t), the initial
contrast C∗s,u(0) is reduced because there is insufficient
time to approach the polarization equilibrium. For the
long tl > topt(t), measurement time is used inefficiently
after repolarization is nearly completed.

In Fig. 6, we show a map of C∗s,u over both the low
and high intensity regimes and the relevant range of tl.
In the low intensity regime, the same maximal C∗s,u can
be reached independent of I as long as tl = topt(I). In

the high intensity regime, a global maximum of C∗s,u is
reached for a particular I due to charge state dynam-
ics. This maximum occurs at 230 MW/m2 in our simu-
lation, which assumes the absorption cross section σg to
be 3.1× 10−21 m−2 as estimated in [27].

Finally, in Fig. 7, we show a comparison between a
simulated ensemble optically excited by a beam with a
flat intensity profile and one with a gaussian intensity
profile in the range of I and tl near the global maxima.
This result predicts that the best ensemble mean ODMR
contrast Cs,u achievable with an ideal flat beam profile is
26 % greater than that achievable with a gaussian beam
profile.
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FIG. 7. Simulated mean contrast over a parameter space of
intensity and pulse duration near the optima for ensembles
optically excited by a flat shaped beam or a gaussian beam.
The intensity specified by I0 is the peak intensity in the center
of the beam profile. The red dot indicates the maximum Cs,u

of the gaussian-excited ensemble.

C. ODMR contrast measurements

We measured the ensemble mean fractional ODMR
contrast Cm,u of an NV center ensemble addressed by
a beam with a gaussian intensity profile with 500 mW of
optical power. To vary the intensity, we moved the focus-
ing lens by its translation stage to increase the spot size
in the 25 µm thick NV center layer. In Fig. 8, we show
Cm,u measured over a parameter space of intensity I0
and pulse duration tl near the global optima. The peak
intensity I0 in the center of the gaussian beam profile was
estimated for each lens position by fitting the gaussian
beam waist in images of the ensemble fluorescence.

The flat-top beam shaper only produces the appropri-
ate intensity distribution in the image plane of the fo-
cusing lens, so the spot size could not be dynamically
adjusted for the flat beam profile as it was for the gaus-
sian beam profile. In Fig. 9(a), we show Cm,u of an NV
center ensemble addressed by a beam with the flat shaped
profile over a parameter space of I and tl, where I was
adjusted by changing the total laser power. The maxi-
mal Cm,u is found near the maximal optical excitation
power of 500 mW, validating that the spot size resulting
from the chosen focal length is appropriate for the avail-
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FIG. 9. Mean fractional contrast measured over the param-
eter space of optical power and pulse duration with the en-
semble addressed by the flat shaped beam.

able laser power. The globally maximal ensemble mean
ODMR contrast obtained using the flat shaped beam for
optical excitation is 13 % greater than that obtained us-
ing the gaussian beam, which is made visible by both
Figs. 8 and 9 having the same colorbar scale.

IV. CONCLUSION

The signal to noise ratio of the spin readout of a large
ensemble of NV centers is limited by the available op-
tical excitation power. It is optimized by using an op-
tical intensity near the boundary of the optical satura-
tion regime with a corresponding pulse duration. With
a gaussian laser beam, the intensity is inhomogeneous
throughout the ensemble, and the optimal pulse dura-
tion for the ensemble is inappropriate for the NV centers
in the extrema of the intensity distirbution, reducing the
SNR. Our simulations predict a 26 % improvement with
an ideal flat shaped beam compared to a gaussian beam,
and empirically we measured a 13 % improvement with a
simple flat-top beam shaper.

The optimal ensemble size is defined such that the
available laser power is distributed over an area that re-
sults in the optimal intensity being applied. We found
that the optimal ensemble size was larger for the gaus-
sian beam than for the flat shaped beam by a factor of
∼2.5 in area.

Because it follows from optical spin repolarization dy-
namics, this result is generalizable to pulsed sensing
schemes with other state preparation steps, such as Ram-
sey, Hahn-echo or other control pulse sequences applied
to large ensembles where total available optical power is
the limiting resource.

A. LABELED CONTRAST QUANTITIES

Cx,f Fluorescence contrast (V)

Cx,s Shot noise-scaled contrast (
√

V)
Cx,u Unitless (fractional) contrast (%)
Cm,y Measured contrast
Cs,y Simulated contrast
C∗x,y Individual NV center contrast

Cx,y mean contrast 1
tl

∫ tl
0
Cx,y dt
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I. SIMULATION

N3
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Pump rate Γi

Relaxation rate ki,j

Relax operation

π π-pulse operation

FIG. 1. Full 8-level model used in simulations. The ODE solver considering the time evolution

of the state under a pump field models the pumped transitions, shown in green, and the relax-

ation transitions shown in purple. The relaxation operation instantaneously transfers all of the

population from the excited states (N3,N4,N5,N6,N8) to their destinations. The π-pulse operation

instantaneously transfers population between N1, and N2.

The 8-level model used in simulations of the NV center repolarization and readout is

depicted in Fig 1. Only the state populations (i.e. no phase) are considered, because the

green optical excitation is nonresonant, and the dynamics of the coherent MW drive by

which the π-pulse is implemented are unimportant for the inquiry at hand. Therefore, the

state of the NV center at any time is expressed in a real-valued vector of level populations

N ≡ [N1, N2, ...N8]
T .

States N1 and N2 represent the ms=0 and ms=-1 levels of the optical ground state 3A2.

N3 and N4 are the ms=0 and ms=-1 optical excited 3E states. N5 is the short-lived 1A state

which decays to the metastable shelving state N6. N7 and N8 are the optical ground and

excited states of the neutral charge NV0.

1



Relax rate Relax rate Pump I-scaled rate

k3,1 66 MHz k5,6 1 GHz Γg I × 8.06× 10−3 m2/W

k4,2 65 MHz k6,1 1 MHz Γg0 I × 14.51× 10−3 m2/W

k3,5 7.9 MHz k6,2 0.7 MHz Γi I × 25.53× 10−3 m2/W

k4,5 53 MHz k8,7 53 MHz Γl I × 26.34× 10−3 m2/W

TABLE I. Rates used in simulation

A. Implementation

The evolution of the NV level populations from t = 0 to t = tl of an optical pulse is

solved with an ordinary differential equation solver using linear rate equations that represent

excitation and relaxation processes. The rates used are shown in Table I.

Each update step of the ODE calculates the derivatives of the NV level populations as

N1

N2

N3

N4

N5

N6

N7

N8



′

=



−Wg 0 k3,1 0 0 k6,1 0 Wr/2

0 −Wg 0 k4,2 0 k6,2 0 Wr/2

Wg 0 −kN3 0 0 0 0 0

0 Wg 0 −kN4 0 0 0 0

0 0 k3,5 k4,5 −k5,6 0 0 0

0 0 0 0 k5,6 −kN6 0 0

0 0 Wi Wi 0 0 −Wg0 k8,7

0 0 0 0 0 0 Wg −kN8





N1

N2

N3

N4

N5

N6

N7

N8



(1)

with kN3 = k3,1 + k3,5 +Wi, kN4 = k4,2 + k4,5 +Wi, kN6 = k6,1 − k6,2, and kN8 = k8,7 +Wr.

The relax operator is implemented as

N1f = N1 +
N3(k3,1 + k3,5k6,1/kN6)

kN3

+
N4k4,5k6,1
kN4kN6

(2)

N2f = N2 +
N3k3,5k6,1
kN3kN6

+
N4(k4,2 + k4,5k6,1/kN6)

kN4

(3)

N7f = N7 +N8 (4)

N3f , N4f , N5f , N6f , N8f = 0 (5)

and the π-pulse with fidelity F asN1

N2


f

=

1− F F

F 1− F

N1

N2

 (6)
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The fluorescence F(t) is calculated fromN (t) via the fluorescing excited state populations

and their fluorescence rates

F(t) ≡ k3,1N3 + k4,2N4 (7)

Note that though the N3 and N4 states fluoresce at similar rates (k3,1 ≈ k4,2), the greater

chance of nonradiative decay of the N4 state (k4,5 > k3,5) causes it to be dark by depleting

its population more quickly.

B. High intensity regime
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FIG. 2. Simulated single-NV fluorescence Sb(t) and Sd(t) with Cs,f (t) shaded in black using the

intensity I that yields the greatest mean contrast Cs,u with a (a) short, (b) optimal, and (c)

long tl. In this intensity regime, charge state dynamics have a strong impact on the shape of

the fluorescence curve and increase the maximal Cs,u compared to the low intensity regime. The

tradeoff between loss of Cs,u(0) and the inefficient long tail as a function of tl plays the same role

in this intensity regime as in the low intensity regime.

II. DETAILED SETUP DESCRIPTION
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laser AOM 400mm pinhole
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25mmdichroic
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PD

diamond
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FIG. 3. Optical setup with lenses labeled by focal length. The first-order AOM mode is selected,

expanded to a 4mm waist diameter, collimated, passed through the flat-top beam shaper, and

focused onto the antenna-mounted diamond by the 25mm focal length lens mounted on a translation

stage. The fluorescence from the back side of the diamond is collimated, separated from the pump

light, and focused onto the detector.

III. SUPPLEMENTAL MEASUREMENTS
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FIG. 4. (left) Mean unitless contrast Cm,u and (right) mean shot noise-scaled contrast Cm,s mea-

sured over a range of intensity values by maintaining maximum pump power (500 mW) and dis-

placing the focusing lens from the focus, broadening the gaussian beam’s spot size. Because the

total power used is constant, Cm,u is a very good linear approximate of Cm,s.
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A. Ensemble area definition
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FIG. 5. Enlarged fluorescence images from main text Fig. 4 for the ensemble addressed by (left)

the flat beam and (right) the gaussain beam. The intensity values marked in red indicate the

boundary between the NV centers included in the ensemble and those outside of it.
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FIG. 6. Simulated cumulative C∗s,f contrast signal E(Ij) over the beam profile intensity bins from

the peak intensity (Ii = I0) out towards the periphery (Ii = In−1) for the n intensity bins depicted

in main text Fig. 4. The threshold T is shown by the black, dashed line.

We simulated the ODMR contrast of representative ensembles optically excited by the

flat shaped and gaussian beam intensity distributions shown in the main text Fig. 4. The

representative ensemble consisted of one NV center per intensity bin Ii, and the ensemble
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fluorescence S(b,d)(t) was the sum of the fluorescence from each NV center weighted by the

image area A(Ii). We performed the simulation for a range of pulse durations tl and selected

the tl which yielded the greatest mean ensemble contrast Cs,u. For that tl, we considered

what fraction of the total contrast signal Cs,f =
∑n−1

i=0 C
∗
s,f (Ii)A(Ii) was reached by summing

over the i most intense bins. We defined the ensemble fluorescence contrast fraction E(Ii)

as

E(Ij) ≡
∑j

i=0C
∗
s,f (Ii)A(Ii)

Cs,f

(8)

and show this as a function of Ij in Fig. 6.

The ensemble size is defined as that area which is necessary to include in order to reach

E(Ij) > T for an arbitrary threshold T . Having chosen T = 1− e−1 for both beam shapes,

we found that the ensemble included intensity down to Ij/I0 = 57 % for the flat shaped

beam and down to Ij/I0 = 35 % for the gaussian beam. The flat shaped beam has greater

uniformity of intensity within the ensemble (i.e. a higher cutoff intensity) for any value of

T .
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Conclusion
In this project, some of the key challenges related to using large ensembles of NV
centers for magnetometry in biophysical research settings have been addressed. In
Chapter 4, it was shown that a high-sensitivity magnetometry setup can be made
compact and manipulable. The subsequent work in Chapters 5 and 6 are just as
suitable for inclusion in such a compact sensing device.

The optimal control technique explored in Chapter 5 and the beam shaping for
more homogeneous readout and repolarization explored in Chapter 6 address both of
the physical difficulties related to the scaling of per-volume sensitivity, namely how
MW and optical fields are distributed throughout the volume.

In Chapter 6, we showed that there is an optimal optical intensity for maximizing
the SNR of the ODMR contrast readout due to the shape of the fluorescence signal
during repolarization with charge state dynamics in the high intensity regime. With
finite total laser power, this means that there is an optimal NV ensemble area, which
for the 500 mW laser beam we used was 630 µm2. The total number of NV centers
that could be addressed with this approach would be limited by the thickness of
the NV center layer, which would need to be thin enough to avoid inhomogeneous
intensity due to absorption loss, and the NV density, which may need to be kept in
the ≲ 10 ppm regime [71] where our model assumptions may not be valid.

For the optimal control methods explored in Chapter 5, we used a large MW
antenna meant to deliver power evenly in a ∼ 0.2 mm2 area, which is ∼ 100× larger
than the optimal ensemble area for the magnitude of green laser power that is typically
available. The main limitation of our optimal control protocol was our low Rabi
frequency Ω = 3.4 MHz compared to the 10-30 MHz commonly reported with wire
loop MW antennas [26, 72, 73] due to the larger area over which the available MW
power was distributed. With the greater Ω that follows from more MW intensity (the
same power over a smaller area), it would be possible to correct for a larger range
of inhomogeneities in MW intensity and in resonance frequency with a much shorter
MW pulse duration.

Besides the inhomogeneity of MW and laser intensity, the main limitation in
using pulsed NV sensing schemes for large ensembles is the measurement overhead
[43]. The best achievable per-NV DC sensitivity in the ideal case is with a Ramsey
magnetometry sequence, where the sensitivity scales with 1/T ∗

2 , but if T ∗
2 is short

compared to the time spent applying MW and laser pulses, then only a minor fraction
of the measurement time is spent accumulating phase from the magnetic field. One
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of our findings in the work in Chapter 6 is that with the green laser intensity that
maximizes the shot noise-limited SNR of the optical spin readout, the appropriate
laser pulse duration is ∼ 4 µs. This is much less than the T ∗

2 = 29 µs demonstrated
in [5] in a diamond with fairly high 750 ppb NV density, which puts it in the low-
overhead regime where Ramsey magnetometry is beneficial.

With laser beam shaping and MW optimal control, the regime of ensemble area
for which pulsed sensing is viable (as opposed to continuous wave methods) can be
extended to ∼ 630 µm2 for green laser power commonly used in NV ensemble exper-
iments. This is larger than the ensemble areas reported in [5] and comparable to
the ensemble area in [42], while they both reported using significantly longer repolar-
ization times. This is a smaller ensemble area than that used in larger CW-driven
ensembles as in [74], but recent sucesses with ferrite flux concentrators [75, 76] could
be a better way to gain sensitivity at the expense of spatial resolution for biophysical
measurements. For such setups, the techniques explored in this work are useful tools
to maximize the shot noise-limited SNR with the available laser power.
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APPENDIXA
Rabi oscillation

animation
To help the student or lay reader to visualize how a microwave pulse rotates the
spin state on the Bloch sphere, I made a video illustration which is viewable at
https://sciencedata.dk/shared/9402b213c297fb2f77a50f211e727b9e. It is also mirrored
on IPFS with the hash
QmSXfECg2Qaj2P4K95rymDrLNmJEiUUvv7RXGE1TJi49QK. It was made with
the QuTiP package [77].

In the animation, the spin state (black arrow) is being controlled by the magnetic
component of the MW field (brown arrow) with constant phase and amplitude. For
the resonant case, where ∆ = 0, the spin’s precession remains in phase with the MW
drive frequency, and the spin is rotated all the way from the bright state |0⟩ to the
dark state |−1⟩.

For the nonresonant case ∆ ̸= 0, the spin drifts out of phase and never reaches
a full population transfer into the dark state. The simulated MW field amplitude
is identical, so it drives the spin at the same rate, but the spin state returns to |0⟩
sooner than in the resonant case because it has less distance to cover on the Bloch
sphere in the rotating frame.

In this video, the Rabi frequency is unrealistically high compared to the MW drive
frequency. In our experiments, the MW drive frequency is ∼ 1000× faster than the
Rabi frequency, meaning ∼ 1000 oscillations of the MW field elapse before the spin
state would make a full rotation around the Bloch sphere.

This depicts the simplest case of an unshaped MW control pulse. In terms of IQ
modulation which we use to describe our optimal control pulse in Chapter 5, this can
be described as I(t) = C, Q(t) = 0. Throughout the video, it rotates the spin state
in the same direction around the x̂ axis at a constant rate. The shaped pulses with
varying IQ modulation components make varying rotations about the x̂ and ŷ axes
throughout the pulse duration.
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