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Abstract

The field of acoustofluidics is the interdisciplinary field between microfluidics and acous-
tics, where ultrasound is used in microfluidic devices to act on particles and cells in a
fluid. In the thesis a theoretical and numerical model is developed to study the impact of
temperature fields in accoustofluidic devices. The numerical model has three important
characteristics compared to previous models, first it includes temperature fields and the
temperature dependency of the fluid parameters. Secondly, it is an effective model where
the thin thermal and viscous boundary layers are solved analytically and imposed as effec-
tive boundary conditions, this enables the possibility of 3D simulations of acoustofluidic
devices. Thirdly, a non-perturbative model is developed that includes nonlinear effects
due to high acoustic energy density or high streaming velocities.

The numerical model is used to study the thermoacoustic streaming generated in
acoustofluidic devices due to temperature gradients in the fluid. The model was used
to simulate an acoustofluidic system integrating light absorption from a light emitting
diode and to explain well-known but previously unexplainable streaming patterns. The
non-perturbative part of the numerical model was utilized to study the change in the
streaming pattern due to heating in the viscous boundary layers at high acoustic energy
density. Furthermore, the streaming flow in an acoustic tweezer was studied, which at high
frequency can be a limiting parameter for the axial trapping force. Lastly the possibility of
changing the resonance frequency of a system by changing the temperature was explored
and let to the proposal of an acoustic trap controlled by the temperature field. This could
result in a movable trap controlled by a light emitting diode.

Hopefully, the thesis provides physical insight and understanding of the importance of
the temperature fields in acoustofluidic devices along with the validated numerical model.
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Resumé

Forskningsfeltet akustofluidik beskeeftiger sig med det tveerfaglige felt om mikrofluidik
og akustik, her bruges ultralyd i mikrofluide systemer til at pavirke partikler og celler i
vaesken. I afhandlingen udledes en teorestisk og numerisk model for at studere betydningen
af temperaturfelter i akustofluide systemer. Den numeriske model har tre vigtige egensk-
aber i forhold til tidligere modeller, den inkluderer temperaturfelter og vaeskeparametrenes
temperaturafthsengighed. For det andet er det en effektiv model, hvor de tynde termiske
og viskgse randlag lgses analytisk og bruges som effektive randbetingelser, dette giver mu-
lighed for at lave 3D-simuleringer af akustofluide systemer. For det tredje udvikles en ikke
perturbativ model, der inkluderer ikke linesere effekter pa grund af hgj akustisk energi
densitet eller hgje vaeskestrgmingshastigheder.

Den numeriske model bruges til at studere den termoakustiske vaeskestrgmning, der
genereres i akustofluide systemer pa grund af temperaturgradienter i vaesken. Mod-
ellen er blevet brugt til at simulere et akustofluidisk system, der integrere lysabsorp-
tion fra en lysdiode. Modellen forklarer ogsa tidligere kendte, men fgrhen uforklarlige
vaeskestrgmingsmgnstre. Den iterative del af den numeriske model er blevet brugt til at
studere sendringen i stromningsmgnsteret pa grund af opvarmning i de viskgse randlag ved
hgj akustisk energitaethed. Derudover studeres vaeskestrgmningen i en akustisk pincet, som
ved hgje frekvenser kan veere en begrazensende parameter for den aksiale kraft. Til sidst
er muligheden for at sendre resonansfrekvensen af et system ved at sendre temperaturen
blevet undersggt og fert til forslaget om en akustisk feelde styret af temperaturefeltet.
Dette kan resultere i en bevaegelig faelde styret af en lysdiode.

Forhabentlig giver athandlingen udover en valideret numerisk model en fysisk indsigt
og forstaelse af temperaturfelters betydning i akustofluidik.
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Chapter 1

Introduction

The introduction of the thesis gives a short presentation of microfluidics and acoustoflu-
idics. The research of the thesis is in the field acoustofluidics and the main aspects of the
field will be introduced and the research focus of the thesis is motivated and the structure
and content of the thesis are presented.

1.1 Microfluidics

The field of microfluidics concerns the behaviour of fluid flows and its content (particles,
cells etc.) in channels of tenth to hundreds of micrometers [5]. Microfluidics is especially
useful for biochemistry analysis, since it gives a cheap platform for analysing small fluid
volumes. So-called Lab-on-a-chip systems gives the possibility to analyse few drops of
biological fluid in cheap devices which do not require the expenses of traditional labo-
ratories [6]. The microfluidic systems take advantage of its small size to analyse small
fluid volumes and the laminar fluid flow to have a predictable behaviour of particles and
cells in the fluid. The Lab-on-a-chip systems are a miniaturized laboratory which consists
of different components, as for example mixers, valves, pumps, drop generators, detec-
tors, and biochemistry assays that can be combined to achieve a certain functionality of
a device, see an example of a complex microfluidic bioreactor in Fig. 1.1. Microfluidics
has promising perspectives in the fields of point-of-care devices for fast diagnostics [7, 8],
microfluidic bioreactors [9, 10] (see Fig. 1.1), and organ-on-a-chip devices used for drug
testing on artificial organs [11, 12].

To construct these complex microfluidic devices different individual components are
combined (mixers, valves, pumps, etc.), to achieve the functionalities of the individual
components a wide set of physical principles are used. The variety of physical forces used
include inertial [13], gravitational [14], electromagnetic [15-17], optical [18] and acoustic
forces [19, 20]. By the use of these forces suspended particles in the fluid might be trapped,
up-concentrated or separated based on their physical properties. This thesis focuses on
the field of acoustofluidics which is the field of combining microfluidics with acoustic fields
and using the acoustic fields to act on the fluid and the particles and cells suspended in
the fluid.



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Complex microfluidic bioreactor used to observe the dynamics of the bacteria
FEscherichia coli. Figure adapted from Ref. [9].

1.2 Acoustofluidics

One of the tools for manipulating the fluid and its content in a microfluidic system
is acoustic waves, the research field of acoustic waves in microfluidic systems is called
acoustofluidics [8]. In microfluidic devices acoustics are mainly used for mixing fluids,
up-concentrating, washing, trapping, and separating particles.

An acoustic field in a fluid can impact particles and cells through two mechanisms, the
acoustic radiation force and the drag force from the acoustic streaming flow it induces.
The acoustic radiation force arises due to the acoustic wave scattering of a particle trans-
ferring momentum to the particle [21, 22] this force typically dominates for larger cells
and particles. The acoustic streaming is a steady fluid flow generated due to attenuation
of the acoustic waves in the fluid which generate a streaming flow [23, 24] which drags the
particles, the drag force is typically dominant for small particles.

Most acoustofluidic devices uses the acoustic radiation force as the main force to act
on particles. In microfluidic chips designed to up-concentrate, separate or wash particles
the acoustic radiation force is used to focus particles in the pressure node or anti-node
depending on their physical properties. By focusing the particles in different nodes they
can be separated in different outlet channels [25], see Fig. 1.2. A more recent application of
acoustic fields are the acoustic tweezer [20, 26-28] where a focalized acoustic vortex beam
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Figure 1.2: Acoustofluidic chip for separating particles from Ref. [25]. (a) Cross-sectional
view of the half-wave resonance with cells focusing either at the pressure node or pressure
anti-node. (b) Top view of the focusing of particles for a flow through the channel, with
one inlet and three outlets separating the cells. Figure from Ref. [25].

is used to trap a particle in a similar manner to an optical tweezer. The acoustic tweezer
is promising due to its versatility (wide range of frequencies), selectivity (trap individual
particles), and the large forces that it is able to apply to microscale particles and cells.

In most of these devices the acoustic streaming is an annoyance that makes it impos-
sible to focus or trap small particles. The phenomenon of acoustic streaming have been
known since Lord Rayleigh in 1884 [23] but has recently seen a development with improved
numerical models enabling simulations of actual acoustofluidic devices [29-31] and theo-
ries including the effects of gradients in the fluid compressibility and density [32-34]. The
improved numerical models has inspired research on how to reduce the acoustic stream-
ing either by electrophoresis [35], shape optimization of the microfluidic channel [36], or
inhomogeneous fluids [37, 38].

1.3 Main research focus

The main research focus of the thesis is the effects of gradients in the fluid parameters
and especially gradients created by temperature fields. Gradients in the fluid parameters
are interesting because they induce an inhomogeneous acoustic body force [32] which can
induce fast thermoacoustic streaming. The inhomogeneous acoustic body force was theo-
retically described by J. Karlsen, P. Augustsson, and H. Bruus [32], the force arises when
there is an acoustic field in combination with gradients in either the fluid density or com-
pressibility. The groups at Technical University of Denmark (DTU) and Lund University
(LU) investigated the impact of the force and its applications, sustaining a concentration
gradient [32, 39] (see Fig. 1.3), patterning and reconfiguration of inhomogeneous fluids [40],
and streaming suppression [37, 38]. All these studies was with density and compressibility
gradients created by gradients of a solute concentration.

Motivated by the research done on the inhomogeneous body force [32, 37—40], the thesis
further investigates the force and its impact in acoustofluidic devices. The main focus is
on the impact of temperature fields since they create gradients in compressibility, density,
and sound speed [29]. Acoustic streaming due to temperature gradients has previously
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Epe = 0.0 J/m? 2.4 J/m? 15 J/m?

Figure 1.3: Simulation (top) and experimental (bottom) results of a sustained concen-
tration gradient in an acoustofluidic channel with a half-wave acoustic resonance for three
different acoustic energies E,. = 0, 2.4, and 15 J/m3. Figure from [32].

been studied in gas, named ’baroclinic’ streaming [33, 34, 41, 42].

The main research areas have been the development of an effective thermoviscous
model for acoustofluidics and the studies of thermoacoustic bulk streaming. The developed
effective thermoviscous model can be implemented either as a perturbation model [1] or
an iterative model [3]. The key benefits of the model are:

I: Being an effective model where the thin boundary layers at fluid-solid interfaces
are solved analytically and imposed as effective boundary conditions. Solving the
short-length-scale dynamics in the boundary layers analytically means that it is not
necessary to numerically resolve the thin boundary layers, which in return reduces
the computational cost and allows simulations of 3D devices on a regular workstation.

II: It is a thermoviscous model that includes both thermal and viscous effects, this is
necessary to study the inhomogeneous acoustic body force induced by temperature
gradients. Both thermoviscous models [29] and effective models [30] has previ-
ously been used, but this is to my knowledge the first effective thermoviscous model
developed for acoustofluidic devices.

III: The model can be implemented as either a perturbation or an iterative model.
All previous models in the Theoretical Microfluidics Group at DTU [29, 30, 43] has
been perturbative models. In a perturbative model the higher order fields cannot
influence the lower order fields. In an iterative model these non-perturbative effects
are included and the iterative solver iterates between the slow and fast-time scale
equations until they are both converged. This allows modeling of non-perturbative
effects due to internal heating and advective heat transport.

The model has allowed us to study the thermoacoustic bulk streaming in various settings,
with temperature gradients induced by a heating piezo-electric transducer [1], light ab-
sorption [2], and internal friction in the fluid [4]. To model all these different examples the
model needs to be effective to model 3D devices, thermoviscous to include the temper-
ature fields and iterative to include non-linear effects as internal heating and convective
heat transport. The obtained agreement between simulations and experiments in [2, 4]
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shows that the model describes and captures the effects of temperature gradients on the
acoustic streaming pattern.

The investigation of the thermoacoustic streaming has been performed in a great col-
laboration with Wei Qiu, Enrico Corato and Per Augustsson from Lund University, who
have done all the experimental work in the articles [2, 4].

1.4 Thesis outline

The main part of the work and research done in the thesis is collected in the published
papers in Chapter 7 but the thesis also contains unpublished work on streaming in acoustic
tweezers and spatial localization of acoustic fields. The research has been presented at the
eight conference presentations listed in the List of Publications together with four scien-
tific papers [1-4]. The thesis contains a main theory chapter introducing the developed
thermoviscous model, a numerical chapter surrounding the finite element method (FEM),
and then three chapters that focuses on three different aspects of the research performed.

Chapter 1 — Introduction: Introduction to microfluidics and acoustofluidics together
with a motivation for the research presented in the PhD thesis.

Chapter 2 — Theory: Presentation of the thermoviscous model formulated in the en-
closed papers in Section 7.1 and Section 7.3. It presents the theory and underlines the
importance of having an effective, thermoviscous, and non-perturbative model.

Chapter 3 — Numerical methods Presents the finite element method (FEM). The
FEM modelling has been used to all the numerical simulations in the thesis.

Chapter 4 — Streaming due to temperature gradients: Contains the research done
on thermoacoustic streaming caused by the inhomogeneous acoustic body force. It sum-
marizes the research from the papers enclosed in Sections 7.2 and 7.4 together with other
examples of thermoacoustic streaming.

Chapter 5 — Streaming in acoustic tweezers: Unpublished work done in collabora-
tion with Senior research scientist (Directeur de rescherche) Jean-Louis Thomas and Sarah
Vincent during my external research stay at Institute of NanoScience de Paris (INSP) at
Sorbonne University. The work investigates streaming in acoustic tweezers and its impact
on the axial trapping strength.

Chapter 6 — Spatial localization of acoustic fields: Unpublished work on meth-
ods to spatially localize acoustic fields in acoustofluidic devices. The chapter presents
ideas of localizing an acoustic field by either using a temperature field or by changing
the chips geometry. The proposal of controlling an acoustic trap by absorption from a
light-emitting-diode (LED) is presented and numerically investigated.
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Chapter 7 — Papers: The four research papers are included, containing the two pub-
lished papers [1, 2] and the two submitted papers [3, 4] currently under review. The
research papers are:

I.

II.

I1I.

IV.

J. H. Joergensen and H. Bruus, Theory of pressure acoustics with thermoviscous
boundary layers and streaming in elastic cavities, J. Acoust. Soc. Amer. 149, 3599-
3610 (2021).

Enclosed in Section 7.1, Ref. [1].

W. Qiu, J. H. Joergensen, E. Corato, H. Bruus, and Per Augustsson, Fast Mi-
croscale Acoustic Streaming Driven by a Temperature-Gradient-Induced Nondissi-
pative Acoustic Body Force, Phys. Rev. Lett. 127, 064501 1-6 (2021).

Enclosed in Section 7.2, Ref. [2].

J. H. Joergensen and H. Bruus, Theory and modeling of nonperturbative effects at
high acoustic energy densities in thermouviscous acoustofluidics, Submitted to Phys.
Rev. E.

Enclosed in Section 7.3, Ref. [3].

J. H. Joergensen W. Qiu, and H. Bruus, A transition from boundary- to bulk-driven
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Chapter 2

Theory

The chapter presents the theoretical model developed during the thesis and shows the
strength and limitations of the model. The development of an effective thermoviscous
pressure acoustic model was a big part of the PhD thesis, and can be seen as an extension
to the purely viscous effective pressure acoustic model of Bach and Bruus (2018)[30] by
including temperature fields and the temperature dependency of the material parameters.

The aim is to develop a model for a microfluidic system that contains a fluid domain
surrounded by an elastic solid and is actuated with ultrasound, typically frequencies of f =
1 —20MHz. The model contains both the fluid and the solid, but the overwhelming focus
of the thesis is to understand the physics of the fluid domain while the modelling for the
solid follows earlier work [30, 31, 44]. The developed numerical model is an effective model
including temperature fields and the model can be implemented either as a perturbative
model or as a non-perturbative iterative model.

The chapter builds on known physics [21, 29, 30, 32, 45] and the research work pub-
lished in the theoretical papers enclosed in Sections 7.1 and 7.3.

2.1 Governing equations

The behaviour of the fluid and solid is described by a set of fields, in the fluid the tem-
perature T', the pressure p and velocity field v and in the elastic solid the temperature T
and the displacement field u. These fields are governed by a set of fundamental physical
principles, the conservation of mass, the conservation of momentum, and the conservation
of energy.

There are two main pictures of describing fields in fluids and solids either the Eulerian
or Lagrangian picture. In the Lagrangian picture we identify a fluid particle located at zq
at time t¢ and then we follow the movement of the fluid particle. In the Eulerian picture
the fields are described in fixed positions and the fluid passes through the different points.
As in Refs. [30, 31] the Eulerian picture is used in the fluid and the Lagrangian picture is
used in the solid. That the fluid and solid domains are described in two different pictures is
important to remember when specifying the boundary conditions on the interface between
the fluid and solid domains.
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All the governing equations in both the fluid and solid stems from conservation of a
quantity (mass, momentum, or energy) and are described as transport equations. Analysing
a fluid/solid particle with volume V' and surface Q then the change of a quantity @ =
fv qdV with density ¢ in the volume V" has to be equal to the flux J, through the boundary
2 and the generation/loss of the quantity P, inside the volume V', thus the equation is,

/8tqu:—/n-Jqu+/ P,dV. (2.1)
%4 Q \%4

Here m is pointing out of the fluid volume such that n - Jj is the flux leaving the volume V'
through the surface {2, hence the minus sign. The surface integral over €2 can be rewritten
as a volume integral using Gauss theorem,

/n-JdQ:/ v . Jdv. (2.2)
Q |4

By rewriting the surface integral to a volume integral all three terms are volume integrals
and the differential form of the transport equation can be written as,

Oiq =~V -J, + P, (2.3)

The transport equation conserves the quantity g. For the conservation of energy the flux J,
could be heat diffusion or convection and the term P, heat generation from the absorption
of light.

2.1.1 Fluid equations and parameters

The fluid is described in the Eulerian picture and we are modelling a thermoviscous fluid
described by the following material parameters: the density p, the dynamic and bulk
viscosity  and 7°, the thermal conductivity k", the specific heat capacity at constant
pressure ¢, and constant volume c,, the thermal expansion coefficient «,, the ratio of
specific heats v = ¢, /c,, the isentropic and isothermal compressibilities ks and K1 = YKy,
and the sound speed ¢ = 1/,/pr7.

In the model we describe the fluid by the independent fields of pressure p, temperature
T, and velocity v, thus the dependent fields are the internal energy density ¢ and the mass
density p which are given from the first law of thermodynamics and the equation of state
as, [29, 46, 47]

pde = (pcp — app) AT + (krp — o, T) dp (2.4a)

dp = pkr dp — pay, dT’ (2.4b)

The fields are governed by the conservation of mass p, momentum pwv, and energy

pE + % p"v|2. The equation for conservation of mass is often referred to as the continuity

equation. Mass cannot be created or lost so P, = 0 and the only transport of mass is due
to convection J, = pv resulting in the continuity equation,

Orp ==V - (pv), (2.5)
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where the equation of state (2.4b) can be used to substitute the time-derivative of the
density p with the time-derivative of the pressure p and temperature 7.

The conservation of momentum pv is described by the Navier-Stokes equation, mo-
mentum can be transported both by convection or by forces/stresses in the fluid,

Oi(pv) = V - (o — pvv) + f, (2.6)

where o is the stress tensor which together with the advection term pwvv is responsible for
the momentum flux J,, and the force f can generate momentum. In our study we neglect
gravity and therefore the external force is zero f = 0. The stress tensor o is given as,

o=—pl+, (2.7a)
= [V + (Vo) | + (1~ ) (Vo)L (2.70)

Here the stress is divided into a gradient of the pressure field and a viscous stress tensor
7. The superscript ”{” denotes the transposed matrix.

The total energy density is the sum of the internal energy pe in Eq. (2.4a) and the
kinetic energy density % p|v‘2. The energy can be transferred across a boundary by different
mechanisms: Mechanical energy can be transferred by work done by a force given as v - o,
thermal energy can be transferred by heat diffusion k*"V7T', and both kinetic and internal

energy can by transferred by advection vp (6 + %"vf) So the transport equation for the

conservation of energy is,

2 2
8t(pe—|—p%> =V [kthVT—kv-U—p'v(e—i—%)} + P, (2.8)
where P is the external power density. The power density P could be due to absorption
of light from an external light source or Joule heating from an electrical wire.

The fluid parameters depends on the temperature and pressure of the fluid, for the
density p the dependencies are given by the compressibility s and thermal expansion
coefficient «y, in the equation of state (2.4b). Like the density, any material parameter ¢
has a pressure and temperature dependency,

1
—dg = agapdT + abkrdp, (2.9a)
q0

ol = a:qg(gg)p, ab = H;qo (gz)T. (2.9b)

Here the independent variables are T' and p following the convention from Ref. [3] enclosed
in Section 7.3 (Note the convention in Section 7.1 is 7" and p as independent variables).
The parameters a;‘f and af are defined as dimensionless and describes the parameters
dependency on temperature and pressure. For an acoustic pressure field with an adiabatic

temperature field the change in a material parameter is given as,

1
%dq = afq”’“dnsdp, a{;’“d =~(y— 1)aqT + yab. (2.10)
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Table 2.1: Parameters for water at T = 25C. The table shows the parameters value ¢

and the relevant temperature ag and adiabatic aq’ad dependencies. Data from Ref. [29].
Parameter symbol q a;{ ag’ad
Density p 997 kg/m3 -1 1
Compressibility ke | 4525 x 10710 Pa~t 296 -
Sound speed c 1497 m/s 6.9 -
Dynamic viscosity n 0.890 x 10~3Pas -88  -1.3
Bulk viscosity nP 2.485 x 1073Pas  -100 -1.1
Thermal conductivity kth 0.606 Wm™1K* 84 23
Thermal expansion ap 2573 x 1074 K ! — -
Specific heat capacity cp 4181 Jkg 'K! - -
Heat capacity ratio ol 1.011 - -

The a, parameters are determined using the functions from Muller and Bruus (2014) [29].
In acoustofluidic systems there are mainly three forms of gradients in the material param-
eters due to temperature and pressure fields: (i) Gradients in the stationary temperature
field, (ii) time-dependent gradients due to acoustic pressure and adiabatic temperature,
and (iii) time-dependent gradients due to the thermal boundary layers of the acoustic
temperature field. Cause (i) and (iii) is controlled by the temperature dependency of
the material parameters aqT and the (ii) is controlled by the adiabatic dependency aq’ad.
A list of the important material parameters and the relevant temperature and adiabatic

dependencies are given in Table 2.1.

2.1.2 Solid equations

The solid is described in the Lagrangian picture and the elastic solid is characterized by the
following material parameters: the density p, the longitudinal and transverse sound speeds
o and c¢qr, the thermal conductivity k', the specific heat at constant pressure cp and
constant volume c¢,, the ratio of specific heats v = ¢,/¢,, the thermal expansion coefficient
ap, and the isentropic and isothermal compressibilities xs and x7. The solid is described
by the displacement field u which describes the solid particles displacement from the initial
position and the temperature 7. The velocity field is given as the time derivative of the
displacement field v*! = 9;u, and the governing equations are the transport equations of
the momentum density pd;u and temperature 1" [47, 48],

pdfu=V -0, (2.11a)
(y=1
P

pcpOi T + pe, oV -u) =~V - (E"VT) + P, (2.11b)

where o is the stress tensor, which for an isotropic solids is,

A Y (2.12a)

g =
KT

T = pc2 [Vu + (Vu)q +p(cf, —2¢2)(V - u)I, (2.12Db)
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where the superscript ”1” indicates the transposed matrix. In this work all solids are
assumed to be isotropic.

2.2 Perturbation theory

The transport equations for mass, momentum and energy describes the mechanical and
temperature fields in the fluid and solid. The governing equations are the fundamental
equations for modeling the response of a microfluidic system to an acoustic actuation. The
system will be actuated with a frequency f often in the range f =1 — 20 MHz. To model
the response we use perturbation theory, it is a method to find an approximative solution
to the governing equations. It works by finding an exact solution to a similar but simpler
problem and then the deviation is modelled by corrections in a small parameter €, so that
the true solution A is approximated by a series in e,

A= Ay + Aje + Age® + Azéd... (2.13)

The solution is then truncated at a certain term, typically at € or €2. The method works
for € < 1 so that the higher order terms can be neglected. In our case we have a system at
rest which is our zero order solution Ay and then it is perturbed by an periodic actuation
on the boundary with the angular frequency w = 27 f given as s1(r,t) = s1(r) exp(—iwt),
which gives a response with time dependency exp(—iwt). The second order terms in the
perturbation expansion consists of products of two first order fields, so it will either result
in a steady field or a field with time dependency exp(4i2wt). We are only interested
in the time averaged field which will be denoted as f % Re {AlB’f }dt = <AlBl> and the
notation Q2 of any field will refer to the steady second order field. So all fields Q(r,t)
will be described by a steady zeroth order field Qo(r), an oscillating first order field
Re {Ql('r) exp(—iwt)}, and a steady second order field Q2(r),

Q(r,t) = Qo(r) + Re {Q1(r) e ™'} + Qa(r). (2.14)

The small parameter that the fields are expanded in is the Mach number € = 1 < 1 which
is the speed of the fluid/solid particle compared to the sound speed in the fluid/solid so

that ‘Qg‘ ~ ’Ql | @ So the independent fields will all be described by a zeroth, first and
second order term,

p(r,t) = po(r) + Re {pl('r)e_iwt} + pa(r) (2.15a)
v(r,t) = vo(r) + Re {vi(r)e '} + vy(r) (2.15b)
T(r,t) =To(r) + Re {Tl(T)e_th} + Th(r) (2.15¢)
u(r,t) = ug(r) + Re {ui(r)e ™"} + us(r) (2.15d)

Where the pressure and velocity fields are defined in the fluid, the displacement in the
solid and the temperature field in both domains. In our model gravity is neglected so
for the zeroth-order fields we have Vpy = 0, ug = 0, and vy = 0, while the temperature
field can have a spatial dependency. The temperature field Ty is allowed to have a spatial
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dependency, but the model does assume V(gov1) ~ qoVwv1 where qq is a fluid parameter.
By using the thermal dependencies in Table 2.1, the validity of the model is limited to
temperature gradients below,

|VT| < (2.16)

In acoustofluidic devices this assumption is valid.

Due to the temperature and pressure dependencies of the material parameters Eq. (2.9),
the material parameters will also be perturbed. For the viscosity the perturbation is given
as,

n(r,t) =no(To) + Re {m (T1,p1) e '} + mo(To, p2), (2.17a)
(11, p1) = (§T> Ti(r) + (gZ)Tpl(T)a (2.17Db)
n2(12,p2) = (ST> Ta(r) + (gZ)sz(T)a (2.17¢)

and like-wise for the other material parameters.

With the perturbation theory the governing equations can be split up in a set of
equations for the zeroth order fields, a set for the time varying first order fields, and a set
for the steady second order fields.

2.3 Separation of length scales

Acoustofluidic systems have dynamics on two length scales, one determined by the wave-
length of the acoustic waves d ~ k; ! with the wavenumber kg = 2 and another set by
the thermoviscous boundary layers at the fluid-solid interface. The width of the thermal
boundary layer (in solid and fluid) is denoted by ¢; and the width of the viscous boundary
layer s (fluid only) are localized near the solid-fluid interface. The length scale of the
two boundary layers are jointly referred to as § and are small compared to the long length

scale d ~ kg 1 50 0kg < 1. The width of the viscous and thermal boundary layers are

given as,
2 QDth 2Dth
S =] 2, e (2.18)
w (1—

where X = 0 for fluids and X <« 1 for solids. Typlcally (for water), d; < ds < 500 nm
which is more than two orders of magnitude smaller than the typlcal long length scale
d ~ 100 pm. The difference in length scales of the boundary and bulk fields are used to
separate a field Q into a boundary layer field and a bulk field Q@ = Q% + Q?, where the
boundary layer field Q° goes to zero away from fluid-solid interface and the bulk field Q¢
only varies on the long length scale d. In Fig. 2.1 a sketch of the thermal boundary layers
are shown; the complete temperature field 77 (black) consists of a bulk field in the fluid
and solid T¢ (blue), and two boundary layers T (red) which ensures that the temperature
field fulfils the boundary conditions at the fluid-solid interface.
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Solid

Figure 2.1: Sketch of the thermal boundary layer fields at a fluid-solid interface 0€2. The
position of the interface s is given by the steady position sy and the oscilating term si.
The viscous ds and thermal §; boundary layer thickness is shown with black/red dashed
lines. The temperature field 77 is divided into a bulk (blue) and boundary layer (red) field
in both the fluid and solid. Figure from Ref. [1].

Note that § oc w™/2 while d o w™! so at high frequencies (GHz) the difference between
the two length scales becomes smaller. When developing the effective boundary conditions
only the terms of lowest order in dky is kept. So the error on the effective boundary
conditions becomes larger at higher frequencies.

2.4 Boundary conditions

At the interface between the solid and fluid domain there is a set of boundary conditions on
the velocity, stress, temperature, and heat flux. The position of the interface s is dependent
on the initial position of the interface so and the time ¢ as s(so,t) = s + s1(80)e “*, see
Fig. 2.1. The boundary conditions on the velocity, stress, temperature, and heat flux are,

vl(s,t) = v*!(s0, 1) (2.19a)
n-oll(s,t) =n- o (s, 1) (2.19b)
T(s,t) = T (s0, 1) (2.19c¢)

ki wTh(s, 1) = k'n - T (s0, 1)) (2.19d)

Note that because the solid is in the Lagrangian picture it depends on sy while the fluid
in the Eulerian picture depends on s. The eight boundary conditions is the amount
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needed to govern the four independent fields in each domain. On the boundary we define
VP = dyu1(so0) to be the velocity of the fluid-solid interface. The model includes gradients
in Ty and therefore gradients in the zeroth order material parameters gg.

For the perturbation theory we need to specify the boundary condition for each order.
For the zeroth order fields only the temperature field is non trivial and the boundary
conditions are at s = sg,

T (s0) = T3 (s0) (2.20a)
kit in W Ti (s0) = kSn - VTS (s0) (2.20D)

For the first order fields the boundary conditions are at the position s = sg+ s exp(—iwt),

v1(sp) = dru1(so) (2.21a)

n-oil(sg) =n-oll(so) (2.21b)

T (s0) + 81 - VTi(s0) = T5(s0) (2.21c)

k(t)h’ﬂn . [VTlﬂ(so) + V(s - VT(?(S()))] = kgh’SIn VT (s0) (2.21d)

The terms containing s; are negligible when operating at an acoustic resonance frequency.
The second order boundary conditions are [1],

va(80) = —((s1 - V)vl>‘80 (2.22a
n- 0'31(30) =n- O'Qﬂ(so) + <(31 . V)aff(so) . n>|sO (2.22b
T5'(s0) = T3 (s0) + (s1- VIT)] (2.22¢
ke n - VTS 4 k- VTS 4 (k- VT (2.22d
= kgh’ﬁn VT (s0) + <kih’ﬁn : VTlﬂ(sO)>
+ kgh’ﬂn VT (s0) + (s1-V [k:(t)h’ﬂVTlﬁ(so)] ‘m)
+ (s1- V[k;h’ﬂVTg(so)} ‘m).

)
)
)
)

The three sets of boundary conditions will be used in the following sections to develop
the effective thermoviscous model.

2.5 Zeroth order — Temperature field

For the unperturbed zeroth-order fields we have Vpy = 0, ug = 0, vg = 0 and all the time
derivatives are zero, so the transport equations for mass and momentum are satisfied by
the null solution and only the transport equation for energy is non-trivial. The governing
equation for the temperature field in the fluid and solid is given as,

0=V [k"VT)] + P (2.23)

Temperature gradients can be created either by outer boundary conditions or a energy
source P. The energy source could be Joule heating from a current or light absorption.
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In Section 7.2 we study the effect of gradients in Ty created by absorption from a light-
emitting diode (LED). When there are temperature gradients there should be a convection
flow vy, but in the model we neglect gravity and therefore there is no driving force for
the convection flow. Gravity can be included and it was included in the model shown in
Ref. [2] enclosed in Section 7.2 where the convective flow is modelled and compared to
experimental measurements in the supplemental material.

2.6 First order — Acoustic fields

The acoustic fields or first order fields all has the time-dependency a(r,t) = a(r)e !
both in the fluid and in the solid, where a is a complex valued field and the physical field
is given as the real part apnys(r,t) = Re {a(r,t)}. The section will introduce the acoustic
equations in the fluid and solid domains and describe time-averaged fields and resonances.

2.6.1 Equations in the fluid

The first order governing equations are derived form Egs. (2.5), (2.6), and (2.8) using the

time dependency 0, = —iwt and V - (qov1) ~ qo'V - v1 as previously assumed,
—iw (ap0T1 — RTopl) =V- v, (2.24&)
—iwpovy = —Vp + 5770V(V . U1) + noV3w1, (2.24b)
—M(ﬂfwy—m””m>zypﬁv%3 (2.24c)
Oép[]

where 8 = n8/no + 1/3 and DE* = k8 /(pocyo). Following the procedure in Ref. [47] the
equations are solved using potential theory where the velocity is decomposed using the
Helmholtz decomposition,

v1 =V (dpe+ ) +V X ¥, (2.25)

where ¢. is the compressional potential, ¢; is the thermal potential, and W is the shear
vector potential. The Helmholtz decomposition separates the velocity field into a curl-free
part V (¢c+gbt) and a divergence free part V x W. Ref. [47] shows that the three potentials
are governed by the wavenumbers k., k¢, and kg,

Ve + k2pe =0, ko= % (1+iloc) (2.26a)
) ) 141,
\Y% ¢t + kt ¢t = 0, kt = 5 (1 + 1F0t) (226b)
t
S
V2 420 =0, k= ;3 (2.26¢)

S

Here, T'y. = [FS + (v — l)Ft]/Q and 'y = (v — 1) [I‘S - Ft]/2 are the resulting damping
coefficients expressed by I's = (1 + 8)(kods)?/2 and T'; = (koé;)?/2. The wavenumbers k;
and kg has a complex component of similar size to the real component resulting in ¢; and
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W being damped over one wavelength. This mean that they are boundary layer fields that
do not propagate in the bulk of the fluid.

The independent physical fields p1, 71 and vy are given by the potentials. The velocity
field vy is given as,

v =V (de+ ) +V x ¥ = 'vf’p + vf’T + 00 (2.27a)

v =V, v =Ve, 0=V xU. (2.27h)

It consists of a bulk field vf’p and two boundary layer fields vil’T and v{. Note that Uf’T
is a boundary layer field even though it is noted with a d, this is because d in this specific

case refers to a Helmholtz decomposition and that the field is curl-free [1]. The pressure
field py is given by the ¢. and ¢; as,

p1 = iwpo(de + ¢¢) + (1 + Bo)mo (ke + ki dy). (2.28)

The acoustic temperature field Ty consists of a boundary layer field T) and bulk field T¢,

T) = bepe + bypy = T+ T7, T¢ = b, TO = by, (2.29a)
iw ('y — 1) 1

- 7 by = . 2.29h

ozpoc% t Oépythh ( )

In our acoustofluidic system the temperature field T3 is driven by the adiabatic temper-
ature rise Tld = b.¢. in the bulk of the fluid and the thermal boundary layer Tl5 = by
is therefore of the same magnitude as 7. So ‘ch‘ = l%‘ﬁbt‘ > ‘qbt‘. Therefore we can
describe the system by the fields py, 79, and v} governed by [1],

V2p + k2p1 =0, ko= % (1 +iToe), (2.30a)
28 | 1,270 1+1 .
VI 4 KT =0, k= —— (1+il0), (2.30b)
t
o
V2l 4 k2 =0, k= 5’“. (2.30¢)

s

Here the pressure field p; is the only bulk field and Tl‘s and 'vis are boundary layer fields.
The bulk velocity vf’p , thermal boundary layer velocity 'Uf’T, and bulk temperature Tld is
given by p; and T{S as,

1—il

v‘li’p =V[-i wpo P, U%T = V[O‘poDBthé]v (2.31a)
Rs
T4 = (y—1)50,, (2.31b)
Qpo

Thus, the acoustic behaviour of the fluid can be described by a bulk acoustic pressure pq,
thermal boundary layer field Tl‘s and a shear boundary layer velocity field v‘f.
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2.6.2 Equations in the solid

The solid equations are derived from Eq. (2.11) governing momentum and energy conser-
vation. The linearised equations for the displacement field w; and temperature field T
are,

a
—w?pou; = — /:::(()] VT + (clo ctr)V(V uy) + A V2u, (2.32a)

-1
V - u; = yDMVATy (2.32b)

Qp0

—inl -

These two equations are used in our numerical models to simulate the acoustic behaviour
of the solid, but it is beneficial for the analytical work on the effective boundary conditions
to describe the solid fields by potentials similarly as for the fluid fields.

The derivation is similar to the derivation for the fluid fields, the displacement is
decomposed into a curl-free and gradient-free component —iwu; = (qﬁc + ¢t) +VxU =
—iw (u1 + utr) and one obtain the following three Helmholtz equations and wavenumbers,

V2, + k2¢o = 0, % ( + iF?)IC) , (2.33a)
VTS 4 R2TP =0, ke — 1(;: (1+ir), (2.33b)
V2l 4 R2ut =0, k= (2.33¢)
Ctr
Here, 2 = ¢ + Z;l and T§. and T, are damping coefficients given in Ref. [1]. Note

that in the solid only the thermal compression field ¢, is a boundary layer field while the
transverse displacement field can travel in the bulk of the solid unlike the velocity field vl
in the fluid.

2.6.3 Analytical solutions to the boundary layer fields

The boundary layer fields T¢ and v¢ are thin compared to the bulk wavelength and dimen-
sions of the acoustofluidic system. Therefore they are numerically extremely expensive to
resolve in simulations. We therefore solve them analytically and use the analytical so-
lutions to impose effective boundary conditions on the bulk field p; in the fluid and w;
in the solid. The derivations of the boundary layer fields use the governing equations
(2.30)(2.33), the boundary conditions (2.21), and that V? a~ 92 for the boundary layer
fields. The viscous boundary layer field is only present in the fluid and is given as [1, 30],

0

50 Jeiksz, 0z, y) = —iwud(z,y) — vP(z,y), (2.34)

vcls(xayv ) = (:L',y €
where superscript 0’ denotes the field on the fluid-solid interface. The exponential z
dependency ensures that the field goes to zero far away from the boundary.
The temperature field is both the fluid and solid domain, therefore there is a boundary
layer field in each domain. The analytical solutions to the thermal boundary layers are
derived in Ref. [1] enclosed in Section 7.2 and are,
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4 d

Tf’ﬁ(w, y,z) = Tfo’ﬂ(x, y)eikﬁz, Tfo’ﬂ(m,y) = — = ATy (2.35a)
1+7
s 1
T{S’SI(x, y,z) = TfO’SI(x,y)e_lktlz, T{SO’Sl(x,y) = 7~AT1d (2.35b)
1+7
_ k8h781k§1
0o Rt

where AT{ = T{i 0l —T{i O Notice the difference in sign in the exponential which indicates
that the fluid field goes to zero when z goes to co and the solid field when z goes to —oo.

2.6.4 Effective boundary conditions

The no-slip boundary condition on the acoustic velocity field vy can be reformulated
as an effective boundary condition on the pressure field p; including the effects of the
thermal and viscous boundary layers. The derivation uses the incompressibility of the
viscous boundary layer field 'v‘f. The effective boundary condition on the pressure p; and
displacement u; are given as [1]

i Qpo

. Wpo 0 i 0 1o 2 2 /60
0,p1 = Vi, ——V -V") — —(k 0 ———k; T 2.36
i . i
a’il ce, = —p1e, + iksno [va’SI + —Vpl} . (2.36D)
wpo S0

The last term in Eq. (2.36a) including k; is the correction from the thermal boundary
layer Tl‘s while the terms including ks are the corrections from the viscous boundary layer
v‘f as given in Ref. [30]. The two boundary conditions are the no-slip boundary condition

and the continuity of the normal stress across the fluid-solid interface given in Section 2.4.

2.6.5 Resonances and time-averaged products

The time-varying acoustic field can be described by a set of time-averaged quantities. First
we can describe the energy stored in the acoustic field, the local acoustic energy density
FE,. is given as a sum of the kinetic and potential energy density,

Eac(r) = Epot (1) + Exin(7)

1 1

= 5#s(p1p1) + 5p0(v1 - 01)
1 1

= Zﬁs‘p1’2+1po‘01’2. (2.37)

Here the well-known entity <a1a1> = %Re {alaf} = %‘alf is used, where superscript ”*”
denotes the complex conjugate. In an acoustofluidic device the acoustic energy density .
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is often taken as an average over a volume V', thus the time-and-spatial averaged acoustic
energy density F,. is given as,

A 1
B =~ / Fae(r) dV. (2.38)
Vv
Another time-averaged parameter is the acoustic energy flux density Sac,

Sac(’l") = <p1’l)1>. (239)

It is a vector and describes the flow of the acoustic energy density, it is especially important
for travelling waves and rotating acoustic waves. Lastly, we have the Lagrangian density
L, given as the difference in potential and kinetic energy,
1 2 1 2
[,ac(r) = Epot(r) — Ekin(r) = Zﬁs‘pll — Zpo\vl, . (240)
For a standing wave the Lagrangian density will be positive at positions with high potential
energy (pressure anti-nodes) and negative at high kinetic energy (pressure nodes).
Acoustofluidic devices are run at a resonant frequency to achieve a high acoustic energy
density. An acoustic resonance can be described by a Lorenzian with a resonance frequency
fres and the dampening coefficient I,

1 2 max
(br) 2
E,c = ; D) | 3 (241)
<fres o 1) + (51_\)
Where E7** is the acoustic energy density at the resonance frequency f = fres. The full
width at half maximum (FWHM) of the resonance peak is given as I fies. The dampening I'
is used to describe the Q-factor of a device @ = I'! which is the ratio between energy lost
in an acoustic cycle t = f~! and the total acoustic energy in the system F,.. Acoustofluidic

devices typically have a @-factor in the range Q = 100 — 1000. So a resonance peak is
characterized by the resonance frequency fo and the Q-factor.

2.6.6 Example: Pressure field in a square fluid channel

To demonstrate the benefits of the effective boundary conditions an example of a long fluid
channel with a square cross-section 230 x 230 pm will be investigated. For simplicity only
the fluid domain are modeled, with an actuation on the top and bottom by u; = dpe “’e,
and on the side walls at y = —115 and y = 115 pm with u; = idoe_i”tey. The actuation
will create a half-wave acoustic resonance in both the width and height direction which
are out phase, thereby creating a rotating acoustic wave [49], see Fig. 2.2(a).

Fig. 2.2(a) also demonstrates the mesh needed to converge for a full simulation to
the right and an effective simulation to the left, showing the large computational gain
of using the pressure acoustics with effective boundary conditions [1]. Fig. 2.2(b) shows

the acoustic resonance as a function of the frequency, the resonance peak is shown for
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Figure 2.2: (a) Color plot of the acoustic field at a time ¢ for a rotating acoustic field in a
long acoustofluidic channel with a square cross-section. In the right half the mesh required
to converge for the effective model and to the left the mesh required for the full model
to fulfil the same convergence criteria. (b) Resonance plot for the square fluid channel
with and without thermal effects, shown together with fo = ¢/(2WW) and the resonance
frequency fres. Figure (a) is adapted from Ref. [1].

both a viscous theory and thermoviscous theory, the thermal corrections are minor for the
pressure field in a fluid.

The shift of resonance frequency from fo = ¢/(2W), where W = 230 pm is the width
of the channel, to fis can be understood by closer examining the effective boundary
conditions. The resonance frequency can be found analytically for a half-wave resonance
in the width direction, the governing equations (2.30) and effective boundary conditions
(2.36) are to leading order in € at resonance given as [30],

0= V?p1 + kgp1, (2.42a)
1
dyp1 = iwVHw(z), y==;W. (2.42b)
i ia 1
O.pp = ——k? — P 2790 —+-H 2.42
FO.p1 s op1+kt/€T 0l1 s z 5 ( c)

The problem is solved by separation of variables following the derivation of Ref. [30],
thus introducing the wavenumbers £, and k. with ki + k2 = k3. The function w(z)
is an envelope function chosen to be w(z) = cos(k,z), and the solution will be on the
form p; = Asin(kyy)cos(k,z). First we need to rewrite 790 as a function of p;. We
assume a surrounding solid with high thermal conductivity so Z >> 1, such that Tl‘SO =
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—(vy-1)Z apL, using k7 = ks the boundary condition Eq. (2.42¢) becomes,
Tl
Fo.m = [+ L2 k. (2.43)
ks vkt

Assuming the solution to be on the form p; = Asin(k,y) cos(k,z), then requires k. to
satisfy,

H . 1 v —
k. tan (sz) = _1[/?3 + e ]ko, (2.44)
using tan (kzg) ~ kzg for k,H < 1, we obtain for k. and k,,
2 NEE 16, 5 Os 16 9
k2 = (1+1)[H + Tﬁ]ko, K= (14 +i )[H + Tﬁ})ko. (2.45)

The amplitude A of the pressure field p; can be found using the boundary condition (2.42b)
to be,

iwpo V2
- Plly (2.46)
ky cos(ky,W/2))
The amplitude A is maximum for a resonance frequency fres given as,
1 ) s —19
fres = (1 - §Fb1>f0, with I'y = | 7 + Tﬁt (2.47)

Thereby lowering the resonance frequency slightly as seen in Fig. 2.2(b) and resulting in
a @Q-factor of Q = Fl:ll. This also demonstrates why the thermal corrections are minor,
since for a fluid v — 1 = 0.01 < 1 and therefore negligible compared to the vicous term.
There will be larger effects for gasses, where for example dry air has v ~ 1.4.

2.7 Second order — Streaming field

Acoustic streaming is a phenomenon where an acoustic wave in a fluid gives rise to a
steady fluid flow. The streaming flow is created due to attenuation of the acoustic field,
the attenuation can either be in the thin viscous and thermal boundary layers or in the
bulk of the fluid. To evaluate the time-averaged streaming flow we study the second-order
time-averaged continuity and Navier-Stokes equations,

0=-V. (po’Uz) + Pac (2.48&)

0= _Vp2 +V.7m+ fac (248b)
2

T =0 [ Vs + (V)] + [ — 3] (V- va)T (2.48¢)

Where, the excess-density rate p,. and the acoustic body force fac are time-averaged
products of the acoustic first order fields,

Pac =—V - <p1'v1>, (2.49a)
fac=V" (711 — pov1v1)), (2.49b)
T = <771 [Vm + (Vm)T] + [77 — gm] (V- vl)I>. (2.49¢)

3
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The excess-density rate and acoustic body force are the driving terms of the time-averaged
fluid flow vo. The first order fields consists of a boundary layer and a bulk fields and we
can therefore split up the excess-density rate and acoustic body force into a boundary
layer term (superscript ””) that consists of all terms with at least one boundary layer
field and a bulk term (superscript ”d”) that consist of only bulk fields fac = fgc + fgc We
similarly split up all the second order fields into a boundary layer field (superscrlpt )
which is a response to fac and p?. and a bulk field that is the response to fac and pg.,

D2 :p2 +p2, /02:/02"_/02, T2:T2 +T2, 7'2:7-2 +T2 (250)

The Navier-Stokes and continuity equation can be split up in one set of equations governing
the bulk fields and another set governing the boundary layer fields. It is possible to separate
the boundary and bulk fields because there are no mixing terms, since mixing terms will
be at least fourth order terms. The d and § fields are governed by two different set of
equations in the bulk, but are connected by the common no-slip boundary condition at
the solid-fluid interface. For the velocity the no-slip boundary condition requires

v 0 = —(s1- V)]s (2.51)

In the next section we solve the boundary layer field vg analytically and impose it as an
effective boundary condition (slip velocity) on the bulk streaming field vg.

2.7.1 Boundary layer field and effective boundary conditions

As for the first order fields the boundary layer fields are solved analytically and then im-
posed as an effective boundary condition for the bulk fields. This requires the analytical
solutions to the first order boundary layer fields in Section 2.6.3 and a longer derivation
starting from the Navier-Stokes equation to find the velocity at the fluid-solid interface
v30. The full derivation of the effective boundary condition is found in Ref. [1] enclosed in
Section 7.1, the derivation has the following steps: (i) write the Navier-Stokes equation for
the boundary layer field driven by f7_, (i) take advantage of V2 ~ 92 to write an differ-
ential equation of the parallel part of the boundary layer velocity field Ug”, (iii) integrate

the equation twice from z = oo to z = 0 to get an expression for ’030”, (iv) use the conti-

nuity equation to find the perpendicular component v . The parallel and perpendicular
components of the boundary layer velocity at the mterface are given as [1],

vj} = 5= Re [ V- (0{%00%) +iV - (o{°V) — iV - (V00]%)
+ ;v‘fov‘fg* — w09, ur — L ;Z 0490% _ L ;Z 0y0 ]
- 220 f;;z e [5 isl(;t 030 + vilo’ppim*] |
_ 2?170 [5t ft ~ 1305004 +nd0v60*} ' (2.52a)

1 1
50 _ . ,007 0% §0x  dO,
vl = —5-Re [V - (iwff1i)] - 30 ke il (2.52b)
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The viscous terms are the same as found by Bach and Bruus [30] and the corrections
caused by the temperature fields are the terms including p; or ;. We do not analytically
describe the full flow field of the boundary layer field vg , since we only need the velocity on
the fluid-solid interface, where it shares boundary condition with the bulk streaming field

. The analytical solution of 'v given purely by known first order fields together with
the boundary condition Eq. (2.51) enables us to make an effective boundary condition on
the bulk streaming field v¢. Evaluating the term —<sl . V'v1>|3O and using Eq. (2.52) the
effective slip velocity on v is given as [1],

do (A es)e;+(A-ey)e,+ (B-e;)es, (2.53a)

1
A=—— Re [ 80« . V(;ﬁ{o - iVlo) — iV Vel

! {_IV‘U‘EM (Vv @vff*)}vfo] ’

+ 1% Re [ ds 090 ,Uil(],ppéo*:|
2p0 02 ds — 10
+ 27170R [ 5 . o i 50*] (2.53b)
B = ﬂ Re [ivfo P va’p}
+ 220 Re| (v = V)i ]. (2.53¢)

Here the slip velocity ,vgo is given by the two tensors A and B relating to the parallel and
perpendicular velocity component, respectively. The vectors e, and e, are unity vectors
in the plane of the interface and e, is perpendicular to the interface.

2.7.2 Bulk streaming

With the solution to the boundary layer field we can return to the governing equations
for the bulk fields. In the bulk acoustic body force f. the term —V - (,00<'vil’p 'Uil’p )) can

be rewritten and the force f& given as [1],

f;lc = (7'11 - P0<’U ’pvd’p>)

= Vﬁac - Z‘vlvp‘ VPO - Z‘plfvﬁsﬂ

Tw
+ ?<Uf,p1> +V.m (2.54)
0

The gradient of the Lagrangian L,. = %/{So}plf — ipo"vﬂQ does not induce streaming.
This is general for all gradient forces, but they do induce a second order pressure field

g [50]. The next two terms are the inhomogeneous acoustic body force described by
Karlsen, Augustsson, and Bruus [32]. The gradients in density py and compressibility ko
can be induced either by solvents [39, 40] or temperature fields [2, 4]. The third term is
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the source of traditional Eckart streaming due to attenuation of the the acoustic wave in
the bulk and the last term V - 711 is a force due to the temperature dependency of the
viscosity.

The streaming flow v§ can be assumed to be incompressible because V - (pgv§) ~
poV -vg and because each component of Vg is and order of I'~! larger than Pac/po- Thus,
with an incompressible fluid, the acoustic body force, and effective boundary conditions
the governing equations of the second order pressure field pg and streaming field vg is
given as [1],

0=V-vj, (2.55a)
0=—V[pf — (Li)] +m0V*5 + fre, (2.55b)
1 1 Tw
fic = —g\vf’prpo - Z\plfvﬁaso + 7<’Uf’pp1> +V T, (2.55¢)
0
v5’ = (A-er)es + (A e)) ey + (B e:)e.. (2.55d)

Here, the Lagrangian density L, is merged with pg as an excess pressure and the remaining
acoustic body force is renamed f&. The removal of VL,. from the force term makes
the numerical simulations more accurate. This is because the components of VL. is
orders of magnitude larger than the other terms of fZ, so even though it does not induce
streaming it requires a high numerical accuracy to reduce the noise from the term. So its
removal from the acoustic body force and merging with ps makes the numerical simulations
more accurate [50], and makes it possible to use a coarser mesh in the bulk of the fluid
domain [30]. The bulk streaming field v§ can be driven either by the bulk acoustic body
force f2 or the effective boundary conditions vgo, the two different mechanisms gives rise
to the distinction between bulk-driven streaming and boundary-driven streaming.

The streaming due to the inhomogeneous acoustic body force has been a mayor focus of
the PhD thesis and a longer explanation of the force and examples are shown in Chapter 4

while the bulk driven streaming due to the attenuation E—‘;@f’p p1> + V - 11 is examined

in the following example of a rotating acoustic wave and in Chapter 5 on bulk-driven
streaming in acoustic tweezers.

2.7.3 Examples: Streaming in a square capillary

To show the importance of including the thermoviscous terms in the bulk acoustic body
force Eq. (2.55¢) and the effective boundary condition Eq. (2.53) the streaming field in-
duced by a rotating acoustic field in a square capillary is investigated. The example is
a continuation of the example in Section 2.6.6 concerning a long fluid channel with a
square cross-section 230 x 230 pm and a rotating acoustic wave actuated in the channel,
see Fig. 2.2.

Because the acoustic wave is rotating both the boundary-driven streaming and bulk-
driven streaming are important [51]. The bulk driven streaming is important because the
acoustic velocity v, and acoustic pressure p; in the bulk is not out of phase in a rotating
acoustic wave. In Fig. 2.3 the streaming field simulated using an effective viscous model
(Ref. [30]), an effective thermoviscous model (Ref. [1]), and a full thermoviscous model
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Figure 2.3: Vector plots of the streaming field v¢ with the velocity amplitude as a color
plot from blue 0 to yellow 20 pm/s in square capillary. The acoustic energy density is
Fac = 19 J/m3. (a) Simulated based on an effective viscous model without thermal effects
in Ref. [30]. (b) Simulated based on the effective thermoviscous model from Ref. [1].
(c) Simulated with the full thermoviscous model in Ref. [29]. Figure adapted from Ref. [1].

(Ref. [29]) are shown. First there is a clear difference between the viscous model and the
two thermoviscous models showing the importance of both the thermal corrections to the
effective boundary conditions Eq. (2.53) and the term V - 711 in the bulk acoustic body
force ¢, in Eq. (2.55¢). The bulk acoustic body force clearly enhances the streaming
velocity in the bulk of the fluid. Secondly, the agreement between the full and effec-
tive thermoviscous model validates the effective boundary conditions (2.53) developed in
Ref. [1]. The difference in mesh required to converge with the effective and full model
is shown in Fig. 2.2(a). Further details on the numerical setup can be found in Ref. [1]
enclosed in Section 7.1.

2.8 Second order — Temperature field

The dissipation of energy from the acoustic field transform either into momentum in the
acoustic streaming field or into heat that causes a second order stationary temperature
field T5. The second order temperature field is a response to the heat generation of power
P, and is controlled by the heat diffusion in the chip and the boundary conditions (heat
sink, isolator, etc.). The temperature field is in both the solid 75! and the fluid domainT4.
In the fluid the second order equation for energy conservation is given as,

0=V- [kghv:rzﬂ + k;ghVT(ﬂ — cppova - VTE 4 Py, (2.56a)

Poe = V- [(BETT) = (pror) + (v - 11)| = ep(pron) - VI, (2.56D)
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and in the solid the second order equation is given as,

0=V - [/{Zth 51VT251 + k;h,SIVTSI} + Pac (257&)
Poe =V - (k0T (2.57h)

The temperature fields are induced due to an acoustic power density P, or convection of
the zeroth order field Tg and governed by heat diffusion. As for the streaming field we
separate the acoustic power density P into a term consisting solely of first-order bulk
fields P% and a field including first-order boundary layer fields P2, so P, = P% + PJ.
The fields are spilt up in a boundary and a bulk component Eq. (2.50) and specifically
for the temperature fields T3 = To bd 4 Ty 19 where "xI’ either denotes the fluid *fl” or the
solid ’sl’ field. The bulk and boundary layer fields are connected at the fluid-solid interface
where all four fields are connected by two boundary conditions, the first requiring constant
temperature and the second requiring constant heat flux, Eq. (2.22).

As for the streaming field, we solve the boundary layer fields analytically and impose
them as effective boundary conditions on the bulk fields. The same procedure as for the
streaming field is used (i) separate the governing equation in a bulk d and boundary layer
0 part, (ii) take advantage of V2 =~ 02 to write an differential equation for the boundary
layer temperature field TQ, (iii) integrate the equation once from z = oo to z = 0 to get
an expression for the heat flux - VT90 at the interface, (iv) and integrate twice to get an
expression for the temperature 75" at the interface. The derivations are shown in Ref. [3]
enclosed in Section 7.3. The normal derivative of the boundary layer temperature field
0.T. 2ﬂ 90 at the interface is given as,

T50>k

1 Dth v

@ﬁ“:a[
Cp CpPo

1+i { —10sw 50 30 Swarpo 0
2

32

50 60% 00, 60*
g (BT el - =T |

— iTl [vf ZTO* +(1+ 1)1)1’50 — 5tw/£sp(1)*}

h,60 h,d0
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11,60

And the boundary layer temperature field 75" at the interface is given as,

Ot 2w St
780 _ Re {_ s 50, 80% PO 0d0%
2 T gD 25th"’1 v+ oo pidy
. o 50 50, 50
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+ (1 +1i)oyy dplx _ 5tw/<asp?*}

h,50 th,d0
. d,p0 (L+ D)k + 2k *
+ 16,V TP w0 — S o .

e (2.59)
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The induced heating in the solid boundary layer is negligible compared to the heating in
the fluid boundary layer and therefore we set 0,7T: 2ﬂ 90— 0and T 251’50 = 0 in the simulations.

2.8.1 Bulk temperature field

With an analytical solution to the boundary layer fields at the interface, it is possible to
setup a set of governing equations for the bulk temperature fields with a set of effective
boundary conditions. The governing equation in the fluid is Eq. (2.56),

(2.60a)

ac)

0=V- [k(t)hVTQﬂ’d + k;hVTOﬁ} — eppovd - T 4 pe

Pi=Vv- {<k§h’dVT1ﬂ’d> — (pr1o?) 4 (v} - T1d>} — ep(plo?y - v (2.60b)
and the solid equation is the bulk part of Eq. (2.57),

0=V. [kghVTsl’d n k;h’SIVTgl} +pd (2.61a)
Pl =v . (KMot (2.61b)

There is a sign error in the submitted articles enclosed in Sections 7.3 and 7.4 for both
the bulk fields in the solid and fluid, this error will be fixed before publishing. The terms
k:ghVTo are negligible in most cases, unless there is a high gradient in the zeroth-order
temperature field Tp. The constant temperature boundary condition is imposed on the
temperature field in the fluid [3],

fld _ sld 1,60
L =17 -1,

1 , .
— 5 Re {31 Tl sy ) TR0 } (2.62)

The constant temperature boundary condition is applied on the fluid domain because the
fluid domain in most cases is only in contact with the solid domain. Therefore it would
be numerically unstable to only have a flux boundary condition on the fluid domain. The
flux boundary condition is applied on the solid domain, the effective boundary condition
is given as [3],

B k(t)h,sln . VT;l,d _ k(t)h,ﬂn _ VTQH’d B k(t)h,ﬂaszﬁ,é
1 hAf0x 21 thA .0+
— g Re {RRMTE = S (o1 m) 1} (2.63)

With the governing equations and the effective boundary conditions for the bulk temper-
ature fields the perturbative model is complete including the zeroth order temperature
field, the first order acoustics, the second order streaming and temperature fields. All
boundary layers are solved analytically and imposed as effective boundary conditions so
that the thermal and viscous boundary layers do not need to be numerically resolved.
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2.8.2 Example: Heating in viscous boundary layers

To demonstrate the internal heating in an acoustofluidic device due to frictional losses in
the viscous boundary layers we study a silicon chip with a rectangular fluid channel and
a glass lid, see Fig. 2.4(a). The acoustofluidic chip is actuated at resonance frequency
to generate a horizontal half-wave resonance in the fluid channel. The model is actuated
on the bottom of the silicon where the temperature is also held constant mimicking an
external heat sink. The resulting temperature increase is shown in Fig. 2.4(b), heating up
8.7 mK at an acoustic energy density of E,. = 28 J/m? [3].

The heating occurs in the two boundary layers at the top and bottom of the chip, at
the bottom the heat is generated very close to the silicon chip §; < 500 nm which has a
high heat conductivity and therefore effectively transports the heat away. While at the
top the heat is generated close to the glass lid which compared to silicon has a low heat
conductivity, hence a thermal gradient through the fluid is created in order to transport
the heat to the heat sink. The temperature field in Fig. 2.4(b) shows the importance of
the solids thermal parameters in modeling the second order temperature field. In Fig. 2.4
the effective model is validated against a full model showing a line plot at y = W/4 for
both the full and effective model.

The last important learning from this example is the magnitude of the second order
temperature T5. When the magnitude becomes comparable to the magnitude of first
order temperature field max(’Tl‘) ~ (y— 1)2—2 max(‘pl ’) then the perturbation theory is

no longer valid. At an acoustic energy density F,. = 28 J/m? the maximum first order

(a) Glass (c)

Effective Model |
Full model

-200 0 200 400 600 800 1000

z[pm]

Figure 2.4: (a) Model of an acoustofluidic system with silicon (grey), glass (beige), and
the acoustic field (red to blue) shown in the fluid domain. (b) Color plot of the temperature
field T3 from black 0 to yellow 8.7 mK. (c) Line plot of the temperature field 75 from an
effective (orange) and full (black) model along a line at y = W/4 visualized with a red line
on the inset. Figure is adapted from from [3].
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temperature is given as
KT
max(!Tl‘) =(y— 1)a— max(’pl})
P

= (y = 1)L\ /4B [rr ~ 10 K, (2.64)
(6

P

which is comparable to the second temperature field 7o = 8.7 mK. To address this problem
with the perturbative model a non-perturbative model was developed in Ref. [3], which
will be presented in Section 2.10.

2.9 Forces on particles

The previous sections have presented a model to simulate the solid and fluid behaviour,
but it is beneficial to remember that the purpose of the acoustofluidic devices are to affect
particles and cells in the fluid. This section describes the forces that act on particles
located in an acoustic field. There are two main forces on the particles, the acoustic
radiation force Fd from the acoustic wave scattering of the particles, and the drag force
Fd22 from the acoustic streaming field vs.

The acoustic radiation force F™d is due to the acoustic wave scattering of the sus-
pended particles. Generally scattering phenomenons are complex problems, acoustoflu-
idics are often in the regime where the particle radius a is a lot smaller than the acoustic
wavelength A and bigger than the thermal and viscous boundary layers, so § < a < A. In
this regime the acoustic radiation force F"4 can be expressed as [22],

2K * *, K
Frad — —7Ta3(730 Re [fipiVp1] — poRe [f5v] - VUl])7 (2.65a)
. 2(p—1)
fl K, f2 215 + 1 ) ( 65 )

where p; and v; are evaluated at the center of the particle and & = k), /Ko and p = pp/po.
Note that there are two terms a monopole term coupling to the acoustic pressure field p;
depending on the compressibility x, of the particle through f; and a dipole term related
to the acoustic velocity field v; depending on the density p, of the particle through fs.
For a standing wave the acoustic radiation force can be described as a potential force by
the Gorkov potential U [21, 22],

Fd — _yy, (2.66a)
U— 47Ta3 [f1@<p2> _ 23ﬂ<,v2>:| (2 66b)
3 2 V1 4 VU '

In acoustofluidics most particles and devices are in the regime § < a < A where the
Gorkov potential is valid, but for small particles 6 ~ a effects from the boundary layers
are important to include, in this regime Doinikov [52-54] has included many of the extra
corrections including effects due to microstreaming.
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The second force on the particle is the drag force from a velocity difference between
the particle and the surrounding fluid. The drag force on a spherical particle moving with
velocity vp,, in a fluid moving at velocity vs is given as

FY8 = —67mna(vpar — v2). (2.67)

A particle is under the influence of both the acoustic radiation force and the drag force, the
momentum of the particle is negligible for the trajectory, therefore the resulting particle
velocity vpa, is given by balancing the two forces,

2a2

3
Upar = U2 — 37,00 (flVEpot - §f2VEkin> (268)

Because F'928 gcales as a and F' scales as a® small particles will be dominated by the

drag force and big particles by the acoustic radiation force.

2.9.1 Acoustic radiation force in acoustofluidic devices

In most acoustifluidic devices the acoustic radiation force is the primary force on the par-
ticles and used to up-concentrate, separate and trap particles. In many bulk acoustofluidic
systems the acoustic wave is primarily a standing one-dimensional acoustic wave with the
form p; = pqcos(ky) with a wave number k = 37 where W is the width between two
coplanar walls. Then the acoustic radiation force Eq. (2.66) reduces to the expression

given by Yosioka and Kawasima [55],
Frad — 47 ®(R, p)a’k Eye sin(2kz). (2.69)

Where the acoustic energy density is Fye = %mspg and ®(R, p) is the acoustic contrast
factor between the particle and fluid,

35, ) = 5 1(R) + 3 12(5) (2.70)

If the contrast factor is positive (negative) the force pushes the particles to the pressure
nodes (anti-nodes). Thus, the acoustic radiation force can be used to separate particles
with different contrast factors. If there is a gradient in the fluid parameters such that
there is a gradient in the contrast factor, a particle will focus at the position in the fluid
where the contrast factor is zero. This effect is named iso-acoustic focusing and was
demonstrated by Augustsson et al. 2016 [39].

With the acoustic radiation force in Eq. (2.69) and the drag force Eq. (2.67) it is
possible to calculate the time it takes to focus a particle tg or cell in an acoustofluidic
device. The characteristic focusing time are proportional to the E,. and (W/a)?, and
given as [56],

3 W? g
4 1202 B,
For a polystyrene particle with a = 5 pym and ® = 0.17, in a channel with W = 400 pym
and F,. = 100 J /In3 the focusing time will be ¢ ~ 26 ms. In microfluidic systems

troe A (2.71)
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it is difficult to measure the strength of the acoustic field directly, so often the acoustic
energy density is measured by the focusing time of a well known particle solution. This
is the method used to measure the acoustic energy density in the two enclosed papers in
Sections 7.2 and 7.4. The critical radius ait for when the radiation force dominates are for
a polystyrene particle with ® = 0.17 at frequency f = 2 MHz approximately acit &~ 1 pm.

The critical radius depends on the angular frequency w, contrast factor ®, and dynamic
viscosity v, as Gerit X (%) 1/2.

In an acoustic trap ictu is not sufficient to focus the particle in the pressure node it is
also necessary to localize the particle within the plane (line) of the pressure node. The
pressure node is either a 2D plane (in a trapping capillary tube) or a 1D line (in an acoustic
tweezer). When the particles are in the pressure node the pressure field is zero so the force
component in the nodal plane is solely due to the fo term related to the acoustic velocity
field,

Fd — _47a® {5V Eye. (2.72)

node

So a heavy particle fo > 0 is attracted to a region with high acoustic energy density while
a light particle fo < 0 is pushed away from an acoustic hotspot. So in an acoustic trapping
capillary or an acoustic tweezer the ability to trap particles against the flow is determined
by the contrast factor fo, size of the particle a, and the gradient in the acoustic energy
density V E,.. Thus, a good acoustic trap has a large gradient in the acoustic energy
density and the easiest particles to trap are large particles with high density.

2.10 Non-perturbative acoustofluidics

This section presents the theoretical work on non-perturbative acoustofluidic published
in Ref. [3] enclosed in Section 7.3. Non-perturbative refers to the domain where the
acoustic fields are so large that the perturbation theory is no longer valid. High acoustic
energies are often desirable in acoustofluidics because it leads to faster focusing times,
and stronger acoustic traps which both are important to achieve a high flow through in
a device. Because of the small scale of acoustofluidic systems the flow through is often a
limiting parameter for acoustofluidics devices for practical usage. First, we discuss when
the perturbation theory breaks down, then the model developed in Ref. [3] is presented,
and lastly a discussion of the main non-perturbative effects in acoustofluidic devices.

2.10.1 Range of validity for the perturbation theory

The main non-perturbative effect is due to heating in the device which can create temper-
ature gradients. In a device where there are no zeroth order temperature gradients, the
gradients in the second order temperature field can lead to a non-negligible inhomogeneous
acoustic body force. This force will in perturbation theory be a fourth order term and
therefore not included in the second order equations. When this effects become important
the perturbation theory is no longer valid.

A limit for when the non-perturbative effect is no longer negligible can be estimated
based on the temperature difference across the fluid domain. It is estimated by comparing
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the inhomogeneous acoustic body force with the acoustic body force driving the classical
Eckart streaming. When the inhomogeneous acoustic body force is larger than the classical
acoustic body force, the non-linear effects should be included,

1 T
‘1|p1‘2Vﬂs,2’ > ’C;;@f’ppﬁ‘,
K

1
1 ‘p1 ‘2%:30%3 apdflATg > Trgod ‘pl

— AT > ~ 30 mK. (2.73)

Aplg

Here it is assumed that the characteristic length scale of the thermal field and acoustic
field ’d’ are comparable and AT5 is the temperature difference across the fluid channel or a
wavelength. So when there is a temperature difference of ATy ~ 30 mK the perturbation
theory is no longer valid. The temperature gradient created across a fluid channel is
difficult to directly link to an acoustic energy density because the heating depends heavily
on the thermal parameters of the the surrounding solid, as seen in Section 2.8.2. Hence,
the acoustic energy density corresponding to AT; ~ 30 mK depends on the acoustofluidic
device used. For the chip investigated in Section 2.8.2 an acoustic energy density of Fy, ~
100 J/m? is needed to get a temperature difference of ATy ~ 30 mK. The temperature
increase of 30 mK is comparable to when the non-perturbative model in Ref. [4] enclosed
in Section 7.4 starts to deviate from the perturbative model.

The other important non-perturbative effect is convective heat transport due to high
acoustic streaming. The convective heat transport is important when the Péclet number
Pe = w is similar or larger than one. So the perturbation theory is not valid for

Dth
streaming velocities higher than "v’ ~ DTth, where d is the characteristic length scale of

the system. For d = 500 pm the maximum streaming velocity for a Péclet number of one
is |v| = 300 pm/s.

2.10.2 Separation of time-scales

To avoid the assumptions of the perturbation theory the steady and acoustic fields are
separated based on time-scales. The separation of time-scales does not assume that the
acoustic fields are small compared to the stationary fields. The fast acoustic time-scale is
set by the frequency of the acoustic field. Most acoustofluidic devices are driven in the
frequency range f =1 - 20 MHz, resulting in a fast acoustic time scale t,

11
t=—=_— =8 160 ns. 2.74
5= 3pp 8 160ms (2.74)

The steady or slow time scale 7 is given by the the hydrodynamic and thermal flows.
Following Karlsen and Bruus [32], for a typical aqueous suspension in a channel of height
H = 0.5 mm with density p, relative density difference p = 0.1 induced by gradients in
either concentration or temperature, and kinematic viscosity v = n/p, the characteristic
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time scales for thermal relaxation tiherm = H 2 / D™ viscous relaxation tyig = H? /v, iner-
tial motion tinery = +/H/(gp)), and steady shear motion tghear = 19/(Hgp) are estimated
to all be in the order of 10 ms. Thus the slow time scale 7 is given as,

T & ttherm = tvisc = Tinert & fshear ~ 10 ms. (275)

Thus the slow thermo-hydrodynamic and fast acoustic time scales are separated by 4-5
orders of magnitude. Therefore the fast and slow dynamics are solved separately. The
slow time scale is assumed to be stationary and all physical fields Qpnys are decomposed
in a stationary field Qg and an acoustic field Qe~**

Qphys(t) = QO + Re {Qle_iwt}- (276)

Both time scales will depend on each other, the stationary fields sets the density and
compressibility of the fluid, which governs the acoustic fields. And the fast acoustic time
scale induces a time-averaged acoustic body force fa. and acoustic heating-power density
P, that enters the governing equations for the stationary fields. The fields are described
by a stationary field and an acoustic field with angular frequency w, thus we have neglected
the double harmonic terms with time-dependence e~2“*. So the theory is only valid in the
limit where the double harmonics can be neglected. If it is desired to include higher order
harmonics it is to my knowledge necessary to solve the full time-dependent equations.

2.10.3 Acoustic and stationary equations

The governing equations for the stationary and acoustic fields are derived in Ref. [4]
enclosed in Section 7.3. Most of the equations are very similar to the governing equations
in the perturbation theory as they are governed by the same conservation laws. The
governing equations for the acoustic fields are exactly the same as the first order equations
(Section 2.6) of the perturbation theory, and the effective boundary conditions on both
the acoustic and stationary fields are also the same as the perturbation theory. The only
differences are for the stationary fields. The governing equations for the stationary fields
are slightly different from the second order equations because some terms that previous was
higher order terms are included, for example the advective term V - (povgvg). Therefore
we only present the altered bulk equations for the stationary fields while the equations for
the acoustic fields can be found in Section 2.6. The steady streaming field is governed by
stationary part of the continuity and Navier-Stokes equation Egs. (2.5) and (2.6) together
with the effective boundary conditions,

0=V -1 (2.77a)
0=V (5 — £3,) + V0§ — V- (povief) + £ (2.77b)
1 1 lw
foe = —Z}Uf’pfvpo - Z’pl}QVHso + 7<Uf’pp1> + V-, (2.77¢)
0

v’ = (A es) e+ (A e))e,+ (B e:e.. (2.77d)
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Ty and p, determines the
fluid properties (p, &, 17)

Stationary: Slow Acoustics: Fast
Independent fields Independent fields
Ty - temperature  (all) = wu, -displacement (solid)
vg. streaming (fluid) * p; -pressure (fluid)
. - pressure (fluid)

Time-averaged products of
acoustic fields (f%., 4, B, P,c)

Figure 2.5: Sketch of the iterative solver iterating between the stationary equations and
acoustic equations. The stationary fields determine the material properties for the acoustic
equations, and time-averaged products of the acoustic fields act as forces and heating in
the stationary equations.

The tensors A and B are defined in Eq. (2.53) and are the same as in the perturbation
model. The only difference from the second-order equations in Eq. (2.55) is the inclusion
of the advection term V - (,og'vovo) The acoustic ﬁeld drlves the streaming through the
bulk acoustic body force f2. and the no-slip velocity 'v2 given by A and B.

The steady temperature field in the bulk of the fluid Tgl i governed by the stationary
part of the equation of energy conservation (2.8),

0=V. [kghVT&d} — eppovo - VI 4 PL 4 P, (2.784)
P =V [T = (prof?) + (o1 - o)
— cp<pil'uf’p> VT (2.78b)
It is similar to the second order temperature field in the pertubration theory, but with
the external power P included (in perturbation theory this field was a zeroth order term).

And likewise for the solid where the heating can either be due to the external heating P
or heating caused by the acoustic field P4

0=V [RV] + PL+ P (2.792)
PL =V - (kMo (2.79b)

with the effective boundary conditions derived in Section 2.8. In this model both the
acoustic and stationary fields depend on each other thus, it is necessary to use an iterative
solver to solve the equations. The iterative solver, sketched in Fig. 2.5, iterates between
the stationary equations governing the independent fields T, vg, and pg and the acoustic
equations governing the independent fields w1 and p; until all fields are converged.
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There is one important notion regarding the derivation of the effective boundary condi-
tions for the non-perturbative model. A key assumption in deriving the effective boundary
conditions is that there are no mixing terms of the boundary layer field ’08 and bulk field
vd, this means that the advective term V - (povgvg) has to be negligible. That requires

the Reynolds number in the boundary layer to be small Re® = %ﬁol < 1, but still allows
the Reynolds number in the bulk Re? = dl%ool to be large.

2.10.4 Main non-linear effects

There are two main non-perturbative effects in thermoviscous acoustofluidics which first
becomes important. The two effects are the inhomogeneous acoustic body force due to
internal heating from friction in the viscous boundary layers and convective heat transport
due to fast streaming velocities.

The non-linear effect due to heating in the viscous boundary layers and the inhomoge-
neous acoustic body force is important in systems where there is no steady temperature
gradient VT without the acoustics. The traditional boundary streaming and Eckart
streaming depends linearly on the acoustic energy density E,., while the inhomogeneous
acoustic body force finho — %|p1|2V/£T0 + %|v1|2Vp0 depends on the acoustic energy den-
sity squared fiih° oc E2, | if the gradients in compressibility and density are due to frictional
heating from the acoustic wave. Therefore at low acoustic energy density the boundary-
driven and Eckart streaming will be dominant, but at some acoustic energy density the
inhomogeneous acoustic body force fi2P° will become dominant. This transition was thor-
oughly studied in the paper enclosed in Section 7.4 and is summarized in Section 4.4. In
the studied system the transition occurs at an acoustic energy of F,. ~ 400 J/m3.

The second non-linear effect is convective heat transport, this is mainly important in
systems with an initial temperature gradient V1j. The initial temperature gradient can
lead to fast thermoacoustic streaming due to the inhomogeneous acoustic body force [2].
In a system with temperature gradients the convective heat transport becomes important
when it is comparable to the diffusive heat transport. This is when the Péclet number
Pe =~ 1, which correspond to a streaming velocity of

Dth

Upe ~ ] (2.80)
where D' is the thermal diffusivity and d is the characteristic length scale in the mi-
crofluidic device. In a microfluidic channel d ~ 100 tm with water D' ~ 1.5 x 1077 m?/s
the velocity where convection becomes important are vp, &~ 1.5 mm/s. In the paper en-
closed Section 7.2 the characteristic length-scale is h = 360 pm and the streaming velocity
reaches ‘v’ ~ 850 pm/s, resulting in a Peclet number higher than 1 and therefore the used
perturbation model is on the limit of its validity. Both these effects are thermal effects
and therefore require a thermoviscous model.

Other non-linear effects include the importance of the term V - (povgvg) at high
streaming velocities, this effect is investigated in relation to streaming in acoustic tweezers
in Chapter 5. This effect is a purely mechanical effect and is therefore also present in purely
viscous acoustofluidics.
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Chapter 3

Numerical Methods

The thesis is build on theoretical, numerical and some (external) experimental work. The
theoretical work is able to give fundamental insights into for example the streaming and
heating mechanisms in an acoustofluidic system, but an acoustofluidic device quickly be-
comes very complex and require numerical simulations to be able to compare with exper-
iments. In this section the numerical framework of the thesis is presented. All modelling
is done using the COMSOL Multiphysics software [57] using a Finite Element Method
(FEM). Using a commercial software like COMSOL has allowed me to focus on the physics
(the governing equations and boundary condition) instead of settings for the numerical
solvers and meshing. The numerical model developed in Chapter 2 is implemented in
COMSOL using the ”Weak Form Module”.

The chapter introduces the general finite element method (FEM) with the weak for-
mulation, boundary conditions, formulation in cylindrical coordinates, and the usage of
symmetry planes and perfectly matched layers (PML).

3.1 The finite element method

With the FEM model we seek to solve partial differential equations (PDE) that can be
written by a general source term F' and a general flux J,

0=V J(u(r) - F(r) (3.1)

Where the u(r,t) is the field controlled by the differential equation. The form is the same
as the differential transport equation Eq. (2.3) and thereby the form of all the governing
equations derived in Chapter 2. This formulation is called the strong formulation and
can in some cases be solved analytically. But often it is needed to numerically solve the
equation by computing an approximate solution to the differential equation. This is the
case for the finite element method (FEM) the solution u(r,t) is discretized onto a set of
test-functions ¢, to give an approximate solution «,

N

U(T) ~ ’[L(’l‘) = ch¢n(r) (3.2)

n=1
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Figure 3.1: Illustration of a mesh on the domain {2 with a basis function ¢, which are
non-zero at note n and the corresponding constant ¢,. Figure adapted from [58].

Here N is the number of nodes (mesh points), ¢,(r) are the set of basis functions and
has the property ¢;(r;) = d;; where &;; is the Kronecker’s delta, and ¢, are the constants
that are fitted and they have the property ¢, = u(r,). The basis functions are sketched
in Fig. 3.1 where its property of being non-zero at one node and zero at all other nodes is
sketched. The approximate solution @ has a non-zero error § compared to the true solution
to the differential equation,

d(r)=V - -J((r)) — F(r). (3.3)

By demanding that the projection of the error § on all test functions ¢,, vanishes we get
the weak-formulation of the partial differential equation (PDE),

o:/vqsm[V.J(a(r))—F(r) av,  forall m. (3.4)

The weak form formuation of the PDE is the form that are solved in the FEM models.
For a flux J that depends linearly on u we can write J(u(r)) = >, cpd (¢n(r)), thus we
can introduce the stiffness matrix K,,, and the force vector F,,,

Konn = y G (1)V - T (¢ (r))dV, (3.5a)

EF, = Vqﬁm(r)F(r))dV (3.5b)

The matrix K,,, will be a sparse matrix and only be non-zero on the diagonal and at
entrances where m and n are nodes in the same element. The weak formulation from
Eq. (3.4) can be written as a matrix problem,

Konen = Fy,. (3.6)

Thus, the unknown constants ¢, can be determined by matrix inversion to find the ap-
proximate solution @ =), c,¢n(r).
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3.1.1 Boundary conditions

The physical system consists of both the governing equations and a set of boundary con-
ditions, which needs to be implemented in the matrix system. The two simplest boundary
conditions are the Dirichlet and Neumann boundary conditions,

Dirichlet : u(r) = f(r), r € 01, (3.7a)
Neumann : n-J(u(r)) =q(r), r € 0N. (3.7b)

The Dirichlet boundary condition specifies the value of the field w on the surface OS2
to f(r), and the Neumann boundary condition specifies the normal component of the
generalised flux J to g(r). It should be noted that a problem cannot only have Neumann
boundary conditions since it will not have an unique solution, because if u(7) is a solution
so is u(r) + C. If a system only have Neumann boundary conditions the average value of
the field can be set by a global constraint imposing fV u(r)dV =C.

The Dirichlet boundary condition sets a value for the field u(r) = f(r) for r located
on the boundary 0. Thus, it determines the constants ¢; = f(r;) for i € 09 located
on the boundary. Taking the matrix system K,,,c, = F,, we can then define for i € 91}
the vector K,,;c; = by, since ¢; is known, then the matrix system for the remaining nodes
n ¢ 0 is given as,

Kpnen = Foy — by, n ¢ 00 (3.8)

So the Dirichlet boundary conditions reduces the order of the matrix by the number of
elements on the boundary 0f2.

To implement the Neumann boundary condition it is needed to revisit the weak for-
mulation of the PDE (3.4). Using V - (¢mJ) = (ngm) -J+ ¢,V -J and Gauss’s theorem
to rewrite Eq. (3.4) into,

0= / —V o - J(Uu(r)) — ¢ppF(r)dV + dmmn - J(u(r))dA, for all m. (3.9)
% o0
The boundary integral is only non-zero if the mesh node m is located on the bound-
ary. The Neumann boundary condition is now straight forward to implement by setting
n - J(u(r)) = q(r). This modifies the matrix system by changing the force vector to
Foo= [y ¢m(r)F(r)dV — [o, dmaq(r)dA, where OS2 is the part of the boundary having a
Neumann boundary condition.

3.1.2 Formulation in cylindrical coordinates

The weak formulation is generally given in Eq. (3.4) with the boundary conditions set in
Section 3.1.1. In this section a 2D axis-symmetric formulation of the weak form PDE is
presented. In an axis-symmetrical system in cylindrical coordinates dV = 27xrdrdz. And
the derivatives in cylindrical coordinates are given as,

V= [er&, + %e(ﬁ(% +e.0, (3.10)
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In the axis-symmetric case the ¢ derivatives of the fields w, J and F' are zero. But it is
important to note that the derivatives of the unit vectors are not all zero, there is two
non-vanishing derivatives,

8¢er = €y, 3¢6¢ = —€p, (3.11)

these terms coming from the Jy is essential to include in the axis-symmetric formulation
to achieve the correct radial behaviour of the fields. The weak form formulation of the
PDE is given as,

0= /A b - [v T (u(r)) — F(r)}zwdrdz, (3.12)

Where the integral is over the r-z surface, we would like to manipulate the equations such
that it gets the form of a generalized flux J,., and generalized force term F,.,. We use that
the divergence of a symmetric tensor T is given as,

1 1

V.T= (|:87‘T7"7" + azTrz + ;Trr - ;T@j)} €r
1 1

[8TT¢T + 83T¢Z + ;qur + ;Tr(z,} €y

0T + 0.7 4 1T ey) (3.13)

Notice the five terms arising from 0, even though T is axis-symmetric (all the terms
including 1/7). Finally we use partial derivatives to move the factor 27r originating from
dV inside the divergence. This causes three extra terms that cancels with three of the %
terms,

277V - T =[0,2m Ty + 027 T, — 27Ty e,
[8r27rrT¢r + 0.2mrTy, + 27TTT¢] es
[3r27rrTzr v 8227rrTzz} e.

=V, - (27T7"T) — 27‘[‘T¢¢6T + 27TTT¢6¢ (314)

We get a divergence in the rz-plane and two extra source terms in the r and ¢ component.
So the weak formulation for an axis-symmetric system in cylindrical coordinates can be
set up as,

0= /A O [V (Tea(ulr)) = Fro(r)]drdz, (3.15a
(

F,, =2nrF + 2nJyse, — 2w J 4€4
Jr, = 2mrJ (3.15¢
V., =e¢e.0r +e,0, (3.15d

This is a 2D axis-symmetric formulation which enables simulations of 3D systems ax-
ial symmetry. The two extra terms in the force F,, is important to get the correct
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r-dependency of the solutions. Note that the field u are allowed to have a ¢ component
so F,, and J,, have three components, but the fields cannot depend on ¢.

An axis-symmetric system has a special boundary condition at r = 0 where fields needs
to be symmetric since u(¢ = 0) = u(¢ = 7). For a vector field w that implies that the ¢
and r component has to be zero ug = u, = 0 and the radial derivative of the z-component
is zero O,u, =0 at r = 0.

3.1.3 Symmetry planes and perfectly matched layers

When modelling 3D devices the numerical model can quickly become numerically large
therefore we use symmetry planes and the technique perfectly matched layers (PML) to
avoid simulating the entire chip:

I: Symmetry planes — If a device has symmetry planes they can be exploited to
reduce the size of the numerical model. Instead of simulating the entire device only
one half of the device is simulated and a set of symmetry conditions is applied as
boundary conditions at the symmetry plane. For the numerical in Section 7.2 two
symmetry planes are used to only model a quarter system.

II: Perfectly matched layers — PML is a technique to mimic a wave travelling out of
the system [59, 60]. In this thesis PML is used for long channels with an actuation
at the center. Then to avoid modelling the acoustic wave travelling away from the
actuation region a perfectly matched layer is applied. A perfectly matched layer
models a long channel as an infinite long channel, and are useful when there is no
reflections from the end of the channel. The PML technique is only used for the
acoustic fields.

The symmetry planes are identified based on the chip design and the acoustic resonance
in the system. The symmetry planes are implemented by a boundary condition either
setting the field to zero (antisymmetric) or the flux to zero (symmetric). A perfectly
matched layer is implemented as a region where artificial dampening is added to dampen
the acoustic fields [59, 60]. Both symmetry planes and a PML region is used in the
numerical model in Ref. [2] showed in Fig. 3.2(a) to reduce the size of the numerical
model.

3.2 Validation of numerical simulations

Numerical simulations are a great tool but they need to be validated here we discuss mesh
convergence, numerical validation of the effective boundary layer theory, and comparisons
with experiments.

When making FEM simulations the objective is to estimate the real field u, to do
that test functions and mesh elements are used as a mathematical tool. Thus, ideally the
numerical solution should be independent of the chosen mesh and order of test functions.
The finer the used mesh is the greater is the accuracy but also the computational require-
ments. Therefore a mesh convergence test is made, to ensure convergence and to estimate
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Figure 3.2: (a) Numerical 3D model used in Ref. [2], symmetry planes used at z = 0 and
y = 0 and a PML region of length Lpy,. (b) Line plots of the convergence analysis, the Lo
error C' for the pressure field p; blue and streaming field vs red. The used mesh is marked
by a thick black line obtaining a convergenge of 4% and 8% for p; and ws, respectively.
Figure adapted from the supplemental material for Ref. [2].

the error of the numerical solution. A mesh is characterized by the mesh length element
hmesh and the error estimate is the relative Lo-norm referring to the finest mesh (smallest
hmesh) as the true value,

Sty fi - afel*

Zz’]\il ‘wzﬁne‘Z

For a model using n-order test functions the error should be proportional to hpesnh as
Hx‘ ‘ 1, X (Amesn)™. The convergence test for the acoustic pressure p; and the streaming

HxHLz = (3.16)

velocity vy of the model used in Ref. [2] enclosed in Section 7.2 is shown in Fig. 3.2.
Because the second order field inherits the error of the first order equations, the error on
the second order equations are expected to be twice the error of the first order fields.

In Chapter 2 a model with effective boundary conditions was developed. To check
that the effective boundary conditions are correct they are compared to a full simulation
with the boundary layers numerically resolved. The comparison is done for a 2D-model
so a full simulation is doable and the physical fields in the bulk of the fluid are compared.
In Fig. 2.4(c) a line plot of temperature field T for both a full and effective is shown
to validate the effective boundary conditions on the steady temperature field 75, and in
Fig. 2.3 a colour plot of the streaming field of an effective and full simulation are compared
to validate the effective boundary conditions on the streaming field v,.

Lastly the objective of the simulations are to model reality and therefore comparisons
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to experiments are important to demonstrate the validity and relevance of a numerical
model. When comparing to experimental results it is often beneficial to simplify and
ensure control over the experimental setup. If the experiment is complex by nature it
would be preferable to validate the numerical model against a simplified experimental
setup. In this work I have been fortunate to work with a group of great experimentalists
at Lund University that has made it possible to achieve great match between experiments
and numerical simulations. These comparisons are shown in Sections 4.3 and 4.4 and
published in Refs. [2, 4] enclosed in Sections 7.2 and 7.4.
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Chapter 4

Streaming due to temperature
gradients

A large part of the research during my thesis has focused on studying the effects of temper-
ature fields in an acoustofluidic system, especially the streaming due to the inhomogeneous
acoustic body force f<. in a fluid with temperature gradients. The acoustic body force is
generally given as Eq. (2.55¢),

1 1 r
fac= —jvf’prpo - 1\p1}2vf@so + C—f@f”’pl) +V T (4.1)
0

The inhomogeneous acoustic body force consists of the first two terms which depend on
the gradient in density and compressibility. This section will present the research done
on the acoustic body force when the gradients in the material parameters are caused by
gradients in the temperature field.

The inhomogeneous acoustic body force was described and studied by J.T Karlsen, P.
Augustsson, and H. Bruus in 2016 [32] where the gradients where created by a solute in
the fluid. Gradients due to solutions has been used to stabilize a heavy fluid in the center
of a channel [39], suppressing streaming [37, 38], and relocation of fluid [40]. The main
drawback with gradients caused by solution gradients is that they diffuse over time. The
work in this PhD has only been on gradients in density pp and compressibility «sg caused
by temperature gradients. Temperature gradients in a device can either be by design
or they can be unintentional, in both cases they can be important for understanding
the streaming pattern. Temperature gradients can unintentionally appear in a device by
for example heating due the piezo-electric actuation, in these cases it is important to
understand the heating to model the device correctly. The more interesting case is the
possibility to use temperature fields actively in the design of a microfluidic device. This
gives the possibility to have an extra parameter to control the streaming pattern in the
device. Controlling a temperature field can be done by Peltier elements, Joule heating, or
light absorption.

The chapter gives an overview over the published and unpublished research done in
regards to streaming driven by the inhomogeneous acoustic body force. Section 4.1 will

45
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present general characteristics of the body force when it is induced by temperature gra-
dients. In Section 4.2 the streaming in a typical acoustofluidic trapping glass capillary
tube is investigated and explained [1]. Section 4.3 goes through the streaming due to light
absorption from an LED studied in Ref. [2] with our collaborators W. Qiu, E. Corato, and
P. Augustsson from Lund University. In Section 4.4 we discuss how the inhomogeneous
acoustic body force together with heating from the viscous boundary layers induces non-
linear effects at high acoustic energy, and in Section 4.5 the streaming from localized light
absorption is studied. Lastly concluding remarks on the acoustic force and the Oexamples
in Section 4.6.

4.1 The inhomogeneous acoustic body force

The inhomogeneous acoustic body force created by temperature gradients is given as,

1 1
L= —Z"Uf’pfvﬁ?o(To) - Z‘Z’l’?V/{so(To)
1

= [az;po}vf’pf + agsns,o‘pl ‘2} a0V 1o

= — [l Bian + 0, Byt apo VT (4.2)

Here ag and afs are dimensionless parameters which describes the temperature depen-
dency of p and kg, respectively, they are defined in Eq. (2.9) and given in Table 2.1. The
following guidelines are valid for the force in water:
I: Both density and compressibility decreases with temperature (az, afs < 0 ) so the
force points towards regions with high temperature. The direction of the force is
determined only by the temperature gradient.

II: Since ag = —1and ags = —10 and the spatial average of F},o; and iy, are the same,

then the inhomogeneous body-force is typically dominated by the ‘ pl{Q—term (Epot
-term) and therefore largest in the pressure anti-nodes.

IIL: If the temperature gradient is created by an external heat source (absorption of light
or Peltier element) then the inhomogeneous acoustic body force and the absolute
streaming velocity scales as the acoustic energy density fac & Eac. This is the same
scaling as the boundary driven streaming.

IV If the gradients in the temperature field V7j is due to the acoustic field (friction
losses in viscous boundary layers or heating in the piezo-electric material) then it will
depend on the acoustic energy density squared f,. oc E2., this will create a transition
from boundary- to bulk-driven streaming at a certain acoustic energy density. For
this it is necessary to use the iterative solver in Section 2.10.

The inhomogeneous acoustic body force has a fundamentally different origin than
the boundary driven streaming and traditional bulk-driven Eckart streaming. Both the



4.2. TRAPPING GLASS CAPILLARY 47

boundary-driven and Eckart streaming are driven from viscous losses in the acoustic wave
either in the boundary layer or in the bulk, during this process energy is transformed into
both a mechanical streaming flow and into heat energy. The inhomogeneous acoustic body
force is created due to the acoustic wave scattering, not on a surface but on a gradient,
therefore heat is not created and it is non-dissipative. Because it arises due to scattering
of the acoustic wave it has similarities to the acoustic radiation force, they both have a
compressibility term linked to the potential energy density Epo; and a density term linked
to the kinetic energy density Fyiy.

4.2 Trapping glass capillary

This section is based on the modeling of example II in Ref. [1] enclosed in Section 7.1. A
glass capillary tube is a widely used acoustofluidic device which consist of a fluid channel
(2 x 0.2 mm) in a thin glass capillary (wall thickness of 140 pm). It is used to create
an acoustic trap by gluing a thin piezoelectric transducer on the glass capillary that
creates a localized acoustic field in the fluid in the region just above the piezoelectric
transducer. The device has been studied experimentally [61] and numerically [44], and
used commercially by AcouSort AB [62]. These acoustic trapping glass capillaries exhibits
a very characteristic streaming pattern with four streaming rolls in the horizontal plane
of the capillary, this was observed experimentally by B. Hammarstrém, T. Laurell and J.
Nilsson (2012) [61], see Fig. 4.1.

In a glass capillary the acoustic trap is located just above the piezo-electric transducer

e

Eapiiiary *

) L
Transducer
x "-‘

Figure 4.1: To the left a sketch of the acoustofluidic device with a glass capillary tube with
width W = 2 mm, height H = 0.2 mm, and a piezo-electric transducer glued underneath
with a width of Lpzr ~ 1 mm. To the right the streaming field v9 in the fluid domain
above the PZT (indicated by dashed yellow lines). The streaming pattern is visualized
using 490 nm particles and the red arrows indicate the rotation of the four streaming rolls.
Figure from Ref. [61] .
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(a) — To (b) — p1

Figure 4.2: Sketch of streaming field in a glass capillary tube. (a) Contour field of the
temperature field T and the temperature gradient VTj (red) in the zy-plane. (b) Pres-
sure field p; (blue to red) in yz-plane. (c) Acoustic body force fa. (blue) in zy-plane.
(d) Streaming pattern vy (green) in the xy-plane.

in the center of the channel, where the acoustic wave is localized. Large particles will
be trapped by the acoustic radiation force while small particles below the critical limit
are dragged by the streaming in the four characteristic streaming rolls. In Ref. [61] the
large particles in the trap are used as seed particles, so the streaming rolls guide the small
particles into the vicinity of the big seed particles where they are trapped due to secondary
acoustic radiation forces. The seed particles enables trapping of particles below the critical
limit and the streaming are used to ensure that the small particles comes into the vicinity
of the acoustic trap.

The characteristic streaming pattern cannot be explained by a purely mechanical model
but is quite simply understood using the guideline I and II of the inhomogeneous acoustic
body force from the previous section, to see the full modeling and simulations see Sec-
tion 7.1. To understand the streaming pattern it is necessary to know the general shape
of the temperature field and the acoustic field. The temperature field is created by heat
generation in the piezo-electric transducer and therefore heats up the glass capillary above,
see Fig. 4.2(a). Thus, there is a temperature gradient in the z-direction pointing towards
the center at x = 0. The capillary is actuated at a frequency fo just below 4 MHz and
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actuates a standing half-wave resonance mode in the vertical direction, see Fig. 4.2(b).
The acoustic pressure field will be strongest above the piezo-electric transducer, and it
is stronger in the center of the channel than at the sides. With the steady temperature
field Ty and the acoustic pressure field p; we can from principle I and II in the previous
section find the form of acoustic body force fa.: (1) from principle I it will point in the
x-direction towards x = 0 and (2) from principle II it will be strongest where the acoustic
energy is highest at the center of the chip close to the PZT, the resulting f.. is sketched
in Fig. 4.2(c). The acoustic body force pushes the fluid towards = 0 in the center of the
chip and the fluid has to recirculate along the sides of the capillary, this creates the four
streaming rolls sketched in Fig. 4.2(d).

In the modeling example II in Section 7.1 the same pattern is observed with a slight
skewness in the streaming rolls because there is a small temperature gradient in the z-
direction. The model in Section 7.1 is a perturbative model where the temperature field
and acoustic field is modeled as generated by two different mechanism, but in reality they
are coupled and both generated by the piezo-electric transducer. If the PZT was included
in the model and the only actuation was the voltage on the PZT then a perturbative
model would not be valid and a non-perturbative iterative solver presented in Section 2.10
is required.

4.3 Light absorption from an LED

This section will introduce and discuss the numerical and experimental results of Ref. [2]
enclosed in Section 7.2, the paper is written in collaboration with W. Qiu, E. Corato, and
P. Augustsson from Lund University and my supervisor Henrik Bruus. The experimental
work was performed by the group at Lund University while the numerical modeling was
performed at DTU. The work studies the effect of inhomogeneities induced by temperature
gradients, and has the big advantage that the temperature field and acoustic field is
controlled separately. The experimental setup is a long straight rectangular acoustofluidic
glass-silicon-glass channel with a standing half wave resonance around 1 MHz, see Fig. 4.3.
A LED is focused to a spot size of ~ 1 mm and is absorbed in the fluid, where a dye
concentration controls the absorption coefficient. The decision to use a sandwich glass-
silicon-glass chip has several benefits,

I:  Experimentally it enables optical access from both above and below the chip. There-
fore the heating LED and microscope can be positioned on opposite sides of the chip,
see Fig. 4.3(a).

IT: The silicon wafer creates a short distance between the heat source (light absorption)
and heat sink (silicon wafer) this is important because it creates a temperature
gradient over the fluid channel width instead of the chip width. This enables high
temperature gradients even though the temperature difference is quite small.

III: The heating from the piezoelectric transducer is transported away by the silicon
wafers so that it does not affect the temperature field in the fluid channel. As seen
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Figure 4.3: (a) Experimental setup for the measurements of streaming flow. The glass-
silicon-glass chip gives the possibility to have the heat source and microscope on opposite
sites of the chip. For more details of the experiment see Ref. [2]. (b) The numerical
model with symmetry planes at x = 0 and ¥y = 0. The model contains a fluid domain
(blue) of width W and height H, glass (beige), silicon (dark green) and an actuation
region (black). A PML region Lgys < & < Lepg is used to dampen the wave to mimic an
infinite long channel and a Gaussian light beam is modeled with center at z = y = 0 and
characteristic width dpgp = 650 pm. Figures adapted from Ref. [2].

in Fig. 4.3(a) the piezo-electric transducer (PZT) is located asymmetrically off center
to enable optical access from both the top and the bottom. For more details on the
experimental setup see the paper enclosed in Section 7.2.

The simulation uses the effective thermoviscous perturbative model introduced in
Chapter 2 and in the paper enclosed in Section 7.1. The numerical model can be seen in
Fig. 4.3(b), the model consists of a fluid domain (blue) of width 3 and height H, a glass
domain (beige), a silicon domain (dark green) and an actuation surface (black), symmetry
planes to enable only modelling a quarter of the channel, and a perfectly matched layer
(PML) to mimic an infinite long channel, see Fig. 4.3(b). For further details on the im-
plementation of the numerical model see the supplementary material for Ref. [2] enclosed
in Section 7.2

The LED spot is modeled as a Gaussian light beam [63] with the intensity given as,

2P, 2(z? + 42
LED [_ (4 y%))

T2 (2) 20 azl. (4.3)

ILED(x)yv Z) =

Where the Prgp is the total LED power, « is the absorption coefficient in the fluid and
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T, top view
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Figure 4.4: (a)-(e) The measured (left half) and simulated (right half) streaming patterns
for ATy = 3.71 K across the channel width W, observed in different planes x-y horizontally,
x-z vertically, and y-z vertically. The vector plot (magenta) in a plane is the in-plane
velocity and the color plot is the magnitude from 0 (dark blue) to 1042 pms~! (yellow).
The simulation is with F,. = 23 J/m3. The curved white lines in (b) and (d) represent the
centerlines of the two counter-rotating 3D cylindrical streaming flow rolls. The two line-
plots show the measured (purple) and the simulated (green) z (or y) component v (or v§)
of the velocity along the red lines. (f) Color plot from 25.0 °C (black) to 30.1 °C (white)
of the measured and simulated temperature Tj in the horizontal z-y plane at z = 0. (g)
Ty as in panel (f) but for the vertical y-z plane at = 0, and only the simulation results
are shown. Figure from Ref. [2].

w(z) is the width of the Gaussian beam at height z for a focalized beam given as,

w(z) = woy[1+ <A—z2>2 (4.4)

W

where wq is the width at the focal plane z = 0 and X is the wavelength of the light. The
local heat absorption at a position (z,y, z) is given as P(x,y, z) = aligp(z,y, z). For the
LED spot in the experiment wg > AH so the width of the beam is approximately constant
through the entire chip w(z) ~ wy.

The resulting temperature field is shown in Fig. 4.4(f-g), with the simulated tempera-
ture field to the right and the experimental measured temperature field to the left. The
pressure field p; is a half-wave standing wave resonance in the width direction with a
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pressure node in the center at y = 0 and pressure anti-nodes at y = :l:%W. The resulting
force field will be strongest at the pressure anti-nodes at the bottom of the channel at the
position of the LED spot (largest temperature gradient) and point towards the center of
the channel y = 0. This creates a 3D-streaming flow shown in Fig. 4.4 with experimental
data on the left and simulations on the right. The resulting 3D-streaming rolls from the
top (zy-plane) appear as four horizontal streaming rolls Fig. 4.4(a-c) and in the cross-
sectional yz-plane as two big streaming rolls Fig. 4.4(d). As a 3D streaming pattern it
is two streaming rolls in each side of the channel that rotates around a curved centerline
(white). This appears as four streaming rolls in zy-plane because the white centerline
crosses the xy-plane.

In the investigated channel at ATy = 5.1 K the streaming is completely dominated
by the acoustic body force and it is well known that for ATy = 0 K it is dominated by
boundary-driven streaming, in Fig. 4.5 the shift from boundary- to bulk-driven streaming
is investigated. Fig. 4.5(a) shows the streaming pattern in the yz-plane at x = 0 for
six different LED powers and thereby six different ATy, with both experimental (left)
and simulation data (right). There is a good agreement both for the boundary driven
streaming and during the transition to bulk-driven streaming. The transition is quantified
by two parameters the maximum velocity in the z- direction max(v3) and the geometrical
parameter A which denotes the distance from the top of the channel to the center of the
top streaming rolls, see Fig. 4.5(b). Maybe a bit surprisingly the bulk-driven streaming is
dominant down to temperature increases of 170 mK. This demonstrates how powerful the
inhomogeneous acoustic body force can be, in this system the acoustic energy density is
kept constant, and the inhomogeneous acoustic body force is able to drive a streaming flow
with an amplitude almost two magnitudes larger than the boundary-driven streaming.

In the modeling of the streaming flow we had two free parameters 1) the width of the
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Figure 4.5: (a) Measured (left half) and simulated (right half) in-plane streaming velocity
vy® (magenta vectors) and its magnitude |v3°| from 0 (dark blue) to its maximum (yellow)
in the vertical y-z plane for six temperature differences ATy across the channel. Simula-
tions are performed with the energy density F,c for which |v§”| matches the experimental
one under each ATy. (b) Dependence of the vortex size A (red) and the velocity in the
z-direction |v3| (blue) on ATy. Simulated A is indicated by a red solid line. Light blue
region shows the simulated |v5| under E,. from 9.24 Pa (lower bound) to 23 Pa (upper
bound) with a reference (solid blue line) obtained at E,. = 18 Pa. Figure from Ref. [2].
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LED spot this is determined by the temperature field in Fig. 4.4(f) and 2) the acoustic
energy density which is determined by the absolute streaming velocity. Since this is a
perturbative model the acoustic energy density does not alter the streaming pattern but
only the absolute streaming velocity. The change in streaming pattern is solely controlled
by the temperature field. The great match between the experimental and simulation
results can be attributed the following factors:

I: The ability of our collaborators at Lund University to create a very clean experiment.
This is necessary when the simulations are based on symmetry planes assuming clean
symmetries in the experimental setup.

II: Because the temperature gradients are very localized the only requirement for the
acoustic field is that it is well behaved at the LED spot and not globally in the entire
chip. This means that the streaming is less sensitive to the formation of hot-spots
and other irregularities in the acoustic field.

III: The fact that the temperature field and acoustic field is decoupled allows to examine
the effect of each. This enables control experiments and simulations of the streaming
flow with only acoustics or temperature fields. This ensures a good calibration and
reduces the amount of free parameters in the experiment.

The research done in Ref. [2] was a great demonstration of the importance of tem-
perature gradients for streaming in acoustofluidics and an experimental validation of the
thermoviscous model developed in Section 7.1. It also indicated the need for a non-
perturbative model since the high streaming velocities pushes the Péclet number above 1,
such that convection due to the streaming field vy cannot be neglected.

4.4 Streaming due to heating in the viscous boundary layers

This section discusses the research presented in Section 7.4, the research is done in collab-
oration with Wei Qiu from Lund University who has done the experimental work. This
section differs from the previous two because it investigates the effect of internal heating
due to friction in the viscous boundary layers instead of external heating from light ab-
sorption or a heating piezo-electric transducer. To study the effect of internal heating the
perturbative model cannot be used and it is necessary to use the non-perturbative model
based on separation of time-scales presented in Section 2.10.

To study the effect of frictional heating we select a chip design based on two principles,
first the distance from the heat generation to heat sink should be as short as possible (gives
large gradients even for low temperature differences) and secondly the chip design should
be asymmetric. The asymmetry ensures that there is a rotation in the inhomogeneous
acoustic body-force field which is necessary to induce streaming. Therefore a rectangular
channel in a silicon chip with a glass lid is used. The silicon works as a heat sink and
the glass lid induces an up/down asymmetry in the system. It is a long channel with a
long piezo-electric transducer therefore the resulting acoustic and streaming fields will be
weakly dependent on the z-coordinate, we therefore model it as a 2D system showed in
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Figure 4.6: Silicon chip with a glass lid with a fluid channel of width width Wy = 375 pm
and height Hq = 135 um. The silicon chip has height Hyi = 0.4 mm and width Wi = 3 mm
with a glass lid of thickness Hy = 1 mm. The a half-wave resonance in the simulation is
located at f = 1.91 MHz. Figure from Ref. [4].

Fig. 4.6. The chip has a fluid channel of width Wy = 375 pm and height Hq = 135 pm in
a silicon chip with height H and width Wy and a glass lid of thickness Hy). The chip has
a half-wave resonance at f = 1.91 MHz in the simulations. It is a standard chip design
that is used by various groups to separate or up-concentrate particles [64-66], and has
four boundary driven Rayleigh streaming rolls in the perturbative regime at low acoustic
energy density.

The motivation for this study is to investigate nonlinear effects due to the inhomo-
geneous acoustic body force. The nonlinear effects arises because the boundary driven
streaming and bulk driven streaming depends differently on the acoustic energy density
F,. in the system. The boundary driven streaming is linear with the acoustic energy den-
sity Fa. while the bulk driven streaming depends on the acoustic energy density squared
Egc. This is clear since the temperature gradient VTj is linear with F,. and the body
force is given as Eq. (4.2)

gc = — [agEkin + azs Epot Ckp’(]VT() (4.5)
Therefore, at some acoustic energy density there will be a transition from boundary to bulk
driven streaming. The transition is showed in Fig. 4.7(a-d) which shows the streaming
field at four different E,. with simulation results to left and experimental results to the
right. There is no experimental results for the highest acoustic energy density this is
due to the streaming velocity being to high for the experimental setup. The transition
from boundary- to bulk driven streaming occurs at F,. ~ 500 J/m3. The transition is
quantified in Fig. 4.7(e) by the maximum streaming velocity vy'®* and the geometrical
quantity A, which denotes the distance from the bottom of the channel to the height
with the highest velocity in the y-direction (see white bar in Fig. 4.7(a-d)). Fig. 4.7(e)
shows good agreement between the simulation (lines) and experimental data throughout
the transition, this demonstrates that the non-perturbative iterative theory of Section 7.3
captures the nonlinear transition from boundary to bulk-driven streaming.

The temperature field Ty generated by the friction in the viscous boundary layers are
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Figure 4.7:  (a)-(d) Vector plot (magenta) of the streaming velocity with its magnitude
as a color plot from 0 (blue) to vy"®* (yellow) at four different acoustic energy densities
FE,.. Simulations results are to the left and experimental measurements to the right.
The quantity A, is shown as a white bar and denotes the distance from the bottom to
the maximum horizontal velocity toward the center of the channel. (e) Line plots of the
maximum streaming velocity v§** (blue) and A, (red) as a function of the F,., with
experimental data as square markers. The experimental error on the acoustic energy
density and maximum streaming velocity is within the square markers. The light blue
and light red lines denotes the simulation results using a perturbative model. (f)-(i) color
plot of the simulated temperature field at four acoustic energy densities from 0 (black) to
T3 (white). The quantity A is the height where the temperature is 73"**/2. (j) Line
plots of T§"** and At as function of E,.. Figure from Ref. [4].

shown in Fig. 4.7(f). The temperature field is created due to the heat generation in the
boundary layers at the top and bottom of the channel. At the bottom of the channel the
silicon wafer transports the heat away while at the top of the channel the low heat con-
ductivity of the glass lid results in a temperature gradient across the fluid channel. Hence
the acoustic body is strongest in the top of the channel (largest temperature gradient)
and at the sides (pressure anti-node) and thus creating two large streaming rolls. The
temperature field looks similar to the 2D-thermal field in Section 4.3, but with the high
temperature at the top of the channel instead of the bottom of the channel. Therefore the
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two big streaming rolls has opposite rotation of the streaming rolls in Fig. 4.5. After the
transition occurs it could be expected that the streaming velocity will continue to increase
with the acoustic energy squared F2., but quickly the streaming reaches a velocity where
convection are important for the heat transport. The influence of convection can be seen in
Fig. 4.7(f-1) and is quantified by the maximum temperature increase 7;"** and geometrical
quantity Az which is the distance from the bottom to the position where Ty = T§"**/2
indicated by the white bars in Fig. 4.7(f-1). Due to convection the temperature field rises
slower and therefore the bulk-driven streaming due not increase as E2..

The fact that the nonlinear effects plays an important role at an high but obtainable
acoustic energy density demonstrates the importance of having a non-perturbative model
and an understanding of which nonlinear effects are important in a given device. The
two most important nonlinear effects to take into account are the inhomogeneous acoustic
body force due to internal heating and convection due to fast streaming velocities.

4.5 Heating in a small volume

In this section we discuss the impact of a temperature field induced locally in a region a lot
smaller than the device length-scales (acoustic wavelength A, channel height H and width
W). While the earlier sections went through published work this section is unpublished
work and tries to show the possibilities of working with localized heating in acoustofluidics.
Before discussing a specific device or method of heating we will generally discuss the
streaming occurring from a local heat source in the bulk of a fluid, where the heat source
is far from solid interfaces and is a lot smaller than the acoustic wavelength. So that the
pressure field at » = (x,y, z) in the vicinity of the heat source ro = (z0, yo, 20) can be
described as,

p1(r) = p1(ro) + (r —70) - Vp1(ro). (4.6)

Locating the heat source in 79p = 0 and arranging the coordinate system so that the
gradient only has an component in the e, direction the pressure is given as,

Op1
_.0
pi(e) =) +x (ax )FO, (4.7)

with p{ = p1(r = 0). The temperature field surrounding a local heat source will be a
solution to the Laplace equation,
0 = V2Tp. (4.8)

So for heating in a point or a sphere the temperature field will decay as 1/r and the
temperature gradient as 1/72. That the temperature gradient decays as 1/r? and the fluid
volume dV increases as r2 means that the acoustic body force integrated over volume
induced by the local heating is not a local body force, but will extend into the bulk of
the fluid. In Fig. 4.8 a sketch of the force and the streaming induced by it is shown, but
because it is a non-local effect it is necessary to simulate a specific acoustofluidic device.
The temperature gradient V7 will be in the radial direction towards the heated area
and the pressure field will be estimated as a constant gradient in the x-direction Eq. (4.7),
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Figure 4.8: Sketch of the acoustic body force f,. around a locally heated area. (a) Contour
plot of the temperature field around the heated area (grey) with red arrows indicating the
temperature gradient V7. (b) Contour plot of the pressure field around the heated
area (dashed circle), the pressure node p; = 0 is to the left and anti-node to the right.
(c) Vector plot of the acoustic body force fae (blue), pointing in the direction of V1§ and
amplitude depending on ‘ pl‘Q. (d) The streaming field vy (green) at the heated area, the
exact streaming field depends on the geometry of the acoustofluidic device. The sketched
forces and streaming flow are valid for either heating in a sphere or in a cylindrical volume
with a symmetry axis out of the plane.

depicted in Fig. 4.8(a—b). The inhomogeneous acoustic body force using the principles from
Section 4.1 points towards the heated area and the absolute force will be proportional to
the potential energy density Fpo; o< ‘p1|2, thus the acoustic body force is largest on the
right side of the heated area in Fig. 4.8(c). The acoustic body force depicted in Fig. 4.8(c)
will create a streaming flow from right to left Fig. 4.8(d). So the streaming at the heated
area will be towards the pressure node and the recirculation flow will depend on the device
geometry.

If the spherical heat source is a particle absorbing light the particle would move with
the streaming until reaching the pressure node. This is assuming that the drag force is
dominating the particle trajectory, so either a small particle or a particle with contrast
factor ® = 0. As a thought experiment consider a suspension of particles in a fluid with
® = 0, the particles has similar properties but different colors. When flowing through a
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region with a blue LED the particles that absorb the blue light will heat up and create
streaming, hence it could be possible to separate particles based on their color. The
effect of heating particles with an LED has been studied experimentally by Dumy, Hoyos,
and Aider in two articles [67, 68]. These publications study particles in an acoustic trap
and what happens when they shine an LED light on them. The experiment shows that
the particles when heated leaves the acoustic trap while still being in the pressure nodal
plane. In Ref. [68] it is suggested that the phenomenon is due to streaming caused by
the inhomogeneous acoustic body force f,.. This experiment and phenomenon of heated
particles could be interesting to model and investigate further.

The next section will show simulations of a heated volume due to a laser beam it will
heat up a cylindrical volume but demonstrates the creation of a streaming flow towards
the pressure node and gives an idea of the temperature differences needed. The sketch in
Fig. 4.8 is also valid for a heated cylindrical volume with the correct orientation i regards
to the pressure gradient Vpy.

4.5.1 Heating from a laser beam

This section will study the streaming due to heating from a laser spot. The heating will
be in a cylinder through the fluid channel. The acoustic body force and streaming due
to heating in a thin cylinder with radius r a lot smaller than the acoustic wavelength A
follows the same analysis as for a sphere in Fig. 4.8. In Section 4.3 the light absorption
from an LED was studied, here a focalized laser is focused to spot of radius djager = 10 pm
is investigated. There are two main differences from the LED, first the spot size is a
lot smaller than the LED spotsize of dpgp = 650 pm and secondly a lower absorption
coefficient is used meaning the light beam has approximately the same light intensity
throughout the fluid channel.

As a case study we investigate a rectangular fluid channel with width W = 375 pm
and H = 180 pm which has a half-wave standing wave resonance at f = 1.90 MHz, see
Fig. 4.9. The 3D model has length L = 1 mm and symmetry boundary conditions at
x = 0 and x = L. The laser spot is focused at yy = %W and xg = zg = 0. Due to the
symmetry planes in the model the modeled system is an infinite long channel with infinite
laser spots spaced 2L from each other. L has been chosen such that the temperature and
streaming field due to the laser is independent of the other laser spots. The laser spot is
modeled as a focused Gaussian beam similarly to the LED spot in Section 4.3,

2Paser 2((z — = 2 - 2
Daser(z,y, 2) = 7Tw12(z) exp [_ (( 03(}22:)(3/ Y0)?) B ozz]

Where the Pl is the total laser power, « is absorption coefficient in the fluid and w(z)
is the width of the Gaussian beam at height z for a focalized beam given as,

o) =1+ (MY, (410)

where g, yo, and zg is the spatial focus of the laser. A red laser with wavelength A =
670 nm, power Paser = 10 mW, and a focus width of wg = 10 pm is used. The mesh shown

(4.9)
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Figure 4.9: 3D model of streaming induced by heating from a laser beam. (a) 2D cross-
section of the model containing fluid (blue), glass (beige), and silicon (dark green) with
the mesh in the yz-plane of the model. (b) Color plot of the ATy = Ty —T'g in the yz-plane
at © = 0 from black 0 to white 1.1 K. (c¢) Color plot of the ATy in the zy-plane at z = 0
from black 0 to white 1.1 K. (d) Color plot of the absolute displacement field ‘ul‘ in the
solid and the pressure field p; in the fluid. (e) Vector plot of the streaming field vy and
its absolute value as a color plot from blue 0 to yellow 105 pm/s in the yz-plane at an
acoustic energy density of E,. = 23.2 J/m3. (f) Same as (e) but in the zy-plane and with
the same color scale.

in Fig. 4.9(a) is fine at the focal point of the laser to be able to handle the small length
scale of the laser beam. The resulting temperature field Tj is shown in Fig. 4.9(b-c) for the
yz and zy-planes is a cylinder of hot fluid along the path of the laser beam. It creates a
temperature gradient localized close to the laser spot and restricted to one side of the fluid
channel. The chip is actuated anti-symmetric at a resonance frequency of fo = 1.90 MHz
which results in the acoustic displacement u; and pressure field p; shown in Fig. 4.9(d).
As discussed in the previous section the average acoustic body force around a heated spot
will tend to push the fluid towards the pressure node, this results in the streaming pattern
shown in Fig. 4.9(e-f). The streaming pattern at the heated fluid is towards the pressure
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node while the recirculation flow happens in the zy-plane. The simulations shows that
a temperature increase of 1.1 K can induce a fast localized streaming flow towards the
pressure node. In Fig. 4.9(f) it is shown that far away from the laser spot the streaming
is the classical boundary driven Rayleigh streaming, this validates that the chosen length
L is enough to ensure that the individual laser spots are independent.

4.6 Concluding remarks

The inhomogeneous acoustic body force induced by temperature gradients can be the
cause of fast thermoacoustic streaming in acoustofluidic devices. Thermoacoustic stream-
ing can occur in a system due to internal heating either in the piezo-electric transducer
Section 4.2 or in the viscous boundary layers in the fluid Section 4.4 in these cases it is
necessary to include the temperature fields to model the systems behaviour and under-
stand the underlying physics. With the understanding of the phenomenon it opens up the
possibility to use thermoacoustic streaming actively in the design of acoustofluidic devices
by including heat sources as LED’s or lasers. The knowledge can also be used to remove
unwanted streaming for example by adding a conducting layer of silicon or metal between
the piezo-electric transducer and glass capillary tube in Section 4.2.

In this work only stationary temperature fields from an LED or laser was studied,
but an LED gives an excellent temporal and spatial control which could allow for use-
cases where the streaming field can be turned on/off or moved in a device. This gives a
design parameter such that both the acoustic and temperature field can be designed to
manipulate particles in the desired manner. To model transient problems modifications
has to be made to the numerical model.



Chapter 5

Streaming in acoustic tweezers

The chapter introduces the concept of acoustic tweezers and the unpublished work on
streaming in acoustic tweezers done in collaboration with Sarah Vincent and Senior re-
search scientist (Directeur de rescherche) Jean-Louis Thomas during my three months
external stay at Institut des NanoSciences de Paris (INSP) at Sorbonne University in the
summer of 2021.

The research area of acoustic tweezers is new and exciting, the concept was proposed
in 2013 by D. Baresch, JL. Thomas and R. Marchiano [69] and later realised in 2016 [20].
One of the difficulties with acoustic tweezers is that most particles focus at the pressure
node, so in contrast to an optical tweezer a pressure node is needed on the symmetry axis.
D. Baresch, JL. Thomas and R. Marchiano [69] proposed to use a focalised vortex beam,
which has a nodal line in the center of the beam. A focalized vortex beam traps particles
in the pressure node on the centerline and because it is a focalized beam it traps particles
at the focal plane due to gradients in the acoustic energy density. The focalised vortex
beam are able to trap particles in a fluid against gravity as demonstrated experimentally
at 1 MHz in Ref. [20] with the tweezer shown in Fig. 5.1(a).

The potential of acoustic tweezers was further demonstrated by M. Baudoin et al. [27]
which integrated an acoustic tweezer in a microscope setup and demonstrated the use of
controlling and moving individual particles. In their setup the acoustic vortex beam is
generated by an electrode pattern on a piezo-electric substrate, see Fig. 5.1(b) which is
designed to ensure the correct phase of the acoustic displacement. The electrode design
has enabled to go to higher frequencies demonstrated up to 47 MHz in Ref. [28].

The chapter will introduce the basic principles of an acoustic tweezer and the work of
modelling the streaming which can be a limiting factor in trapping particles in an acoustic
tweezer.

5.1 A short introduction to acoustic tweezers
First the form of the acoustic beam is presented and then from the expression of the
acoustic radiation force in Eq. (2.65) it is explained why a particle can be trapped in a

focalized acoustic vortex beam (FAVB). A FAVB can be decomposed with spherical Bessel
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Figure 5.1: Two different designs of acoustic tweezers that both generate a focalized
acoustic vortex beam. (a) Design by D. Baresch, JL. Thomas, and R. Marchiano [20] for
an acoustic tweezer at 1 MHz. The acoustic wave is generated by an array of transducers
where the phase can be controlled to ensure the formation of an acoustic vortex beam.
(b) Design by M. Baudoin et al [27] used for a 47 Mhz acoustic tweezer. Here the electrode
pattern on the piezoelectric substrate ensures the correct phase. This tweezer is designed
to be integrated in a microscope setup.

functions and described by their beam shape coefficients (BSC) A} [69, 70],

pr(r,0,6,8) =pa » Y ATju(kr)Y"(0, ¢)e (5.1)

n=0m=-—n

Where j,(kr) are the spherical Bessel functions, Y,” are the spherical harmonics, and p,
is the characteristic amplitude of the acoustic field. For a focalized acoustic vortex beam
the beam shape coefficients are given as [70],

1
AT = N o PO o) (<17 [ P 5:2)
cosag
Where rg is the distance from the transducer to the vortex, hg)(kro) is the spherical
Hankel function of the first kind, ag is the aperture angle of the transducer, P)"(x) is the
associated Legendre polynomial and N}* is given as,

Ny = [t 53
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Figure 5.2: (a) Colorplot of the real part of the acoustic pressure field p; at a time ¢
in the rz-plane from blue —1.0 to red 1.0 MPa of a focalized acoustic vortex beam with
fo = 47 MHz, ro = 2.4 mm, and ag = 54.8. (b) The axial force F'*! along the z-axis at
r = 0 on a polystyrene sphere with radius @ = 5 pm. (c) The radial force Frd at z = 0
on a polystyrene sphere with radius a = 5 pm.

For a vortex beam with the parameters rg = 2.4 mm, ag = 54.8 and fy = 47 MHz the real
part of the pressure field is shown in Fig. 5.2(a) in the rz-plane, the focus of the tweezer
are in r = z = 0.

To have a trap in three directions a trapping force is needed in the radial direction r
and axial direction z. In Fig. 5.2(b-c) the axial and radial radiation forces are shown for
a polystyrene particle with radius ¢ = 5 pm. In the radial direction, Fig. 5.2(c), there is a
strong trapping force towards the pressure node at r = 0. The force in the z-direction is
notably weaker, see Fig. 5.2(b), the axial force in the pressure node stems from the dipole
term in the radiation force (Eq. (2.72)) which for a particle with a higher density than the
fluid points towards the region with the highest acoustic kinetic energy density at z = 0.
The streaming from an acoustic tweezer will flow away from the actuation region along the
z-axis, if the streaming is too fast the drag force can be stronger than the axial trapping
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strength of the acoustic tweezer. An acoustic tweezer is a travelling wave, but it has some
similarities with a standing acoustic wave. It has a constant pressure node in » = 0 and it
has a clear patterning of the time averaged acoustic potential and kinetic energy density.
Therefore the radiation force calculated with the Gorkov potential Eq. (2.66) gives the
same radiation force as the more general Eq. (2.65) even though the Gorkov potential is
not valid for travelling acoustic waves.

It should be noted that a particle with radius of a = 5pm and an acoustic field with
wavelength A ~ 30 pm does not satisfy the condition of the small particle limit under
which the expression for the acoustic radiation in Section 2.9 is valid. But it is not in
the scope of this work to investigate the acoustic radiation force on large particles. Thus,
the forces in Fig. 5.2(b—c) are only to get an estimate of the magnitude and shape of the
acoustic trap, and an understanding of how a focused acoustic vortex beam can create a
trap both in the radial and axial direction.

5.2 Analytical streaming flow

The acoustic vortex beam creates an acoustic body force fa. in the fluid that generates

bulk-driven Eckart streaming,
lw
Jac = CT<01P1> (5.4)
0

where v; = —i 1&){ Vp1, in this section we neglect thermoviscous effects. The acoustic body

force is axis-symmetric even though the acoustic pressure field has a angular dependency.
We will consider an incompressible fluid, where the flow v is driven by an acoustic
body force f. The incompressibility is ensured by the continuity equation,

0=V v, (5.5)
and the Navier-Stokes equation governs the steady streaming flow driven by the force f,
O:V-(—pI+nV2v—pvv)+f. (5.6)

The equation contains the stress tensor & = —pI+7nV2v and the convective term pvv. The
Navier-Stokes equation has two main regimes one where the viscous term nV?v dominates
and one where the convective term pvv dominates, described by the Reynolds number,

_ p‘v‘d
n

Re (5.7)

where ‘v} is the characteristic velocity in the system and d the characteristic length scale.
When Re > 1 the inertial term is dominant and for Re < 1 the viscous term dominates.
5.2.1 Stokeslet: Low Reynolds number in free space

In free space and at low Reynolds number Re < 1 the fluid flow from a point force can
be found analytically by using the so-called Stokeslet solutions [71]. In the viscous regime
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Figure 5.3:  Streaming flow calculated with Stokeslet functions for an acoustic vortex
beam with max(p;) = 1 MPa. (a) Color plot of the magnitude of v, the direction is —e,
since the tweezer is located at z = 7. (b) Color plot of the magnitude of vy

at low Reynolds number Re < 1 the inertial term can be neglected in the Navier—Stokes
equation and the streaming caused by a point force at # = 0 is governed by the equations,

0=V.v (5.8a)
0= -V - (pI +nV?0)+ fo(r). (5.8b)
lv,p—>0 as [rf] = o0 (5.8¢)

Where 6(r) is the Dirac delta function which is one at » = 0 and zero everywhere else
and the streaming and pressure field goes to zero as r goes to infinity.
The Green functions solving this set of equation is a Stokeslet [71] and for the velocity

field is given as,
f I rr
= =+, 5.9
& () o

and the solution to the pressure field p as,

. (5.10)

It can be noted that the pressure field decreases as 7~2 while the streaming field is decaying
as 7~1. The Stokeslet is the solution to a linear equation (only valid at Re < 1) there-

fore the streaming field from n point forces can be found by summing up the individual

streaming fields,
fi I rr
_ 5.11
v= Z g\ Jr] } NE (5.11)

7]

The bulk-driven streaming from an acoustic tweezer in free-space can be solved semi-
analytically by the Stokeslet functions when the Reynolds number is low Re < 1. This
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is done be discretizing the acoustic body force fai. (5.4) on a grid with a point force
F = f,.dV in each grid point. Then the streaming can be calculated by summing up over
all grid points, see Eq. (5.11). To remain in the low Reynolds number limit we have an
maximum acoustic pressure of max(p;) = 0.1 MPa in the acoustic tweezer. The resulting
z-velocity field is shown in Fig. 5.3(a) and ¢-component in Fig. 5.3(b). The z component
is 30 times larger than the ¢-component, so the velocity is mainly in the z-direction away
from the actuation region. Secondly we can see that the z-component decreases with r~!
as suggested by the Stokeslet. While the ¢ velocity decreases as 72 because the acoustic
body force f,. points in opposite direction for ¢ = 0 and ¢ = 7, hereby creating a dipole
term that decreases faster.

5.3 Simulations of streaming in acoustic tweezers

An axis-symmetric FEM solver has been setup in COMSOL to numerically calculate the
streaming field. The acoustic body force will be calculated analytically from Eq. (5.4)
and Eq. (5.1) and only the stationary streaming and pressure field are simulated governed
by Egs. (5.5) and (5.6). Because the force field is axis-symmetric the simulations will be
using the axis-symmetric weak formulation derived in Section 3.1.2.

In the simulations we import the acoustic body force fa. derived from the analytical
pressure field Egs. (5.1) and (5.4), the first consideration surrounds the volume size where
the acoustic body force f,. is important. Intuitively one could imagine that the force is
only important in the vicinity of the focal point because of the nature of the pressure
field, see Fig. 5.2(a). But as the pressure field decreases away from the focal point the
volume increases. How big a volume that is important is studied numerically by the model
presented in Fig. 5.4(a) which contains a large fluid domain (blue) and a cylindrical volume

(a) 4 (b)
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Figure 5.4: (a) Sketch of the numerical model containing a large fluid volume (blue) with
the acoustic body force active in the dashed cylinder with radius Ry and height H; = 2Ry
and an acoustic tweezer focused a r = z = 0 at the red dot. (b) Line plot of the maximum
streaming velocity in the z-direction from an acoustic tweezer with max(p;) = 1 MPa as
a function of the radius Ry.
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of radius Ry and height H; = 2R; where the acoustic body force is active. Ry is varied
from 30 pm (the wavelength of the tweezer) to 3 mm. The maximum streaming velocity
does not become constant in this interval for p; = 1 MPa, so it is important to use a large
volume for the acoustic body force. The working distance of the tweezer is 2.4 mm so
above the tweezer the box should not be bigger than 2.4 mm. In the rest of this section
the volume included is Ry = 2 mm and Hy = 2Ry = 4 mm.

5.3.1 Matching the Stokeslet solution

To validate the axis-symmetrical numerical model the streaming in free-space and at low
Reynolds number is modelled and compared to the analytical streaming field obtained in
Section 5.2.1. To mimic a field in free space with no boundaries a big cylinder with radius
R = 40mm and height H = 40 mm with the acoustic tweezer in the center is simulated.
The solution is compared to the Stokeslet solution by line plots. In Fig. 5.5(a) the v, is
showed along 7 at z = 0, Fig. 5.5(b) shows v, along z at r = 0, and Fig. 5.5(c) shows v
along r at z = 0, all plots shows agreement between the analytical and numerical solution.

In Fig. 5.5 close to the vortex the vy decreases as 1/r because the vortex appears
as an infinite long cylinder, further away it appears as a point source and the velocity
decreases as 1/r2. Similar for the v, component that decreases as 1/r far away from
the vortex. Because it is at low Reynolds number the streaming is symmetric and the
maximum streaming velocity is located at the focal point z = 0.

5.3.2 High Reynolds number streaming

At high Reynolds numbers (not a lot smaller than 1) the inertial term pvv in Eq. (5.6) is
important and cannot be neglected. The inclusion of the term creates non-linear effects so
that the streaming can no longer be seen as a summation of streaming flows from different
point sources. The Reynolds number in the fluid is given by the characteristic length scale
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Figure 5.5: Comparison of the analytical and numerical streaming field at low Reynolds
number. (a) Line plot of v, as a function of r at z = 0. The function 1/r is plotted to
show the decrease far away from the vortex matches the theoretical prediction. (b) Line
plot of v, as a function of z at 7 = 0. (c) Line plot of v4 as a function of r at z = 0. The
function 1/r and 1/r? are plotted to show the decrease away from the vortex matches the
theoretical prediction.
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Figure 5.6: Streaming for an acoustic tweezer in free field (no nearby boundaries, R =
40 mm) at high Reynolds number. (a — c¢) Color plot of the absolute streaming velocity |'v‘
at three different pressure amplitudes max(p;) = 0.1, 1, and 10 MPa. (d) The maximum
absolute streaming velocity max(‘v‘) as a function of max(p).

in the system, the length of the acoustic vortex d ~ 100 pm. So the Reynolds number is
1 when the streaming velocity is,

|v| = % ~ 10mm/s (5.12)

In Fig. 5.6(a—c) the streaming field for the maximum acoustic pressures max(p;) = 0.1, 1,
and 10 MPa are shown. And in Fig. 5.6(d) the maximum streaming velocity in the z- and
¢-component are shown as a function of the maximum acoustic pressure in the acoustic
tweezer max(p;). In the regime where the inertial term is negligible Re < 1 the streaming
are proportional to ‘ P1 ‘2 while at higher Reynolds numbers the streaming velocity increases
slower as o ‘pl‘.

There are two important things to notice about the streaming at high Reynolds number

(1) the pattern changes and the position of the maximum streaming is moved below
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the acoustic vortex and (2) the maximum streaming does not increase proportional to
max(p1)?. The last point means that the streaming increases slower than the acoustic
radiation force which are beneficial in an acoustic vortex beam trying to use the radiation
force to trap particles.

5.3.3 Impact of nearby boundaries

In many applications there will be boundaries close to the acoustic tweezer. If used in a
microscope setup [27, 28] the fluid domain would be thin but wide so the nearby boundaries
would be in the z-direction. To investigate the dependency of the streaming velocity on the
height H of the fluid chamber, the numerical model in Fig. 5.7(a) with 2D-axis-symmetric
fluid domain of radius R = 10 mm and a variable height H is used. For an acoustic tweezer
focused at (0,0) (the red dot) with a maximum acoustic pressure max(p;) = 1 MPa, the
maximum streaming velocity i the z-direction is shown as a function of the height H
in Fig. 5.7(b). At H > 10mm the streaming velocity is constant, but for thinner fluid
domains the velocity is proportional to log(H).

When reducing the height of the fluid domain there is two mechanisms lowering the
streaming velocity, (1) the nearby boundaries reduces the streaming because it forces a
smaller fluid flow roll and thereby increases the viscous losses, and (2) the volume of the
force field is reduced which was shown in Fig. 5.4 to reduce the streaming velocity. Since
the first reason is related with the viscous term in the Navier-Stokes equation the height
dependency of the streaming velocity is different for high Reynolds number streaming.
For applications in thin fluid domains as Refs. [27, 28] the streaming velocity is reduced
significantly, and thus extends the frequency range where the streaming is not a concern
for the trapping strength of the acoustic tweezers.

()4 (b) @ S A

R =10 mm

Figure 5.7: (a) Sketch of the numerical model of an 2D-axissymmetric fluid domian (blue)
of height H and radius R = 10 mm with an acoustic tweezer focused at the red dot at
(0,0). (b) Line plot of the maximum streaming velocity for max(p;) = 1 MPa as a function
of the height H of the fluid domain. At H > 10 mm the velocity is constant but at smaller
H the velocity is proportional to log(H).
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5.3.4 Drag forces from streaming

The main reason for studying the streaming in an acoustic tweezer is the drag force on
the particles that can destroy the acoustic trap in the axial direction. The drag force on
a stationary particle is given as Eq. (2.67),

Fd2e — 6rpau. (5.13)

For a particle with radius @ = 5 pm in water and a streaming velocity of "v‘ = 16 mm/s,
the force is F9'#8 ~ 130 pN which is comparable to the axial trapping strength of 60 pN
in Fig. 5.2(b). It should be noted that the forces shown in Fig. 5.2 are using the small
particle assumption and therefore not accurate for large particles. But the size of the
drag force shows that the streaming is important to consider when designing tweezers at
high frequencies. The axial trapping strength could be improved by having a larger mass
density difference of the fluid and particle. As an example a glass particle has a f that is
approximately ten times larger than a polystyrene particle and thus result in a ten times
stronger axial acoustic radiation force.

5.4 Concluding remarks

As the driving frequency of acoustic tweezers increases to enable capturing smaller particles
the attenuation in the bulk increases and therefore creates faster streaming flows. A fast
streaming flow sets a requirement to the axial trapping force of the tweezers that need to
be able to hold the particle against the drag force from the streaming flow. For systems
integrated in microscope setup [27, 28] where the tweezer is primarily trapping in 2D the
streaming does not impose a problem since the radial trap is significantly stronger than
the axial trap and secondly the nearby boundaries would significantly reduce the acoustic
streaming.

A natural next step in the investigation of streaming in acoustic tweezers would be to
vary the frequency and determine at which frequencies it would be possible to axially trap
a particle against streaming and gravity with no nearby boundaries. To make a proper
assessment of the axial trap it is necessary to model the radiation force accurately for a
large particle.



Chapter 6

Spatial localization of acoustic

fields

A mayor application in acoustofluiidcs is acoustic traps that can localize and trap particles
in a microfluidic device. This can either be a single trapping side in a glass capillary tube
(see Section 4.2) [44, 61] or a grid of multiple trapping sides [72, 73]. An acoustic trap
is an efficient way to trap particles using the acoustic radiation force and are efficient
for large particles that are not affected by streaming. Most particles (pp, > pwater and
Kp > Kwater) suspended in a fluid will be focused at the pressure node and trapped at
the location with the highest acoustic energy density F,.. In most single node or multi-
node traps there are a resonance in the height of the channel with either one [61, 73]
or multiple pressure nodes [74]. The particles will be trapped vertically in the pressure
node and then horizontally trapped at the position with highest acoustic energy density
F,.. Importantly the trapping strength in the plane is given by the gradient of F,., see
Eq. (2.72). In the glass capillary traps the spacial localization in the plane is determined
by the thin piezo-electric transducer, so that the acoustic field is localized above the
transducer. In this section we will investigate two other techniques to localize an acoustic
field in a microfluidic system.

We investigate systems that are actuated with a half-wave resonance in the height of
the fluid chamber and which in-plane length scales are a lot larger than the height, which is
the case for either a wide rectangular glass capillary [44] or two microscope slides separated
by spacers [73]. In the next sections two methods to locally change the resonance will be
investigated: first by changing the sound speed of the fluid by heating up local regions of
the chip and secondly by making the chip thicker in local regions and thereby changing
the resonance frequency at the specific spots.

6.1 Temperature controlled localization
This section takes advantage of the temperature dependency of the fluid parameters to

create two domains with different sound speeds. In the studies on streaming due to
temperature gradients in Chapter 4 the temperature dependency of the density and the

71
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Figure 6.1:  Idea of temperature induced cavity. (a) Sketch of temperature induced
cavity consisting of a piezo-electric transducer (PZT), fluid domain, and a solid chip
(Pyrex/silicon) and an LED spot that is absorbed in the fluid. (b) Line plot of two

resonance curves with resonance frequencies fél) and féQ) and full width half maximum of
Tfo.

compressibility were important, for the resonance frequency it is the temperature depen-
dency of the sound speed ¢ = (px)~! that is important. The temperature gradients will
be created by light absorption as in Section 4.3. A simplified sketch of the model is shown
in Fig. 6.1(a) with a half-wave acoustic resonance in the height and an LED spot. The
heating of the fluid needs to change the sound speed enough to separate the resonance
peak in the cold and hot part of the fluid, see Fig. 6.1(b). For the design in Fig. 6.1 to
work it is important to have sharp temperature gradients and therefore it is important
that there is a short distance between the location of the heat absorption and the heat
sink. This can either be done by using a silicon chip or a thin glass capillary with a heat
sink attached.

The next section will analytically investigate when an acoustic wave can be localized
and study temperature induced localization of acoustic waves in oil and water. Oil and
water are fundamentally different in this regard because the sound speed in water increases
with temperature and for oil the sound speed decreases with temperature.

6.1.1 Analytical considerations

We will analytically consider how an acoustic wave will behave in a system with two fluid
domains with two different sound speeds ¢y and thereby wave-number ky = w/cy. Let’s
consider an axis-symmetrical system (r = re, + ¢ey + ze;) with two domains: domain
A with ‘r‘ < ro has wave-number kp and domain B with ‘r‘ > ro has wave-number kg.
Assuming that separation of variables is valid, and that the system is axis-symmetric, then
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pi(r) = R(r)Z(2)®(¢) = R(r)Z(z). In this case the Helmholtz equation separates into an
equation for R(r) and Z(z), as

0= (a2 + %&)R(T) +R2R(r) (6.1a)
0=0%22(2)+ k2Z(z), withk2 = k% + k2 (6.1b)

where kg = ka in domain A and kg = kp in domain B. At the interface r = rg between
domain A and B we have the condition Za(z) = Zg(z) — k,ao = k. = k,. For a
frequency which in domain A gives a half-wave height resonance, so k, ~ ka and k. o ~ 0
in domain A. Then in domain B k% = k,.p + kiB with kng = kz A ~ k3, hence we get

ka ~ k:% — ki. So we have to cases:

. k‘% > ki — then k, p is real and the solution to Eq. (6.1) is a combination of cylindrical
Bessel functions. This gives a set of planar resonance modes in domain B and the
acoustic field is not localized to domain A.

. k:% < ki — then k, g is imaginary and the acoustic field is evanescent in domain B.
Thus, the acoustic field is localized in domain A.

Hence, it is possible to localize acoustic fields in the domain with the highest wave number
ko and therefore the lowest sound speed c. For water the sound speed increases with
temperature, thus it is possible to localize an acoustic wave in a cold domain and not in a
hot domain. This is slightly inconvenient since it easier to heat than to cool a fluid. For
most other fluids, oil and alcohols, the sound decreases with temperature and the acoustic
field can be localized in the hot domain.

To understand what temperature difference is needed to separate the resonance peaks
in the two domains, see Fig. 6.1(b), we consider the width of the resonance peaks. The
two resonance frequencies should be separated by more than the width of the resonance
peak. The resonance peaks are described by a Lorentzian,

A

2 2
I 1
(£-1) + ()
with the maximum at f = fo with F..(fo) = 4AQ> The acoustic energy is half the
maximum at f = fo(1 + %), so the full width half maximum (FWHM) is foQ~!. A
typical acoustofluidic device has a quality factor of ¢ = 100 — 500, so the resonance

frequency needs to shift ~ 1% which means that the sound speed need to shift ~ 1%. For
water this corresponds to a ~ 5 K temperature difference between the two domains.

EaC(f) =

(6.2)

6.1.2 Thermal cavity in oil

In oil the sound speed decreases with temperature therefore a heated region has a lower
sound speed and therefore an acoustic field can be localized at the spot where light is
absorbed. Thus, it is possible to create an acoustic trap controlled by an LED spot, which



74 CHAPTER 6. SPATIAL LOCALIZATION OF ACOUSTIC FIELDS

(e) 1500

1450 [

1400 [

Sound speed [m/s]

1350 * * *
10 20 30 40 50
Temperature [C]

~
-
~

LED spot
Rest of chip

109

Acoustic energy [J/m?]

3.74 3.76 3.78
Frequency [MHz]

Figure 6.2: Simulation results for a thermal cavity in oil. (a) Model of glass capillary
tube with oil (blue) and length L = 8 mm with an LED. (b) Color plot of the steady
temperature field Ty from black 15 to white 20.5 °C. (c) Color plot of the pressure field
p1 in the fluid from blue —0.25 to red 0.25 MPa and the absolute displacement field ‘ul‘
in the solid from blue 0 to yellow 1.7 nm at the resonance frequency f = 3.75 MHz. (d)
Color plot of the acoustic energy density E,. from 0 to 9.5 J/m?3 at f = 3.75 MHz. (e)
Line plot of the sound speed in oil as a function of temperature [75]. (f) Line plot of the
acoustic resonance peaks at the LED spot (red) and in the rest of the chip (blue).

can be turned on/off and moved by the LED. To demonstrate this we model a device with

a rapeseed oil with the following temperature dependent density py and sound speed ¢q at
Tp =20°C [75],

_ dp _ 3 Op _ 31o—1
po(To) = po(TB) + aT |, (To —Tg), po(Tr) =927 kg/m", T |, — 0.65 kg/m” K
Oc oc
co(Tp) = co(TB) + o Iz, (To — Tg), co(Tg) = 1467 m/s, T I = —3.25 m/sK!.
(6.3)

We model a glass capillary actuated by a large piezo-electric transducer and an LED
spot, see Fig. 6.2(a). The numerical model is a glass capillary tube of length L = 8 mm with
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an LED spot a « = 0, the model is actuated on the bottom along the entire channel, and
has symmetry boundary conditions the planes z = 0, x = L, and y = 0. Hence, the model
is simulating an infinitely long glass capillary tube with an infinite number of LED spots
spaced with a distance 2L. The resulting temperature field Ty from the light absorption
is shown in Fig. 6.2(b) and has a temperature increase of 5.5 K. The temperature field is
localized at the LED spot due to the copper foil beneath the glass capillary functioning
as a heat sink. In Fig. 6.2(f) the resonance peaks of the heated domain (red) and cold
domain (blue) are shown, the two resonance peaks are clearly separated and the resonance
has shifted ~ 0.5 %. The resonance in the heated region is at f = 3.75 MHz and here
the acoustic energy density in the heated spot is more than a magnitude larger than the
rest of the chip. The acoustic pressure field p; and absolute displacement field ‘ul‘ for
f = 3.75 MHz is shown in Fig. 6.2(c) and the corresponding acoustic energy density in
Fig. 6.2(d). Both of these show an acoustic field that is localized at the spot of the LED
and are evanescent in the cold fluid domain.

In the simulation the Q-factor is relatively high which results in thin resonance peaks
and therefore a clear separation of the peaks even when the resonance peaks are only
separated by a 0.5 % of the resonance frequency. In a real experiment you might have
broader resonance peaks requiring a larger resonance shift.

6.1.3 Thermal cavity in water

Most acoustofluidic application are with water or an aqueous solution, thus for research
and future practical applications it is of interest to work with water as the fluid. Using
water presents one fundamental problem compared to oil, that the sound speed increases
with temperature. Therefore a domain with cold fluid is suitable for localizing an acoustic
field. It is difficult to cool a fluid in a specific spot, therefore we pursue the idea of
localizing and acoustic wave by making a surrounding barrier of hot fluid and localize an
acoustic field in the center. This will require a ring formed light profile in this work we do
not consider how such a light source is generated but assume that we have a light profile
that is constant between for Ry < r < Ry and otherwise zero.

First we study a glass capillary with a setup similar to the thermal cavity in oil in
the previous section, the capillary is modelled with length L, a light source centered at
x =y = 0, and symmetry boundary conditions at x = 0, z = L, and y = 0, see Fig. 6.3(a).
The light source will have Ry = 0.75 mm and Ry = 1.5 mm and focused at z = y = 0,
the resulting temperature field can be seen in Fig. 6.3(b) with a temperature difference
of 11 K. Although the trapping zone in the center of the ring is warmer than the fluid
outside and therefore the temperature barrier is less than 11 K. Because the fluid outside
the LED spot is colder than the fluid in the center the acoustic field outside the LED
spot will not be an evanescent field. Hence patterns in the acoustic field is expected in
the entire chip. To ensure that the length L does not influence the resonance peaks they
are shown for L = 6, 8, 10, 20 mm in Fig. 6.3(f) (with he longest length presented in the
darkest color). For all lengths a resonance peak for the LED spot (red) and rest of chip
(blue) are separated and the resonance peak in the LED spot has the highest frequency.
At the resonance in the LED spot at f = 3.89 MHz the acoustic energy in the LED spot is
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Figure 6.3: Simulation results for a thermal cavity in water. (a) Model of glass capillary
with water (blue) of length L = 8 mm. (b) Color plot of the steady temperature field Tp
from black 24 to white 35 °C. (c) Color plor of the pressure field p; in the fluid from blue
—0.4 to red 0.4 MPa and the absolute displacement field ‘ul‘ in the solid from blue 0 to
yellow 3 nm at the frequency f = 3.89 MHz. (d) Color plot of the acoustic energy density
FE,c from 0 to 28 J/m? at the frequency f = 3.89 MHz. (e) Line plot of the sound speed in
water as a function of temperature, from Ref. [29]. (f) Line plot of the acoustic resonance
peaks in at the LED spot (red) and in the rest of the chip (blue) for four different length
L =6, 8, 10, 20 mm, the darkest line corresponds to the longest chip.

a magnitude large than the rest of the chip. The acoustic field for f = 3.89 MHz is shown
in Fig. 6.3(c) for L = 8 mm showing the resonant pattern in the cold domain of the fluid,
this resonant pattern also appears in the acoustic energy density F,. in Fig. 6.3(d). With
the ring shaped light profile it is possible to localize and acoustic field in the center of
the ring, but because the sound speed is lower outside the ring, there is a planar resonant
mode in the rest of the chip.

To further study the possibilities of the thermal cavity in water we continue with a
cylindrical fluid domain with a large radius R and shallow height H, see Fig. 6.4(a). Our
system is a fluid domain of radius R = 10 mm and height H = 0.4 mm in a silicon disc
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Figure 6.4: Simulation results for a thermal cavity in water. (a) Model of a fluid domain
in a silicon disc with a glass lid with radius R = 10 mm and height H = 0.4 mm of the
fluid domain. (b) Line plot of the acoustic resonance peaks in at the LED spot (red) and
in the rest of the chip (blue) (c) Color plot of the steady temperature field Ty from black
15 to white 22.5 °C. (d) Color plot of the acoustic energy density F,. from grey 0 to red
50 J/m? at the frequency f = 1.966 MHz.

with a glass lid. The silicon functions as a heat sink due to its large heat conductivity.
The system will be actuated at a frequency f on the bottom and a ring shaped LED spot
will be absorbed in the fluid creating a temperature difference ATy. The spot is located
off center and we take advantage of one symmetry plane to only simulate half the fluid
domain. The light intensity is constant in the ring for 1 mm < r < 2 mm around the
center of the ring, the resulting temperature field in the center plane of the fluid is shown
in Fig. 6.4(c) with a temperature increase of ATy = 7.5 K.

The acoustic energy in the center of the ring (red) and the rest of the chip (blue) is
shown as a function of the frequency in Fig. 6.4(b). At the resonance at the LED spot
f =1.966 MHz the acoustic energy density is more than a magnitude larger than the rest
of the chip, and the corresponding acoustic energy density in the xy-plane is plotted in
Fig. 6.4(d). There is a good spatial localization of the acoustic field, but as expected there
is a resonant pattern outside the LED spot. If this is used as a trap it will therefore result
in patterning of particles away from the LED spot.
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6.2 Geometry controlled localization

In the previous section the resonance frequency was changed by altering the material
parameters resulting in two domains with a different resonance frequency. In this section
the geometry of our system are changed, the dimensions of the fluid channel is not changed,
but the geometry of the glass capillary is changed. The simple idea is to glue a thin slice of
glass on top of the glass capillary, see Fig. 6.5(a) and thereby locally change the resonance
frequency. We are taking advantage of the fact that the resonance frequency in a glass
capillary is not solely dependent on the fluid but also the surrounding solid, similar to the
idea of whole-system resonances in soft polymer based systems [76]. As for the temperature
induced cavity it is required to shift the resonance frequency enough to separate the two
resonance peaks of the domain with a thin glass lid and the one with a thick glass lid,
Fig. 6.5(b). The acoustic wave can be localized in the area with the thick glass lid, since
it will have a longer wavelength and hence a lower resonance frequency.

To investigate the principle of a spatial localization in an acoustic field by altering the
solid geometry we again study the glass capillary tube as an example. In the example we
glue three thin glass slits on the glass capillary of thicknesses d = 50, 100, and 150 pm and
width of 0.75 mm placed with a gap of 0.75 mm between them as sketched in Fig. 6.6(a).
We simulate a glass capillary of length L = 10 mm with symmetry boundary conditions
at = 0 and z = L so that we are mimicking a infinite long capillary with and infinite
amount of glass slices placed a distance L apart.

The three different glass thicknesses gives three different resonance frequencies in the
three regions marked A, B and C under the glass slits, Fig. 6.6(a), with the thickest glass
slit resulting in the lowest resonance frequency. The acoustic energy density FE,. at the

(a) (b) s Bac

I'fo

— ~—~— .
f(()l) ]c(()2) I [MHZ]

Figure 6.5: Idea of geometrically induced cavity. (a) Sketch of geometrical induced cavity
consisting of a piezo-electric transducer (PZT), fluid domain, and a solid with a with a

varying height. (b) Line plots of two resonance curves with resonance frequencies fél) and
#9 and full width half maximum of T'fo.
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Figure 6.6: Simulation results for a glass capillary tube with three geometrical cavities.
(a) Model of the glass capillary with three glass slits of thicknesses d = 50, 100, and
150 pm at respectively domain A, B , and C. (b) Line plot of the acoustic energy density
at the three domains A (blue), B (red), and C (yellow) and the rest of chip (purple) as
a function of frequency. (c) Color plot of the pressure p; from blue —0.3 to red 0.3 MPa
and absolute displacement in the solid ‘ul‘ from blue 0 to yellow 1.5 nm at the resonance
in domain B at f = 1.966 MHz. (d-g) Color plot of the acoustic energy density FE,. at
the four resonance frequencies marked in (b) f = 3.699, 3.719, 3.743, and 3.771 MHz.

three spots A, B, C, and the rest of the chip is shown as a function of the frequency in
Fig. 6.6(b). The resonance peaks of the three spots are all separated by approximately
20 kHz and at its resonances has an energy density of approximately a magnitude higher
than the rest of the chip. The acoustic pressure p; and absolute displacement field ‘ul‘ for
the resonance frequency at region B f = 3.719 MHz are shown in Fig. 6.6(c). It has a clear
height resonance in region B and not in the rest of the chip. Fig. 6.6(d-g) plots the acoustic
energy density Fy in the fluid at the four resonance frequencies f = 3.699, 3.719, 3.743,
and 3.771 MHz marked in Fig. 6.6(b). There is a good spatial localization of the acoustic
fields under the three glass slits at three different resonant frequencies. This enables a
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device where it is possible with one piezo-electric transducer to change the location of the
acoustic trap by changing the frequency on the piezo-electric transducer.

As with the simulations of the thermal cavity the Q-factor in the simulatins are high
since it does not include the the losses in the transducer and the glue layers. Therefore in
an experiment it is expected to have significantly broader resonance peaks.

6.3 Trapping strength

In the two previous sections we have explored the possibilities of localizing acoustic waves
using either light absorption or glueing glass slits on a glass capillary tube, here we investi-
gate their trapping strengths. The trapping strength is important since it determines how
fast a fluid flow a trap can resist. The fluid flow can either be a Poiseuille flow through
the glass capillary or because of movement of the acoustic trap. The trapping strength is
governed by the dipole term of the acoustic radiation force as discussed in Section 2.9 and
given as Eq. (2.72),

: 25— 1)
ange = 47Ta3f2VEaca f2 = W (64)

and the drag force from the fluid flow w9 is given as Eq. (2.67),
FI8 — Grnavsy (6.5)

For the acoustic traps in this section the acoustic field decays over the length scale of
0.5 mm so we estimate }VEaC‘ ~ 2 mm 'E,. Then for a glass particle fo ~ 0.5 with
radius ¢ = 5 pm the trap will be able to hold up to a flow velocity vmax, depending on the
acoustic energy density Eyc,
2a2 f2 Eac
x = VE.|~20 6.6

Uma: 31 } ac‘ pm/s 1 J/m3 ( )
The trapping strength depends on the radius and density of the particles. To hold against a
flow velocity of 2 mm/s an acoustic energy of Ea. ~ 100 J/ m? is needed, and a polystyrene
particle with fa ~ 0.05 requires an acoustic energy density of E,. ~ 1000 J/ m3.

6.4 Concluding remarks

The chapter has numerically investigated the possibility of spatially localizing acoustic
fields either by controlling the temperature field or changing the geometry in order to
create an acoustic trap. Simulations indicate that it is possible to localize acoustic fields
by controlling the temperature field in the channel or altering the solid geometry of the
chip. Especially the possibility of having a temperature induced trap is interesting and
provides the possibility to spatially move a trap by controlling an LED light. In the
examples the light was absorbed in the fluid as in Section 4.3. For some applications it
might be impractical to add dye to the fluid, instead it might be possible to use a colored
glass lid that absorbs the light at frequencies of the LED, while still permitting optical
access at a different frequency.
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A concern for the temperature induced trap is the streaming in the acoustofluidic
device. As demonstrated thoroughly in Chapter 4 a gradient in the temperature will
induce an acoustic body force and thereby acoustic streaming. The temperature gradients
created in the trap is similar to the ones in Section 4.3 therefore fast acoustic streaming can
be expected and should be modeled before designing an experiment. It may be possible
to control the streaming field induced by an LED by having an elliptical LED spot. This
could potentially be used to strengthen the acoustic trap in the direction of the drag force.
For the geometrically induced trap there is no temperature gradients and no significant
streaming field is expected.
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ABSTRACT:

We present an effective thermoviscous theory of acoustofluidics including pressure acoustics, thermoviscous
boundary layers, and streaming for fluids embedded in elastic cavities. By including thermal fields, we thus extend
the effective viscous theory by Bach and Bruus [J. Acoust. Soc. Am. 144, 766 (2018)]. The acoustic temperature
field and the thermoviscous boundary layers are incorporated analytically as effective boundary conditions and time-
averaged body forces on the thermoacoustic bulk fields. Because it avoids resolving the thin boundary layers, the
effective model allows for numerical simulation of both thermoviscous acoustic and time-averaged fields in three-
dimensional models of acoustofluidic systems. We show how the acoustic streaming depends strongly on steady and
oscillating thermal fields through the temperature dependency of the material parameters, in particular the viscosity
and the compressibility, affecting both the boundary conditions and spawning additional body forces in the bulk. We
also show how even small steady temperature gradients (~1 K/mm) induce gradients in compressibility and density
that may result in very high streaming velocities (~1 mm/s) for moderate acoustic energy densities (~100 J/m?).
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I. INTRODUCTION

Modeling and simulation are important for designing
microscale acoustofluidic systems. Traditionally, most mod-
els have been purely mechanical, but some include thermal
effects, such as in the studies of the acoustic radiation force
acting on suspended microparticles'™ and of acoustic
streaming in rigid cavities.*>

Here, we focus on acoustic streaming, where recent
developments in the field point to the necessity of making a
full thermoviscous analysis. Karlsen er al.® introduced the
acoustic body force acting on a liquid governed by solute-
induced gradients in the compressibility and density of the
liquid. This force has explained the iso-acoustic focusing of
mircoparticles,” patterning of concentration profiles,® and
suppression of acoustic streaming.”'® Simultaneously, Bach
and Bruus'' developed the effective theory for pressure
acoustics and streaming in elastic cavities, in which the vis-
cous boundary layer was solved analytically and imposed as
an effective boundary condition to the bulk field. This model
has enabled simulations of cm-sized three-dimensional (3D)
acoustofluidic systems,'*'? with hitherto prohibitive compu-
tational costs, and it has provided a deeper insight into the
physics of boundary- and bulk-induced streaming, but with-
out thermal effects.'*

In this work, we combine our previous work on thermo-
viscous streaming in rigid systems,’ thermoviscous potential

This paper is part of a special issue on Theory and Applications of
Acoustofluidics.
YElectronic mail: bruus@fysik.dtu.dk, ORCID: 0000-0001-5827-2939.

J. Acoust. Soc. Am. 149 (5), May 2021

0001-4966/2021/149(5)/3599/12/$30.00 ~ © 2021 Acoustical Society of America

Pages: 3599-3610

theory,> the theory of pressure acoustics with viscous
boundary layers and streaming in curved elastic cavities,""
and the 3D numerical modeling of acoustofluidic systems
using the latter theory,'” and develop an effective thermovis-
cous theory for a fluid-filled cavity embedded in an elastic
solid. The theory includes both steady and acoustic tempera-
ture fields for pressure acoustics with thermoviscous bound-
ary layers and for streaming with thermoviscous body
forces. In Sec. II, we set up the basic theory and model
assumptions. In Secs. III-V, the governing equations and
boundary conditions are derived from the theory for the
zeroth, first, and second order in the acoustic perturbation,
respectively. In Sec. VI, the theory is implemented in a
numerical model, which is then used in two examples to
show the nature and importance of thermal effects in acous-
tofluidics. Finally, we conclude in Sec. VII.

Il. BASIC THEORY AND MODEL ASSUMPTIONS

We consider an acoustofluidic device consisting of an
elastic solid containing a microchannel filled with a thermo-
viscous Newtonian fluid and actuated by a piezoelectric
transducer at a single frequency in the MHz range. This
time-harmonic actuation establishes an acoustic field in the
system, which in the fluid, by the internal dissipation and
hydrodynamic nonlinearities, results in a time-averaged
response that leads to acoustic streaming.

A. Governing equations

In this work, unlike prior work,'? we leave the piezo-
electric transducer out of the analysis and only represent it
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by an oscillating displacement condition on part of the sur-
face of the elastic solid. The response of the fluid embedded
in the elastic solid to this oscillating-displacement boundary
condition is controlled by the hydro-, elasto-, and thermody-
namic governing equations of the coupled thermoviscous
fluid and elastic solid.

The linear elastic solid is described in the Lagrangian
picture by the fields of the density p, the displacement u,
and the temperature 7, as well as the stress tensor ¢. Further,
for isotropic solids, there are eight material parameters: the
longitudinal and transverse sound speeds cj, and ¢y, the
thermal conductivity k™ the specific heat ¢, the ratio of
specific heats y = ¢, /¢y, the thermal expansion coefficient
oy, and the isothermal and isentropic compressibilities #;
and k7 = yK;. The velocity field is given as the time deriva-
tive of the displacement field v’ = Q,u, so no advection
occurs, and the governing equations are the transport equa-
tions of the momentum density pd,u and temperature T,>'

poiu=V -0, (1a)
o7+ 0= ov . wy = v v, (1b)
o pCy
o= T+, (Ic)
Kr
T=pct {Vu + (Vu)T} +p(ct, —2¢2) (V- ), (1d)

where superscript “T” indicates a transposed matrix.

The fluid is described in the Eulerian picture by the
fields of the density p, the pressure p, the velocity v, the
temperature 7T, and the energy per mass unit €, and by the
material parameters as before: K, Cps O, Vs Ky, K7, Dut with
¢ replaced by the dynamic and bulk viscosity # and #°. The
governing equations are the transport equations for the den-
sity of mass p, momentum pv, and internal energy pe,3’5 16

Op ==V - (pv),

A(pv) = V- (o — poo),

v? v’
o\ ped+p—=| =V |K"VT +v-6—pv|e+—= ]| +P,

(2a)
(2b)

2 2
(2c)
o= —pl+r, (2d)
i b_ 2
1::17[Vv+(Vv) } +<i1 —§n>(V-v)I. (2e)

Here, P is the external heat power density.

Pressure and temperature are related to the internal
energy density by the first law of thermodynamics and to the
density by the equation of state,*”"”

pde = (pc, — app) dT + (k7p — o, T) dp, (3a)

dp = prrdp — po, dT. (3b)
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The thermodynamics also shows up in the temperature and
density dependency” of any material parameter g,

_ (% 9%
e () o+ () o

The temperature sensitivity of each parameter is quantified
by the dimensionless quantity a, = 1/a,¢(9q/0T) ,.

a,=—1, ay;=-89, ap=-100,

ap =11, a, =145, a, = —10, 5)
where the values are for water at T = 25 °C.” The temperature
dependency of the parameters implies that thermal gradients
may induce gradients in, say, density and compressibility.
This leads to the appearance of the inhomogeneous acoustic
body force f,. introduced in acoustofluidics for solute-induced

gradients by Karlsen ef al.®

B. Acoustic actuation and perturbation expansion

Following Ref. 11, we actuate time-harmonically with
angular frequency o by a displacement of a surface, so an
element at equilibrium position sy, at time ¢ will have the
position s(so,?) = so + s1(so)e !, For models containing
only a fluid, the displacement will be on the fluid boundary,
whereas for models containing both a fluid and a solid
domain, the actuation is on the solid boundary. For models
including the piezoelectric transducer driving the system,
the actuation parameter is the applied voltage.'? However,
this is not included in this work.

The acoustic response to the actuation parameter s; is
linear, and the resulting fields will be complex fields
Q1 (r)e~!, the so-called first-order fields with subscript 1.
The non-linearity of the governing equation results in higher
order responses to the actuation. We are only interested in
the time-averaged second-order response and define Q,(r)
= (02(r,1)) = (0/27) 027[/(" 0> (r,t)dr. A time-average of a
product of two first-order fields is also a second-order term,
written as (A;B;) = (1/2)Re[AB]], where the asterisk
denote complex conjugation. Thus, a given field Q(r,?) in
the model, such as density p, temperature T, pressure p,
velocity v, displacement u, and stress o, is written as the
sum of the unperturbed field, the acoustic response, and the
time-averaged response,

O(r,t) = Qo(r) + 01 (r) e ' + 0y (r). (6)

Similarly, through their dependency on temperature and
density, all material parameters, such as thermal conductiv-
ity k™, compressibility x, and (for liquids) viscosity #, are
written as exemplified by the viscosity,

n(r.0) =no(To) + i (T1, py) e +1y(Ta, py),  (Ta)

o) = (G), 10+ (52) o
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) = (3) 2o+ (3) p. a0
0 Ty

C. Separation of length scales

Acoustofluidic systems exhibit dynamics on two length-
scales, set by the acoustic wavelength and the thermoviscous
boundary layer width. The boundary conditions on the tem-
perature, heat flux, velocity, and stress at a fluid-solid inter-
face result in the appearance of a thermal boundary layer (in
fluids and solids) of width ¢, and in a viscous boundary layer
(in fluids only) of width Js, localized near fluid-solid interfa-
ces. Their dynamically-defined widths, jointly referred to as
0, are small compared to a typical device size or wavelength
d,sod < d?

20, Dth Dth
=12 0 ,/ T ®)

where X=0 for fluids and X = (y — 1)(4c2/3c}) =< 0.01 for
solids, vo = (179/po), and DI = ki'/ pocpo. Typically, d, < dg
=< 500nm, which is more than two orders of magnitude
smaller than d ~ 100 um. In this paper, the various fields
are decomposed into a bulk field (d) and a boundary-layer
field (J) that are connected by the boundary conditions. In
Fig. 1, this decomposition is sketched near the fluid-solid
boundary for the acoustic temperature field 7. Also shown
are the boundary-layer widths d¢ and o, together with the
instantaneous position s() = so + s (8o, ¢) of the oscillating
boundary.

D. Boundary conditions

In the usual Lagrangian picture,'' an element with equi-
librium position sy in an elastic solid has at time ¢ the
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FIG. 1. (Color online) Sketch of the fields at the fluid-solid interface. sq is
the equilibrium position of the interface 0Q, s; the time-dependent dis-
placement away from 0, and s = sp + s, the instantaneous position. The
dashed lines represent the viscous and thermal boundary-layer widths width
ds (black) and d; (red) in the solid and fluid. o without a subscript refers to
either o5 or dy, and d refers to the bulk lengthscale, so é, < d; ~ 0 < d. The
temperature T’l" (black) is the sum of a bulk field T‘{""l (blue) and a
boundary-layer field 79! (red).
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position s(s, ) = so + s1(s0)e " and velocity V° = g;s =
V(so) e " with V{(sy) = —iws;(sg). On the solid-fluid
interface, the no-slip condition applies, so the velocity of
the solid wall at a given time and position must equal the
Eulerian-picture fluid velocity v,

vl (5o + 5167 1) = VO(sp) e 7" 9)
This boundary condition must be obeyed separately for the
first- and second-order fields (subscript 1 and 2, respec-
tively), so a Taylor expansion yields'"

v1(so) = VI(s0), (10a)

.
v2(s0) = —((s1-V)vi)l,, = _E«IV? “V)vi)l,,.  (10b)
At position sy on the fluid-solid interface with surface nor-
mal n, also the stress ¢ = 61 + 6, must be continuous in the
first- and second-order contributions ¢, and &, separately,

6} (so) -n =" (s0) - m, (11a)

03 (s0) -1 = a3 (s0) - m+ ((s1- V)i (s0) - m)|,.  (11b)
Here, the thermal effects enter through the temperature
dependency of the viscosity parameters 5 and 7", see Eqs.
(2d) and (7).

Similarly, the temperature T = Ty + T) + T> must be
continuous across the solid-fluid interface in each order

separately,
T}(s0) = T7'(s0),

= T3 (s0) + (s1

i=0,1, (12a)

T3'(s0) VT, (12b)
Also, the heat flux n - (—k"VT) must be continuous across

the interface,

kSt VTS (59, 1) = k™n - VT (5o + 5167 1), (13)
which order by order becomes
ky'n - VTS (s0) = ko "m - VT (so), i=0,1,  (14a)

kK VTS 4 k- VTS + (™ v
= kM- VT (s0) 4 (KMm - VT (s0))

K VT (50) + (51 V [KVT(s0)| )

+ (s VROV ()| ). (14b)

E. Range of validity of the model

We briefly discuss the range of validity imposed by the
main assumptions. First, perturbation theory is valid when
lower-order terms are much larger than and unaffected by
higher-order terms, say, p,>> |p, , and
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when the latter can be neglected in the governing equations.
For example, zeroth-order heat Eq. (16) is only valid if the
timescale for advective heat transport t,qy = d;/|vz| is much
longer than that of diffusion g = df /Df)h in a system with
characteristic length d,. For d, =1 mm this requires
|va| < (DS/d,) ~ 150 um/s.

Second, due to low oscillatory advection, we assume
V- (qov1) = qoV - v1, where qq is a parameter of the fluid.
This requires |0V - v1| > |Vqo - v1|. By using the parame-
ter a, of Eq. (5), the validity of our theory is limited by
ke

~ 5000 L

IVTo| <
mm

s5)

aypo

Here, a, is used as the viscosity that has the strongest tem-
perature dependency. In conventional acoustofluidic sys-
tems, |VTo| =50 K/mm < 5000 K/mm.

Third, the effective boundary-layer theory requires the
boundary-layer width to be much smaller than the bulk
wavelength, ky0 < 1, see Sec. I C, which is true for MHz
acoustics in water.

lll. ZEROTH ORDER: STEADY BACKGROUND FIELDS

Before turning on the acoustics, py is constant and
vy = 0 in the acoustofluidic system. The temperature Ty is
determined by boundary conditions set by the surroundings
and the heat power density P, from given sources and
sinks. T is governed by the energy conservation [Eq. (2c)]
to zeroth order in the acoustic actuation,

0=V-[kM'VT,] + Py. (16)
T, determines the zeroth-order water parameters, such as
00(To) and 1y(Tp), and thereby affects the resonance fre-
quency and the Q-factor of the acoustofluidic system.

IV. FIRST ORDER: ACOUSTICS

For the first-order fields, we solve the viscous and ther-
mal boundary layers analytically and use these solutions to
derive a set of effective boundary conditions for the bulk
fields. The analysis is based on our previous work: the gov-
erning equations derived in Refs. 3 and 5, the potential the-
ory derived in Ref. 3, and the effective boundary method
derived for viscous but not thermal boundary layers in Ref.
11. The result is a model where we solve for the displace-
ment field u; in the solid and for the pressure p; in the fluid,
and both these bulk fields are subject to the effective bound-
ary conditions that implicitly contain the boundary layers.
The temperature 7, is incorporated through p;, u; in the
first-order equations and the effective boundary conditions.

A. Acoustic equations and potential theory for fluids

The governing equations for the complex-valued acous-
tic field amplitudes in a fluid are given in Eq. (11) of Ref. 5:
the mass continuity equation, the momentum equation, and
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the heat equation, which couple together the pressure p;, the
velocity vy, and the temperature 71,

—iwoyo Ty + iwkropr =V - vy, (17a)

—iwpy vy = —Vpy + BgV(V - v1) + oV,  (17b)

—i0T) +io(y — 1)~ p, = DIVT, (17¢)
o

p0

where = (n5/ny) — (2/3). Following Ref. 3, these equa-
tions are solved using potential theory based on the standard
Helmholtz decomposition of the velocity field, wv;
=V(p,+¢,)+Vx¥ =10+, where ¢. is the com-
pressional potential, ¢, is the thermal potential, and W is the
shear vector potential. At the fluid-solid interface |T?|
~ |T¢|, and combining this with T) = T{ + T9 = [i(y — 1)
/3] d. + (1/00DI)$, with the typical acoustofluidic
parameter values inserted, we can deduce |¢,| ~ (y — 1)
(wD®/c3)|p.| ~ 1078 ¢.| < |¢.|. From this follows that
p1 = iwpy(1 +ils)¢,, and we replace ¢, ¢,, and ¥ by py,
T?, and 'v‘f,

o,

o __
m, 'UI—VX‘P.
P00

1 = iopy(1 +ily)¢,, TP = (18)

Finally, using the smallness of the damping coefficients,
I = (1/2)(1 + ) (kods)* < 1 and Ty = (1/2)(kod,)* < 1,
with ky = w/c, approximate solutions to Eq. (17) are

obtained from the potentials solving three Helmholtz
equations,

Vpi = —k2p1, ke = 690(1 iy, (19a)
VT = —I2T), k= 15“(1 +ill), (19b)

:
V) = — 120, k= 1;1. (19¢)
Here, I, = [+ (y— IY2 and T, = (y — 1)[[s — [/

2 are the resulting damping coefficients, whereas the complex-
valued wave numbers ks and &, reveal the existence of the viscous
and thermal boundary layers of thickness d; and J,, respectively,
see Fig. 1. The full velocity v; and temperature 77 are given by p;,
v‘f, and Tf as,

d .0 .d AT | .5
vy = v + v =v]" + o] + ],

1 —ill
1)’11"” = V[—i Bs pl}, vﬁl‘T
WpPo

(20a)

—v {oc,,ng’Tf} . (20D)

K50
T(lj =@y-1)—pr

Ty =T +T?,
%p0

(20c)

Note that both v‘f‘p and 'v‘f'T are gradient fields in the
Helmholtz decomposition, but that v‘li"T despite its super-
script “d” is a boundary-layer field. Because T is split into a
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bulk and a boundary layer field, the material parameters ¢ =
qo + ¢ are split similarly. For example, the first-order vis-
cosity 777 introduced in Eq. (7) (and similar for other mate-
rial parameters) becomes

my = 0rng (T{ + ) + Opno(p + p3) = n{ + 1. 21)

B. Acoustic equations and potential theory for solids

For a linear elastic isotropic solid with density pg, lon-
gitudinal sound speed cj,, and transverse sound speed cy,
the governing equations are the linearized form of the
momentum and heat equation [Eq. (1)] for the displacement
field u; and the temperature T1,3

—w?pou; = —%Vﬂ + (¢t — A)V(V - uy) + AV7uy,
70
(22a)
. oy —1 _ pihe2
—ioT; —iw V-u, =DyV-T,. (22b)

Ocp()

In analogy with the fluid, the governing equations for the
solid are solved by potential theory, again following Ref. 3.
The displacement field is Helmholtz decomposed as —iwu;
=V(p.+¢,) +Vx¥=—io@ +ul), where ¢, is the
compressional potential, ¢, is the thermal potential, and W
is the shear vector potential, and where we have used
v$l = —iwu;. Using the same approximations as for the
fluid, we have T;=T¢{+T=/[i(y— w/oncild,
+ (1/ 500D ¢,. We keep ¢, but use T9 = (1/y02,0D) ¢,
instead of ¢,, and u‘lr =V x ¥ instead of ¥. The solution to
Eq. (22) is obtained from the potentials solving the follow-
ing three Helmholtz equations:

Vz(bc = 7kg¢c7 kC = 9(1 + lr(s)lc)’ (233)
€o
: 1 +i ,
VT = —RT], ko= (14T, (23b)
t
V2 = K2, k= (23¢)
Cir

Here, ¢} =ci + (y—1)/pokro, T = (y — D)yI/2, and
ISl = 72T, /8(1 — X) are damping coefficients, & and I, are
given by Eq. 8), y =1—4c2/3c> ~ 1/2, and X = (y — 1)
4c2 /3¢? = (y — 1)/2. For a solid, only T¢ is a dampened
field confined to the boundary layer, whereas ¢, and u} are
bulk fields. The transverse waves in fluids and solids are
qualitatively different: v‘f cannot propagate in a fluid and is
restricted to the boundary layer, whereas u!f can propagate
in a solid and is not associated with a boundary layer. The
full displacement u; and temperature 7, are given by
¢, u¥, and T¢ as

ul° = !

u = ull" + u‘lr, = 5 Vqﬁ(., (243_)
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i(y— 1o
T ==—F—¢,.
%poCo

Ty =T +T?, (24b)

For most solids, the bulk thermal field T¢ is negligible and
the displacement can be modelled by Eq. (22a).

The explicit expression for the stress tensor ¢%! in the
fluid (x1 = 1) and in the solid (x1 = sl) can be formulated
jointly in potential theory as®

o8 = — p+ U [(22 — k)b + (2K2 — kD)

) [ Vo + (Ve ], (25)

where in the solid p§' = 0, 18l = (i/w) pyc2, v§ = —iwu;.

C. The thermal boundary layer

The temperature fields Tf"’d in the fluid (x1 = fl) and the
solid (xl = sl) are given by Eqgs. (19b) and (23b). Following
Ref. 11 with x and y parallel to the interface and z perpen-
dicular, an analytical solution can be found using the thin-
boundary-layer approximation V2 ~ 622 in these equations
in combination with the condition that the field decays away
from the boundary,

17y, 2) = 17 (e, y) 4% for 2> 0, (262)
7% (x,y,2) = T}, y) e 4% for 2 <0. (26b)
The amplitude of the boundary fields Tfo’ﬂ(xy)’) and

TfO’Sl (x,y) is determined by the boundary conditions in Egs.

(12a) and (14a) as follows: The normal vector n = —e,

points away from the fluid, so n - V = —3., and we obtain
700 = 00— AT, (27a)
KMo = k0 for z =0, (27b)

where AT? = —(T{" — 79°*") From Eq. (27b), it follows

th,sl; g1

TriOA,fl o 7k0 kt 00,1 7Z~ TéO,s]

o thil,q 1 — >
ket

(28)

where Z = 7 /Z1 is the ratio of Z = kil'k, = \/kiFcpopy of

the solid and the fluid, respectively. Combining Eqs. (27a)
and (28) leads to the final expression for the boundary-layer
fields,

T (x,y,2) = — T AT () e, (292)

T (x,y,2) = +——— AT (x,y) e k"=, 29b
1 (y,2) ; () (29b)
D. The viscous boundary layer

The viscous boundary layer exists only in the fluid since
in the solid both u!° and ' are bulk fields. The velocity field
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in the fluid is given in Eq. (20a) as v; = v + v, where v¢

depends on the bulk field p; and the boundary field Tf. The
boundary field v¢ is given by the Helmholtz Eq. (19¢), to
which an analytical solution can be found using the thin-
boundary-layer approximation V> ~ 9? in combination with
the condition that the field decays away from the
boundary,11

o8 = v0(x,y) e (30)
The amplitude v‘fo of the boundary field is determined by
the no-slip condition [Eq. (10a)],

v‘l)o = V? — v‘fo = —iwu(l) — v‘fo.

3D

E. The effective boundary condition for the velocity

Given the analytical solutions of the three boundary-
layer fields, we only need to numerically solve the three
bulk fields, namely, ¢, and ¥ in the solid and ¢,. in the fluid,
or equivalently, the displacement u; in the solid and the
pressure p; in the fluid. Therefore, we set two effective
boundary conditions on these bulk fields using the analytical
solutions for the boundary-layer fields: One effective bound-
ary condition on the displacement u; in the solid derived
from the condition on the stress, and another on the pressure
in the fluid.

First, from the no-slip condition [Eq. (10a)], we derive
the boundary condition for the first-order pressure field p,
which takes the viscous and thermal boundary-layer effects
into account through terms with kg, k, and T?°. We express
the compressional velocity v‘lig‘ﬂ on the fluid-solid interface
through the no-slip condition [Eq. (31)], then use the incom-
pressibility condition on the boundary-layer velocity,
iksv‘fg“ﬂ +V. v?o‘ﬂ =0, to get rid of the z-component Ulg’ﬂ,
and ﬁnally introduce the bulk fields in the fluid, '

5 i
pIOf _ sl _ g0 sl Ly o0
2 Z 2 Z k
S
i
_ U(ll();sl _ly. [U?O,sl _ v(]]O,fl}
- k
S
s 1 s, 1 Al Al
= et v o - o]
Tk ks .
S S “

(32)

Combining Egs. (17a) and (20c), we obtain

V-

1 —ily)k?
Cli - iu (33a)

. 5
p1 — 1w,y
WpPg

Then using Eq. (20a), we write v‘fg’ﬂ and 8sz11"§] evaluated at
the solid-fluid interface at z = 0, and arrive at

WO = L (1 —i0)py + opDPOT?, (33b)
’ WpPg
D0 = — L (1 - i) + 0DBTY. (330)
* = " opg : -
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Inserting Eqgs. (33) and (10a) into Eq. (32) leads to the final
form of the effective boundary condition on py,

) 0 i 0 i, 2
o.p1 = Vi.——V.-VI| —— Ik 0
D1 ll_irs< 1z ks 1) ks(c+ z)pl
LI a0 g =, (34a)
ki K70

The first two terms on the right-hand were derived by Bach
and Bruus,'! whereas the last term is a new correction due
to the thermal boundary layer. For T¢ ~ T¢ at z = 0, this
thermal correction is of the order [(y —1)/k]k?pi. We
emphasize, that although formulated as an effective bound-
ary condition on the pressure gradient, Eq. (34a) is the no-
slip velocity condition.

F. The effective boundary condition for the stress

Next, using the explicit expressions for &} and a‘ll, we
turn to the stress boundary condition [Eq. (11a)], the conti-
nuity of the stress a; across the fluid-solid interface,
o} e, = ol - e.. For the fluid, we use ks >> ke, |¢| > | P,
and |9,v¢| > |Vv{| in Eq. (25), and find

s

40,51

fl . 1
ce. = —pre. + ik, L 34b
o, -e. pre. + iksng {”1 + op (34b)

Vp]:|
0

So

For the solid, we neglect in Eq. (25) the derivative 0 ¢,
along the surface, as it is a factor ' = (1/2)(kod,)* smaller
than 0 ¢.. The remaining ¢,-dependent boundary-layer
terms cancel out, leaving only the bulk-term part a’f"Sl of aﬁl.
The resulting effective stress boundary condition is

d,sl fl

O'l e, = 0'] c €. (34C)

As the thermal boundary-layer fields do not enter, this
expression is identical to the effective boundary condition
for the stress derived in Ref. 11.

V. SECOND ORDER: ACOUSTIC STREAMING

For the second-order fields in the fluid, we follow Eq. (6)
and consider only the time averaged fields, namely, the veloc-
ity wv,, pressure p,, and stress a,. The temperature field 7,
does not enter the second-order continuity or Navier—Stokes
equation, so we drop the heat equation. The first-order temper-
ature field 7| enters the equations through the material param-

eters of the fluid,
0=-V- (p()vZ) + pacﬂ (3521)

0=—-Vpo+ V-1 +f,, (35b)

2
=1 {sz + (VUQ)T} + {118 — 3’70] (V-v)I, (35¢0)

(35d)

r=so°

1 ..
v) = *5<(1V(1) -V)vy)|

Here, the excess-density rate-of-change p,. and the acoustic
body force f,, are defined as time-averaged products of fast
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varying first-order fields in the limit pyv; > p,v9, which
holds for typical acoustofluidic devices,

Pac ==V (plv1>>
fac =V

(36a)

- [=po(viv1) + 711, (36b)

2
Tu::<m[VU1+(VUQT}+‘Pﬁ'—§ﬂd(v'001) (36¢)

The slowly varying second-order fields are split up in a bulk
field (superscript “d”) and a boundary field (superscript “0”)
according to their response to the boundary and bulk part of
the acoustic force fac = f fac, and they are coupled by the
boundary conditions

pr=pi+p5, v =v5+0, (37a)

T, = rg + ‘Eg, T = 1:‘111 + r‘fl. (37b)
Note that in contrast to the first-order fields, this is not a
Helmholtz decomposition: by definition, a second-order
boundary-layer field “0” contains at least one first-order
boundary-layer field. The computation strategy for second-
order streaming is similar to the one for first-order acoustics:
(1) find analytical solution to the boundary layers, (2) for-
mulate effective boundary conditions, and (3) solve the bulk
fields with the effective boundary conditions. This decom-
position enables simulations of the bulk fields without
resolving the boundary-layer fields.

A. Short-range boundary-layer streaming

The short-range part “6” of Eq. (35) is given by the
short-range part of the second-order fields as well as all
source terms containing at least one boundary-layer field,

0=V (pos) + Pl (382)
5 5, 79

0=-Vps+ V-1 +f., (38b)

where vg — Qasz — oo. (38¢)

At the boundary, the advection term can be neglected com-
pared to the viscous term because of the large gradients
induced by the small lengthscale 6. The thermal boundary
layer 79 and the ass001ated boundary-layer velocity 'v‘liT
introduce a correction ’02 to the purely viscous boundary-

layer term ’Uzp computed in Ref. 11,
v) =3 + o3 (39)

In the parallel component of v9, the pressure field can be
neglected because 8Hp2 < 110821;2“ " Thus, combining Eqs.
(36b) and (38b), the parallel component of the short-range

velocity field vg’T obeys
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2 o, dT | dT 5 dp dT
vo0: UZH— V. (v{v]" + o] v] + ooy

+ ool Ty dT)—;V-r?l (40)
0

Here, 1, depends on T, through #,(T}), whereas the
velocity v‘f"T, given in Eq. (20a), depends on the thermal
boundary layer T¢. From Sec. IV and, in particular, Egs.
(20), (26), and (30), follow the relations V- v = 0, |'u(157“|

~of |, 109, &~ (kedg)[od |, (T9] ~ [T, Voo ~ (7 - 1)
Vool o] (= D)W [00T] & (7 = 1) (ked,)?
|vd” , and vf’T = oc,,OD})h VTf. To lowest order in k.0 < 1
(involving asz and azv‘f, respectively), these relations com-
bined with time averaging Re[a;] Re[b,] = (1/2)Re[a;bj]
change Eq. (40) to

vodvy = [< (azvf)vtljf) + <(”(15 + ”(11’[7) (8Zv’ff)>
— L (oot + <<n‘f+nz’>v2v?>>]

Po
20 OD Or +1ds s
1232 < t s 1> > i

_ 2 <5 =+ 15[ 5 + )
p05§ 5t m ’71 | :

=—Re
2

(41)

The integration of Eq. (41) after z twice is facilitated by
using the analytical forms [Egs. (26) and (30)] for ”1 T{’,
and vl, and by noting that in the boundary layer n{ =~ ndo

+ 2047 = (1 + kS )0 ~ 0 and similarly v{ ~ v,

o8 = v(x,y) q(z) with g(z) = 7, (42a)
T =T (x,y) r(z) with r(z) = e, (42b)
ny =7 (x,y) r(2), (420)
nl~n® and vl ~ 007 for z < d. (424)

Following the procedure of Ref. 11, we introduce the inte-
grals Ié",) of the integrand a(z) b(z)", where a(z) and b(z) are
any of the functions 1, ¢(z), and r(z),

Zn 2
. J dz,,J dz J dzya(z1) b(21)"|.—o,

I o §" with 6 = 8, 6,andn = 1,2,3, ... (43)

With this notation, Eq. (41) is easily integrated to give

0T O‘pODoR P +ids I 50T‘SO*+1I§2) OpT(so*}

VT8 5 |
1 ds +1d¢ 30,590+ ), do o
——Re [ 5 12y il ,
MoOg t I
(44a)
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where the integrals are given by [}(,"a) = [[{(;'))]* and
. . . 6252
1P =287 =iz 1= %% aap
1r 2 to 1g 2 s rq 2(ag+15t)2 ( )
When inserting p‘f =— poocpr in the final expression for the
thermal correction, vzﬁ’T becomes
1o} [ b ; ; }
00T __ t S 00 0% d0.p 50%
v, =—-——Re —v] p] +v,p
2, 2p0 55 oy —io, 111 1 P |
1 t 50,60 do, 50 ]
——Re — v i ol (45)
2,10 |:(St _ 155 1 ™1 1 71 I

where two terms are due to the change in density and two to
the change in viscosity. The perpendicular part of the short-

ranged streaming velocity Ugg,r can be found by integrating
(352), Oy = -V vy

— -V {pyvi )T once with respect to z,

the continuity Eq.

0 : A L[ D,
ol =V J vyl dz — p—OJ V- (pv)°" dz. (46)

The term jzvg” dz is given by Eq. (44a) by substituting
2 3 2 z 5 ;

all 1% by 19 o 1%5, so V) - [8 dz| ~ (ko) [v3]], and

[V - (pyv1)° dz ~ Jo-(pu(?) dz = (p}v{?). Including pre-

factors, we obtain to leading order in k.0,

1 X
vgf)z‘T = —-—Re [p‘l)o* uffg’p} . 47)

2pg

B. Bulk field and effective boundary condition

With the short-range boundary-layer streaming term
v = 27 4+ 3" in place, it is now possible to set up the
governing equations and boundary conditions for the
second-order bulk acoustic streaming v9,

0=V (pgv5) — pies (482)

0=—Vpl+ V.2 170 (48b)

o = o |Vt + (Vo) | + (V- 0n) . (480)
S

L > (V) V)vr),y,- (48d)

. ~d .
Here, p¢. and f_ are the bulk terms in Eq. (36). In the mass-
conservation equation, V - 'U‘zl becomes

d, d,
P ARV e B L
: - |

V- 4 =
Po 2¢o

(49)

Each term of V-of scales as (ko/co)[v?”|* > (1/2)
T(ko/co)|v{" |2, s0 (1/pg)V - (pfu??) is negligible compared
to the individual terms in V-v§. We thus conclude that

3606  J. Acoust. Soc. Am. 149 (5), May 2021

V. 'v‘zi = 0, and that the streaming flow is incompressible. The
acoustic body force fac may be expressed as follows, where
Vpo and Vi unlike in previous work® can be induced by
temperature gradients:

~d
fre ==V {pgv{"v{") + V- <, (50a)
1 1
=— V<£Zc> + 2 |v‘f’”|2Vp0 + I IP1 |2VKx0
T'ow
- (vip)) + V-1, (50b)

0

The gradient force —V(£%) of the Lagragian (£%) =
(1/4) xqlpi|* — (1/4)po|v?)* does not induce stream-
ing."""!® The next two terms form the inhomogeneous acous-
tic body force spawned by gradients in the density po and in
the compressibility #.® The subsequent Eckart-streaming
force term is important for either large systems or for
rotating acoustic waves where v{ and p, have significant
in-phase components.'* The last contribution V - 7¢, is due
to the temperature-dependent viscosity, 7{ = a,nyu0T¢ =
ay (7= Dngksopr. Using o7 ~ —i(1/wpy)Vp as well
as V- [Voi? + (Voi?)T] = 2V(V - 097) = —21207, Vipd =
aytly (7 = 1)(ike/co) vy”, and (n,(V-9")) o< {pi(ip1)) =0,
we reduce V-1, to

2

%)
V'TT'I =2(y—Dayny—
€o

g l< <évgll'p 'V> v‘f’p> - Kso(vii’ppﬁ} - (3D

Here, the first and second term involve the Stokes drift and
the classical Eckart attenuation [Eq. (50b)], respectively.
Now, collecting the results [Eqs. (49)—(51)], the governing
equations [Eq. (48a)—(48c)] of the acoustic streaming
become

0=V-29, (52a)
0= =V[p§ — (Li)] +nV>05 + 1%, (52b)
d Loapn L »
fac = 71‘1]1 | VpO 7Z|pl| VKSO
2a,(y — )| Tw, 4
) R AT e P
* [ B+1 3 (wipu)
w .
+ 2a,no(y — l)c—2 (wf"] . Vv‘f"’) ) (52¢)
0

Here, the Lagrangian density (EZC> is merged with pg as an
excess pressure. Since V(Effc> is orders of magnitude larger
than f ZC, its merging with Vpg renders the numerical simulation
more accurate,'® and makes it possible to use a coarser mesh in
the bulk of the fluid domain.'" The term —[2a,(y — 1)]/(f +
1) = 0.44 leads to an increase in the bulk-driven Eckart streaming

by 44% compared to a purely viscous model. The last term is due
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to gradients in the viscosity 7¢, so a fluid particle oscillating
s =( /a))v‘f’p experiences a varying viscosity during its
oscillation period.

Finally, the thermal corrections to the boundary
condition [Eq. (48d)] stem from vgo‘T in the boundary-layer
velocity vgo = vgo"’ —|—'vgo’T, see Eqgs. (45) and (47), and

from 'v‘l”T in v; = vd + 'v‘ll'p + v‘f’T in the Stokes drift term

—(1/w) (V) V)v1)|,_y,. As |'U‘fHT| < [vf"], then VY.
Vo = V) DR 0T e = (0] py)V . (i0f) e,
Live vye ) = L re [VO péo*} c.. (53)
w 1 1 r=so 2p0 1,zM1 z

In terms of the A- and B-vector notation of Ref. 11, the
boundary condition [Eq. (48d)] for the streaming velocity v4
is given by the purely viscous terms (superscript “vs”) from
Ref. 11 and the thermal corrections (superscript “th”) due to
3", Eqgs. (45) and (47), and v, Eq. (53),

v’ = (A-e)ec+ (A-e))e, + (B-e)e,

with A =AY+ 4" B =B"+B", (54a)

. 1 S 1
A = — %Re {vfo* . V<§ 0 — iV?) — VY. Vel?

2—i_ ;
+{ Ly 4 i(v VI azu‘f;!’*) }v({o},

2
(54b)
1 &7 J : )
h __ S 00 0% d0,p 50x
+ LRC o ]750,0(50* + "d0v50* (54c)
i
B" = Reliv{"" - Voil?|. (54d)
2w
1 i
B"— L Re [(vq’o"’ _ v?) pﬂ . (54¢)
2py

The magnitude of the thermal terms are (y — 1)a, times the
magnitude of the leading viscous terms. For water, (y — 1)
lay| = 0.9 and (y — 1)]a,| = 0.01 at room temperature, so
here, the #;-terms are important and must be included in
acoustofluidic analyses, whereas p;-terms are negligible.
For gases with y — 1~ 0.4, the density terms may be
important.

The results in Egs. (52) and (54) are our main results
for the second-order streaming part of the effective thermo-
viscous theory, and they form the equations that are imple-
mented in our numerical model.

VI. NUMERICAL IMPLEMENTATION AND EXAMPLES

We implement the effective thermoviscous model in
the commercial finite-element software COMSOL
Multiphysics.'® Tt is validated by comparisons to full
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numerical simulations, and two examples of significant ther-
mal effects in acoustofluidic devices are shown. All simula-
tions are done in COMSOL 5.6'* on a HP-G4 workstation
with a processor Intel Core 19-7960X @ 4.20 GHz and with
128 GB ram.

The effective thermoviscous model solver contains
three steps: (1) the zeroth-order thermal field, (2) the acous-
tic pressure and displacement fields, and (3) the stationary
streaming fields. The acoustic temperature field T, is
included analytically and therefore does not increase the
numerical workload compared to the purely viscous model.
The effective thermoviscous theory allows us to simulate
acoustofluidic systems in three dimensions, which has pro-
hibitive numerical costs for the full model.

Following our previous work,>®!"'%2% the governing
equations [Egs. (16), (19), (22a), and (52)] are implemented
in COMSOL using the mathematical PDE Module. The sur-
face fields (superscript “0”) are defined only on the fluid-
solid interfaces. The effective boundary conditions [Eq.
(34)] for p; and u; are implemented as weak contributions,
whereas the boundary condition in Eq. (54) for v‘zi is imple-
mented as a Dirichlet boundary condition. Further details on
the implementation of the numerical model in COMSOL are
presented in the supplementary material.”!

A. Example I: Two-dimensional (2D) streaming
in a square channel

The first example is the square channel, which has been
studied both experimentally”*>* and numerically.”* In a
square channel, a rotating acoustic wave can be set up
by two perpendicular, out-of-phase standing waves, as ana-
lyzed theoretically by Bach and Bruus.'* We apply the
effective thermoviscous model in the fluid domain of
the square channel in the 2D yz cross section with the veloc-
ity V9 = Voe e, at the vertical sides y = *(1/2)W and
VY =iVoe e, at the horizontal sides z= *(1/2)H, a
rigid-wall model with side length H = W = 230 um. The
zeroth-order temperature field is set to be constant,
To = 20 °C. We emphasize three main points of the results,
shown in Fig. 2: (1) The effective model reduces the compu-
tational time and memory requirements significantly. (2)
Given that it is 2D, the full model can be simulated, and it
agrees with and thus validates the effective model. (3) The
thermal corrections strongly influence the streaming flow
pattern.

The meshes plotted on top of the pressure field in Fig.
2(a) are the ones needed to obtain an Lz-norm-c:onvergence5
of 0.1% for p, and 1% for the streaming v, for the full and
for the effective model. With computation times of
15 versus 2 s and 130042 degrees of freedoms versus 1788,
the effective model is in this case seven times faster and
requires 130 times less memory than the full mode to
achieve the same accuracy. Figures 2(b)-2(f) show the
resulting streaming v, obtained using different assumptions.
Figures 2(e) and 2(f) illustrate that the effective and full
models agree, thus validating the former. Figure 2(b) shows
how much v, is changed when disregarding all thermal
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FIG. 2. (Color online) Simulated fields in a square channel with a rotating
pressure wave of energy density E,. = 19 J/m? actuated as described in the
text. (a) Color plot of p; at time ¢ = 0 from —0.4 (blue) to +0.4 MPa (red),
and the mesh used in the full (left) and in the effective (right) thermoviscous
model. (b) Vector plot of the streaming velocity v, (magenta) and color
plot of its magnitude from O (dark blue) to 20 um/s (yellow) [same scale in
(b)—(f)] for the effective viscous model without thermal terms. (c) v, for the
effective viscous model with thermal bulk terms. (d) v, for the effective
viscous model with thermal boundary terms. (e) v, for the complete effec-
tive thermoviscous model. (f) v, for the full thermoviscous model.

effects as in Ref. 11, whereas Figs. 2(c) and 2(d) illustrate
the effect of adding only the thermal bulk effects of Eq.
(52), and adding only the thermal correction to the boundary
condition of Eq. (54). Clearly, all the thermal effects need to
be added, and in this example, they stem from the tempera-
ture dependence of the viscosity through #; in the bulk term
[Eq. (50)] V:7;; and the boundary term [Eq. (54)] AT,
Physically, the bulk term strengthens the central streaming
roll, whereas the boundary term changes the morphology of
the boundary streaming and additionally strengthens the
central streaming roll.

B. Example lI: 3D streaming due to thermal fields

The second example is the capillary glass tube widely
used as a versatile acoustic trap in many experimental stud-
ies.”>"%° Inside the tube, in the region above the piezoelec-
tric transducer, a characteristic streaming flow pattern
containing four horizontal flow rolls is established.”® This
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. . . . 2027 -
pattern cannot be explained in numerical modeling®>*’ in

terms of boundary-driven streaming or classical bulk Eckart
streaming; however, here we argue, based on our thermo-
acoustic simulation results, that thermal effects are responsi-
ble for this streaming pattern. This result is important as the
streaming pattern is used to lead nanoparticles into the cen-
tral region, where they are trapped by larger seed particles.

The 3D model, see Fig. 3, is similar to device C1 in our
previous work:?® a glass capillary tube of width W = 2 mm
and height # = 0.2 mm, actuated from below in its central
region by a piezoelectric transducer. The temperature is set
to Tyir = 25 °C at x = Lgyq and to zero flux on all other outer
surfaces except on the transducer. For simplicity, the trans-
ducer is represented by a (red) region of width Wpzr, length
Lpzr = 1.16 mm on the glass surface, with a given oscilla-
tory displacement u = upzre " and steady temperature28
T = Tair + Tpzr, Where upzt = ug e, with uy = 0.25 nm and
Tezr = 1.5 °C. We exploit the xz and yz symmetry planes
and simulate only a quarter of the system. To simulate an
infinitely long channel, we use a perfectly matched layer
(PML) to avoid reflections from the ends. %21

The mesh shown in Fig. 3(a) results in an L,-norm-con-
vergence’ of 1% in the pressure p; and in the streaming vs,
and of 3% in the displacement u;. The simulation requires
491.959 degrees of freedom and takes 7 min.

For the steady temperature T, shown in Fig. 3(b), we
find by inspection a resonance at f = 3.898 MHz, for which
the resulting acoustic displacement u; and pressure p, are

(a)
== Actuation plane
E PML region
O Water
O Glass

FIG. 3. (Color online) (a) The simulated 3D system (reduced to a quarter
by symmetry) consisting of the water (blue), the glass (yellow), and the arti-
ficially absorbing PML (green) domains described further in the supplemen-
tary material (Ref. 21). Also, shown are the actuation region (red) and the
mesh (black). (b) Color plot of the steady temperature Ty from 20.0 (black)
to 21.5 °C (yellow). (c) Color plots of the displacement |u;| in the glass
from 0 (blue) to 9.5 nm (yellow) and the acoustic pressure p; in the water
from —1.6 (blue) to +1.6 MPa (red). Note the dampening of u; and p; in
the PML region.
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shown in Fig. 3(c). Ty is inhomogeneous with an almost
constant temperature gradient along the tube in the x-direc-
tion, and, in agreement with previous experiments® and
simulations,” p; appears as a vertical half-wave resonance
localized in the region above the transducer, but stronger in
the center than at the sides. Combining the effects of p; and
the Ty-dependency of the density po and compressibility xo,
the acoustic body force [Eq. (52¢)] driving the streaming v,
becomes

¢

I n I
1o~ —Z|’01| VPo—z|l71| Viso

1
= - 4 (ap/)0|”1 |2 + axksolp1 |2)°‘p0VT0 . (55)

Since by Eq. (5), k, has a stronger temperature dependency
than p, f¢_ is dominated by the |p, |2-term. This results in a
body force parallel to VT and strongest in the center, where
|p1] is maximum.

The numerical simulation result for v, is shown in Fig.
4: The characteristic four horizontal flow rolls are clearly
seen, the radius of which is determined by the width of the

’U,0=10%

FIG. 4. (Color online) The streaming velocity v, (magenta arrows) and its
magnitude from 0 (blue) to up = 50 um/s (yellow) in a symmetry quarter
of the trapping capillary tube. (a) v, in three different horizontal planes. (b)
v, in the full central plane z = 0. The dashed black lines show the symme-
try planes, and the red lines the edge of the actuation region. (c) v, in the
central plane z = 0 without thermal effects. Note that here uy = 10 um/s.
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channel and the width of the actuation as observed by
Hammarstrdm et al.>> This phenomenon is explained in
terms of the acoustic body force a‘i, which pushes the liquid
into the center region near the vertical xz-plane at y = 0,
where it is strongest, accompanied by a back-flow at the
edges near y = =(1/2)W, where the body force is weaker.
In Fig. 4(a), v, is shown in three different horizontal planes.
The variation in the flow rolls reflects the z-dependence of
the thermal gradient above the transducer. In Fig. 4(b), v; is
shown in the full horizontal plane at z = 0 ym. Note how
the four flow roll centers are located near the edge (red
lines) of the actuation region. To emphasize the crucial role
of the thermal effects, we show in Fig. 4(c) the streaming
flow resulting from neglecting all thermal effects: In agree-
ment with previous purely viscous models, but in contrast to
experimental observations, the characteristic four-flow-roll
pattern does not appear. Another important feature of
the thermoviscous streaming is its magnitude. In Fig. 4,
|va] = 50 pm/s is obtained with an acoustic energy density
of E,c = 77 J/m?. This is five times larger than the 10 um/s
of the purely viscous streaming, and notably only a factor of
3 lower than the 150-pm/s-limit of Sec. ILE that marks the
validity of the applied effective thermoviscous model.

In conclusion, the example highlights two important
aspects: (1) The effective thermoviscous model enables 3D
thermoviscous simulations in acoustofluidic systems, and
(2) even moderate thermal gradients may create high
streaming velocities in acoustofluidic systems. Such gra-
dients can of course be created not only by heat generation
in the transducer as in this example, but also more controlla-
ble by ohmic wires, Peltier elements, and external light sour-
ces. Notably, the validity of the perturbation approach
breaks down at moderately high, but experimentally obtain-
able acoustic energy densities above ~100 J/m? in combi-
nation with a moderate thermal gradient ~1 K/mm, and
this calls for an extension beyond perturbation theory of the
presented theory.

VIl. CONCLUSION

We have derived an effective thermoviscous theory for
a fluid embedded in an elastic solid. The steady zeroth order
temperature field is governed by Eq. (16). The acoustic
fields are governed by the Helmholtz equations, Egs. (19)
and (23), the decompositions [Eqgs. (20) and (24)], and the
effective boundary conditions [Eq. (34)]. The time-averaged
acoustic streaming is governed by the effective Stokes equa-
tion, Eq. (52), and the effective boundary conditions, Eq.
(54). The theory includes the thermoviscous boundary layers
and the acoustic temperature field 7 analytically, and
impose them as effective boundary conditions and time-
averaged body forces on the thermoacoustic bulk fields.

The theory has been implemented in a numerical
model,?! which, because it avoids resolving numerically the
boundary layers, allows for simulating both the first-order
thermoviscous acoustic fields and second-order steady fields
in 3D models of acoustofluidic systems. A conventional

Jonas Helboe Joergensen and Henrik Bruus 3609



brute-force direct numerical simulations is very difficult due
to large memory requirements. In 2D, the model was vali-
dated by direct numerical simulations, and in 3D, its self-
consistency has been checked by mesh-convergence
analyses.

We have applied the effective thermoviscous model in
two numerical examples to demonstrate the importance of
thermovisocus effects in microscale acoustofluidic devices.
In particular, we have shown how the acoustic streaming
depends strongly on the thermal fields: (1) The oscillating
temperature field 7 impacts the streaming through the tem-
perature dependency of the viscosity, causes corrections to
the effective boundary condition, and spawns an additional
body force in the bulk. In the 2D model of the square chan-
nel in Sec. VI A and Fig. 2, we have shown how the thermo-
viscous effects are particularly important for the
morphology and magnitude of the streaming in a rotating
acoustic field. (2) The presence of an inhomogeneous sta-
tionary temperature field 7, affects the streaming through
the induced gradients in compressibility and density. In the
3D model of the capillary glass tube in Sec. VI B and Fig. 4,
we have shown, how the experimentally-observed character-
istic horizontal streaming rolls in the standing acoustic reso-
nance of Fig. 3, are caused by heating from the actuation
area. We have also shown, how very high streaming veloci-
ties (~1 mm/s) can be caused by small temperature gra-
dients (~1 K/mm) for moderate acoustic energy densities
(~100 J/m?).

Our theoretical model enables 3D simulations of ther-
moviscous effects in microscale acoustofluidic devices. The
results point to new ways for microscale handling of fluids
and particles using a combination of acoustic and thermal
fields. Although we have developed the effective thermovis-
cous theory within the narrow scope of microscale acousto-
fluidics, it is more general and may find wider use in other
branches of thermoacoustics.
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We study acoustic streaming in liquids driven by a nondissipative acoustic body force created by light-
induced temperature gradients. This thermoacoustic streaming produces a velocity amplitude nearly 100
times higher than the boundary-driven Rayleigh streaming and the Rayleigh-Bénard convection at a
temperature gradient of 10 K/mm in the channel. The Rayleigh streaming is altered by the acoustic body
force at a temperature gradient of only 0.5 K/mm. The thermoacoustic streaming allows for modular flow
control and enhanced heat transfer at the microscale. Our study provides the groundwork for studying
microscale acoustic streaming coupled with temperature fields.

DOI: 10.1103/PhysRevLett.127.064501

Acoustic streaming describes the steady time-averaged
fluid motion that takes place when acoustic waves propa-
gate in viscous fluids. The streaming flow is driven by a
nonzero divergence in the time-averaged acoustic momen-
tum-flux-density tensor [1]. Conventionally, in a homo-
geneous fluid, this nonzero divergence arises from two
dissipation mechanisms of acoustic energy. The first case is
the boundary-driven Rayleigh streaming [2], in which
acoustic energy is dissipated in viscous boundary layers
where the velocity of the oscillating fluid changes to match
the surface velocity of the channel walls [3,4] or of the
suspended objects [5—8]. The resulting stress drives the
flow [9], typically observed in standing wave fields in
systems of a size comparable to the wavelength [10]. The
second type of streaming, quartz wind or bulk-driven
Eckart streaming [11], is driven by gradients induced by
high acoustic wave attenuation typically associated with
high-frequency traveling waves [11-13]. Both cases have
been extensively studied, and the phenomenon of acoustic
streaming continues to attract attention due to its impor-
tance related to medical ultrasound [14—17], thermoacous-
tic engines [18,19], acoustic levitation [7,20], manipulation
of particles and cells in microscale acoustofluidics [21-28],
and control of streaming by the shape of the walls [29,30].

Recently, we discovered that boundary-driven streaming
can be significantly suppressed in inhomogeneous media
formed by solute molecules [31,32]. This suppression is
attributed to the acoustic body force f,., which originates
from the nonzero divergence in the time-averaged momen-
tum-flux-density tensor induced by gradients in density and
compressibility in the fluids [33,34] and competes with the
boundary-layer stress. The streaming rolls are confined to
narrow regions near the channel walls, before the inho-
mogeneity is smeared out by diffusion and advection of
the solute. This effect enables acoustic manipulation of
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submicrometer particles [35], such as bacteria [36], and
trapping of hot plasma in gases [37].

In this Letter, we investigate microscale acoustic stream-
ing in a liquid, in which the temperature-dependent
compressibility and density have been made inhomo-
geneous by introducing a steady temperature gradient.
We generate this gradient by light irradiation and absorp-
tion, and subsequently measure the streaming driven by the
temperature-gradient-induced acoustic body force and call
it thermoacoustic streaming. Using our newly developed
model for thermovisocus acoustofluidics [38], the exper-
imental results are validated and the mechanisms respon-
sible for the thermoacoustic streaming are explained.

Our main findings are (i) the thermoacoustic streaming
begins to disturb the boundary-driven Rayleigh streaming
for a temperature gradient as small as 0.5 K/mm, resulting
in streaming rolls with complex three-dimensional (3D)
patterns. (ii) For a temperature gradient of 10 K/mm, the
thermoacoustic streaming velocity is nearly 100 times
higher than that of the boundary-driven Rayleigh streaming
and of the Rayleigh-Bénard convection. (iii) In contrast to
other types of acoustic streaming, the mechanism driving
the thermoacoustic streaming is nondissipative.

The thermoacoustic streaming is of considerable funda-
mental relevance to a broad community of researchers
working in nonlinear acoustics, thermoacoustics, micro-
scale acoustofluidics, as well as heat transfer. For a
microsystem, the advective streaming flow is remarkably
high compared to the rate of thermal diffusion, and with a
Péclet number Pe = 1, heat transfer is strongly enhanced.
Further, our findings pave the way for transient or steady
control of the streaming through modulations of the
temperature field or the acoustic field.

Experimental method.—The experiments were per-
formed using a long straight microchannel of width

© 2021 American Physical Society
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W =760 um and height H = 370 ym in a glass-silicon-
glass chip with a piezoelectric transducer glued on. The
temperature gradient inside the channel was generated by
directing the focused light from a 470-nm light-emitting
diode (LED) through water containing a dilute dye solution
(0.1 wt% Orange G) that has an overlapping absorption
peak with the LED, see Fig. 1. We measured that 99% of
the LED light was absorbed in the liquid. The transducer
was run with an input power of 88 mW at 953 kHz,
resulting in a standing half wave across the width with an
acoustic energy density E,. = 9.24 J/m> measured as in
Ref. [32]. The induced streaming was measured using the
general defocusing particle tracking technique [39—41] at 5
to 60 fps with 1.1 ym-diameter polystyrene tracer particles
(red fluorescence), well below the critical diameter of
2.9 pm that marks the cross-over to where streaming drag
becomes the dominant force [35]. Green LED light passes
through a band-pass filter (525-550 nm) and excites the
tracer particles. It is barely absorbed by the dye and hence
does not affect the temperature in the channel. The
measurements under each condition were repeated 13 to
27 times and recorded in 7800 to 40 500 frames to improve
the statistics. The temperature field around the channel
midheight plane was imaged using temperature-sensitive
fluorescent dye (Rhodamine B); see the Supplemental
Material [42].

Numerical model.—The model is the effective pressure
acoustics model of Ref. [38], which includes thermoviscous

CCD camera
High-pass filter
(> 580 nm) .

Collimator Band-pass filter

' (525 - 550 nm)
Dichroic mirror

Collimator Green LED
Objective for imaging
z — Glass
Lf/ — Silicon

T Glass
ondenser lens

| B
Band-pass filter (470 - 490 nm)

Microchannel
. Blue LED for heating

FIG. 1. Sketch of the acoustofluidic silicon chip (light gray)
sandwiched between two glass layers (white) that allows optical
transparency for both heating and particle tracking. The light
emitted from a blue LED below the chip is absorbed by the
aqueous dye solution and a temperature gradient forms from low
(orange) to high (yellow) temperature in the channel. The
piezoelectric transducer (PZT, dark brown) excites the resonant
half-wave pressure field p; (purple) at 953 kHz. A green LED
shines light from above to excite red fluorescent light from the
tracer particles, which allows for optical recording of the tracer
bead motion in a part of length L = 1300 ym of the channel of
width W = 760 ym and height H = 370 pm.

boundary layers and enables 3D simulations of thermovis-
cous acoustofluidic devices. To simulate the long glass-
silicon-glass chip, symmetry planes are exploited to only
simulate a quarter of the chip. Furthermore, the perfectly
matched layer technique [53] is used to avoid simulating the
entire length of the chip. The solver consists of three steps:
(i) Computing the temperature field 7'y induced by the LED
with an amplitude set to match the observed temperature
gradients, (ii) computing the acoustic displacement u; in the
solid and the pressure p; in the fluid due to an actuation on
the glass, and (iii) computing the resulting acoustic streaming
field v,. The heating from the LED is modeled with no
absorption in the glass and an absorption parameter in the
fluid selected to absorb 99% of the light passing through the
chip as measured in the experiment. The model is based on
perturbation theory, but the highest streaming velocities
recorded in the experiments are found to be at the limit of
the validity of the model, because there the thermoacoustic
streaming begins to alter the temperature field 7. For more
details on the numerical model see the Supplemental
Material [42]. Because the inherent difficulty in measuring
the energy density E,. at high streaming velocities when
temperature gradients are present, the E,. used in simulations
is obtained by matching the experimental streaming velocity
amplitude for each temperature gradient.

Results and discussion.—When both acoustics and
temperature gradients are present, the streaming flow
exhibits a complex 3D pattern. An example is shown in
Figs. 2(a)-2(e), corresponding to a temperature difference
ATy =3.71 K across the channel of width W = 760 pm,
equivalent to a gradient G =2ATy/W =9.76 K/mm.
Here, two counterrotating deformed cylindrical streaming
flow rolls appear, whirling with a velocity amplitude |v,| =
1074 uym/s around the pair of curved white centerlines
shown in Figs. 2(b) and 2(d). This velocity amplitude is
about 77 and 87 times higher than that of the boundary-
driven Rayleigh streaming and the Rayleigh-Bénard con-
vection, respectively, under the same driving conditions
(see Supplemental Material [42]).

The generation of this fast streaming can be explained by
the acoustic body force f,. spawned by the temperature
field induced by the blue LED. In this experiment, the light
heats the fluid from beneath, while the silicon layer
efficiently transports the heat away, thus cooling the sides
of the channel. Temperature gradients are therefore induced
in all directions: In the x-y plane by the Gaussian profile of
the light intensity and by the cooling from the silicon
sidewalls, and in the z direction by light absorption
following the Beer-Lambert law. The resulting temperature
field is highest at the center of the channel bottom, as
shown by the measured and simulated temperature fields in
the horizontal x-y plane around channel mid-height z =
0 pm in Fig. 2(f), and by the simulated temperature field
in the vertical y-z cross section at x = 0 ym in Fig. 2(g).
The acoustic body force f,. depends on the gradients in
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FIG. 2.

y = (330 % 50) 10

(a)-(e) The measured (exp, left half) and simulated (sim, right half) streaming flow for G = 9.76 K/mm (AT, = 3.71 K

across the channel width W), averaged in the indicated intervals (midposition £ half-width) normal to the triplets of horizontal x-y
planes and vertical x-z and y-z planes. The vector plot (magenta) in a given plane is the in-plane velocity and the color plot is its
magnitude from 0 (dark blue) to 1042 um/s (yellow). The simulation is performed at E,. = 23 J/m?3. Spatial bins with no experimental
data are excluded (gray). The pair of curved white lines in (b) and (d) represents the centerlines of the two counterrotating deformed
cylindrical streaming flow rolls. The two line-plot insets show the measured (purple) and the simulated (green) x (or y) component v3 (or
1}“;) of the velocity along the red lines. (f) Color plot from 25.0°C (black) to 30.1°C (white) of the measured and simulated temperature T,
in the horizontal x-y plane around z = 0; see more details in the Supplemental Material [42]. The regions where the fluorescence
intensity is affected by the channel sidewalls are excluded (gray). (g) T as in panel (f) but for the vertical y-z plane at x = 0; here, no

experimental data are available.

compressibility and density, the acoustic pressure pq,
and the acoustic velocity v; [33]. When the inhomogene-
ities are created by a temperature field, f,. can be
expressed as,

1 1
Sac = 2 |P1|2VKs,o 2 \V1|2V,00

__l 2 (0K 2 @
(), o) Jr 0

Three factors determine the action of f,. on the fluid.
(i) Both the compressibility and density decrease with
temperature, thus f,. points towards the high temperature
region, here the center of the channel heated by the
LED. (ii) At room temperature, &|p,|*>~p[v,|> and
1/x,|0rk,| > 1/p|Orpl, 50 fo is dominated by the |p;|?
compressibility term and thus is strongest at the pressure
antinodes at the sides of the channel. (iii) As shown in

Fig. 2(g), the temperature gradient is larger at the bottom
than at the top of the channel, resulting in a stronger f,. at
the bottom. Consequently, in the bottom part of the LED
spot, f.. pushes the fluid horizontally inward to the vertical
x-z center plane at y = 0 and by mass conservation lets it
escape outward along the axial x direction and upward
along the vertical z direction. The resulting streaming flow
contains the two aforementioned deformed cylindrical flow
rolls, which when projected onto horizontal and vertical
planes appear as the four horizontal streaming rolls in
Figs. 2(a)-2(c) strongest in the center plane z = 0, and as
the two vertical streaming rolls in Fig. 2(d).

The thermoacoustic streaming is more than one order of
magnitude faster than the boundary-driven Rayleigh
streaming. It is mainly due to the nondissipative f,., a
mechanism fundamentally different from the dissipation
mechanism of the conventional forms of acoustic stream-
ing. Moreover, the fast thermoacoustic streaming is sta-
tionary, because it is driven by the PZT transducer and the
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FIG.3. (a)Measured (exp, left half) and simulated (sim, right half) in-plane streaming velocity v5° (magenta vectors) and its magnitude
[v5°| from O (dark blue) to its maximum (yellow) in the vertical y-z plane averaged over the vertical slab x = (0 £ 100) um for six
temperature differences across the channel ranging from AT, = 0 to 3.71 K. Also shown is the vortex size A (red). Simulations are
performed with the energy density E,. for which |v)°| matches the experimental one under each AT, Spatial bins with no experimental
data points are excluded (gray). (b) Simulated (lines) and measured (points) vortex size A (red) and the z component of the streaming

velocity |v5| (blue) versus AT . The light blue region represents the simulated

v5| for E,. ranging from 9.24 (lower bound) to 23 J/ m’

(upper bound) with a reference (blue line) obtained at E,, = 18 J/m>.

LED light kept in steady state. In contrast, as shown in
our previous studies [33,54], the streaming driven by
an inhomogeneous distribution of solute molecules is
unsteady, and it is fast only during the short initial
transient advection-dominated relocation of solute mole-
cules. In the subsequent long-lasting phase, where the
solute concentration gradients are smeared out by diffu-
sion, the streaming is strongly suppressed in the bulk
[31,32], and the boundary-driven streaming anywhere in
this system is much slower than the fast thermoacoustic
streaming.

The transition from boundary-driven Rayleigh streaming
to thermoacoustic streaming is studied in the vertical y — z
cross section (—100 ym < x < 100 ygm) by gradually
increasing the output power of the LED. Following
Refs. [31,32], we quantify the streaming evolution by
the vortex size A, defined as the average of the distance
from the center of each of the two upper flow rolls to the
channel ceiling at z = %H . Figure 3 shows that for a zero
temperature gradient G = 0, the streaming is governed
by the four conventional boundary-driven Rayleigh stream-
ing rolls, whereas at a high gradient G ~ 3.6 K/mm
(ATy =136 K), only two big temperature-gradient-
induced streaming rolls are present, driven by the relatively
large f,. and occupying the whole channel cross section.
In transitioning from the former to the latter situation, the
two top Rayleigh flow rolls appear to expand downwards
squeezing the bottom rolls against the channel floor at
z= —%H . This phenomenon can be explained by the fact
that the two top (bottom) Rayleigh flow rolls have the same
(opposite) rotation direction as the two temperature-gra-
dient-induced streaming rolls. Already at G = 0.5 K/mm
(ATy = 0.17 K), f, is large enough to distort the four-
flow-roll Rayleigh streaming pattern. When AT, further
increases, the two-flow-roll thermoacoustic streaming pat-
tern dominates, and eventually remains unchanged, while

the velocity amplitude increases almost linearly for the
investigated range, see Fig. 3(b).

The observation that thermoacoustic streaming occurs
already at temperature gradients below 0.5 K/mm calls
for caution when combining acoustofluidic devices with
optical systems. For an absorbing liquid, the light in a
standard microscope is enough to induce strong velocity
fields that may interfere with the study object. While we
did not record the transient buildup of the streaming
field upon activating the light, it can be noted that the
development of the temperature field, and thus the stream-
ing field, occurs within a few hundred milliseconds at
the studied length scale, which enables rapid spatiotem-
poral modulation of local streaming fields through fast
reconfigurable optical fields. Further, the induced
streaming velocity is high enough to match the thermal
diffusion time and thereby impact the heat transfer in the
structure.

Conclusion.—This Letter describes a comprehensive
experimental and numerical study of the thermoacoustic
streaming in liquids induced by temperature gradients
generated by light absorption in a microchannel. We have
obtained a good match between measured and simulated
velocity fields in three dimensions. As summarized by the
main findings (i)—(iii) in the Introduction, the thermoa-
coustic streaming, driven by the nondissipative acoustic
body force, has a markedly different origin than that of
the conventional acoustic streaming associated with energy
dissipation. Moreover, it reaches much higher velocity
amplitudes compared to the boundary-driven Rayleigh
streaming and the Rayleigh-Bénard convection under
comparable conditions. The acoustic body force relies on
the acoustic field and the gradients in compressibility and
density, analogous to the driving force of the classical
Rayleigh-Bénard convection relying on the gravitational
field and the gradient in density.
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By including the temperature dependence of both den-
sity and compressibility in this work through our theory in
Ref. [38], our analysis of thermoacoustic streaming in
terms of the acoustic body force is valid for both liquids
and gases. Thus, we have extended previous related work
on gases, where compressibility effects are unimportant and
therefore neglected [19,55-62].

This study is fundamental in scope, but also demon-
strates a method with a clear potential for controlling local
flows spatiotemporally in microchannels. Further, we high-
light important implications of this phenomenon relating to
heat transfer and integration of optical fields with micro-
scale acoustofluidic devices.
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This supplemental material provides details about the temperature measurements, the comparison
between measured and simulated temperature fields, the numerical model, as well as the measured

and simulated Rayleigh-Bénard convection.

S1. TEMPERATURE MEASUREMENTS

The temperature gradients inside the microchannel
were measured in z-y plane using an aqueous 1-mM so-
lution of the temperature-sensitive fluorescent dye rho-
damine B that has a peak wavelength at 554 nm, which
is outside the absorption range of Orange G. Thus fluo-
rescence imaging of rhodamine B molecules did not affect
the temperature gradients produced by the light absorp-
tion of Orange G molecules. The optical properties of
each substance used in the solution are summarized in
Table S1.

The temperature dependence of dye fluorescence inten-
sity for each pixel was obtained using the setup shown
in Fig. S1. Two l-mm-thick aluminum plates with two
Peltier elements make contact with the two edges of the
silicon layer of the microchip. Constant temperature in-
side the channel was obtained by applying the same tem-
perature to both Peltier elements from 22 °C to 42 °C with
an interval of 4 °C using a PID control loop from the re-
sistance thermometer Pt1000. Through a 2D simulation
of heat transfer including air cooling in an extreme case
with the temperature of the Peltier elements and the air
set to 42 °C and 25 °C, respectively, we confirmed that the

TABLE S1. The optical properties of the Orange G (Sigma-
Aldrich, St. Louis, MO) and rhodamine B (Acros Organics,
Fair Lawn, NJ) solutions as well as the 1.1 pm-diameter tracer
particles (Thermo Fisher Scientific, Waltham, MA) used in
experiments.

Substance Absorption peak Emission peak
Orange G 478 nm -
Rhodamine B 554 nm 575 nm
Tracer particles 542 nm 612 nm
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FIG. S1.  Sketch of the calibration setup for temperature
p p

measurements. Two l-mm-thick aluminum plates with two
Peltier elements sitting on top make contact with the two
edges of the silicon layer of the microchip to create uniform
temperature field inside the microchannel. The temperature
control of the Peltier elements are assisted by heat sinks and
fans with a PID control loop from the resistance thermometer
Pt1000 (blue). Temperature-sensitive fluorescent dye (rho-
damine B, pink) is mixed with the medium, and green light
is used to excite its fluorescence which is acquired by the
CCD camera. The transducer (25 x 6 x 2 mm®) is made
of PZT Pz26 (Meggitt Ferroperm Piezoceramics, Kvistgaard,
Denmark).

maximum temperature difference between the Peltier el-
ements and the microchannel is less than 0.09 °C, and the
maximum temperature difference in the microchannel is
less than 0.03 °C, see Fig. S2. The dye fluorescence inten-
sity for each temperature was recorded with the camera
focal plane placed at the channel mid-height z = 0 pm.
The intensity at each pixel was calculated by averaging
in total 27 frames recorded for each temperature, with
an exposure time of 11 ms and a frame rate of 20 fps.
Noise was reduced by a 3 x 3 mean filter. The intensity
at all pixels far from the sidewalls decreases linearly as
temperature increases (Fig. S3), which agrees with the
literature [1], and pixel-wise calibration curves were used
to calculate the temperature value at each pixel to elimi-
nate the effect of aberration-induced spatial variations in
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FIG. S2. (a) Color plot from 41.7 °C (black) to 42 °C

(white) of the simulated heat transfer including air cooling
with the temperature of the Peltier elements and the air set
to Tpeiier = 42 °C and T,;, = 25 °C, respectively. (b) The
difference between the temperature in the microchannel T
and Tpgiter along the channel width at channel mid-height,
indicated by the brown dashed line in panel (a).
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FIG. S3. The measured dye fluorescence intensity as a func-
tion of temperature at three arbitrary positions inside the mi-
crochannel. The intensity at all pixels far from the sidewalls
shows linear decrease as temperature increases.

the optical signal. The absorption of rhodamine B in wa-
ter varies less than 2% within the temperature range in
our measurements [2], thus the fluorescence intensity is
not affected by the different absorption levels at different
temperatures.

The liquid was heated by shinning the blue LED from
below, the ultrasound field was activated, and the cor-
responding dye fluorescence intensity was recorded and
converted to temperature using pixel-wise calibration
curves, see Fig. S4. It is worth noting that this method
is not applicable to measure the temperature close to
the walls, in our case within 50 pm, mainly because of
the light scattering when walls are present. Hence, the
obtained temperature dependence of dye fluorescence in-
tensity close to the walls is error prone. This error can
only be minimized by using specific wall materials and
optical configurations [3], which is hard to perform in
our acoustofluidic devices. We therefore excluded regions

within a distance of 50 pm from the silicon sidewalls, indi-
cated by gray in Fig. S4. The mapped temperature field
was then fitted by a 2D Gaussian function to determine
the temperature difference AT}, across the channel and
the corresponding temperature gradient G = 2AT,/W.
The resolution of dye fluorescence intensity variation was
not sufficiently high for AT, below 1 K, and the two
lowest temperature gradients were therefore extrapolated
based on the linear dependence of temperature on the
LED power. We have not attempted to resolve the tem-
perature variation along the z-direction due to the intri-
cate influence of the fluorescence intensity on the focal
plane from the adjacent planes.

S2. COMPARISON BETWEEN MEASURED
AND SIMULATED TEMPERATURE FIELDS

The images acquired by the compound microscope are
convoluted in all three directions, and are therefore dif-
ficult to directly compare with the simulated tempera-
ture field which provides a super-resolution temperature
value at each position. Thus, we first determined the
point spread functions (PSFs) in all three directions in
our imaging system using Gaussian approximations [4]

2+ 42 2
9(957:%3) = AeXp(—72 - 72)a (Sla)
205y 207,

V2
O'wy = m, (Slb)

24/6
0, = Lnga (SIC)

kemNA

where ko = 27/Aem, 1, and NA are the emission

wavenumber, the refractive index of the liquid, and the
numerical aperture of the objective lens, respectively.
The calculated PSFs in the z-y plane and the z direc-
tion for the imaging system are plotted in Fig. S5. The
PSFs in the z-y plane drop to zero within 2 x 2 pm?,
which is close to the smooth filter size of 3 x 3 pixels
that was used to obtain the pixel intensity (each pixel
has a size of 0.641 x 0.641 pm2), and thus the effect of
convolution in the z-y plane can be neglected. Along the
z axis the intensity value was convoluted in a range of
50 pm. Considering that the PSF in z direction g(z) is
symmetric, the convoluted intensity in experiments I;°"
can be written in its discrete form as

N
I =% g(z) = Z 2% 9(2), (52)
i=1

where I:"P is the super-resolution intensity in the z di-
rection and z; with ¢ = 1,..., N are the discrete grid
points in the same direction corresponding to the mesh
elements in the simulation. When the temperature is uni-
form along the z direction, which is the case for calibra-
tion, the linear dependence of dye fluorescence intensity
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The upper row: Color plots of the mapped temperature fields in the z-y plane around z = 0 pm from 23.7 (black)

to 30 °C (white) at ATy = 1.36, 2.91, and 3.71 K. Regions where the fluorescence intensity is affected by the channel sidewalls
are excluded (gray). The lower row: Line plots of the raw (purple) and fitted (cyan, 2D Gaussian fit) temperature along the
respective cyan lines in the above color plots. ATy is determined by the difference between the maximum and minimum values

in the fitted temperature profile.

on temperature can be expressed as

sup __ _sup sup
IV =a"T+0b,

con con Ccon
I =a""T+b"",

(S3a)
(S3b)

where the superscripts “sup” and “con” denote super-
resolution and convoluted cases. Combining Egs. (S2)
and (S3), we obtain

N N
a™? Z g(z)T +b™"P Z g(z;) = a™"T +b".  (S4)
i=1
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Therefore, the relationship between super-resolution and
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FIG. S5. The calculated point spread functions of the imag-
ing system (a) in the z-y plane and (b) along the z-axis based
on Gaussian approximations described by Eq. (S1).

convoluted coefficients are found to be

N

a®" = a™ " g(z), (S5a)
i=1
N

BN =5 " g(z,). (S5b)
i=1

When the temperature is not uniform along the z direc-
tion (i.e. temperature gradients are present), the rela-
tionship between the dye fluorescence intensity and the
temperature can be expressed as

N

= Eg(z),

i=1

I;Ol’l — aconTcon + bCOl’l (86)

where T°°" is the experimentally measured temperature
with convoluted intensity. After inserting Eq. (S3a),
Eq. (S6) becomes

N N
qCOPTeOn | peon _ ;sup Z T(z)g(z) +b™F Zg(zi).
i=1 i=1

(57)
Using the relationship between super-resolution and con-
voluted coefficients found in Eq. (S5), Eq. (S7) can be
reduced to

Tcon — Z'fil T(Zz)g(zz) )
Zf\;1 9(2)

Then T°°" can be compared with the simulated tempera-
ture values using the above relationship with 7'(z;) known
in simulation.

(S8)



S3. DETAILS OF THE NUMERICAL MODEL

The numerical model is the effective thermoviscous
pressure acoustic model presented by Joergensen and
Bruus [5] extended with heating from an external LED.
The model is based on perturbation theory and simu-
lates the unperturbed stationary temperature field T}, in
the solid and fluid, the acoustic time-varying pressure p;
in the fluid and displacement w,; in the solid, and the
second-order stationary streaming field vy and pressure
field p, in the fluid resulting from the non-linearity of
the Navier-Stokes equation. The model of a glass-silicon-
glass chip with a fluid channel of height H = 370 pm and
width W = 760 pm is shown in Fig. S6. In the model
we take advantage of the symmetries in the system and
model a quarter of the channel, Fig. S6. In the y-z sym-
metry plane at x = 0 all fields are symmetric, and in the
z-z symmetry plane at y = 0 the acoustic fields p; and
u, are anti-symmetric and the stationary fields T}, vo,
and py are symmetric. The model parameters are listed
in Table S2.

The actuation is modeled not as a full piezoelectric
transducer as in Ref. [6], but merely as a boundary con-
dition with a displacement dy; = 1 nm and a frequency
fo on the black actuation plane in Fig. S6 as in Ref. [7].
Note that using the symmetry planes, the model actually
has anti-symmetric actuation regions, one on each side of
the chip, which is not the case in the experimental setup.
This does not change the shape of the pressure field in
the fluid because we are at a fluid resonance completely
dominated by a pressure component obeying the same
anti-symmetry as the actuating regions.

During operation, a piezoelectric transducer generates
heat, but this is neglected in the simulations for two rea-
sons: (1) The necessary acoustic energy density is ob-
tained in the system using a relatively low power con-
sumption, and this assures that the heat generation is
relatively small. (2) The heat from the transducer is lead
through the top glass layer into the silicon layer, where it
due to the high heat conductivity of silicon is uniformly

TABLE S2. System parameters characterizing the geometry,
the acoustic actuation, and the absorption of the LED spot.

Parameter Symbol Value Unit
Geometry parameters:

Fluid width w 760 pm
Fluid height H 370  um

LPZT 3.0 mm
Lgys 5.5 mm

Actuation length
System length

PML length Lpyp, 175 mm
Total length Lepng  7.25 mm
Actuation paramters:

Actuation amplitude dy 1.0 nm
Actuation frequency fo  0.957 MHz

LED paramters:
Half width of the LED spot dygp 650 um
Absorption coefficient «@ 124 mm™*

M Actuation plane
M Silicon
O Water
O Glass

FIG. S6. Sketch of the numerical model of the acoustofluidic
chip. Symmetry planes have been used so only a quarter
of the channel is simulated. The model consists of a fluid
domain with width W and height H, a solid domain (glass
and silicon), and a special PML (perfectly matched layer)
region where the travelling waves are artificially damped to
mimic an infinitely long channel. The acoustic actuation is
done on the actuation region (black) and the LED has its
center at * = 0 and y = 0 and has half of the width dygp.
The mesh is shown in the y-z plane, which is swept along the
z-axis so that the mesh node repeats itself with a distance of
51 pm.

distributed throughout the chip, leading to only a minute
and nearly uniform temperature rise in the microchannel.

To avoid simulating the entire chip, the perfectly
matched layer (PML) method is used to artificially damp
travelling waves [8]. Thus, the model consists of an area
of length Lpy where a piezoelectric transducer actuates
the chip at a frequency f, with an amplitude d;, a part
of length Ly s — Lpzr where there are no actuation, and
finally a section of length Lpy, where the acoustic waves
are artificially damped using a PML. For the PML to be
valid, the distance Lg,s — Lpzr must be long enough for
the travelling wave to develop so that the acoustic field
does not depend on where the PML starts.

The real device has a long channel with a long piezo-
electric transducer. To model the pressure field around
the LED spot accurately, the length Lpz1 must be larger
than half of the LED spot width d;gp. The LED
spot is modeled as a Gaussian beam with half of the
beam width dipp = 650 pm (experimentally measured
drgp = 750 £ 150 pm using the knife-edge method [9])
and the absorption coefficient is set to a = 12.4 mm™~ ! to
match the observed 99% absorption in the channel. The
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FIG. S7. A semi-logarithmic plot of the mesh convergence
error C of Eq. (S10) versus mesh size hy.n using a reference
mesh simulated on a HPC-cluster with h,, = 38 pm. The
blue and red lines are C,, and C,,, of the acosutic pressure and
streaming, respectively. The thick black vertical line marks
the mesh A, g, = 51 pm used for the simulations in the Letter,
and the two dashed horizontal lines indicate the 4% and 8%
levels.

Gaussian light intensity through the channel is given as,

1
«@ <z + 5 H )] ,

(59)
where Ppgp is the total power of the LED and —%H
is the bottom of the channel where beam starts to be
absorbed. In the solution, the heat absorption is given
as ¢(z,y,2) = al(z,y, z) for f%H <z< %H, while the
absorption in the glass is neglected.

The entire model is implemented in COMSOL Multi-
physics 5.6, with the governing equations and effective
boundary conditions given by Joergensen and Bruus [5].

All calculations, except the mesh reference simulation,
were performed on an HP-Z4 workstation with a proces-
sor Intel Core 19-7960X at 4.20 GHz and with 128 GB
RAM. The model had 10° degrees of freedom in both the
first- and second-order equations (acoustic and station-
ary fields). A mesh convergence analysis based on the
standard Ly-norm error C, [10],

\/fIg — Gt ()P AV
‘gref | dV ’

was performed for the pressure field ¢ = p;, and the
streaming field g = v,, with a reference simulation g,.¢
computed on a HPC-cluster with a mesh size hy. =
38 um, see Fig. S7. The analysis shows that for a mesh
with hen = 51 nm, shown in Fig. S6, the acoustic pres-
sure field and the streaming field are converged to an
Ly-error of 4% and 8%, respectively. The fairly good con-
vergence obtained on the relatively coarse mesh shown in
Fig. S6 is due to the use of the effective theory [5], be-
cause, (1) in the bulk, the body force driving the stream-
ing contains no small length scales, and (2) as discussed

2+

2
dLED

2P,
I(z,y,2) = LED ex
T LED

(S10)

in Refs. [11, 12], large canceling terms leading to numer-
ical errors in the full model are explicitly removed when
using the effective theory.

The numerical model uses cubic test functions for
the streaming field and the acoustic pressure field, but
quadratic test functions for the acoustic displacement
field in the solid and the second-order pressure field.

S4. RAYLEIGH-BENARD CONVECTION

As a control experiment, the 3D Rayleigh-Bénard con-
vection in the microchannel was investigated for a tem-
perature gradient G = 9.76 K/mm across the channel
measured at channel mid-height z = 0 (corresponding
to G = 13.78 K/mm along the channel height obtained
from simulation) when the sound field was off, and was
compared with numerical simulation, see Fig. S8. Under
the experimental conditions studied here, the Rayleigh-
Bénard convection is in the laminar regime due to the
low Rayleigh number Ra = ’;]g—f H 3ATO = 5.06, where
p, B, n, and a are the density, thermal expansion coeffi-
cient, dynamic viscosity, and thermal diffusivity of water,
respectively, and H is the channel height.

At the bottom center of the channel, the fluid expe-

FIG. S8.  (a)-(d) The measured (exp, left side) and sim-
ulated (sim, right side) pattern of Rayleigh-Bénard convec-
tion for G = 9.76 K/mm across the channel measured at z
= 0 (corresponding to G = 13.78 K/mm along the channel
height obtained from simulation), observed in different planes
z-y horizontally, z-z vertically, and y-z vertically. The vector
plot (magenta) in a given plane is the in-plane velocity and the
color plot is its magnitude from 0 (dark blue) to 12.3 pms ™"
(yellow). Spatial bins with no experimental data points are
excluded (gray).



riences the highest temperature due to light absorption,
hence it expands and becomes less dense, resulting in a
convection from the bottom to the top. The fluid is able
to flow in both the z- and y-directions at the ceiling and
circulate back along the bottom, creating two big rolls

which can be viewed in the z-z and the y-z planes, see
Fig. S8(c)-(d). The measured velocity amplitude of the
Rayleigh-Bénard convection is vg,, = (12.3+4.0) pm st
(9.9 pms~ ' in the simulation), which is almost two or-
ders of magnitude lower than that of the thermoacoustic
streaming.
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A theoretical model of thermal boundary layers and acoustic heating in microscale acoustofluidic
devices is presented. It includes effective boundary conditions allowing for simulations in three
dimensions. The model is extended by an iterative scheme to incorporate nonlinear thermoviscous
effects not captured by standard perturbation theory. The model predicts that the dominant non-
perturbative effects in these devices are due to the dependency of thermoacoustic streaming on
gradients in the steady temperature induced by a combination of internal frictional heating, exter-
nal heating, and thermal convection. The model enables simulations in a nonperturbative regime
relevant for design and fabrication of high-throughput acoustofluidic devices.

I. INTRODUCTION

Modeling and simulations of acoustofluidic devices
is used to optimize and develop designs of microscale
acoustofluidic devices. Traditionally, acoustofluidic mod-
els have been based on perturbation theory [1-7], but in
this paper we present an iterative numerical model that
enables simulations of nonlinear acoustofluidics beyond
the amplitude limitations set by perturbation theory.
The motivation for this theoretical development is that
combined theoretical and experimental studies of acous-
tic streaming has shown that the perturbative treatment
is pushed to its limit and beyond [8]. In the latter work,
the perturbation model is challenged by the fast acoustic
streaming, which creates a significant convection, and, as
discussed below, also heating from friction in the viscous
boundary layers can be important. Both of these effects
are not described by standard perturbation theory.

The validity of perturbation theory is mainly chal-
lenged in systems with a high acoustic energy density
E,., needed in the development of faster acoustofluidic
handling of suspended particles and molecular suspen-
sions. In particular, the volumetric throughput is often
a limiting factor for clinical use of acoustofluidic devices
[9-12], so it is of general interest to develop a model that
allows for simulation of such high-F,. devices. Nonlin-
ear effects due to fast acoustic streaming have previously
been studied numerically in gases with a model using an
ideal analytical pressure field [13]. Those models include
the nonlinear effects of changing the temperature field by
convection due to the streaming velocity field, but the
nonlinear effect of acoustic heating and nonlinearities in
the acoustic fields themselves are not included.

Numerical models in acoustofluidics can be catego-
rized as viscous models [1, 5] and thermoviscous mod-
els [2, 7], as well as full models [1, 2] and effective

* jonashj@fysik.dtu.dk
! bruus@fysik.dtu.dk

models [5, 7). The viscous models include the full vis-
cous fluid description, but assume an adiabatic tem-
perature field governed by the pressure field and typi-
cally assume temperature-independent material param-
eters. The thermoviscous models further include ther-
mal boundary layers, temperature-dependent material
parameters, and heating created in the viscous bound-
ary layers. Full models require numerical resolution of
the thin boundary layers, and they are therefore nu-
merically expensive. In contrast, effective models in-
clude analytical expressions for the boundary layers, so
a fine boundary-layer mesh is avoided, and they there-
fore enables three-dimensional (3D) simulations. In this
work we build on and expand our previous perturbative
thermoviscous effective model [7] by including frictional
heating due to the acoustic field, and by going beyond
perturbation theory with the introduction of an itera-
tive scheme including quasi-steady and acoustic fields
to allow for higher acoustic energy densities and larger
thermal convection. The developed nonlinear, effective-
boundary-layer, thermoviscous acoustofluidic model is
the main result of this work. Experimental validation
of the model is presented in a concurrent Letter [14].

In Section II the basic assumptions and governing
equations for the nonperturbative appraoch are pre-
sented. In Section III, our perturbative theory [7] of the
thermoviscous acoustic fields is briefly summarized. In
Section IV, the known theory [7] for the steady mechan-
ical fields is presented, and we develop the theory for
the steady temperature fields. In Section V, we present
the nonperturbative iterative procedure for computing
nonlinear thermoacoustic effects, and we briefly explain
how to implement it in the software Comsol Multiphysics
[15]. In Section VI, we validate the implementation of our
numerical model, and we present two model examples
of nonlinear acoustofluidics: a model in two dimensions
(2D) involving internal acoustic heating, and a model in
three dimensions (3D) involving thermoacoustic stream-
ing induced by absorption of light. Finally, we conclude
in Section VII.



II. THEORY AND MODEL ASSUMPTIONS

Based on our previous perturbative approach [7], we
consider an acoustofluidic device consisting of an elas-
tic solid containing a microchannel filled with a ther-
moviscous Newtonian fluid and actuated by a piezoelec-
tric transducer at a single frequency in the MHz range.
Due to the internal dissipation and hydrodynamic nonlin-
earities in the fluid, the resulting time-harmonic acous-
tic field leads to a time-averaged response in the form
of acoustic streaming and steady temperature gradients.
For simplicity, the piezoelectric transducer is left out of
the analysis, and is only represented by an oscillating dis-
placement condition on part of the surface of the elastic
solid. We have in other studies included a full model of
the transducer in the numerical model [6, 16, 17].

A. Governing equations

The response of the fluid embedded in the elastic
solid to the oscillating-displacement boundary condition
is controlled by the hydro-, elasto-, and thermodynamic
governing equations of the coupled thermoviscous fluid
and elastic solid. The linear elastic solid is described in
the Lagrangian picture by the fields of the density p, the
displacement u, the temperature T, and by the follow-
ing material parameters: the longitudinal and transverse
sound speeds ¢, and c¢,, the thermal conductivity k’th,
the specific heat capacity c,, the ratio of specific heat
capacities 7 = ¢,/c,, the thermal expansion coefficient
a,, and the isentropic and isothermal compressibilities
kg and k7. The velocity field is the time derivative of the
displacement field, vl = O;u, so no advection occur, and
the governing equations are the transport equations of
the momentum density pd,u and temperature T [18, 19],

poiu=V o, (1a)

07+ 0"V vy = v VD) + P, (1b)

a, PCp

where P is the external heat power density, and o is the
stress tensor, which for isotropic solids is,

o= 22T _T)I+, (2a)
KT

T = pct, [Vu + (Vu)q + p(ci, = 2¢2.) (V- u)I. (2b)

The fluid is described in the Eulerian picture by the
fields of the density p, the pressure p, the velocity v,
the temperature T', and the energy per mass unit €, and
by the following material parameters: the dynamic and
bulk viscosity n and nb7 the thermal conductivity kth,
the specific heat c,, the thermal expansion coefficient a,,
the ratio of specific heats v = ¢,/c,, and the isentropic
and isothermal compressibilities k; and kK = yk,. The

governing equations are the transport equations for the
density of mass p, momentum pv, and internal energy pe,
[2, 19, 20]

9ip = —V-(pv), (3a)

O (pv) = V(o — pov), (3b)

0y (pe—l— p%) =V- [kthVT—i- Vo — pv(e + %)} + P,
(3¢)

where P is the external heat power density, and o is the
stress tensor,

oc=-pl+T, (4a)
T=n|Vv+ (Vv)T] + (nb - gn)(V ~v)I. (4b)

Pressure p and temperature T are related to the inter-
nal energy density € by the first law of thermodynamics,
and to the density p by the equation of state [2, 19, 21],

pe = (pe, — ayp) AT + (7p — 0, T) dp  (5a)
dp = —pay, dT' + prr dp (5b)

Like the density, any material parameter ¢ has a temper-
ature and pressure dependency,

1
—dg= aqT o, dT + ay K dp, (6a)
d0
1 /0 1 /0
aqT = (—q) , ah = (—q) . (6b)
apgo NOT/ p Krdo \Op/ T
Note that here the variables are (T, p) and not (T, p) as

in Refs. [2, 7]. For a pressure change dp accompanied by
an adiabatic temperature change dT" = (y — 1)2Zdp, the
P

adiabatic pressure dependency of a parameter ¢ is,

1

; dq = CL? oy, dT + CLZ K dp = agyadﬁsph (GC)
0

af}’vad =v(y-1) aqT + yay. (6d)

For steady temperature gradients and oscillating thermal
boundary layers, aqT is relevant and for bulk adiabatic
pressure wave af]”ad is the relevant quantity. For water
at T = 25 °C, using Eqgs. (5b) and (6), we compute the
dimensionless sensitivities ag, ay, and af;"ad from the T-p
dependencies of the parameters ¢ listed in Ref. [2],

T
a, = -1, a,, = —10,
P _ pad __
CLp = 1, a/p - 17
ab = 88, a? = 1.3, (7)
oty = —100, AP = 11,
T P ad
Cbkth = 84, ai’ti = 2.3.

We assume nb to be dependent on temperature and not
pressure. These temperature dependencies imply that



thermal gradients may induce gradients in the listed pa-
rameters, including the density and the compressibil-
ity. This leads to the appearance of the inhomogeneous
acoustic body force f,. previously studied for both solute
and thermal induced gradients (7, 8, 22].

B. Separation of length and time scales

Acoustofluidic devices are typically driven at a fre-
quency f in the range from 1 to 50 MHz. The corre-
sponding fast acoustic time scale t is

=L o b g 60 (8)
=—=—=3- ns.
w 2nf

The time scale 7 associated with the hydrodynamic and
thermal flow is slower. Following the analysis by Karlsen
and Bruus [22], we estimate for a typical aqueous suspen-
sion in a channel of height H = 0.5 mm with density p,
relative density difference p = 0.1 induced by gradients in
either concentration or temperature, and kinematic vis-
cosity v = n/p, the following characteristic time scales:

thermal relaxation tiperm = H 2 / Dth7 viscous relaxation
tyise = HQ/Z/O, inertial motion ¢, ~ \/H/(g9p)), and
steady shear motion ty,ea, = vo/(Hgp) are all in the or-
der of 10 ms. So for the slow hydrodynamic time scale
7, we have

TR ttherm ~ tvisc ~ tinert ~ tshear ~ 10 ms. (9)

The slow thermo-hydrodynamic and the fast acoustic
time scales are thus separated by 4 to 5 orders of magni-
tude, and we therefore solve the fast and slow dynamics
separately as in Ref. [22]. In this work, we only study
the steady limit of the slow time scale and describe any
given physical field Qs as a sum of a steady field Q
and a time-varying acoustic field Qe "
complex-valued amplitude @,

Qphys(t) = Qo + Re [Qre"]. (10)

The steady (or slowly varying) fields sets the density and
compressibility, which governs the acoustic fields. Con-
versely, the fast acoustic time scale creates an oscillation-
time-averaged acoustic body force f,. and acoustic
heating-power density P,. that enter the equations of mo-
tion for the steady fields. A time-average of a product of
two acoustic terms is also a steady term, as expressed by
the well-known relation ( Re [Al(}_thRC [Blc_“‘)t]> =
%Re [AlBT ], where the asterisk denote complex conju-
gation. In contrast to perturbation theory [7], we do
not require that @ is much smaller than Q,, but we
do neglect higher harmonic terms with time-dependence
eFmet =23,

Acoustofluidic systems exhibit dynamics on two length
scales, one set by the wavelength of the acoustic fields,
and one set by the viscous and thermal boundary lay-
ers. The boundary conditions on the velocity field, stress,

with a steady

heat flux and thermal field at the fluid-solid interface
results in the appearance of thermal boundary layer of
width J, in both the fluid and the solid, and in a viscous
boundary layer of width §, in the fluid. These bound-
ary layers are localized near fluid-solid interfaces, and
their dynamically-defined widths, jointly referred as 4,
are small compared to a typical device size or wavelength

d [19],
b} :,/% 20" ~ 2Dy (11)
? w’ (1—X)w w

2
where X = 0 for fluids and X = (y — 1);*‘3—3 < 0.01
€y,

for solids. Typically, 6, < 5, < 500 nm, which is more
than two orders of magnitude smaller than d ~ 100 pwm.
We introduce the usual complex wave numbers k, and
k; associated with the boundary-layer widths d, and §,,
respectively,

1+
=5

1+i
k, =
t (5t

kg . (12)
In the following analysis, the fast acoustics fields are sepa-
rated into a bulk field (superscript d) and boundary layer
field (superscript d) that are connected by the boundary
conditions.

C. Boundary conditions

In the usual Lagrangian picture [7], an element in an
elastic solid with equilibrium position s, has at time ¢ the
position s(sg,t) = 8o + s1(sp)e " and velocity V° =
—0,8 = Vi'(s0) e " with V{(sg) = —iws;(sy). On
the solid-fluid interface, the no-slip and continuous stress
conditions apply as in Ref. [7] Egs. (10) and (11). The
velocity of the solid wall at a given time and position
must equal the Eulerian-picture fluid velocity vﬁ,

—iwt
(13)
This boundary condition must be obeyed separately for

the steady and acoustic fields (subscript 0 and 1, respec-
tively), so a Taylor expansion yields

vo(8g) = —<(51 : V)U1>‘SO,
v1(80) = V10(30)-

v (sg+ 8107 1) = V() e = —iwul(sg) e

(14a)
(14b)

Similarly, at a given position on the fluid-solid interface
with surface normal n, the stress o must be continuous,

a3/ (80) -1 = 05 (80) -+ ((81- V)l (s) - m)|, |
(15a)
(15b)

1 fl
ol (80) -m=07(s0) - m.



Since the viscosity parameters n and nb depend on the
temperature, the explicit expressions of the two stress
boundary conditions contains several terms.

Following Ref. [7], two sets of thermal boundary con-
ditions must be imposed. Similar to the velocity, the
temperature must be continuous across the solid-fluid in-
terface. This condition must be obeyed separately in the
steady and acoustic fields,

T3 (s0) = To (50) + (31 - VT, |
Tfl(so) = T1ﬂ(50)~

(16a)
(16b)

Similar to the stress, the normal component —k"n.vT
of the heat flux must be continuous across the interface,

— sl VTSl(sO7 t) = ety VTH(SO + sle*m7 t).

(17)
Here and in the following, we neglect the tiny gradients in
n and s;. The steady and acoustic boundary conditions
on the heat flux become,

— ko - VTG (s0) — (K"'n - VT3 (s0))
= —kgh’ﬂn . VT(?(SO) - <kihn . VTlﬂ(so)>

(18a)

— (81 V[k"VT{(s0)] - m),

— kS VT (sg) = —k M T (sg),  (18D)

D. Range of validity of the model

We briefly discuss the range of validity imposed by
the main assumptions. Firstly, in this analysis we study
steady fields and acoustic fields with the actuation fre-
quency w. So our model is only valid when these fields
are much larger than the higher harmonic fields at fre-
quencies 2w, 3w, .... The magnitudes vgy,, v1,, and vq,
of the steady v, the acoustic v, and the 2w-harmonic
v, velocities are given in Muller and Bruus [23] as,

3,2
v
V2q = %7 (19)

Q2v2

bc

Voa = i
CS

Ve = vam
S

where the physical velocity field corresponding to vy is
given as v5™ = Re [1)26_‘2“”&]. Our model is valid if
v%a > vga, and this implies a limit on the acoustic energy
density Eac ~ %pOU%aa

2
B < Zg; ~10° — 10° Jm >, (20)

where @ = 100 — 1000 is typical for acoustofluidic de-
vices. So in systems with high @ factors the higher order
harmonics will be important at a lower E,..

Secondly, due to low oscillatory advection, we assume
V- (qov1) = qo'V - vy, where g is a parameter of the fluid.

This requires |V - v1| > |Vqq - v1]. At room tempera-
ture the validity of our theory is therefore limited by the
most temperature sensitive parameter, the viscosity 7,

|VT0‘ < ’Tlokc

~ 5000 £ (21)
(aTTI)T[J .

mim

Conventional acoustofluidic systems are well within this
limit | V7| < 50 K/mm < 5000 K/mm.

Thirdly, the effective boundary-layer theory requires
the boundary-layer width to be much smaller than the
bulk wavelength, kyd < 1, see Section II B, which is true
for MHz acoustics in water.

III. FAST-TIME-SCALE ACOUSTIC FIELDS

The acoustic or fast-time-scale part of thermoviscous
acoustofluidics is thoroughly studied in Ref. [7] as the
first order fields in the perturbative model. The govern-
ing equations of these fields are the same for the pertur-
bative and the iterative model, and therefore the theory
from Ref. [7] can be directly applied. This is an effec-
tive theory, in which the thermal and viscous boundary
layers are given analytically and incorporated in effec-
tive boundary conditions on the pressure p; and displace-
ment field ;. The governing equations for the bulk fields
and the effective boundary conditions on the solid-fluid
boundary are given in Ref. [7], Egs. (19), (20), (23), (24),
and (34), and they are briefly summarized below.

A. Governing equations in the bulk

In the bulk of the fluid, as shown in Ref. [7] Sec. IV
A, the acoustic pressure field p; and the associated bulk
velocity v(li and adiabatic temperature Tld are governed
by the Helmholtz equation, derived from Egs. (3) and (4),

v2pl = _kgplv kc = %(1 + 11—‘(f)ic)a (22&)
1—irf
vl — i ey, (22b)
Who
K
T = (y-1)=2 p,. (22¢)
apo

Further, as shown in Ref. [7] Sec. IV B, the displacement
u; in the solid is governed by the temperature-dependent
Cauchy equation, derived from Egs. (1) and (2),

—pow’uf = v .o, (23a)

PrA /LY (23b)
KT

"'1(1’Sl = pOC?r {V’lh + (Vul)T}

+ Po (6120 - 2C§r) (V : ul)I (23C)



The boundary layers at the fluid-solid interface are in-
corporated analytically through two effective boundary
conditions. Firstly, see Ref. [7] Eq. (34a), the velocity
must be continuous across the interface, here imposed on
0,p; in the fluid,

8,p, =1 (Ve - iv VO - (k24 02,

wWPo
1—ily kg
+ i—pk T(mﬂ7 for z =0,
ky K

(24a)
where Tfo’ﬂ is the boundary-layer temperature field
given in the following subsection. Secondly, see Ref. [7]
Eq. (34b), the stress must be continuous across the in-

. d.,sl . .
terface, here imposed on o"* in the solid,

d,sl dO sl
g

i
e, =-—pie; +ikgp|vy T+ —Vpy | (24b)
WPo
The effective boundary conditions (24) enable 3D simu-
lations with a coarse mesh, because the boundary layer

does not need to be resolved numerically.

B. Analytical form of the boundary layers

The analytical solution for the boundary layers was in
Ref. [7] used to set effective boundary conditions on the
acoustic fields and the steady streaming field. Here, we
also need them to derive the effective boundary condi-
tions for the steady temperature field. The analytical
solution of the temperature boundary layer in the fluid
T2 and solid T is given in Ref. [7] Eq. (29) as

Z . fl
6,11 1,d fl,dl kg
v = _1 Iy [T1S 0(55729) -1 0(95731)]61 , (25a)
1 e
Tléasl =+ : n Z I:Tfl,do (1'7 y) _ Tlﬁ,do (x7 y)]e ks Z, (25b)
Z kth Slk’ sl B kth,sl ;10 p(s)l (25c)
hfl;sl — h,fl ﬂ fl
k(t) ke k(t) Cpo Po

The acoustic velocity v, is split into three fields, see
Ref. [7] Egs. (20a): the bulk velocity v** and the thermal
boundary-layer velocity 'Uf’T, both compressible gradient

fields in the Helmholtz decomposition (superscript ”d”),
. . s
and the viscous boundary-layer velocity vy,

vy = vl + 0Pt 4 of (26)

As derived analytically in Ref. [7] Egs. (30) and (33b),
'vf and 'vf"T are given by,
v = 0y’(w,y) %, (27a)

o b
pOR0 5
V1y.

PoCpo

(27b)

d,T th d
'Ul = apODO VTl =

These analytical expressions are used in Section IV C to
derive the contribution from the acoustic fields to the
boundary condition of the steady thermal field.

In terms of bulk and boundary fields combined with
Egs. (5b) and (6a), the first-order density p,, viscosity
11, and thermal conductivity kih are written as

)

pr = pi + 0, P} = —poc,T7, (28a)
Pl1i = Po’%ph

m =i +nl, = 1ay T1 , (28D)
771 = 770a KsP1,

k= B k™ kM = k:(t)haTn,a 7, (28¢)

th,d th p ad
k - k ch RgP1-

IV. SLOW-TIME-SCALE STEADY FIELDS

The steady or slow-time-scale part of thermoviscous
acoustofluidics contains mechanical and temperature
fields. The mechanical fields are studied in Ref. [7], so
the equations for the displacement uj in the solids and
pressure p, and velocity vy in the fluids, can be car-
ried over unchanged, and we just summarize the main
results below. However, we need to develop the theory
for the temperature field T}, both its bulk part Tg and
its boundary-layer part Tg , as it is not treated in Ref. [7].

A. Mechanical bulk and boundary-layer fields

As |u0| < d, the steady displacement field ug is to
a good approximation decoupled from both the steady
thermal field and the acoustic fields, and consequently

uy = 0. (29)

The steady pressure p, and streaming v, are governed
by the the steady part of Eqgs. (3a) and (3b),

0=V v, (30a)
0= *V[pg - <£’gc>] -V [Po’vo’vo} + UOV Uo + fdc
(30b)

Here, the Lagrangian density <£§C> and the acoustic
314, B}] of pairs
q. (52¢),

body force f;ic contain time averages
of acoustic fields A; and By, given by Ref. [7] E

1 1
(ci) = gl = Joolof ] (31a)
1 1
f;lc = _1|Uf)p‘2vp0 - 7|p1|2v“$s

+ [1— 2%5(111)] — (V)

- 1)k2<51 . Vvl’p>.

(31b)

+ %770 (7



The acoustic boundary layers, are taken into account an-
alytically, and they only appear implicitly and impose a
slip velocity on the bulk streaming field given by Ref. [7]
Eq. (54) as,

v’ =(A-e,)e, + (A- e e, + (B -e)e., (32a)

1 1
A=——Re{ v V([ o’ —iV ) — iV vol?
2w 2

9 i
+ [21V . 0(150* + i(V . V10* — 821);[:)]’0(150}

1 50% g 50 50%
+ %Re{nijo’vlo + ﬁ’l’]lo’vlo s (32b)
1 . 0% d,
B= %Re{wl - Vi p}, (32¢)
U<150 = —iwu! — v{°, (32d)
7z
50 T 1,do fl,d0
=7 [T — 1], (32e)
i’ = noal ™k py, (32f)

. 50 80 do .
where the expressions for vi ', 7, and 77 in terms of

bulk fields are obtained from Egs. (13), (25a), and (28b).

B. Steady temperature fields

The steady temperature field Tj is given as the time
averaged terms of Eqgs. (1b) and (3¢) in the solid and
fluid, respectively. The time averaged terms either con-
sist of steady fields a, or terms with time-averaged prod-
ucts <a1b1> of two time-varying fields a; and b;. All
terms of the latter type are collected as an acoustic
power P, .. In the fluid, neglecting small terms by using
vy - o171 < {0y "71>7 p1Yo < pov1, V- (povg+ prv1) =0,
€11 + %|U0|2 + %|”1|2 < €, € = CpoTld — 2ol

Po
6(15 = cpoT{s, and ’vo . 0'0‘ < ’k:(t)hVTO , the steady part of
Eq. (3¢c) becomes

d
plzoa

0=V. [kf,hVT(ﬂ — cppovo - VTE + PL 4+ P, (33a)
Pl =V [T = (pyoy) + (v - )
— pocp0<T1ﬂ'Ul >:| — Cp<p1v1> . VT(?, (33b>

In the solid there is no advection, and the T}, part of
Eq. (1b) is controlled by thermal diffusion alone,

0=V - (k"VTH + P + P,
Pol =V (K",

In both the solid (sl) and the fluid (fl), the temperature
field and the acoustic power are separated into a bound-
ary term () and a bulk term (d),

x1 x1,d x1,0 d 1)
TO :TO +TO ’ PaC:Pac+PaC' (35)

6

The boundary-layer temperature fields Tgi % and TSI’(S are

defined as the response to P;SC, and all three fields are
required to go to zero far away from the boundary.

The two bulk and two boundary-layer fields are linked
by the boundary conditions (16a) and (18a) at the fluid-
solid interface, which impose continuity of the tempera-
ture and of the heat flux density. The first is

T(l;lvdo + T(?"(SO —+ <81 . VTf> = TSLdO + Tglﬁov (36&)

and the second is

k'n - V(T + 1) + (kiPn - w1
+ (s, - V(E"VT) - n)
= k- V(T3 + T5) — (k'n - VT3, (36b)

Thus, the steady bulk solid and fluid fields Tgl’d and Tg’d
can be matched at the interface by using the analytical
form of the boundary-layer fields Tgl’é and T, 5] 9,

C. Steady boundary-layer temperature fields

In the fluid, the boundary-layer Tf M is driven by Pfc
of Egs. (33b) and (35). We neglect the convection term
Cpo (povo + <plvl>) VT in the boundary layer, because

it contains only one gradient o 6~ ', and thus is a factor
kd smaller than the viscous term V - <v1 ~7'1> containing

two gradients o< § —2 Moreover, in the boundary layer V-
[k(t)hVTgl ’6] ~ k(t)hagToé , so the governing equation for the
steady boundary-layer temperature field TOﬂ 0 therefore
reduces to,

k03T = —Pre
Pl =V [V T)" 4 (v )"

- <P1’U1>ﬂ’[S - pOCp0<T1’U1>ﬁ’§:|'

(37a)
(37b)

The first-order boundary-layer fields are known analyti-
cally, see Section III B, so we can now analyze the four

terms in P;sc one by one and integrate Eq. (37a) once from
f,5

z = 00 to z = 0 to find the normal derivative 0,7};"" and
twice to find the value Tgl . We describe each field at
z = 0 as a surface field (with superscript “0”), which
depends only on x and y, multiplied by the exponen-
tial z dependence given analytically in Section IIIB. The
reduction and integration of the four terms is straight-
forward but tedious as shown in Appendix A. The nor-

mal gradient azTgl 9 at the fluid-solid interface becomes



Eq. (A13),

1+i O . Owa
82T(?’50:Re[ *1{ 21 W 80 _y00x _ 010 o

090 T6O*
m 10 ————— il
4D8 Cp CpPo

5,
ST

— A [T (L i) = dm, b ]

{@VHT{SO ol = (1= 1)1 (150;}

th,60 | ;.th,dO
kit 4k

+ S0%
w%fﬂo }:|, (38&)
0

where all quantities are evaluated in the fluid. The
boundary-layer heat flux koh ﬂa Tﬂ % is dominated by

the first term v{°-v2%* which is a factor of apTy ~ 10
larger than the terms including the boundary layer tem-
perature field T{S % The two last terms including k;h are
smaller by a factor of v — 1 and a therefore only impor-

tant for gases and not liquids. The result Eq. (A15) for

the boundary-layer interface temperature Tﬂ 004 S,

- (stVHT{SO 'U(li ﬁo* + 6t

) 52 . Owa .
T(i)i,(iO: tthRe{* sW %0 . 0% 4 2690 0pé0
4D§ 20,¢,, »P0
.o
+i——— 16,V 71" o0 — (1= )10 %
(6, +16,) I I
s t
1—i «
- T{SO{ 5 lvf:ZTO* +(1+ 1)@1’50 — 6twﬁsp[1)*}
.\ 7.th,50 th,do0
. d,p0x (14 0)k% + 2657 5o,
18,V T 0P G S "}
0
(38b)

Again, the first term vfo-v‘lso* originating from the

viscous boundary layer is the leading term.
In the solid, the boundary layer field TSW
by P2, of Egs. (34b) and (35) as

is governed

0=V [T+ (kP 39)

which, when using VQTSI’(S o~ 82TSI’6, gives the following

differential equation for the boundary-layer field Tgl 5,

KPPTEY = —v - (T (40)
The right-hand side is similar to V - <kihVTP>6 in the
fluid boundary layer, which contributes with terms of
the type kihT{S* in Egs. (38a) and (38b). These terms in
the fluid domain can be directly transferred to the solid
domain, which results in the following normal heat flux
and temperature in the boundary layer on the solid side
of the fluid-solid interface,

s B30 | th.do 50
o1 = Lol 4 M TR peoel g
T3t = e (T )
‘ 1 14 )00 | gpthdo
TSI’S——4RC{( ik T 770 ] (41b)
ko

where all quantities are evaluated in the solid. For a
fluid-solid interface these terms are negligible compared
to the leading term in the fluid boundary layer. They
can be important for certain gas-solid interfaces.

D. Steady bulk temperature fields

The steady bulk temperature field Tgl ‘4 in the fluid {s
governed by the long-range bulk terms of Eq. (33),

0=-V- [kghVT(?ﬂ — ¢,povg - VI

+PL+ P, (42a)
Pl = =V - [PV = (prof?) + (o7 o)
— e, {plv?y - VT, (42b)

Similarly, 755 in the solid is governed by the long-range
bulk terms of Eq. (34),

0=-V. [krghVTSl’d} FPLA P (430)

Pl = -V - (K™'wThh. (43b)

Here, P is an external heat power source from fields not
included in the model, such as heat generated by light ab-
sorption or by Joule heating from electric currents. The
bulk fields Tgl’d and Tgl “ are connected at the fluid-solid
interface by the Dirichlet and Neumann boundary con-
ditions (36a) and (36b).

We choose to apply the Dirichlet condition (36a) on
Tgl 4 in the fluid and therefore write

fld _ sld 1,60
Iy" =1y —1T1g

- %Re [sl v s, n)TfO*’ﬂ] (44)
All fields on the right-hand side can be expressed in
terms of bulk fields: the acoustic boundary-layer fields
T2 and TP through T and 75 by Eq. (25), the
steady boundary-layer fields Tg 0 and Tglﬁ through Tf ’ﬂ,
T2, T 7 and py by Egs. (28), (38b), and (41b),
and finally s; through w; by the simple identification
81 = wuy(sg). Consequently, T(? 4 is given solely by
steady and acoustic bulk fields, a crucial point in the
implementation of a numerical simulation involving only
bulk fields, which avoids the numerically demanding res-
olution of the narrow boundary layers. Note how the
boundary-layer fields results in a discontinuity in the bulk
temperature field, when crossing the fluid-solid interface.

Conversely, the Neumann boundary condition (36b) is
enforced on the temperature field TSl ¢ in the solid. To-
gether with the evaluation of the steady boundary layer
terms in Egs. (38a) and (41), it becomes,

Fislyy et — il prid | pthily T
1 *
+ 3 Re kR B,

n)Tf*’ﬂ} . (45)



Similar to Eq. (44), all fields on the right-hand side of
Eq. (45) can be expressed in terms of steady and acous-
tic bulk fields through 7% 701 7 7544 and p, by
Egs. (28), (38a), and (41a), and by using s; = u;(sg).
Consequently, 8ZT§1 4 g given solely by steady and acous-
tic bulk fields.

In summary, the bulk temperature fields are governed
by equation Egs. (42) and (43) together with the effec-
tive boundary conditions (44) and (45), in which the
boundary-layer fields are taken into account analytically
and expressed in terms of bulk fields. The boundary
conditions on the outer surfaces could either be a Dirich-
let boundary condition, such as Peltier elements or heat
sinks, a no-flux boundary condition as for an air inter-
face, or a combination such as air cooling and solids made
of glass or polymer with a thermal diffusivity similar to
water.

V. AN ITERATIVE PROCEDURE TO
ACCOUNT FOR NONLINEAR EFFECTS

The separation of time scales leaves us with one set of
equations presented in Section III for the acoustic fields
p; and w1, and another set presented in Section IV for the
steady fields vy, pg, TSI and Tgl . These steady and acous-
tic fields impact each other through the temperature-
dependent material parameters, the acoustic body force
fgc, the acoustic power P,., and the effective bound-
ary conditions, in which the boundary-layer fields are
taken into account analytically but appear only implic-
itly through expressions involving only bulk fields. As
described in the following, the combined set of equations
can be solved by a self-consistent iterative procedure, in
which the coupled acoustic and steady fields are solved
in an iterative sequence until convergence is obtained.

The steady fields vy, pg, Tgl and Tgl are computed
from the governing equations in the bulk, (30) (42) and
(43) with the effective boundary conditions (32), (44)
and (45). The acoustic fields p; and w; computed from
the governing (22) and (23) with the effective boundary
conditions (24a) and (24b).

The equations are implemented in COMSOL Mul-
tiphysics [15] using the “Weak Form PDE Module”,
and the effective boundary conditions are set using
the “Dirichlet boundary condition Module” and the
“Weak Contribution Module”. The iterative solver is
implemented using the “Segregated Solver” with two
steps: “Step 17 computes the steady fields vy, py, 15
and Tgi based on the current value of the acoustic fields,
and “Step 2” computes the acoustic fields u; and p;
based on the current value of the steady fields. The seg-
regated solver then runs until convergence is obtained.

The benefit of the iterative setup compared to the tra-
ditional perturbation setup [1, 5-7] is that nonlinear ef-
fects are included. In the steady fields there are two dom-
inating nonlinear effects in typical microscale acoustoflu-

idic devices: (1) Thermal convection proportional to
vg - VT, which dominates over thermal diffusion propor-
tional to V>Tj,, when |'v0| e Dgh/d ~ 0.3 - 1.5 mm/s for
d = 100 - 500 pm. Note that for larger systems convec-
tion becomes important at lower velocities, and in recent
experimental studies this limit has been reached [8, 24].
(2) Acoustic heating, which is due to the viscous dissipa-
tion P;SC in the viscous boundary layer, and which may
lead to temperature gradients in the bulk large enough to
result in a significant acoustic body force proportional to
\p1|2VT0 through the temperature-dependent compress-
ibility and density, see Eq. (31b), that drive an acoustic
streaming, which at sufficiently high acoustic energy den-
sities dominates over the usual boundary-driven Rayleigh
streaming.

VI. MODEL VALIDATION AND EXAMPLES

In this section, we implement and validate our self-
consistent iterative procedure in Comsol. We also study
two specific examples of the above-mentioned nonlinear
effects, which our model is able to predict.

A. Example in 2D: Change of the acoustic
streaming due to internal acoustic heating

Our basic perturbative thermoviscous acoustofluidics
model has been validated both numerically [7] and ex-
perimentally [8]. Therefore, we here choose our first ex-
ample to be a system, where we can validate numerically
our model with the effective boundary conditions (44)
and (45) with a full model, where the boundary layers
are fully resolved. The chosen model system, is a long
straight microchannel with a rectangular cross-section,
embedded in a silicon base and capped with a glass lid.
In the literature, this system running with a horizontal
acoustic half-wave resonance has been widely used to sep-
arate particles in a flow through device and used in vari-
ous studies both experimentally [25-28] and numerically
[1, 2]. Moreover, in the Letter that we published simul-
taneously with this work [14], we have provided experi-
mental validation of the numerical model being presented
below. The example aims to demonstrate three impor-
tant points: (1) Validation of the effective model, (2)
modeling the internal acoustic heating in an acoustoflu-
idic chip, and (3) demonstrating nonlinear effects at high
acoustic energies, effects that are further investigated by
modeling and experiments in Ref. [14].

The model is a long straight silicon chip of width
Wgi = 3 mm and height Hg; = 0.4 mm, in the top of
which is placed a fluid channel of width W = 375 nm
and height H = 135 nm and a capping Pyrex glass lid
of height Hp, = 1 mm, see Fig. 1(a). On the bot-
tom edge, following Ref. [7], the actuation is set to be
ul®(y) = %y e., and the temperature is Tg°" = 25 °C.



FIG. 1.

Comparison between simulation results of the effective model (left, Eff) and the full model (right, Full). (a) Sketch of

the 2D model of the chip with silicon, fluid and glass. (b) Color plot at the energy density E,. = 28 J /m3 of the displacement
’u1| and pressure p; in the fluid. (c¢) Color plot at E,. = 28 J/m3 of the steady temperature field AT, = T, — T(I)DOt from black
(0) to yellow (8.7 mK). (d) Color plot at E,, = 2680 J/m® of AT, from black (0) to yellow (230 mK). (e) Vector plot at
E,. =28 J/rn3 of the streaming v, and color plot of its magnitude vy from blue (0) to yellow (34 pm/s). (f) Same as (e) but
at E,. = 2680 J/m® and with the color scale of v, from blue (0) to yellow (4.0 mm/s).

In Fig. 1(a) is shown the coarse mesh of the effec-
tive model (422 elements) and the fine mesh (8362 el-
ements) of the boundary-layer-resolving full model that
are needed to fulfil a mesh-convergence criterium of an
Ly-norm [1] for the steaming velocity vy below 1% for
E,, =281]/ m®. The good agreement between the two
models is shown in Fig. 1(b)-(f) by the color plots of the
resulting steady and acoustic fields computed from the ef-
fective (left side) and full (right side) model at both a low
and a high acoustic energy density of E,. = 28 J/ m® and
2680 J/ m®. Both models show how the well-known four-
roll Rayleigh streaming pattern at the low E,. change
into a two-roll pattern at high F,., a clear display of the
nonlinear effect arising from the boundary layers, but
nevertheless included in the effective model of the bulk
fields. The relative deviation between the two models
in the computed values of the resonance frequency and
Q-factor of the 2-MHz half-wave resonance mode is less
than 0.1%.

The effective boundary condition for the streaming ve-
locity vy was already validated in Ref. [7], so here we
thus just need to validate the effective boundary condi-
tions (42) and (43) on the steady temperature field Tj,.
This in done in Fig. 2, showing excellent quantitative
agreement between line plots of Tj) for the full and the
effective model.

We end the example by discussing the physics of the
transition from the linear case with four flow rolls to the
nonlinear case with two flow rolls. At the low acoustic
energy E,, =28 J /mS, the acoustic pressure p; and dis-
placement wu; field, as well as the steady streaming field
vy are shown in Fig. 1(b). The source of the spatial in-
homogeneities in the steady temperature field Tj) in the

e Effective Model |
Full model

200 0 200 400 600 800 1000
z[pm]

FIG. 2. Line plot at E,. = 28 J/m3 of the simulated steady
temperature ATy in the effective and full model along the ver-
tical red line y = %Wﬂ shown in the inset. The corresponding
color plot of ATy is shown in Fig. 1(c).

fluid is the heat generation due to friction in the viscous
boundary layer in the fluid at the top and bottom of the
channel, and the different heat fluxes resulting from the
relatively small values of the heat conductivity of wa-
ter and glass compared to the large one of silicon. The
latter ensures efficient transport of heat away from the
bottom edge of the channel. Consequently, heating only
occurs at the top of the channel near the glass lid. In
Fig. 3(a)-(b), the resulting temperature fields are shown
for a low E,. = 28 J/m® and high E,. = 9000 J/m®
energy density, respectively. In both cases, the temper-
ature is clearly larger at the center of the top edge of
the channel. However, for the high-F,. case, the in-
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FIG. 3. (a) Color plot from 0 (black) to 8.7 mK (yellow)

at B, = 28 J/m3 of AT, from Fig. 1(c) zoomed in on the
fluid domain. (b) Same as (a) but for E,, = 9000 J/m®
and a color scale from 0 (black) to 2375 mK (yellow). (c)
Line plot of the normalized temperature rise AT, /max(AT})
along the vertical line at y = 0 shown in the inset. (d) Same
as (c) but along the horizontal line through the center of the
microchannel shown in the inset.

creased acoustic streaming is distorting the temperature
field, as it induces a downward heat convection, which
stretches the high-temperature region along a larger por-
tion of the vertical center axis. The temperature bound-
ary condition (44) results in nearly equal bulk and bound-
ary layer temperature fields at the fluid-solid interface,
Tgl A0 Tgl ’60, so the gradients in the temperature field
are governed by the effective boundary condition on the

heat flux (45).

The streaming fields for E,. = 28 J/m3 and E,. =
2680 J/m” are shown in Fig. 1(e)-(f). First we can
see that the full and effective model results in the same
streaming field. Secondly, it is clear that at low acoustic
energies the streaming is dominated by boundary driven
streaming and at high acoustic energy it is dominated
by the bulk-driven streaming induced by the acoustic-
body-force Eq. (31b). When the gradients in density and
compressibility is created due to temperature gradients,
and neglecting Eckart streaming, the acoustic body force
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is given as
1 2 2
fgc = —Z(|P1| Orkgo + |U1| aTPO) V. (46)

The temperature gradient VT, and |p;| both scale with
the acoustic energy density F,., so the acoustic body
force f.fc, and thus the streaming, scales with Eic.
In comparison, the boundary-driven Rayleigh streaming
scales with F,.. Consequently, the bulk-driven streaming
driven by fgc will become dominant at sufficiently high
E,.. We study further the nonlinear behavior and tran-
sition both numerically and experimentally in the Let-
ter [14] published simultaneously with this work.

Finally, we note that it is important that the device
consists of a silicon base with a glass lid and not a pure
glass chip, because the asymmetry of the thermal field
due to the widely different thermal conductivities in the
two materials results in a skew-angled body force which
enables a strong thermoacoustic streaming. The model-
ing of the transition into the nonlinear regime has not
been captured by the previous perturbation models in
the literature [2, 5, 7], because it requires a nonlinear
model such as the one presented here.

B. Example in 3D: Nonlinear thermoacoustic
streaming driven by absorption of light

The effective boundary conditions enables 3D simula-
tions that combined with the iterative solver makes it
possible to investigate highly nonlinear effects in a 3D
system. As an example, we choose the system, in which
we previously studied both experimentally and numeri-
cally the thermoacoustic streaming induced by the tem-
perature gradient [8]. In that study, the applied pertur-
bative model was at its limit of validity because of the
high streaming velocity. Therefore, we here use the itera-
tive model to examine the nonlinear effects in this system,
specifically the impact of advection in the system at high
streaming velocities. The example serves to demonstrate
the ability to make 3D models with an effective iterative
model, and to study the nonlinear thermoviscous effects
due to thermal convection in 3D.

The system is a glass-silicon-glass chip with a long rect-
angular water-filled channel of width Wy = 760 pm and
height Hy = 360 nm, such that the top and bottom of the
fluidic channel is in contact with glass and the sides are
in contact with the silicon wafer. The chip is actuated
anti-symmetrically around the xz-plane and symmetri-
cally around the yz-plane at a frequency f, = 0.96 MHz
which excites the half-wave resonance in the width of
the channel. Dye has been added to the water to ab-
sorb the light from a light-emitting diode (LED). The
absorbed light heats up the water and induces a tem-
perature gradient and thus the acoustic body force fgc
Eq. (46) in the bulk. As a result, high streaming veloci-
ties and thermal convection appears. In contrast to the
2D example of Section VI A, we keep the acoustic energy
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FIG. 4. Simulation of Tj, p;, and |u;| in a quarter of the
glass-Si-glass system. (a) Color plot of Ty from 20 (black)
to 20.8 °C (yellow) due to the absorption of light from an
LED with P = 5 mW. (b) Color plot of the corresponding
acoustic displacement ’u1’ from 0 (blue) to 18 nm (yellow)
in the solid, and the acoustic pressure p; in the water-filled
0.76 x0.36 mm” microchannel from 0 (gray) to 1.2 MPa (red).

density E,. constant in the 3D example, and only vary
the power of the LED. The acoustic body force fgc, and
thus the streaming velocity vy, depends linearly on VT,
and therefore depends linearly on the LED power as long
as thermal convection is negligible.

For the numerical model we are using symmetry planes
and perfectly matched layers (PML) to reduce the size
of the 3D model. The LED is placed in the center of the
channel, so both the yz-plane at z = 0 and the xz-plane
at y = 0 are symmetry planes. On the yz-plane all fields
(steady and acoustic fields) are symmetric, whereas on
the zz-plane the steady fields are symmetric, while the
acoustic pressure p; and y-component of the displace-
ment field u are anti-symmetric, the z- and z-component

|

Umax = 0.2mm/s

FIG. 5.
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of the displacement field are symmetric. The two sym-
metry planes allows to only solve a quarter of the system
as shown in Fig. 4. The PML layer is used to dampen
waves traveling along the z-axis away from the center,
and it allows us to restrict the computational domain
to the region closest to the LED spot. Further details
on the implementation of the PML layer and boundary
conditions on the symmetry plane can be found in the
Supplemental Material [29].

The actuation is implemented as a displacement on
the glass-lid, which sets up an acoustic field with an en-
ergy density E,. = 150 J/m3 at x = 0, and the LED is
modeled to be a Gaussian beam centered at © =y = 0
and with a width of 650 pnm. With a LED power of
P = 5 mW the resulting steady temperature field T,
and acoustic pressure p; and displacement field u; are
shown in Fig. 4. T is strongest at the bottom of the
fluidic channel, because the light is absorbed there and
the silicon wafers keeps the sides of the channel cold be
transporting the heat to a heat sink.

When the LED is off, the streaming is dominated by
the boundary-driven streaming, but when it is on, the
streaming is dominated by the acoustic body force f.jc.
The transition from boundary- to bulk-driven streaming
is thoroughly studied in Ref. [8]. The resulting streaming
for three different LED powers are shown in Fig. 5. Here,
the solution in quarter channel has been mirrored in the
two symmetry planes to obtain the streaming flow in the
full channel. In Fig. 5(a) is shown the classical boundary-
driven Rayleigh streaming for zero LED power P. In this
case the streaming pattern contains four characteristic
2D streaming rolls in the yz-plane with almost no flow in
the z-direction. In Fig. 5(b) is shown the streaming for

Umax = D.6mm/s

Simulated streaming v, at acoustic energy density E,. = 150 J /In3 for the LED power P = 0, 5, and 50 mW,

respectively. The color plots from 0 mm/s (blue) to vy, (vellow) are the in-plane velocity of the respective planes, on the
yz-plane it is (vg,y + vg,z)l/ 2, and likewise for the zy- and zz-planes. All arrows are unit vectors showing the direction of vy.
(a) vo for P = 0 mW showing the usual four boundary-driven streaming rolls with v,,,, = 0.2 mm/s. (b) vy for P =5 mW
showing a slightly dominant thermoacoustic streaming flow with v, = 0.9 mm/s driven by the acoustic body force f:c (46)
in the bulk. (c¢) vy for P = 50 mW completely dominated by the fast streaming flow with v,,,, = 5.6 mm/s driven by the the
acoustic body force f:c in the bulk.
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FIG. 6. Convection due to high streaming velocities. (a)

shows the temperature field in the yz-plane at x = 0 generated
by the light absorption from a LED of power P = 5 mW
ranging from Ty = 20.0 C (black) to T, = 20.8 C (yellow).
(b) Same as (a) but for P = 50 mW and a color-range from
Ty = 20.0 °C (black) to T, = 27.3 °C (yellow). (c) Shows a
line plot of the two normalized temperature fields along a line
at £ = y = 0 shown in the inset. (d) Shows a line plot of the
two normalized temperature fields along a line at ¢ = z = 0
shown in the inset. The difference in the two temperature
fields are due to convection.

moderate LED power P = 5 mW with a maximum ve-
locity of 0.9 mm/s, which recovers the 3D flow pattern
driven by the bulk acoustic body-force fgc as observed
in Ref. [8]. In Fig. 5(c) is shown the streaming for high
LED power P = 50 mW with a maximum velocity of
5.6 mm/s. This pattern looks like the one for P = 5 mW,
but is slightly deformed due to changes in VT}, and thus
in f;lc due to nonlinear thermal convection.

The temperature fields for P = 5 and 50 mW are
shown in Fig. 6(a,b) in the yz-plane at x = 0. In the
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case of P = 50 mW, the streaming-induced convection
has stretched the temperature field up along the center
axis and thereby altering T, and f;ic. This stretching
reduces the temperature gradient and f,. along z, and
therefore leads to the reduction of v, in the vertical yz-
plane relative to the one in the horizontal xy-plane seen
when comparing Fig. 5(b) to (¢). The dependence of the
ATy-profile on the LED power P is quantified by the line
plots of the temperature along the vertical line y = x =0
in Fig. 6(c) and the horizontal line z = z = 0 in Fig. 6(d).
These line plots show the same tendency as was observed
in the 2D-example in Fig. 3.

When simulating convection-diffusion processes, the
numerical mesh needs to satisfy the stability condition
Pmesh < 2D8h /vo on the numerical Péclet number, which
restricts the size hp,eq, of the mesh elements. In this sys-
tem, with D" ~ 2 x 107" m?/s and vy = 5.6 mm/s,
we find hpen < 40 pm. Consequently, in systems with
a high streaming velocity, a fine mesh is required in the
bulk, which quickly can make numerical 3D simulation
computationally expensive. It is possible to mathemat-
ically stabilize the diffusion-advection equations which
can enable simulations with a coarser mesh, but this we
have not yet implemented in our simulation.

VII. CONCLUSIONS

We have presented an effective nonlinear model for
thermoviscous acoustofluidics, which enables simulations
of high acoustic energies in 3D. The model differs from
previous acoustofluidic models [2, 5] on two main points:
(1) it contains an effective boundary condition for the
steady temperature field, which enables 3D simulations
of acoustic heating in thermoviscous acoustofluidics, and
(2) it relies on an iterative solver, which incorporate non-
linear effects, and thus allows simulations of higher acous-
tic energies than models based on perturbation theory.

To validate the model and to demonstrate its potential,
we firstly presented a 2D example of a widely used rect-
angular channel was modeled in Section VIA. In Fig. 1,
the effective model was validated against a full iterative
model, and the internal acoustic heating due to friction
was shown in Fig. 1(b)-(c) to be of the order mK. Sec-
ondly, the capability of simulating nonlinear effects in
3D systems was demonstrated in Section VIB, an ex-
ample showing the importance of convective heat trans-
port in a acoustofluidic device with externally controlled
temperature gradients. We have presented experimental
validation of the nonlinear model as well as further ex-
perimental and numerical studies of the transition from
perturbative to nonperturbative behavior as a function of
E,. around 500 J/m® in the Letter [14] published simul-
taneously with this work. We note that F,, 2> 500 J/m3

C ~

can easily be obtained in standard acoustofluidic devices,
where E,, ~ 10 — 50 J/m® [U,p/(1 V)]2 has been re-
ported in the literature, Uy, being the applied voltage



on the piezoelectric transducer [25, 26, 28, 30].

In many applications of acoustofluidic devices, as high
a throughput as possible is desired. Generally, a higher
acoustic energy will allow for such a higher through-
put. The presented iterative model allows simulations
of higher acoustic energies and will likely contribute
to an increased understanding of nonlinear effects in
acoustofluidics and to an improved design capability of
acoustofluidic devices with a higher throughput.
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Appendix A: Reduction and integration

In this appendix, we present the mathematical steps
going from Eq. (37) to Eqs. (38a) and (38b) for the heat
flux and the temperature in the fluid at the fluid-solid
interface. Beginning with Eq. (37), but suppressing the
superscript “fl” for simplicity, we have

kOPTY = (A1)
th g g 5 5
- V- |:<k1 VT1> + <U1 'T1> — <p1U1> — p0Cp0<T1'U1> ]

First, the four terms on the right-hand side are evaluated
and reduced one by one. Then, they are integrated with
respect to z, once to find fk(t)hazTg, and twice to find
Tg , which both are needed for the boundary conditions
in Egs. (36a) and (36b). Similarly, we repeatedly use
in the following that gradient terms are dominated by z
derivatives of boundary-layer fields T{s , 'U‘f, and vf’T, as
each such derivative results in a factor (k.0)”" > 1. We
also note that ((ip;)p1) = ((iT1)T;) = 0, and another

helpful relation is found in Ref. [7] Eq. (33a),
(A2)

revealing that V - v; depends not only on the bulk pres-
sure p; but also on the boundary-layer temperature field
Tf . Using this insight together with the exponentially
decaying boundary-layer fields from Eq. (27), we find for
the pressure-generated power,

V(o)) = (Vo1 00) + (0 V- 0)]

~ 2 [po Re {i'u‘li’p . ’v‘f*} + a0 Re {iple*}] . (A3)

Vv =i(1 = ily)wrg p1 — iway T?,

2

The first term, being of the order wpovf R wmsop%, turns
out to be the dominant term. Likewise, for the heat-
generated power, we find that

\'A [Cpopo<T1U1>5] ~ CpPo [<VTl5 : v1> + <T16(W’fsopl)>]
~ CP;”O Re{ktva‘fz - msTfp;}. (A4)
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In the stress-generated power V - <'ul ~7'1>6, we keep
only terms 821)(15, each producing a factor of (k:cé)_l > 1.
5 5 .
Thus, vy - T = 19 [vlz (azvl) + (U1 ~8Zv1)ez] gives,

V'<U1 '7'1>(S ~nV - <U12 (8%’?» + 77082<’U1 : (32’0(1;)>
< mo[{(@08)%) + (0.1 + (o - 070)]
= D Re Ik, od.vi + koo - o] = (k)01 -]

_ P

5 Re [v(lszv‘fz o) vl 4P 'v‘f*].

(A5)
Here, we have used that Re [ivf . v‘f*] = 0, and that
k, = (1+1)6; " implies the relations (kI)* = —i26; 2,
ky|? = 26,2, and 2106, > = pow.

The last term is the power generated by thermal con-
duction, which only contains the thermal boundary layer

characterized by the wave number k, = (1 + i)d; 1,
Eq. (25),
h s h 5 h s
V(BT = (0,K") 0.TY) + (K92 TY)
1 * * * *
= 3 Re [kkgRPOTY — (6 ) ()17
1 . th, 6% | .q.th,dnd
= o Re [(1+1)k§ T 4 ikt Tl*} (A6)
t
For water, this term is a factor (v — 1)a,a,0Ty ~ 1072
smaller than wnsop%, as can be seen by using d; 2/{:§h
wpocpkih/kéh R WPOCHaR T = akwap02T0p1 and T
(v = 1)(Kso/apo) p1- So the power generated by ther-
mal conduction can be neglected in fluids, but it may be

important for gases. Inserting the power contributions
(A3)-(A6) into Eq. (A1), we arrive at the expression

Q

kG O2Ty =

wo
_ %Rc{vf . 'vf*} + 2p0 Re {iplT{S*}
C
+ ”QP "Re{ VT - (0] + v + 0 ?*) — iwn, T} |

WP
th
ko

Re{ (1) k™ 17" + ik T*}, (A7)
where the first term is the leading term, which originates
from the viscous boundary layer. This expression is now
integrated from z = oo to z = 0 once to obtain the heat
flux and twice to obtain the boundary-layer temperature
at the interface. The fields in the boundary layer are well
approximated by surface fields that does not depend on
the normal coordinate z but only on the in-plane coordi-
nates z and y, according to the following separations,

d d0 5, 60,1
P =pi (z,9), 7 =17 (z,y)r(2),
d, do,

P =v{"P(z,y),

v? = vf T = 100 (2, y)r* (2),
) 50 d, T h 50,8
vV =1 (%?J)Q(z)7 v, = apOD(t) V[T1 (a:,y)r(z)},

q(z) = e, r(z) = e’ (AB)



Inserting this into Eq. (A7), we obtain,

ha2ms L 50 50+ 0 0-m60%
0 0Ty =§W00Re{—vl "U1 qq +1PLP1T1 r

Yol
[

9
S|

60 60 d, 70
V”Tl * % * *)i|7'

0% * .
"1 4 +1ktT1 (Ulzq +u,Tr
50 d,p0x* 60 d,p0x* . 50 0x
Vv 1y - vy ki +ikTy vy —iwk Y py }r

{(1+1)kth 60T+lkth do} *T{so*}.

Qg‘-@og‘

(A9)
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When integrating Eq. (A9) with respect to z, the zy-
dependent surface fields (superscript 0) move outside the
integral. Using the procedure of Ref. [5], we introduce
the integrals Iiz) of the integrand a(z) b(z)*, where a(z)
and b(z) are any of the functions 1, ¢(z), and r(z),

I((lg)z/ dzn/ ndzn_l.../ dzy a(z) b(z)* ,
z=0

1% o« 6" with 6 =6,,6, and n=1,2,3,....  (A10)

Integrating Eq. (A9) once with respect to z thus gives

a,T0 =

1 W 30 | 80% p(1)
WRG{ — ;vl Uq Iqq 1r

pO OT(SO* I(l)
0 P CpPo

rr

[V ol 1) o T 1

§ d,p0* 6 d,p0x 5 " 1
+ {VllTlO v) ﬂ’o + ik, T 01;1 50 — iwn, T op(l) }Iy(q)
e R e

0

(A11)
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Inserting here the values of I [(Li) given by

1 1 n n
L R PR PR
1 +i 050, 1
Ji 50t 25 A12
" 2 6,+1i6, U 27 (Al2)
leads to 0,7 51 %0 at the fluid-solid interface,
5 I+i [1-i0,w 50 s0«  01@Qpo 0,50+
0.T5"" = Re[ ) o v’y — Ty
4D Cp CpPo
5 o 0% 60 §0%
5 T (St |:5tVHT10 . ’Ulﬂ‘ - (1 - 1)T10v102}
—iry [ IO L (1 +i)of 50* - (5tUJ/{Sp(1)*]
. Jiho0 | pthdo
— 0,V 1" o % 4 G Tlﬁ0 H (A13)
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To obtain the temperature Tgo at the fluid-solid in-
terface, we integrate Eq. (A9) twice with respect to z.
This is easily done by changing Ig)) to I((li) in Eq. (A11)
followed by insertion of the values

Y= 6?7 Ly = —6t,
. 22
(2 _ 1 056y 2 Lo
IT.q = 5 m, qq¢ = Z(Ss (A14)
The result for Téi %0 hecomes
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Again the first term is the leading term that originates
from the viscous boundary layer.
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This supplemental material provides details the numerical model used in the 3D example in section

VI-B in the main article.

The numerical model is the iterative and effective ther-
moviscous pressure acoustic model presented in the main
paper with heating from an external LED. The model is
an iterative model that solves the steady fields tempera-
ture field Tj in the fluid and solid and the steady velocity
vy and pressure pg in fluid and the acoustic time-varying
pressure p; in the fluid and displacement w, in the solid.
The model of a glass-silicon-glass chip with a fluid chan-
nel of height H = 360 pm and width W = 760 pm is
shown in Fig. S1. In the model we take advantage of
the symmetries in the system and model a quarter of the
channel, Fig. S1. In the y-z symmetry plane at z = 0 all
fields are symmetric, and in the z-z symmetry plane at
y = 0 the acoustic fields p; and u; are anti-symmetric
and the stationary fields 7T, vy, and p, are symmetric.
The model parameters are listed in Table S1.

The actuation is modeled not as a full piezoelectric
transducer as in Ref. [1], but merely as a boundary con-
dition with a displacement d; = 5nm and a frequency
fo on the black actuation plane in Fig. S1 as in Ref. [2].
Note that using the symmetry planes, the model actually
has anti-symmetric actuation regions, one on each side of
the chip.

TABLE S1. System parameters characterizing the geometry,
the acoustic actuation, and the absorption of the LED spot.

Parameter Symbol Value Unit
Geometry parameters:

Fluid width w 760  pm
Fluid height H 360 pum
Actuation length Lpzr 2.0 mm
System length Ly 4.0 mm
PML length Lpyr, 175 mm
Total length Leng 575 mm

Actuation parameters:
Actuation amplitude
Actuation frequency fo
LED parameters:

Half width of the LED spot dygp 850 um

Absorption coefficient @ 12.3 mm

dy 5.0 nm
0.957 MHz

1
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FIG. S1. Sketch of the numerical model of the acoustofluidic
chip. Symmetry planes have been used so only a quarter
of the channel is simulated. The model consists of a fluid
domain with width W and height H, a solid domain (glass
and silicon), and a special PML (perfectly matched layer)
region where the travelling waves are artificially damped to
mimic an infinitely long channel. The acoustic actuation is
done on the actuation region (black) and the LED has its
center at z = 0 and y = 0 and has half of the width dygp.
The mesh is shown in the y-z plane, which is swept along the
z-axis so that the mesh node repeats itself with a distance of
51 pm.

During operation, a piezoelectric transducer generates
heat, but this is neglected in the simulations for two rea-
sons: (1) The necessary acoustic energy density is ob-
tained in the system using a relatively low power con-
sumption, and this assures that the heat generation is
relatively small. (2) The heat from the transducer is lead
through the top glass layer into the silicon layer, where it
due to the high heat conductivity of silicon is uniformly
distributed throughout the chip, leading to only a minute
and nearly uniform temperature rise in the microchannel.

To avoid simulating the entire chip, the perfectly
matched layer (PML) method is used to artificially damp



travelling waves [3]. Thus, the model consists of an area
of length Lpyr where a piezoelectric transducer actuates
the chip at a frequency f; with an amplitude d,, a part
of length Lg,s — Lpzr where there are no actuation, and
finally a section of length Lpy, where the acoustic waves
are artificially damped using a PML. For the PML to be
valid, the distance Lgys — Lpzr must be long enough for
the travelling wave to develop so that the acoustic field
does not depend on where the PML starts.

The real device has a long channel with a long piezo-
electric transducer. To model the pressure field around
the LED spot accurately, the length Lpyr must be larger
than half of the LED spot width djgp. The LED spot is
modeled as a Gaussian beam with half of the beam width
dpgp = 850 pm,

2P, 2(z” + o> 1
I($7y7z): LED - (L +y)—a Z+*H) )
2 2 2
mdi,ED digp

where Pppp is the total power of the LED and —%H
is the bottom of the channel where beam starts to be
absorbed. In the solution, the heat absorption is given
as q(z,y,2) = al(x,y,z) for —%H <z< %H, while the
absorption in the glass is neglected.

The entire model is implemented in COMSOL Multi-
physics 5.6, with the governing equations and effective
boundary conditions given in the main article. The nu-
merical model uses cubic test functions for the streaming
field and the acoustic pressure field, but quadratic test
functions for the acoustic displacement field in the solid
and the second-order pressure field.
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Acoustic streaming is studied in a rectangular microfluidic channel. It is demonstrated theo-
retically, numerically, and experimentally with good agreement, frictional heating can alter the
streaming pattern qualitatively at high acoustic energy densities E,. above 500 J /ms. The study
shows, how as a function of increasing E,. at fixed frequency, the traditional boundary-driven four
streaming rolls created at a half-wave standing-wave resonance, transition into two large streaming
rolls. This nonlinear transition occurs because friction heats up the fluid resulting in a temperature
gradient, which spawns an acoustic body force in the bulk that drives thermoacoustic streaming.

Microscale acoustofluidic devices are used to manipu-
late and control microparticles and cells. In such devices,
two main forces act on the suspended particles, the acous-
tic radiation force and the drag force due to acoustic
streaming, which is a time-averaged flow caused by the
inherent nonlinearities of fluid dynamics. Recent work
has clarified many subtle details pertaining to the ra-
diation force on mircoparticles, including thermoviscous
effects [1] and microstreaming [2]. Concurrently, similar
progress has been made in the theory of acoustic stream-
ing, especially regarding thermoviscous effects. The fun-
damental boundary-driven streaming caused by time-
averaged forces in the oscillatory boundary-layer flow [3],
and the fundamental bulk-driven streaming generated
by the time-averaged dissipation of traveling waves [4],
have recently been supplemented by bulk-driven baro-
clinic [5, 6] and thermoacoustic [7, 8] streaming, caused
by an interplay between standing acoustic waves and
steady temperature gradients. However, as noted in
Refs. [7, 8], the validity of the conventional perturba-
tion approach breaks down at moderately high, but ex-
perimentally obtainable acoustic energy densities above
100 J/m® in combination with moderate thermal gradi-
ents above 1 K/mm. This need for an extension of the
theory beyond perturbation theory is addressed in this
Letter and in the accompanying detailed presentation of
the nonperturbative model in Ref. [9].

We introduce a nonperturbative iteration approach to
investigate theoretically and numerically, the nonlinear
effects appearing in a conventional acoustofluidic chan-
nel at high acoustic energy density E,., and we vali-
date experimentally the model predictions. We take as
our generic acoustofluidic model system, the widely used
rectangular channel driven at resonance with a transverse
half-wave standing acoustic wave, for which the stream-
ing at low F,. is dominated by conventional boundary-
driven streaming with four streaming rolls [10-13]. We
show how nonlinear effects in the form of heating by vis-
cous dissipation from the acoustic field inside the bound-

FIG. 1. Cross-section of the modeled rectangular channel of
width W3 = 375 pm and height Hq = 135 pym embedded in a
silicon base of width W, = 3 mm and height Hy; = 0.4 mm,
and covered by a glass lid of height Hy = 1 mm. The bottom-
edge actuation is the displacement uf = do(y/Wy) e, with
an adjustable amplitude dy at frequency f, = 1.911 MHz.

ary layers, set up a steady temperature gradient. This
gradient drives a strong thermoacoustic streaming in the
bulk, which changes the streaming flow qualitatively from
four to two flow rolls, and which by thermal convection
alters the temperature field. Our analysis of this non-
linear phenomenon and its underlying mechanism fills a
knowledge gap in nonlinear acoustics, and it provides a
guidance for understanding and optimizing acoustofluidic
systems running at high F,. such as high-intensity ul-
trasound focusing [14-16], acoustic streaming-based mi-
cromixers [17-20], particle manipulation devices [21-23],
and high-throughput acoustophoresis devices [24-26].

Physical model.—We consider a long straight mi-
crochannel with a cross-sectional of width Wy = 375 pm
and height Hg = 135 pm embedded in a silicon base with
a glass lid, see Fig. 1 and Refs. [9-13]. To excite the hori-
zontal half-wave resonance mode in the fluid, the system
is actuated at frequency f, = 1.911 MHz by the bottom-
edge displacement sketched in Fig. 1. The response to
the acoustic actuation is governed by the conservation



equation for mass, momentum, and energy in the fluid
and solid. The independent fields are the pressure p, the
velocity v, and the temperature T in the fluid, and the
displacement uw and T in the solid.

We study a fluid characterized by the following mate-
rial parameters: density f’ isothermal compressibility s,
thermal conductivity k™, specific heat ¢p, dynamic and

bulk viscosity n and nb, thermal expansion coefficient a,,
the ratio of specific heats v = ¢,/c,, and the isentropic
and isothermal compressibility s, and kK = yk,. The
temperature dependence of the parameters for water are
given by the polynomials derived in Ref. [12]. The elas-
tic solid is characterized by density p, longitudinal and
transverse sound speed ¢, and ¢, thermal conductiv-
ity kth, thermal expansion coefficient a,, and isothermal
compressibility k7 [9].

We use the iterative thermoviscous model presented in
our concurrent paper [9], a model that is nonperturba-
tive unlike the perturbative models traditionally used in
acoustofluidics [7, 12]. The model exploits that the acous-
tic fields varies much faster (~ 10~" s) than the hydrody-
namic and thermal flows (~ 1072 s), so that the fast and
slow dynamics can be solved separately. Here, we study
the stationary limit of the slow time scale and describe
any given physical field @y as a sum of a stationary

field @y and a time-varying acoustic field Re {Qe™""}
with a stationary complex-valued amplitude @,

Qphys(t) = QO + Re {Qle_th}' (1)

A product of two acoustic fields will contain a steady
part <a1b1> = %Re {alb’{} where the asterisk denotes
complex conjugation. We neglect higher harmonics with
angular frequency nw, n = 2,3,.... In Ref. [9], we use
this ansatz to separate the governing equations in a set
that controls the acoustic fields, and a set that controls
the stationary fields.

Acoustofluidic systems also exhibit dynamics on two
different length scales, one set by the wavelength of the
acoustic fields and one set by the viscous and thermal
boundary layers. The boundary conditions on the ve-
locity field, stress, heat flux, and temperature at the
fluid-solid interface results in the appearance of thermal
boundary layer of width d; in both the fluid and the solid,
and in a viscous boundary layer of width J, in the fluid.
These boundary layers are localized near fluid-solid in-
terfaces, and their dynamically-defined widths (jointly
called ¢) are small compared to a typical device size or

wavelength d [1], 6, = /2y /w and §; =~ \/2Dth/w. Typ-
ically, §; < d¢ < 500 nm, which is more than two orders
of magnitude smaller than d ~ 100 pm. In our model [9],
we use 0 < d to separate the fields into a bulk field (d)
and boundary layer field (d), that are connected through
the boundary conditions at the fluid-solid interface. The
model presented in Ref. [9] uses the separation of time
and length scales to setup an iterative model with ef-

fective boundary conditions that enables simulations of
nonperturbative acoustofluidic systems without numeri-
cally resolving the viscous and thermal boundary layers.
All dependent fields are given analytically by the inde-
pendent fields as shown in Ref. [9].

Acoustic  fields.—In the thermoviscous model of
Ref. [9], the acoustics is fully described by the pressure
field p; in the fluid and by the displacement field u'li in
the solid through the Helmholtz and Cauchy equations,

w
k=2

V2py = —k2py, 1 +1Cp.), (2a)

—pul = v .ol (2b)
«
ot =~ + pc, | Vuy + (Vuy)”
T
+ p(CIQO - 2031?) (V : ul)Ia (2C)

where o is the stress tensor. p; and u‘lj are connected
through effective boundary conditions on the fluid-solid
interface taking the boundary layers into account ana-
lytically: a no-slip condition for the velocity and a con-
tinuity condition on the stress, as described in Ref. [9].
The acoustic velocity v; and the temperature field T} are
given by p; and the analytical boundary-layer fields [7].

Stationary fields.—The stationary fields are the pres-
sure py and streaming velocity 'vg in the fluid, and the
temperature Tg in the solid and fluid. The acoustic
timescale affects Téi , Do, and 'Ug through bulk terms
(heating and the acoustic body force fgc) and corrections
due to the boundary layers to the boundary conditions.
The governing equations for vg and p, are [9],

0=V_. 'Ug, (3a)
0=-V [pg - <£Zc>i| + 770V2’Ug -V [Povovo} + fgo
(3b)
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The boundary layers generate a slip velocity on the solid-

fluid interface, and the resulting effective boundary con-
dition on v is [9),

vgoz(A-ex)ew—i- (Aey) 6y+(B'ez) €, (43')
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_ 1 . d0x dp
B= QwRe{wl Vo } (4c)

Here, Vlo is the velocity of the fluid-solid interface, e, is
the surface normal vector, and e, and e, are perpendicu-

lar to e,. The streaming flow 'Ug can be driven either by
the acoustic body force f;lc, called bulk-driven stream-
ing, or by the effective boundary condition on vgo, called
boundary-driven streaming.

The stationary temperature Tg A 50 the fluid is gov-
erned by the heat equation (energy conservation) [9],

0=-V- [thVTgyd} — CpPoTo - VT(;CM + P, (5a)
Pl= =V [T = (prof?) + (o7 o)
— ¢, (pivi?) - VT, (5b)

and similarly for 75" in the solid [9],

0=-V. [k:ghVTgl’d} + P (6a)
Pl = -V (BT (6b)

Here, Pfc is the power density delivered by the acoustic
wave through frictional dissipation and energy flux. T(fl A
and Tgl sl are connected at the fluid-solid interface by the
two effective boundary conditions taking the boundary
layers into account analytically: continuity of tempera-
ture and of heat flux, applied respectively as a Dirichlet
condition on Tg’ﬂ and a flux condition on n - VT(‘)i’Sl [9],

Toﬂ,d _ Tgl,d _ Tgmo
1 .
— G Re{ur VIR Ky )T (7a)
k(t)h,sln . VTgl,d _ k(t)h,ﬂn . VTSLd + kéh,ﬂazTgL&
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In summary, the bulk temperature T(ji is governed by the
heat equations (5) and (6) together with the effective
boundary conditions (7).

FEzxperimental method.—The experiments were per-
formed using a long straight microchannel of width W =
375 nm and height H = 135 pm in a glass-silicon chip
with a piezoelectric transducer glued underneath. The
transducer was driven at a frequency of 1.97 MHz at
input power P, = 6.1, 86.8, and 182.5 mW, resulting
in the energy density EF,. = 27.2 £ 1.1, 388.7 & 15.9,
and 817.3 +33.5 J /mS7 respectively, as measured from
the focusing of 5.0-pm-diameter particles at 140 fps us-
ing confocal micro-particle image velocimetry (nPIV) at
the low P, [27]. At higher P, E,. is estimated us-
ing the proportionality F,, « P,. The confocal nPIV
technique only captures the particle motion near the fo-
cal plane (channel mid-height), excluding particles near

the top and bottom walls influenced by hydrodynamic
and acoustic particle-wall interactions, and as a result,
E,. is measured accurately. The acoustic streaming for
each F,. was measured at 10 to 60 fps by tracking the
motion of 0.5-um-diameter particles using a defocusing-
based 3D particle tracking technique [28-30]. To avoid
the resonance frequency shift due to the temperature rise
of the transducer under moderate (86.8 mW) and high
(182.5 mW) P,,, each measurement was run for 2 s and
repeated 100 times to improve the statistics, resulting in
7800-12000 recorded frames for each driving condition.

Results and discussion.—The simulation and experi-
mental results shown in Fig. 2 reveal the dominant non-
linear behavior of the stationary streaming vg and tem-
perature 7 in a standard acoustofluidic device. In the
linear regime at low E,. < 30 J/m®, v{ is dominated
by the boundary-driven streaming entering the model
through the slip-velocity condition (4), and the usual four
boundary-driven streaming rolls appear, see Fig. 2(a).
Due to friction in the viscous boundary layers, heat is
generated both at the top and bottom of the channel. At
the bottom, this heat is removed efficiently because of
the high heat conductivity of silicon. At the top, how-
ever, the heat is removed less efficiently by the lower heat
conductivity of glass, and a steady temperature gradient
V1T, is established, which explains the temperature Tél
seen in Fig. 2(f).

The gradient VT created by the acoustic frictional
heating results in gradients in Vp, and V&g, thus in-
ducing a thermoacoustic body force (3c) fgc [7, 8],

1 1
.fgc ~ —Z|p1|2V5s,0 - Z\U1|2VP0 (8)
1 2 ok 1 2 ap
- ) VI, - (7) VT,
4|p1| (8T)T0 0 4|U1| T ) T, 0

Since |p;]* x |v1)° x E,. and |VT,| P! x E,.,
we have | fadc| x E2, and f% will become important
in the bulk at high E,. and cause qualitative nonlinear
changes of the streaming pattern. According to Eq. (8),
fgc is pointing toward high temperature at the top and
is strongest at the pressure antinodes at the sides [7, 8].
Consequently, fjc pushes liquid from the sides up toward
the top center, with a back-flow down along vertical cen-
ter axis, thus creating a streaming pattern that consists
of two streaming rolls in each side of the channel. This
pattern is seen at the high FE,. = 5300 J/m3 in Fig. 2(d),
where the streaming is completely dominated by the ther-
moacoustic streaming. The transition from boundary-
driven streaming at low FE,. to bulk-driven streaming
at high E, is studied qualitatively in Fig. 2(a)-(d) and
quantitatively in Fig. 2(e). During the transition, the
two bottom streaming rolls expand and the two top rolls
shrink, see Fig. 2(b)-(c) at E,. = 380 and 800 J/m®, re-
spectively. The bottom rolls expand because they rotate
the same way as the two thermoacoustic streaming rolls.
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from 0 (blue) to vg™*
(white bar) is the height where vy, is maximal. (e) Plots of v

Simulation and experimental results for vy and T, in the microchannel. (a)-(d) Vector of v, and color plot of |vg|
(vellow) at four E,.. For each E,., the left half are simulations and the right half are experiments. A,

and A, vs. E,; with data from simulations and experiments,

showing the transition from boundary- to bulk-driven streaming. The error bars on experimental v~ and E,. are within the
square markers. The round markers represent the simulations shown in panels (d) and (f)-(i). (f)-(i) Color plot of simulated
temperature increase Ty from 0 (black) to Tp"™ at four E,.. Ap (white bar) is the height where Ty = 275", (j) Plots of
simulated T, " and A vs. E,. showing a transition from diffusion- to convection-dominated heat transport.

This transition is studied quantitatively in Fig. 2(e) by
plotting the maximum streaming velocity vy and the
vertical distance A, (thick white line) from the bottom of
the channel to the position of the maximum horizontal
streaming velocity max(vg,) toward the center occurs.
In the log-log plot (dark blue), the perturbative result
vy oc By, is valid up to E,, ~ 1000 J/m3, but at higher
values vy " increases faster. A stronger signal is seen in
the log-lin plot (dark red), where the perturbative result
A, x EY. only holds for E,, < 30 J/m®, after which
point A, increases with increasing F,,.

As the streaming velocity increases, convection be-
comes increasingly important for the heat transport (5)
and strongly affects the temperature field, see Fig. 2(f-
i) for E,, = 380, 800, 5300, and 12,600 J/m®. Con-
vection becomes important at a Péclet number Pe =
|vo|Hﬁ/Dth ~ 1 corresponding to |vg| ~ 1 mm/s, con-
sistent with Fig. 2(f-j). Qualitatively, we see that for

E,. 2 800 J/m3, the two flow rolls pull the temper-
ature profile down along the vertical center axis. We
quantify this effect by the maximum temperature T, "
and the vertical distance Ap along the center axis from
the bottom edge to the point where T, = 375", The
thermoacoustic streaming increases the heat transport
from the fluid-glass interface to the silicon wafer, thus
To™™ increases less steeply than the perturbative result,
Ty"™ o E,., as seen in the log-log plot (blue) of Ty vs.
E,. for E,. > 5000 J/m® in Fig. 2(j). A stronger signal
is seen in the log-lin plot (dark red), where the pertur-
bative result Ay o< E2. only holds for E,, < 500 J/m®,
after which point A decreases with increasing F,_.
Conclusion.—In this Letter we have shown numeri-
cally and experimentally that the acoustic streaming in
a standard microscale acoustofluidic device is changed
qualitatively for moderately high acoustic energy den-
sities E,. > 500 J/m®. We have explained this effect

~



by a nonperturbative model [9], in which a transition
from boundary- to bulk-driven acoustic streaming oc-
curs, as the acoustic body force f,. begins to dominate
the streaming at increased F,. due to the internal heat-
ing generated in the viscous boundary layers. We have
shown good qualitative and quantitative agreement be-
tween our model predictions and experimental data.

E,. > 500 J/m® can easily be obtained in standard

ac ~v
acoustofluidic devices, where E,. ~ 10 — 50 J/In3 X

[Upp/(1 Vﬂ2 has been reported in the literature, Uy,
being the applied voltage on the piezoelectric transducer
[11, 31-33]. The physical understanding of how such
acoustofluidic devices behave at high F, is important for
the continued development of high throughput devices in
particular for biotech applications.
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Chapter 8

Conclusions and outlook

Here the research of the PhD thesis is summarized and the future perspectives of tem-
perature fields in acoustofluidic devices are discussed. The possible future applications
for temperature fields would demand new features of the numerical model and a set of
possible extensions to the numerical model are presented.

8.1 Conclusions

The main results of the thesis are the theoretical development of a thermoviscous acoustoflu-
idic model [1, 3] and the experimental and numerical studies of streaming due to tempera-
ture gradients either induced by light absorption or attenuation of the acoustic wave [2, 4].

The numerical model includes the effects of temperature fields both the acoustic field
T1 and the stationary temperature fields To and T5. The temperature fields impact the
acoustics and the streaming fields due to the temperature dependency of the water param-
eters, especially the density p, the compressibility x, the sound speed ¢, and the viscosity
1. The gradients in the material parameters are important for the inhomogeneous acoustic
body force and the thermoviscous corrections to the bulk-streaming and boundary-driven
streaming, while the absolute values of the material parameters are important for the
resonance frequency and @Q-factor of the acoustofluidic devices. In addition to include
the temperature fields the developed numerical model has two main characteristics that
makes it feasible to simulate complex acoustofluidic devices. Firstly, it is an effective
model where the thin viscous and thermal boundary layers are solved analytically and
expressed through effective boundary conditions on the pressure p;, streaming field vg /va,
and stationary temperature field Tp/7» which enables 3D modeling of centimetre scaled
acoustofluidic devices on classical workstations. Secondly, the model can be implemented
either as a perturbative or an iterative model enabling modeling of non-perturbative effects
at high acoustic energy densities. Thus, the model is able to simulate non-linear effects in
complex acoustofluidic devices. A limiting factor for the model is the inherent difficulty of
solving the heat equation when convection is important, this requires a fine mesh in the
bulk of the fluid. This currently limits 3D simulations with high convective heat flow and
an improvement of the model could be made by implementing a stabilization algorithm
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for the diffusion and convective heat transport.

The inhomogeneous acoustic body force that motivated the research into thermoviscous
acoustofluidics has been thoroughly studied and it has been shown that small temperature
differences ATy ~ 0.1 K can cause thermoacoustic streaming. The bulk-driven thermoa-
coustic streaming caused by the temperature induced inhomogeneous acoustic body force
has been shown to be important for a range of devices: (i) devices with a temperature
gradient due to heating in the piezo-electric transducer, see Section 4.2, (ii) devices with a
temperature field controlled independently of the acoustic field by light absorption from an
LED or laser, see Sections 4.3 and 4.5, and (iii) devices with non-linear effects due to high
acoustic energy density see Section 4.4. The thermoacoustic streaming is understood the-
oretically and with the numerical model it is possible to include the effects when designing
and optimizing acoustofluidic devices. The research have demonstrated the importance of
temperature gradients for the acoustic streaming, they are important for understanding
previous streaming patterns which could not be explained by a purely mechanical theory
and gives an opportunity for an extra parameter when designing acoustofluidic systems,
as including absorption from an LED or laser. A light source gives a high spatial and
temporal resolution which can be used to control the streaming field in an acoustofluidic
channel. The iterative solver was used to model non-perturbative effects at high acoustic
energy densities and demonstrated nonlinear effects at acoustic energies of ~ 500 J/m?
which is achievable in many acoustofluidic systems.

The work on streaming in acoustic tweezers in Chapter 5 developed an axis-symmetrical
model of the fluid flow driven by the bulk acoustic body force. The streaming flow can
be a limiting factor for the axial trapping strength especially for high frequency acoustic
tweezers. The model was validated by the analytical solution at low Reynolds numbers
in a free space. The numerical model was then used to investigate the inertial effects at
high Reynolds numbers and the effect of nearby boundaries (microscope slide, etc.). It
was shown that in a microscope setup the streaming is heavily reduced compared to free
space. It could be interesting to determine a maximum frequency where axial trapping can
be obtained and investigate the effect of using spherical vortex beams instead of focalized
vortex beams as proposed by Zhao et al. in Ref. [70].

The work on spatial localization of acoustic fields in Chapter 6 by either controlling
the temperature field T or altering the chip geometry is still in an explorative phase, but
does have promising aspects. The ability to control an acoustic trap by an LED gives the
opportunity to move a trap around in a microfludic chip. The dimensions of the acoustic
trap is determined by the temperature field and thereby restricted by the chip dimensions,
specifically the height of the fluid domain and the width of the light beam. The geometrical
cavity does not offer the same flexibility but does enable to move an acoustic trap between
different positions by changing the frequency of a single piezo-electric element.

8.2 Outlook

The model development and experimental validation of the model has led to a situation
where we have a good understanding of the physics of the thermoacoustic streaming, the
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next step is to identify suitable applications. It could be argued that it is already used in
the trapping glass capillary tube [61, 62] to ensure nano-particles get to the vicinity of the
seed particles. The opportunity to have a secondary design parameter (acoustics and tem-
perature field) gives extra opportunities for designing an acoustofluidic system, especially
the spatial and temporal control offered by LEDs and lasers should enable interesting ap-
plications. Whether it being mixing, controlled use of streaming to separate/manipulate
particles, or light absorption by the particles as seen in Refs. [67, 68]. For light absorbing
particles it might be necessary to consider other effects, than the bulk acoustic streaming,
induced by the temperature field. There might be effects on the the acoustic radiation
force when gradients in the material parameters on the length scale of the particle radius
are present. A study of including temperature gradients in the acoustic radiation force
would require extensive analytical work.

As acoustic tweezers is further developed and investigated so will the streaming fields
that they create. The work on streaming in acoustic tweezers is currently only demon-
strating some important aspects in regards to inertial effects and the impact of nearby
boundaries. There is a good amount of work to be done in investigating at which frequen-
cies the axial trapping force can not counteract the streaming induced drag force.

For further research it would be interesting to work with the temperature induced
acoustic trap presented in Chapter 6. Firstly, it would be satisfying to see if it can be
observed in an experimental setup. The first indication could be the ability to catch
very large and heavy particles to demonstrate the localization of the acoustic wave or
alternatively accurate measurements of the acoustic energy density around the LED spot.
Secondly, it is natural to study the streaming induced by the temperature gradients. The
temperature gradients needs to be large to localize the acoustic wave and will induce
streaming as seen in Chapter 4 which will impact the ability to trap smaller particles.
There could be a possibility to control the streaming pattern by making an elliptical
shape of the light beam, instead of a circular ring, thereby breaking the symmetry and
control the direction of the resulting streaming rolls. This could lead to a stronger trap
along one axis and a weaker trap along the other axis: This could be used to design a
trap with a strong trapping strength in the direction of the flow and weaker trapping
strength perpendicular to the flow direction. One difficulty from a modelling perspective
is the high streaming velocities together with temperature gradients will require numerical
stabilization to solve the convection/diffusion problem.

8.3 Extending the numerical model

To explore and investigate the different research paths discussed above the numerical
model would need to be extended in a few areas. The following extensions to the model
would be interesting and beneficial to further study the interplay between temperature
fields and acoustic waves

e Piezo-electric transducer — Include the piezo-electric transducer both for a more
realistic acoustic actuation and for the modelling of the heat generation. The in-
clusion of the heat generation in the piezo-electric transducer combined with the
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iterative nonlinear model would enable to model the acoustic trapping capillary in
Section 4.2 where the heating and acoustic actuation are both coupled to the same
electrical potential applied on the piezo-electric transducer. The mechanical ac-
tuation of the transducer has been modelled previously [31, 77], but it would be
important to also include the heat generation in the transducer.

Stabilization algorithm — A limiting factor for the current model is that a fine
mesh is required for high streaming velocities because of the inherent difficulty of
solving the diffusion/convection heat transfer. This limits the acoustic energy den-
sities possible to study in a 3D simulation. The problem is well-known and can be
solved by stabilizing the governing equations [78]. To enable simulations of higher
streaming velocities it would be necessary to implement a stabilization algorithm.

Transient model — When using LEDs and lasers one of the big advantages is that
it gives a temporal control over the temperature field. To model the transient be-
haviours a transient model is necessary. The iterative model presented in Section 7.4
could be made quasi-stationary by not assuming the slow time-scale to be stationary.
It can be implemented in a similar manner as presented by Orosco and Friend in
Ref. [79].

Concentration field of particles — An interesting experimental setup to model is
the experiment presented by Dumy, Hoyos, and Aider in Refs. [67, 68] where particles
are caught in an acoustic trap and illuminated by an LED. The observed optoacoustic
effect causes the particles to leave the trap if they absorb the wavelength of the LED.
This is an inherent transient problem so it requires a transient model, but it also
requires an implementation of the correlation between the absorption coefficient and
the concentration of particles, which could be done by implementing the particle
distribution as a concentration profile similar to Ref. [80].

These extensions of the current model would enable the possibility to study new and

interesting phenomenons in the field of thermoviscous acoustofluidics.
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