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Che dici? Sopravviveremo? Sopravviveremo. Il problema e’ che sopravviveremo.
What do you think? Will we survive? We’ll survive. Trouble is we will survive.
Papa’

Si ti vi ka than Kavajsi.
Do as the people from Kavajë.
Roccia’s mom
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Abstract

In the last two decades, cavity optomechanics has gained a central spot in the research on quantum
physics, thanks to its premise to integrate macroscopic oscillators of different nature – optical and
mechanical – into a single platform. Here lies the challenge though, as mechanical resonators are
typically not in their ground state at room temperature, unlike light. In the sideband unresolved
regime, where the optical damping rate is much larger than the mechanical angular frequency, feed-
back cooling has proven to be a valid approach to overcome this problem. Its working principle
consists of a continuous measurement of the mechanical displacement and application of a pro-
portional damping force. Unfortunately, so far its success has relied on operation in a cryogenic
environment, which represents a major obstacle when scaling up experiments. In this work, we set
to explore the possibility to use feedback cooling to steer a millimeter-sized mechanical resonator
into a state of phonon occupancy as low as possible starting from room temperature. Although the
minimum occupancy we achieve is 1800, far from the onset of quantum behavior, we pave the way
for future success by offering a discussion of which parameters need further optimization in order
to obtain a truly macroscopic quantum state. Our experimental scheme operates at 1550 nm, ensur-
ing the viability of integration with other computation and telecommunication protocols. We use
phase-sensitive detection of light reflected off high-finesse optical cavities to monitor the mechan-
ical motion and pay great attention to minimizing optical losses, thus making our platform suitable
for interface with sources of non classical light such as squeezers. Finally, the low frequency and
high quality factor of our mechanical resonators produce long coherence times, particularly appeal-
ing for implementing quantum protocols such as state transfer.

I de sidste to årtier har kavitets optomekanik fået en central rolle inden for forskning i kvante-
fysik. Det skyldes dens evne at integrerer forskellige typer af makroskopiske oscillatorer – optiske
og mekaniske – i én enkel platform. Udfordringen er dog at mekaniske resonatorer typisk ikke
er i deres kvantemekaniske grundtilstand ved stue temperatur - modsat optisk lys. I det uopløste
sidebånds regime, hvor den optiske dæmpningsrate er meget større end den mekaniske frekvens,
har feedback cooling vist sig som en valid metode til at overkomme denne udfordring. Metoden
består af en kontinuerlige måling af den mekaniske oscillators forskydning og anvendelse af en
proportional dæmpningskraft. Desværre er denne metodes succes indtil nu afhængig af kryogene
temperaturer, hvilket er en kæmpe forhindring for at skalerer eksperimenterne op. I dette arbe-
jde vil vi udforske nye muligheder for at anvende feedback cooling til at styre en millimeter stor
mekanisk resonator ind i en kvantetilstand med den lavest mulige fonon okkupans startende fra
stue temperatur. Selvom den mindste okkupans vi opnår er på 1800, hvilket er lang fra der hvor
kvantemekaniske effekter begynder at spille en rolle, så viser vi vejen til fremtidig succes ved at
diskutere hvilke parametre, som skal optimeres yderligere for at opnår en makroskopisk kvantetil-
stand. Vores eksperimentelle forsøg opererer ved 1550 nm, hvilket gør at muligt at integrere med
andre beregnings og telekommunikations protokoller. Vi anvender fase-følsom detektion af lyset
reflekteret fra høj finesses kavitet til at følge denmekaniske bevægelse af resonatoren og derudover
er vi meget opmærksomme på at minimere det optisk lys tab, hvilket betyder at vores platform kan
fungere med ikke-klassisk lyskilder, så som squeezers. Endelig, vil vores lav frekvens og høj
kvalitets faktor mekaniske resonatorer producere lange kohærens tider, hvilket gør dem særlig in-
teressante at anvende til kvanteinformation protokoler, som f.eks. tilstand overførsler mellem lys
og mekanik.
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1 Introduction
In the 17th century, during his studies on comets Kepler noticed they always feature a tail pointing
away from the sun. He conjectured the existence of a radiation pressure acting between the ce-
lestial body and the traveling objects. This phenomenon was fully understood only two centuries
later by James Clerk Maxwell, who provided an explanation based on his equations for electro-
magnetism. He argued that the electromagnetic radiation carries a momentum, hence applies a
pressure to any surface it impinges on. Finally, experimental proof was reported independently by
Pyotr Lebedev in 1900 and by Ernest Fox Nichols and Gordon Ferrie Hull in 1901 [1].
This work focuses on optomechanics, the branch of physics dealing with the interaction between
an electromagnetic field and a mechanical resonator driven by radiation pressure force. In the last
two decades optomechanics has earned the limelight thanks to both its relevance in fundamental
science [2] and its wide range of applications, ranging from sensing [3], to transduction [4] and
quantum computing [5]. The gravitational-waves community first showed interest in optomechan-
ics in the context of interferometric detection [6]. In 1967, Braginsky reported the perturbance
effect caused by a light beam measuring the position of a mirror on the measurement itself. The
exchange of momentum between the light and its target brings about an imprecision in the mea-
surement which is fed back to the measuring light. This is usually referred to as quantum back
action and provides a lower boundary to the sensitivity of displacement measurements. Braginsky,
Khalili and Thorne later developed a comprehensive theory of quantum measurement, encompass-
ing the effects of radiation-pressure quantum fluctuations on measurement accuracy [7].
Small changes in the position of massive objects can be detected through optical interferometric
measurement. For example, a resonant beam of light can be used to probe the displacement of the
end mirror of a Fabry-Perot interferometer, as its motion induces significant changes in the light
phase. The uncertainty of a measurement of such phase shift corresponds to an imprecision noise
in the displacement measurement which bears an inverse proportionality with the input optical
power. On the other hand, increasing power corresponds to an increase of the number of intracav-
ity photons, hence of the backaction noise. In an experiment of unitary efficiency, a trade-off can
be found where the two noise sources carry an equal contribution, known as the standard quantum
limit (SQL).
Braginsky also studied the case of an optical cavity with one end mirror connected to a mechanical
oscillator. He observed that when the lifetime of a photon inside the cavity is longer than the me-
chanical oscillation period, the radiation pressure force results delayed in phase and builds up an
effective heating or cooling of the mechanical resonator. The latter case is known as sideband cool-
ing and has been demonstrated experimentally through numerous studies [8, 9]. The unresolved
sideband regime, where cavity linewidth is far larger than the frequency of mechanical oscillation,
offers the option of a different approach, where the radiation pressure can be engineered through
an electro-optic system in order to damp the mechanical oscillations [10]. This technique is usually
referred to as feedback cooling. A similar scheme proved successful at cooling down trapped ions
into their motional ground state [11]. At room temperature, light in the visible and infrared range is
in the ground state thanks to its high frequency. The same does not hold for mechanical oscillators
with resonance frequencies in the kHz or MHz range, whose phonons follow the Bose-Einstein
statistical distribution of population. As a consequence, classical thermal noise prevents obser-
vation of the quantum behaviour of the mechanical resonator. Using an electro-optomechanical
system, ground-state cooling and real-time optimal quantum control of a trapped silica nanosphere
with a radius of 72 nm and a mass of 3 × 10−18kg has recently been proved [12]. It is then an
obvious question to ask whether experimental protocols such as feedback cooling can be used to
steer massive objects, e.g. millimiter-sized membranes, into their ground state. If possible, this
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CHAPTER 1. INTRODUCTION

would represent the ultimate achievement for optomechanics, as it would bring about the possibil-
ity to interface two truly macroscopic quantum states. Great success has been achieved both in the
near-infrared [13] and microwave [14] range of the electromagnetic field, although ground-state
cooling has so far been proven possible only with the aid of a cryogenic environment reducing the
phonon occupancy from its room-temperature value. This represents a major hindrance when con-
sidering technological ramifications or integration with other experimental platforms, as cryogenic
equipment raises the operation costs, offers limited space to allocate optomechanical systems and
entails numerous practical constraints. In recent times, encouraging results have been obtained. In
particular, room-temperature feedback cooling of a fully integrated on-chip optomechanical sys-
tem down to a minimum of occupancy of 27 phonons has been reported [15].
The aim of this work is to explore the potential of room-temperature experimental setups with re-
gard to optomechanical feedback cooling of millimiter-sized oscillators with effective mass in the
order of nanograms. We start from the earlier work carried out in our group [16], evaluating the
performance of a previous setup and discussing the process of designing and building a new one,
optimizating its parameters to achieve better experimental results. We harness the knowledge on
fabrication of micromechanical resonators with high quality factors that has been developed in our
group within the last few years [17] and exploit it to achieve feedback cooling of oscillators with
mechanical frequencies up to 1.4MHz down to 1800 phonons. The theoretical framework of op-
tomechanics will be first discussed, followed by the experimental techniques necessary to perform
a feedback cooling. Finally, our experimental results will be presented.
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2 Theory
2.1 Quantum mechanics
2.1.1 Quantum measurements
Non-commuting observables constitute the backbone of quantummechanics. They represent phys-
ical quantities such as position and momentum, whose measurement corresponds to applying an
operator Ô to a quantum state |ψ⟩. The outcome of the measurement is given by the operator
eigenvalues Oi that can be found solving the equation

Ô |ψi⟩ = Oi |ψi⟩ (2.1)

Hence, if our system is prepared in an arbitrary state |ψ⟩, the probability that a measusurement of
the observable Ô returns Oi is given by the expectation value of Ô〈

Ô
〉
= ⟨ψ| Ô |ψ⟩ (2.2)

while the uncertainty of the measurement outcome is given by the operator’s variance

V ar
(
Ô
)
=
(
∆Ô

)2
=
〈
Ô2
〉
−
〈
Ô
〉2

(2.3)

If two operators Â and B̂ share a common set of eigenvectors, their commutator
[
Â, B̂

]
≡ ÂB̂ −

B̂Â is null and we have ÂB̂ = B̂Â. This means the order in which the two measurements Â
and B̂ are performed does not produce different outcomes, which is not true for non-commuting
operators such that

[
Â, B̂

]
̸= 0. This results in an uncertainty relation fixing a lower boundary on

the precision of subsequent measurements

∆Â∆B̂ ≥ 1

2

∣∣∣[Â, B̂]∣∣∣ (2.4)

2.1.2 Quantum harmonic oscillator
In quantum physics many different wave-like physical systems can be modeled as harmonic oscil-
lators, such as the light field in an optical cavity and an isolated vibrational mode in a mechanical
resonator. The energy quantum of the harmonic oscillator is then referred to as photon in the case
of an electromagnetic field and phonon for a mechanical-displacement field. The behaviour of a
harmonic oscillator of mass m and frequency ω is described by the operators of position q̂ and
momentum p̂ and by the Hamiltonian

Ĥ =
mωq̂2

2
+

p̂2

2m
(2.5)

Please note that the position and momentum operators do not commute, as we have [q̂, p̂] = iℏ.
They can both be expressed by a linear combination of the creation â† and annihilation â operators

q̂ =

√
ℏ

2mω

(
â† + â

)
(2.6)

3



CHAPTER 2. THEORY

p̂ =

√
mℏω
2

i
(
â† − â

)
(2.7)

The creation and annihilation operators are also known as ladder operators because their effect on
the state |n⟩ of a harmonic oscillator—populated by a number n of quanta—is to add or substract
a single quantum

â† |n⟩ =
√
n+ 1 |n+ 1⟩ (2.8)

â |n⟩ =
√
n |n− 1⟩ (2.9)

We can define an occupancy-number operator n̂ ≡ â†â with

â†â |n⟩ = n |n⟩ (2.10)

We can thus define the ground state |0⟩ of the harmonic oscillator such that â |0⟩ = 0 and the
Hamiltonian in Eq. 2.5 can be rewritten as

Ĥ = ℏω
(
â†â+

1

2

)
= ℏω

(
n̂+

1

2

)
(2.11)

Solving the time-independent Schroedinger equation yields the energy spectrumEn of the quantum
oscillator

Ĥ |n⟩ = En |n⟩ = ℏω
(
n̂+

1

2

)
(2.12)

The harmonic oscillator energy levels are equally spaced by ℏω and the ground state has zero-point
energy 1

2ℏω. Given the definitions 2.6 and 2.7, the zero-point motion qzpf =
√

ℏ
2mω and zero-point

momentum pzpf =
√

mℏω
2 of a quantum harmonic oscillator can be defined.

Although the quantum harmonic oscillator is well described by the ladder operators, these are not
Hermitian, hence they do not represent measurable observables. On the other hand, we can define a
general Hermitian quadrature operator X̂θ given by a linear combination of their real and imaginary
parts.

X̂θ = â (ω) e−iθ + â† (ω) eiθ = X̂q (ω) cos θ + X̂p (ω) sin θ (2.13)

with

X̂q = â† (ω) + â (ω) (2.14)

X̂p = −i
(
â (ω)− â† (ω)

)
(2.15)

Please note that we get a new commutation relation
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CHAPTER 2. THEORY

[
X̂q, X̂p

]
= 2i (2.16)

from which an uncertainty relation stems

∆
(
X̂q
)
∆
(
X̂p
)
≥ 1 (2.17)

2.1.3 Quantum states of light
2.1.3.1 Fock states
We already encountered Fock states |n⟩, eigenstates of the number operator n̂

n̂ |n⟩ = n |n⟩ (2.18)

described by eigenvalues ℏω
(
n+ 1

2

)
. These Fock states have null variance

V ar (n̂) = ⟨n| n̂2 |n⟩ − ⟨n| n̂ |n⟩2 (2.19)

Also the expectation value of a measurement of an arbitrary quadratureXθ is null

⟨n| X̂θ |n⟩ = 0 (2.20)

The Fock ground state |0⟩ is called vacuum state and its properties determine the fundamental
limit in the precision of classical-field measurements. Evaluating the corresponding mean value
and variance for the phase and amplitude quadratures, we obtain

〈
X̂q
〉
=
〈
X̂p
〉
= 0 (2.21)

and

V ar
(
X̂q
)
= V ar

(
X̂p
)
= 1 (2.22)

Fluctuations of the quantum vacuum state bring about the standard quantum limit of field quadra-
ture measurements, usually referred to as shot noise.
2.1.3.2 Coherent states
Coherent states provide a quantum approximation of a laser field, as they are defined by eigenstates
of the annihilation operator

â |α⟩ = α |α⟩ (2.23)

⟨α| â† = α∗ ⟨α| (2.24)

with α = |α| eiθ being complex due to the non-Hermitian properties of the annihilation operator.
We can then expand the coherent state into a basis of number states
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|α⟩ =
∞∑
n=0

|n⟩ ⟨n|α⟩ = e−
1
2
|α|2

∞∑
n=0

αn

√
n!

|n⟩ (2.25)

The number of photons in a coherent state of amplitude α follows a Poisson distribution

P (n) = e|α|
2 |α|2n

n!
(2.26)

The mean value and variance of the quadratures evaluated at the coherent state are

⟨X̂q⟩ = α+ α∗ = 2ℜ(α) (2.27)

⟨X̂p⟩ = −i(α− α∗) = 2ℑ(α) (2.28)

V ar(X̂q) = V ar(X̂p) = 1 (2.29)

From these relations we see that coherent states feature minimum uncertainty.
2.1.3.3 Thermal states
A harmonic oscillator in thermal equilibrium with its environment at temperature T is described by
a thermal state. Both photons and phonons follow a bosonic statistics described by an occupancy
probability

p(n) = exp
(
−n ℏω

kBT

)[
1− exp

(
− ℏω
kBT

)]
(2.30)

The mean occupancy and variance of the oscillator are given by

⟨n̂⟩ =
∞∑
n=0

np(n) =

[
exp

(
ℏω
kBT

)
− 1

]−1

(2.31)

V ar(n̂) = ⟨n̂2⟩ − ⟨n̂⟩2 (2.32)

At room temperature, the classical limit approximation kBT ≫ ℏω is usually satisfied for mechan-
ical oscillators and we have

⟨n⟩kBT≫ℏω =
kBT

ℏω
(2.33)

On the other hand, near-infrared light has usually a frequency in the order of ω/2π ≈ 1014, hence a
thermal occupancy of ⟨n⟩ ≈ 10−35. The optical field is then in its ground state at room temperature.
Thermal states represent mixed states and can be described by a density matrix ρ̂ which in the
number-state basis appears as

ρ̂ =
∞∑
n=0

⟨n̂⟩n

(1 + ⟨n̂⟩)n+1 |n⟩ ⟨n| (2.34)
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As the expectation value of an operator Ô for a state described by a density matrix is given by
⟨Ô⟩ = Tr

(
ρÔ
)
, the expectation value and variance of the quadrature operator are given by

⟨X̂θ⟩ = 0 (2.35)

V ar
(
δX̂θ

)
= ⟨n⟩+ 1

2
(2.36)

2.2 Modulation of the light
2.2.1 Phase modulation
A single-frequency laser can be modeled as a monocromatic scalar light field α(t) = α0eiω0t

of amplitude α0 and frequency ω0. A harmonic phase modulation at frequency ωm can then be
modeled as

αPM (t) = α(t)eiβ cos(ωmt) (2.37)

with beta being the modulation depth. This can be expanded using some known relations on the
Bessel functions Jj(M) of order j

eiβ cos θ =
∞∑

j=−∞
ijJj(M)eijθ (2.38)

Jj(M) =

∞∑
l=1

(−1)l

l!(l + j)

(
M

2

)j+2l

(2.39)

For a small modulation depth, the phase-modulated field can be written as

αPM (t) ≈ α0eiω0t
[
J0(M) + iJ1(M)eiωmt + iJ1(M)e−iωmt

]
= α0eiω0t

[
1 + i

M

2

(
eiωmt + e−iωmt

)]
(2.40)

As we can see from Eq. 2.40 phase-modulated light presents three components: an unmodulated
carrier at frequency ω0 and two sidebands at frequency ω0 ∓ ωm.

2.2.2 Frequency modulation
Frequency modulation induces a similar effect as phase modulation. As frequency ν is defined as
derivative of the phase θ

ν =
ω

2π
=
dθ

dt
(2.41)

A sinusoidal frequency modulation is then described as

ω =M ′ sin(ωmt) (2.42)

and induces a phase shift

θ =

∫
M ′ sin(ωmt)dt = −M

′

ωm
cos(ωmt) (2.43)
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2.2.3 Amplitude modulation
Sinusoidal amplitude modulation of a light field can be expressed as

αAM (t) = α(t) (1 +M cos(ωmt)) = α0eiω0t

[
1 +

M

2

(
eiωmt + e−iωmt

)]
(2.44)

Attenuation can be represented as an amplitude modulation as well, in which case we obtain

αAM (t) = α(t)

[
1− M

2
(1− cos(ωmt))

]
= α0e−iω0t

[
1− M

2
+
M

4

(
eiωmt + e−iωmt

)]
(2.45)

2.3 Power spectral density
Modulating the phase or amplitude of the light produces sidebands around its carrier and represents
a way to imprint information into the light field itself. The subject of this work consists in the
detection of such fluctuations in the frequency domain. The specific object that we will deal with
is called power spectral density (PSD) and describes the noise intensity at a specific frequency. For
an operator Ô, the PSD is the limit of its autocorrelation function

SOO(ω) ≡ lim
τ→∞

1

τ

〈
Ô†

τ (ω)Ôτ (ω)
〉

(2.46)

where Ôτ (ω) is the Fourier transform of O(t) over a time interval (−τ/2; τ/2). The Fourier
transform F is defined as

O(ω) = F (O(t)) =

∫ ∞

−∞
O(t)eiωtdt (2.47)

while the inverse Fourier transform is given by

O(t) = F−1 (O(ω)) =
1

2π

∫ ∞

−∞
O(ω)e−iωtdω (2.48)

Please note that the integration to infinity represents the limit of the window Fourier transform

Oτ (ω) =

∫ τ/2

−τ/2
O(t)eiωtdt (2.49)

Using theWiener-Khinchin theorem, we can link the autocorrelation function to the power spectral
density and obtain

SOO(ω) =

∫ ∞

−∞
eiωτ

〈
Ô†(τ)Ô(0)

〉
dτ (2.50)

SO†O†(ω) =

∫ ∞

−∞
eiωτ

〈
Ô(τ)Ô†(0)

〉
dτ (2.51)

Please note that SOO(ω) and SO†O†(ω) are always real.
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2.4 Optomechanical interaction

Figure 2.1: Schematic of a typical optomechanical system. An optical field âin of angular fre-
quency ωL enters a cavity of resonance frequency ωc and linewidth k. The intracavity field â ex-
erts a radiation pressure onto the mirror connected to a mechanical oscillator of angular frequency
ΩM and damping rate ΓM . The resulting displacement q̂ is transduced onto the light and can be
readout through the detection of the output field âout.

An optomechanical system can typically be modeled as a linear optical cavity with one mirror
connected to a spring so that the radiation pressure acting on such mirror will drive a mechanical
oscillation in the direction parallel to the cavity axis. The corresponding physics is ruled by the
Hamiltonian

Ĥ =
meffΩ

2
M q̂

2

2
+

p̂2

2meff
+ ℏωcâ

†â (2.52)

The first two terms of Eq. 2.52 denote the Hamiltonian of a mechanical oscillator of mass meff

and resonance frequency ΩM while the last describes the intracavity field of frequency ωc and
decay rate k. This picture does not include any interaction between the mechanical motion and the
optical field, which can instead be included by considering the deformation of the cavity due to the
oscillator displacement q̂. As a matter of fact, we can describe the cavity resonance frequency as
ωc = ωc(q̂), thus taking into account the parametric coupling between the mechanical and optical
resonators. We carry out the Taylor expansion ωc(q̂) ≈ ωc + q̂ ∂ωc

∂q̂ + .... Considering small mirror
displacements compared to the cavity lengthL, such that we can truncate terms after the first order,
we have

ωc(q̂) ≈ ωc +
∂ωc

∂q̂
q̂ (2.53)

For a Fabry-Perot cavity, we have ∂ωc
∂q = ωc

L . As this derivative quantifies the strength of interaction
between the two resonators, we see that working with small cavities tends to present an advantage.
We can then rewrite the optical term of the Hamiltonian as

ℏωcâ
†â ≈ ℏ

(
ωc +

∂ωc

∂q̂
q̂

)
â†â = ℏωcâ

†â+ g0â
†â
(
b̂+ b̂†

)
(2.54)
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where the definition of the position operator q̂ = xzpf

(
b̂+ b̂†

)
was recalled and the single-photon

optomechanical coupling rate g0 = ∂ωc
∂q xzpf was defined.

2.4.1 Driven Hamiltonian in a rotating frame
As the optomechanical coupling is much smaller than the other rates of the system, the optome-
chanical interaction is boosted by optical feedback of the cavity. It is then convenient to move the
system into a reference frame rotating at the frequency ωL/2π of the input laser, thus canceling
the fast-oscillating terms in the Hamiltonian. This corresponds to a unitary transformation

Ĥ → Û

(
Ĥ − iℏ

∂

∂t

)
Û † (2.55)

where Û = eiωctâ†â. In the rotating frame, the Hamiltonian will then be

Ĥ ′ = ℏΩM b̂
†b̂+ ℏ∆0â

†â+ ℏg0â†â
(
b̂+ b̂†

)
+ ℏE

(
â† + â

)
(2.56)

where the detuning ∆0 = ωc − ωL and the driving strength E =
√

2Pk/ℏωL (with P being the
input laser power) were defined. In this framework, the radiation pressure exerted by the photon
momentum transfer onto the mechanical resonator results in a force

F̂ =
dĤ ′

dq̂
= ℏ

∂ωc

∂q̂
â†â = ℏ

g0
xzpf

â†â (2.57)

2.4.2 Quantum Langevin equations of motion
The dynamics of an open optomechanical system is described by the Langevin equations of motion,
stochastic equations containing both damping rates and random forces. Based on the fluctuation-
dissipation theorem, the mechanical resonator motion is constantly damped with rate ΓM and
driven by a stochastic force defining a noise operator ξ̂ of zero mean value. The noise operator
satisfies the condition

〈
ξ(t)ξ(t′)

〉
=

ΓM

ΩM

∫
dω

2π
e−iΩ(t−t′)Ω

[
coth

(
ℏΩ

2kBT

)
+ 1

]
(2.58)

and it is non-Markovian, that is to say delta-correlated. In the classical limit kBT ≪ ℏΩ, Eq. 2.58
can be written as

〈
ξ(t)ξ(t′)

〉
= ΓM

[
(2nth + 1) δ(t− t′)

]
(2.59)

In a similar fashion, the intracavity field is subject to a decay rate k and is excited by the input-field
radiation pressure, represented by an annihilation operator âin, defined by the correlations

〈
âin(t)â

†
in(t

′)
〉
= (N(ωc) + 1) δ(t− t′) ≈ δ(t− t′) (2.60)

〈
â†in(t)âin(t

′)
〉
= N(ωc)δ(t− t′) ≈ 0 (2.61)
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where the thermal occupancy of the optical field N(ωc) was assumed null as stated previously.
Using the system Hamiltonian and the Heisenberg equation of motion ∂

∂tÔ = − i
ℏ

[
Ô, Ĥ

]
+ N̂

with N̂ being a noise operator, we can derive the quantum Langevin equations of motion

˙̂a = −(k + i∆0)â+ ig0âq̂ + E +
√
2kâin (2.62)

˙̂q = ΩM p̂ (2.63)

˙̂p = −ΩM q̂ − ΓM p̂+ g0â
†â+ ξ̂ (2.64)

The optical input field is typically inhabited by a coherent population, such that its amplitude is
αin⟨âin⟩ ̸= 0. Many channels contribute to the cavity damping, some related to losses of the
cavity incoupling/outcoupling port kex and some due to intrinsic phenomena such as absorption or
scattering k0. Since the field inducing intrinsic losses âvac is in a vacuum state (⟨âvac⟩ = 0), we
obtain

√
2kâin →

√
2kexâin +

√
2k0âvac (2.65)

2.4.3 Semi-classical dynamics
This picture can be simplified when a considering an intense intracavity field, such that the system
can be considered to be in a semi-classical steady state. The optical field operator can then be
broken down into the sum of a large mean value and small fluctuation â → αs + δâ. The steady
state can be found by setting the time derivatives of the Langevin equations to zero, which yields

q =
g0 |αs|2

ΩM
(2.66)

αs =
E

k + i∆
(2.67)

The bright intracavity field then changes the equilibrium position of the mechanical oscillator and
consequently the detuning into an effective value∆

∆ = ∆0 −
g20 |αs|2

ΩM
(2.68)

Considering the fluctuations of the operators around their steady state values, the Langevin equa-
tions can be rewritten in terms of Hermitian amplitude X̂ and phase Ŷ quadrature operators

δX̂ ≡
(
δâ+ δâ†

)
/
√
2 (2.69)

δŶ ≡
(
δâ− δâ†

)
/i
√
2 (2.70)

δX̂in ≡
(
δâin + δâ†in

)
/
√
2 (2.71)
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δŶin ≡
(
δâin − δâ†in

)
/i
√
2 (2.72)

with X̂in and Ŷin bein the corresponding Hermitian input noise operators. Negleting nonlinear
terms, we finally obtain our linearised equations

δ
˙̂
X = −kδX̂ +∆δŶ +

√
2kX̂in (2.73)

δ
˙̂
Y = −kδŶ −∆δX̂ + gδq̂ +

√
2kŶin (2.74)

δ ˙̂q = ΩMδp̂ (2.75)

δ ˙̂p = −ΩMδq̂ − ΓMδp̂+ gδX̂ + ξ̂ (2.76)

where the effective optomechanical coupling g = g0
√
2αs was introduced.

2.4.4 On-resonance driving
We will now focus on the case of a driving field on resonance with the cavity, such that ∆ = 0.
This induces a decoupling of the optical amplitude with respect to the phase. On the other hand,
mechanical phase and amplitude remain coupled and Eqs. 2.75 and Eq.2.76 can be turned into a
single differential equation

δ ¨̂q + ΓMδ ˙̂q +Ω2
M q̂ = ΩM ξ̂ − gΩMδX̂ (2.77)

This set of equations can be easily solved in the frequency domain, obtaining

δX̂(Ω) =

√
2kX̂in(Ω)

k − iΩ
(2.78)

δŶ (Ω) =

√
2kŶin(Ω) + 2gδq̂(Ω)

k − iΩ
(2.79)

δq̂(Ω) = χM (Ω)

(
ξ̂(Ω) +

2g
√
2kδX̂(ω)

k − iΩ

)
(2.80)

with χM (Ω) being the mechanical susceptibility

χM (Ω) =
ΩM

Ω2
M − Ω2 + iΓMΩ

(2.81)

with a bit of algebra we obtain

δq̂(Ω) = χM (Ω)
(
ξ̂(Ω)−

√
4ΓMCeff X̂in(Ω)

)
(2.82)

where the effective optomechanical cooperativity was defined
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Ceff (Ω) ≡
4g2/kΓM

(1− 2iΩ/k)2
(2.83)

The quantity C = 4g2/kΓM is usually referred to simply as optomechanical cooperativity.

2.4.5 Mechanical power spectral density
Assuming the optical and mechanical baths as uncorrelated, we can derive the power spectral den-
sity of the mechanical displacement operator from Eq. 2.82

Sqq(Ω) =

∫ ∞

−∞

〈
δq̂(Ω)δq̂(Ω′)

〉
dΩ′ = 2ΓM |χM (Ω)|2 [nth + 1 + 2 |Ceff (Ω)|Sxinxin ] (2.84)

where the following correlation relations have been taken into account

〈
ξ̂(Ω)ξ̂(Ω′)

〉
= 2ΓM (nth + 1)δ(Ω + Ω′) (2.85)

〈
ξ̂(−Ω)ξ̂(Ω′)

〉
= 2ΓM (nth + 1)δ(Ω− Ω′) (2.86)

The first term in Eq. 2.84 stems from the thermal bath driving of spectrum

Sth
FF (Ω) =

∫ ∞

−∞

〈
ξ̂(Ω)ξ̂(Ω′)

〉
dΩ′ = 2ΓM (nth + 1) (2.87)

while the second term is due to the optical-field backaction which drives the mechanical oscillator.
The corresponding back-action power spectral density is

Sba
FF (Ω) = 4ΓM

C

1− (Ω/k)2
= 4ΓM |Ceff (Ω)| (2.88)

The power spectral density of the mechanical displacement can then be rewritten as

Sqq(Ω) = |χM (Ω)|2 (Sth
FF (Ω) + Sba

FF (Ω)) (2.89)

2.4.6 Input-output relation
Although the intracavity field drives the optomechanical interaction, it is not directly accessible.
Therefore a relation linking it to the output field of the cavity is needed, so that we can measure the
latter and extract information on the mechanical motion. For a single sided-cavity, the so called
input-output relation can be used

âout =
√
2kδâ(t)− âin(t) (2.90)

which transforms the field amplitude and phase quadratures into

X̂out =
√
2kδX̂(t)− X̂in(t) (2.91)
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Ŷout =
√
2kδŶ (t)− Ŷin(t) (2.92)

δX̂out = −k + iΩ

k − iΩ
X̂in (2.93)

δŶout = −k + iΩ

k − iΩ
Ŷin − 2

√
ΓMCeff (Ω)δq̂(Ω) (2.94)

The last equation can be rewritten as

δŶout = −k + iΩ

k − iΩ
Ŷin − 2

√
ΓMCeff (Ω)χM (Ω)

[
ξ̂(Ω) + 2

√
ΓMCeff (Ω)X̂in(Ω)

]
(2.95)

For an on-resonance driving (∆ = 0), information on the mechanical displacement is imprinted
onto the phase quadrature of the output field at a characteristic measurement rate

µ = ΓM |Ceff (ΩM )| = ΓM
C

1 + (2ΩM/k)2
(2.96)

In the sideband unresolved regime (k ≪ ΩM ) we can use the approximation µ = 4g2/k, while in
the sideband resolved regime, where Ω/k → ∞, the measurement rate tends to 0 and the informa-
tion imprinted onto the light phase becomes asympotically small. As we will see, optomechanical
feedback cooling relies on the assumption that the measurement rate is larger than the thermal de-
coherence rate γ = ΓMnth.
Using a phase-sensitive scheme to detect the output field of the cavity allows to infer information
on the mechanical displacement. This was done in our experiments through homodyne detection.
The detected mechanical motion fluctuations are then given by

δq̂det ≡
Ŷout(Ω)

2
√
ΓMCeff (Ω)

= δq̂0(Ω)−
1

2
√
ΓMCeff (Ω)

(
k + iΩ

k − iΩ

)
Ŷin(Ω)−2

√
ΓMCeff (Ω)χM (Ω)X̂in(Ω)

(2.97)

The right side of Eq. 2.97 presents three contributions: one given by the mechanical motion, one
arising form phase fluctuations in the input-field phase and one stemming from back-action noise
of the probe amplitude quadrature.
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3 Experimental techniques
It is about time we complement this beautiful fairy tale of our theoretical framework with some
experimental techniques to test its adherence to reality. We will start with direct photodetection
techniques, thenmove to the homodyne-detection schemewe used to probe the interaction between
our mechanical and optical resonators. We will go through their working principles and describe
their practical implementation, along with the necessary characterization measurements. Later on,
we will cover the techniques for a thorough characterization of the optical and the mechanical
resonators considered individually. After describing how the modulation depth of the electro-optic
modulator in our setupwasmeasured, experimental techniques for the estimate of the single-photon
coupling rate will be presented.

3.1 Photodetection
3.1.1 Direct detection
The intensity of a light beam can be measured by a photodetector. More specifically, in our lab
we use photodiodes, based on a semiconductor p-n junction converting an optical signal into an
electronic one. To good approximation their behaviour is linear, as the current generated is directly
proportional to the incident power through a constant responsivity expressed in A/W. Alternatively,
the dimensionless quantum efficiency can be used, describing the number of emitted electrons per
incident photon.
In our experiments, we used commercial photodiodes from Thorlabs, for both characterization
measurements and frequency-locking. A PDA50B2 Ge switchable-gain amplified detector was
employed for cavity alignment and characterization of the time spectrum in transmission due to
its large chip size. An APD430C/M InGaAs variable-gain avalanche photodetector was used in
Pound–Drever–Hall schemes to lock the frequency of the probing light beam to our optical cavities.
The choice of this particular device was due to its larger bandwidth with respect to the PDA50B2
model and to the low electronic noise of the built-in amplifier. In measurements featuring an
auxiliary laser operated simultaneously with the probing one, a PDA10CF-EC InGaAs fixed-gain
amplified detector was used for side-of-fringe locking of its frequency to the cavity.

3.1.2 Homodyne detection

(a)

(b)

Figure 3.1: a) Interference between two fields of intensity I as a function of their phase difference
θ. b) Homodyne detection scheme. The difference-current output of the detector is proportional
to the quadrature variables of the incoming field âs. Non-ideal detection efficiency is modeled by
a fictitious beamsplitter of transmittance ηbs in the signal beam.
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Unlike intensity, the phase of a light field is not directly accessible through measurement with a de-
vice. Hence, more convoluted detection schemes must be employed. In our measurements we use
balanced homodyne detection [18, 19, 20] to obtain information on the mechanical motion, whose
amplitude quadrature is transcribed onto the phase of intracavity light. When a weak electromag-
netic field is spatially overlapped and interfered with a phase-coherent, much more intense one,
shining their light onto a photodiode allows to reconstruct the interference pattern as a function of
their phase difference θ (see Fig. 3.1a). Instead if this overlap beam meets a 50/50 beamsplitter
and the two outputs are focused onto separate—ideally identical—photodiodes, the resulting pho-
tocurrents can be substracted. This provides an electronic signal which carries information on an
arbitrary quadrature qθ depending on the phase difference. A sketch of how homodyne detection
works is presented in Fig. 3.1b.
Let us now briefly establish how a homodyne scheme can be modeled. Two spatially-overlapping
electromagnetic-field modes â1 and â2 meet a beamsplitter on their path and they are both trans-
mitted with transmittance T and reflected with reflectance R = 1− T . The new modes â′1 and â′2
emerging from the optical component will be described by

(
â′1
â′2

)
=

( √
T

√
1− T

−
√
1− T

√
T

)(
â1
â2

)
(3.1)

Given a 50/50 beamsplitter, we have T = 1/2. The signal beam is decribed by the operator âs,
while the local oscillator (LO) has a much stronger intensity and is usually described as a purely
classical object |αLO| eiθ. The two modes emerging from the beamsplitter will then be

â′1 =
1√
2

(
|αLO| eiθ + âs

)
(3.2a)

â′2 =
1√
2

(
|αLO| eiθ − âs

)
(3.2b)

and after impinging on separate photodiodes they will generate photocurrents i1,2 ∝ n1,2 =(
â′1,2
)†
â′1,2 with their difference i− being

i− = i1 − i2 ∝=
(
â′1
)†
â′1 −

(
â′2
)†
â′2 = |αLO|

(
âse

−iθ + â†se
iθ
)
=

√
2 |αLO| q̂s,θ (3.3)

Eq. 3.3 shows the fluctuations of the homodyne signal are proportional to both the local oscillator
amplitude and the signal field quadrature. This result only holds if the two detection arms are
perfectly balanced. Such condition causes the |αLO|2 terms to cancel each other in the difference
photocurrent, hence canceling out the local oscillator classical noise in the two arms.
Please bear in mind that any quantum measurement is deeply influenced by losses, as these tend
to degrade quantum states. Hence it is extremely important to model losses properly and this is
usually done by a beamsplitter model. When a field crosses a beamsplitter of transmittance ηbs, its
intensity is diminished by a factor 1− ηbs while the signal is mixed with a fraction 1− ηbs of the
the input from the other port. This happens even when no light, i.e. a vacuum mode, is shone onto
the other port. The difference photocurrent will reflect such behaviour, showing a contribution
proportional to the vacuum quadrature q̂v

i− ∝=
√
2 |αLO|

(√
ηbsq̂s,θ +

√
1− ηbsq̂v

)
(3.4)
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Many sources of loss—for example photodiode inefficiencies—can be modeled in this way, since
they bring about the same effect on the homodyne signal.
3.1.2.1 Homodyne setup

Figure 3.2: Our implementation of a homodyne detection scheme.

Fig. 3.2 displays how we implemented a homodyne detection scheme for our experiments. Light
coming from our laser goes through a fiber optical isolator, then a fiber beamsplitter so that 90%
of the optical power is deployed as local oscillator. After outcoupling into free space, a half-wave
plate is used in combination with a PBS for power regulation, then this local oscillator is spatially
overlapped with our signal field on a second PBS. It is important to highlight that while the signal
beam is reflected off the PBS surface, the local oscillator will pass through it—waveplates were
used again to maximize reflection and transmission, respectively. As a consequence, these beams
have perpendicular polarization in the output port and they do no interfere. As one last half-wave
plate rotates both polarizations by π

4 and a PBS splits the power in two beams of equal intensity,
interference is produced. The PBS outputs are then focused onto the different diodes of our homo-
dyne detector and the resulting photocurrents are substracted directly on the detector circuit board.
A simplified schematic of our homodyne detector is presented in Fig. 3.3. A high-pass filter sep-
arates the DC part of the difference photocurrent from the AC signal, with the latter providing the
input to our spectrum analyzer Keysight N9000B CXA. The DC signal is goes through an analog
low-pass filter and is then monitored using the oscilloscope hosted by a RedPitaya 125-10 single-
board computer. This allows to detect any unbalance with respect to the electronic zero, which can
be compensated by rotating the last half-wave plate.
As we see in Eq. 3.3, the homodyne photocurrent carries information about an arbitrary quadra-
ture q̂s,θ depending on the relative phase θ between local oscillator and optical signal. As in our
experiments we want to measure only the phase quadrature of the signal field, a locking scheme

17



CHAPTER 3. EXPERIMENTAL TECHNIQUES

is necessary to fix this relative phase. The DC signal featuring interference fringes is then used as
error function and fed to a digital PID-controller hosted by the RedPitaya. The software modules
from PyRPL, an opensource, Python-based package are used to run this RedPitaya [21]. Locking
to the zero-crossing point of such interference fringes corresponds to locking the relative phase
between fields to π/2, thus enabling detection of pure phase quadrature. To achieve this, a fiber
stretcher—essentially a fiber coiled around a piezo actuator—placed between the 90/10 fiber beam-
splitter and the LO outcoupler is controlled by the PID output. As the error-function value drifts
from 0, the controller signal builds up and the fiber is stretched in order to compensate the change
in relative phase.

Figure 3.3: Simplified schematic of our homodyne detector. The photodiodes are reverse-biased
with 9V and the photocurrents they generate are substracted onboard directly. The resulting signal
is converted into voltage by a transimpedance operational amplifier with a gain of−10 kV/A. This
is split in two and one part is high-pass filtered and then amplified by a non-inverting operational
amplifier with a gain of 21. Its output is sent to our spectrum analyzer and represents our measure-
ment signal. The other part contains also the DC signal and it goes through a separate amplification
stage (non-inverting operational amplifier with a gain of 6), whose output is fed to a RedPitaya for
monitoring and phase locking.

3.1.3 Quantum efficiency
We already stressed the role of optical losses in quantum measurements. Photodiodes with low
quantum efficiency can represent one of the main sources of loss, as only a fraction of the im-
pinging photons will contribute to the generated photocurrent and be detected. It is then necessary
to estimate the quantum efficiency ηQEλ

(where the subscript λ highlights the wavelength depen-
dency) of the photodiodes used for homodyne detection in order to correctly quantify the overall
efficiency of the measurement. This can be done by measuring the responsivityRD of our detector,
i.e. the photocurrent i generated per unit of input optical power P0
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RD =
i

P0
=
ηQEλ

qλ

hc
(3.5)

where q is the elementary electron charge, h is Planck’s constant and c is the speed of light in
vacuum. The transimpedance operational amplifier in our detector (see Fig. 3.3) converts the
photocurrent into a voltage vphoto which is then amplified by subsequent op amps. We indicate the
overall gain as gD and obtain

RD =
vphoto
gDP0

=
1

gD

ηQEλ
qλ

hc
(3.6)

In practice, we send light to one of the two photodiodes in our detector while covering the other
and measure the output voltage for different values of the optical power, then repeat for the other
photodiode. A simple linear fit allows us to estimate the responsivity, hence the quantum efficiency
for each of them. We present an example in Fig. 3.4.

Figure 3.4: Measurement of the responsivity of our homodyne detector’s photodiodes. Please not
that the absolute value of the output voltage is reported on the y axis. From the slope of the fitting
curve, we can extract the quantum efficiency using Eq. 3.6.

In this work, we first used commercial InGaAs photodiodes (Thorlabs FDGA05), featuring a quan-
tum efficiency ηQE = 0.76 at a wavelength around 1550 nm. These were then replaced by custom-
made InGaAs photodiodes with 0.99 quantum efficiency manufactured at the Fraunhofer Heinrich
Hertz Institute of Berlin.

3.1.3.1 Homodyne visibility
Among the different sources of optical loss affecting homodyne measurements, sub-optimal mode-
matching between local oscillator and optical signal deserves a special mention. Even when they
can both be described by pure, gaussian TEM00 modes of the electromagnetic field, small misalign-
ments and differences in mode shape can degrade the beam overlap, hence the interference. This
induces an optical loss which in our beamsplitter model is quantified by a transmittance ηbs = ν2,
with ν being the visibility of the interference fringes
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ν =
Imax − Imin

Imax + Imin
(3.7)

where Imax (Imin) represents the maximum (minimum) power of the interference fringes. Down
to a deeper physical level, we can think of visibility as a measurement of how much information is
transferred from the signal phase to the detector photocurrent after amplification by the LO pump
in the homodyne process.
Visibility can be measured experimentally by equating local oscillator and probe power, balancing
the homodyne photocurrent for the local oscillator and then finally shining light only on a single
photodiode of the homodyne detector. Assuming linear conversion of optical power into electric
current, Eq. 3.7 can be rewritten in terms of recorded voltages

ν =
Vmax − Vmin

Vmax + Vmin
(3.8)

Fitting a cosine function to the experimental data (as shown in Fig.3.5) allows to determine the
visibility. Since this value depends on the optical alignment, it is subject to small variations over
time and yet its knowledge is very critical to the success of feedback cooling, like all sources of loss.
Hence for every dataset presented in the chapter on measurements we will report the corresponding
visibility value.

Figure 3.5: Interference visibility recorded on the positive (blu) and negative (red) channel photo-
diodes of our homodyne detector. The dark noise (black) was substracted from the voltage values
before calculating the visibility.

Most commonly, the signal beam and the local oscillator will not feature the same spatial profile
even when both wavefronts have gaussian shape. This tends to reduce the homodyne visibility. A
suitable choice of lenses enables to modify the profile of one of the beams and improve the mode
overlap (optical mode-matching). In our case, we were able to increase the visibility from 0.87 up
to 0.96. We will elaborate on this technique later in Sec. 3.3.5, as it plays a vital role in aligning
the light path to an optical cavity.
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3.1.3.2 Shot-noise scaling with optical power

(a)

(b)

Figure 3.6: a) Homodynemeasurement of the shot noise. Traces were collected for different values
of the local oscillator power. Dark noise was substracted. b) Shot noise clearance from electronic
noise as a function of local oscillator power. Clearance is normalized to the level detected using the
lowest local oscillator power, while x-values have been normalized to the minimum local oscillator
power.

Let us now take a step back and have a closer look at Eq. 3.4. When no signal is steered into
the homodyne-detection setup, vacuum represents its input. In this situation though, only the lo-
cal oscillator contributes to the detected noise power. The power spectral density related to the
difference photocurrent will then scale linearly with the local oscillator intensity.

Si−i− ∝ 2 |αLO|2 Sq̂v q̂v (3.9)

Equipped with such knowledge, we can now determine whether at a specific frequency our de-
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tector’s performance is shot-noise limited, i.e. if the shot noise dominates over other sources of
noise, such as electronics. In order to do so, a series of measurements was recorded blocking the
signal beam and steering only the local oscillator into the homodyne-detection setup. The optical
power was increased from an initial value of 0.1µW up to 3.6mW, while shot-noise traces were
recorded with our sprectrum analyser, whose resolution bandwidth was set to 100Hz. Examples
are shown in Fig. 3.6a. The clearance from dark noise was evaluated by averaging the noise level
in a bandwidth of 10 kHz around the frequency of interest. In particular, here we focus on the be-
haviour of our detector at the mechanical frequencies 132 kHz and 1.366MHz. Fig. 3.6b displays
data obtained by normalizing the local oscillator power to its lowest value and the clearance to the
value recorded at the minimum local oscillator power. Fitting these data to a simple linear model,
a slope of 1.09 and 1.05 is extrapolated at 132 kHz and 1.366MHz, respectively. This is in agree-
ment with what described by Eq. 3.9, hence we can deduce the performance of our homodyne
detector is shot-noise limited. Furthermore, no detector saturation can be observed in 3.6b.

3.2 Mechanical resonators
Different kinds of mechanical resonators will be presented in this work, such as the trampolines and
phononic membranes shown in Figs. 3.7, all fabricated by our QPIT Research Process Scientist
Dennis Høj in our clean room facility DTU Nanolab. In this section, we will explain the general
working principles of mechanical resonators and explain what are their relevant physical quantities.
We will not provide details about the individual microstructures here, as these will be presented in
the next chapter along with the results of our experimental measurements.

(a) (b) (c)

Figure 3.7: The different kinds of mechanical resonators chosen for our feedback cooling experi-
ments. From left to right: a) a tethered membrane (trampoline), b) a phononic membrane and c)
a topology-optimized trampoline. Please note in b) the yellow area depicts a Si3N4 free-standing
layer while the black spots are empty holes.

3.2.1 Out-of-plane modes
We consider a thin, square membrane, whose out-of-plane modes can be described by a relatively
simple model [22] illustrated in Fig. 3.8. If a uniform tensile stress σ is applied, the motion of the
resonator is described by a two-dimensional wave equation

D

h
∇4w (x, y, t)− σ∇2w (x, y, t) = −ρ ∂

2

∂t2
w (x, y, t) (3.10)

where w (x, y, t) is the displacement at a given point (x, y) on the membrane evolving in time t.
Furthermore, l is the side length of the membrane, h its thickness and ρ is the material density. We
assume h≪ l. D is the flexural rigidity
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D =
Eh3

12 (1− ν2)
(3.11)

with E being the Young’s modulus and ν the Poisson’s ratio. Eq. 3.10 can be solved by applying
the boundary condition that w (x, y, t) and its derivatives with respect to x and y vanish at the
edges of the membrane. Separating the variables, we can approximate the solutions as sinusoidal
transverse-mode shapes

w (x, y, t) ≈ q (t) sin (nkx) sin (mky) (3.12)

where k = π/l and m and n are integers indicating the number of antinodes along the x and y
directions, respectively. The membrane displacement can be described as a 1D harmonic oscillator

q(t) = q0 cos (ΩM t+ ϕ) (3.13)

with q0 and ϕ representing amplitude and initial phase of the motion, respectively. The mechanical
angular frequency ΩM follows the relation

Ω2
M =

π2σ

ρl2
(
n2 +m2

)
(3.14)

Given the mass of the membrane m0 = ρl2h, an effective mass meff is associated to the mode
shape

meff = ρh

∫ l

0

∫ l

0
sin2 (nkx) sin2 (mky) dx dy =

m0

4
(3.15)

Figure 3.8: Illustration of the out-of-plane motion of a square membrane of side length l and
thickness h. Its modes are described by the function w (x, y, t).

3.2.2 Mechanical properties
All our mechanical resonators are fabricated out of thin layers of stressed silicon nitride Si3N4

deposited on a silicon chip. While in the plane parallel to the chip surface the membranes have
mm-sized dimensions (see Figs. 3.9), their thickness in the direction perpendicular to the surface is
of few tens of nanometers. Such a low thickness yields an effective mass in the order of 10−12 kg,
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that for each sample was estimated using a finite element simulation in COMSOL Multiphysics.
The small effective mass tends to have a beneficial effect, as the single-photon optomechanical
coupling g0 presents an inverse square root dependency on it through the zero-point fluctuation
amplitude g0 ∝ xzpf =

√
ℏ

2meffΩM
. Since the feedback cooling performance improves with in-

creasing optomechanical coupling, our resonators were designed in order to minimize the effective
mass and maximize g0.
Each microstructure presented in this work features many mechanical resonances at different fre-
quencies. Yet for every sample we will be focusing only on a single mechanical mode at a well-
defined frequency, ranging between 100 kHz and 1.4MHz depending on the type of resonator.
More specifically, we will draw our attention to the mode for which the quality factor, i.e. the
ratio QM = ΩM/ΓM with ΓM being the mechanical damping rate, has been optimized through
design and fabrication. As a matter of fact, in order to observe quantum mechanical behaviour, the
requirement for quantum coherent oscillation of the mechanical resonator must be satisfied. This
means that on average less than half a phonon can leak into the oscillator from the environment
over a mechanical period [23]. Such criterion is determined by the inequality

QMΩM > 2
kBT

ℏ
(3.16)

with T being the temperature. Our mechanical resonators are then engineered to maximize the
QMΩM product.

(a) (b)

Figure 3.9: a) The dimensions of a typical trampoline chip are displayed. b) To give readers a
better feeling, its size is compared to a small Lego brick.

Taking a closer look at the quality factor, we see that it quantifies the ratio between the energy
stored and lost during an oscillation period. Several channels contribute to the energy losses in the
resonator, so that the overall quality factor is given by the relation

1

QM
=
∑ 1

QM,i
(3.17)

with QM,i being the different contributions. The main loss mechanisms are listed below [17].

• Gas damping is due to the gas molecules in the surrounding environment, which provide a
viscous damping force when their pressure is high enough. This effect can be minimized
simply by placing the mechanical resonator in a high-vacuum chamber and bringing the
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system down to a pressure of 10−6mbar or lower. Fig. 3.10 shows how reducing the pressure
improves the quality factor of trampoline resonators up to a saturation value.

• Acoustic radiation or phonon tunneling is caused by the dissipation of mechanical waves
into the silicon substrate and sample holder. In particular, clamping the resonator chip to
its holder appears to enhance this mechanism by creating more contact points, hence more
channels for phonons to couple to the environment. On the other hand the impact of this
phenomenon can be minimized by an appropriate design of the mechanical resonator. For
example providing the membrane with a phononic shield, a periodic microstructure that
creates a bandgap in the phonon dispersion. The phononic membranes presented in this
work (see Fig. 3.7b) were designed following this approach [24].

• Intrinsic damping is related to the material properties and internal friction forces, which
dominate over the other loss mechanisms when the resonator is perfectly decoupled from
the environment. Use of high-stressed deposition layers has been shown to greatly reduce
this mechanism and improve the quality factor [25].

The reader will have probably noticed that no information was provided about how to measure
the quality factor of our mechanical resonators. A thorough description of the ringdown technique
used for this purpose will be provided in Sec. 3.4, after we present our optical setups and their
working principles.

Figure 3.10: The mechanical quality factor measured as a function of gas pressure inside the vac-
uum chamber for two different trampoline resonators. We can observe how increasing the pressure
enhances the gas damping, thus reducing the mechanical quality factor. In sample 2 (green dots)
we observe a saturation of the quality factor around 2.5 × 107 for pressure below 7 × 10−7mbar,
indicating that the damping rate is dominated by other loss mechanisms than air damping. Please
note these values were measured before dicing the silicon carrier wafer into millimeter-sized chips.
Dicing was observed to have a detrimental effect on the quality factor.

3.3 Optical resonators
Optical resonators or cavities are extraordinary objects. They can reduce the continuum of modes
of a wave traveling in free space to a discrete set. They can amplify the intensity of the incoming
electromagnetic fields by orders of magnitude. After introducing their basic physical principles
[26, 27], we will describe how our optical cavities were designed, characterized and stabilized in
frequency. Please note that, as our optical cavities are operated in vacuum, the refractive index
always equals 1, hence we will make our life easier and ignore dependencies on this variable in

25



CHAPTER 3. EXPERIMENTAL TECHNIQUES

the following equations.

3.3.1 Resonance condition

Figure 3.11: Schematic of a Fabry–Pérot optical cavity of length L featuring two plane mirrors M1

and M2.

An optical cavity is a region of space delimited by mirrors which impose boundary conditions on
an electromagnetic field. In particular, a proper arrangement of the mirrors will force the field to
vanish at their location and—for specific frequencies—to form a standing wave between their sur-
faces. The standard cavity in optomechanics is a Fabry–Pérot resonator, a system of two parallel
highly-reflective mirrors facing each other. The model we describe in the following will be based
on this particular geometry, as it was chosen for our experiments too.
Let us now consider the cavity represented by two mirrors M1 and M2 with reflection and trans-
mission coefficients ri and ti (i = 1, 2), located at distance L from each other. A light beam of
amplitude Ein impinges on M1. This situation is depicted in Fig. 3.11. The stationary fields will
have to meet the boundary conditions set by the mirrors:

E1 = t1Ein + r1E2e
ikλL (3.18a)

E2 = r2E1e
ikλL (3.18b)

Eref = r1Ein + t1E2e
ikλL (3.18c)

Etr = t2E1e
ikλL (3.18d)

where kλ ≡ 2π
λ is the light wavenumber. The intracavity field has been modeled as sum of two

components traveling in opposite directions and amplitudesE1 and E2, while the amplitude of the
field transmitted (reflected) through the cavity is Etr (Eref ). The solutions to this set of equations
are given by

Eref =
r1 − r2

(
r21 − t21

)
e2ikλL

1− r1r2e2ikλL
Ein (3.19a)

Etr =
t1t2e

ikλL

1− r1r2e2ikλL
Ein (3.19b)

Ecav = E1 + E2 =
t1
(
1 + r2e

ikλL
)

1− r1r2e2ikλL
Ein (3.19c)
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with Ecav being the amplitude of the total intracavity field. For a symmetric cavity, r1 = r2 = r,
t1 = t2 = t and the reflectivity and transmissivity are respectively defined as R = |r|2 and
T = |t|2, thus yielding:

r2 − t2 = Re2iϕr − T e2iϕt = 2eiϕr (3.20)

where we assumed the cavity to be lossless, henceR+ T = 1, and ϕt = π
2 + ϕr. The normalized

transmitted intensity will then be given by

Itr =
∣∣∣∣Etr

Ein

∣∣∣∣2 = (1−R)2

(1−R)2 + 4R sin2 δ
(3.21)

where δ = kλL + ϕr. It is easy to see from Eq. 3.21 that the transmitted intensity is maximized
when δ = δp = pπ with p ∈ N. The minimum distance in phase between two maxima will then
be δp+1 − δp = π. In terms of frequency f , this translates as:

fFSR = fp+1 − fp =
c

2L
(3.22)

The quantity fFSR is usually referred to as free spectral range. Not only it quantifies the frequency
spacing between consecutive peaks of the transmitted intensity, but it gives us an estimate of the
round-trip time of a photon inside the cavity τrt = 1/fFSR. More importantly, Eq. 3.22 enables us
to deduce a resonance condition for the incoming light of frequency fL to propagate as a stationary
field inside the cavity:

fL = fp = p
c

2L
(3.23)

Taking a closer look at Eq. 3.21, we notice that carrying out a Taylor expansion of the sine term
around a maximum of transmission we can obtain

Itr =

(
1−R√

R

)2
4 (δ − pπ)2 +

(
1−R√

R

)2 (3.24)

We can clearly see that when the incoming light is resonant with the cavity, the transmitted intensity
displays a Lorentzian shape with FWHM δFWHM = 1−R√

R . Eq. 3.24 can be expressed in terms of
frequency as well:

Itr (f) =
f2FSR

(
1−R
π
√
R

)2
4 (f − pfFSR)

2 + f2FSR

(
1−R
π
√
R

)2 (3.25)

As expected, the transmission spectrum displays a Lorentzian shape in frequency and a FWHM
k = fFSR

1−R
π
√
R . It will be useful to introduce one more physical quantity, called optical finesse,

which quantifyies the number of round trips a photon can undergo inside the cavity before being
expelled
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F =
δp+1 − δp
δFWHM

=
fFSR

k
=

π
√
R

1−R
(3.26)

Armed with such knowledge, we can now shine a new light on the meaning of Eqs. 3.19. When
light is resonant with the cavity δ = pπ and we get

Itr =
T 2

(1−R)2
≈ 1 (3.27a)

Iref =

∣∣∣∣Eref

Ein

∣∣∣∣2 = R
(
1−R− T

1−R

)2

≈ 0 (3.27b)

Icav =

∣∣∣∣Ecav

Ein

∣∣∣∣2 = T
(
1 +

√
R
)2

(1−R)2
≈ 1 + 2

√
R+R

1−R
≈ F (3.27c)

WhereR ≈ 1 andR+T = 1 have been used. These results present a clear interpretation: even in
case of high-reflective mirrors, if the incident light is resonant with the cavity most of its amplitude
will penetrate inside and here it will build up coherently. The finesseF quantifies the amplification
of the stationary field inside the cavity with respect to the impinging field. The cavity is essentially
transparent to resonant light, meaning that intensity of the light transmitted through the output mir-
ror is approximately the same as the incoming field.
Please note that results above still hold in the case of a cavity with mirrors having different reflec-
tion coefficients, r1 ̸= r2. In such cases we simply need to change the definition of reflectivity to
R =

√
R1R2. The optical finesse will then be

F =
π 4
√
R1R2

1−
√
R1R2

(3.28)

Figure 3.12: Optical resonances in a cavity are equally spaced by a frequency distance fFSR and
their FWHM k is defined by the finesse F .
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3.3.1.1 Cavity coupling regimes
The linewidth k quantifies the photon loss rate of a cavity and it is given by the sum of a term kex
representing incoupling and outcoupling of light from free space and the internal losses k0

k = kex + k0 (3.29)

This breakdown gives rise to three different regimes of light coupling into the cavity form free
space:

• undercoupled regime (k0 ≫ kex), usually undesirable as it brings about loss of information,

• critically coupled or impedance-matching regime (kex ≈ k0) where all the input light is
transmitted through the cavity,

• overcoupled regime (kex ≫ k0), where most input photons emerge from the cavity without
being absorbed or transmitted through a secondary port.

As it will be shown, all our experiments are operated in the overcoupled regime.

3.3.2 Gaussian modes
Before moving forward with our description of the behaviour of optical cavities, a few details will
be needed on the propagation of light. In particular, in the plane perpendicular to the direction of
propagation we model the intensity profile of our beam as a Gaussian curve tending to zero as the
distance from the propagation axis increases. The validity of such assumption is supported by our
laser beams being well collimated and can be verified simply by shining the laser output onto a
CCD camera, as we show in Fig. 3.13.

(a) (b)

Figure 3.13: a) CCD image of one of our laser beams as outcoupled from fiber into free space. b)
Cross sections of this image were successfully fitted to Gaussian curves.

We will now consider a light beam propagating in free space and featuring a well-defined wave-
length λ, wavenumber kλ and polarization. While z represents the position along its propagation
axis, we can indicate the distance of a point within the beam cross section from the propagation
axis itself by r2 = x2 + y2, where x and y represent its cartesian coordinates. The field mode can
be described by

uopt00 (r, z) = u00
w0

w (z)
exp

{
i [kλz − ψ (z)]− r2

[
1

w2 (z)
− ikλ

2R (z)

]}
(3.30)

where u00 is a normalization constant, w (z) describes the beam radius at which the field ampli-
tude falls by 1/e with respect to its maximum value, R (z) is the radius of curvature of the beam
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wavefront and the ψ (z) is the Gouy phase shift, related to the phase velocity of light. These terms
feature an analytical dependency on z

w (z) = w0

√
1 +

(
z

zR

)2

(3.31a)

R (z) = z

[
1 +

(zR
z

)2]
(3.31b)

ψ (z) = arctan
(
z

zR

)
(3.31c)

Taking the point at which w (z) hits its minimum values as the origin of our spatial reference
system z = 0, then we define beam waist and Rayleigh range or Rayleigh distance the quantities
w0 = w (z = 0) and zR =

kλw
2
0

2 , respectively. The latter object is rather interesting, as it defines
the transition between different propagation regimes. In particular, while at the beamwaist position
R (z = 0) = ∞, on the other hand we have R (z ≫ zR) ≈ z. This means that the wavefront is
planar within a distance of zR from the beam waist position and it becomes spherical outside such
range. At the same time, the spot size at the Rayleigh distance is w (z = zR) = wo

√
2, hence the

area of the beam cross-section is doubled with respect to the beam waist position. Finally, given
their analytical relation, the smaller the beam waist the smaller the Rayleigh range, hence the beam
approaches its spherical-wavefront regime more quickly. We can then define a spread angle θ as

tan θ ≡ w

z

∣∣∣
z≫zR

≃ w0

zR
=

2

kλw0
≈ θ (3.32)

Eq. 3.32 shows how the Rayleigh range represents a measure of the distance across which our beam
propagates while remaining collimated. We can verify this model describes a Gaussian intensity
profile simply by calculating the squared modulus of Eq. 3.30:

I (r, z) =
∣∣∣uopt00 (r, z)

∣∣∣2 = I0e
− 2r2

w(z)2 (3.33)

with I0 (z) = |u00|2

1+
(

z
z2

)2 expressing the field intensity along the propagation axis. The Gaussian

beam behaviour is sketched in Fig. 3.14.

3.3.3 Cavity stability and eigenmodes
We just described the behaviour of Gaussian beam of light propagating in free space. What happens
when a such beam encounters mirrors on its path, provided that their spatial arrangement and
reflectivities are suitable to form an optical cavity at the same wavelength? We will derive the
behaviour of light inside a resonator, considering a general scenario where an optical cavity is
formed by two spherical mirrors and taking into account the boundary conditions they fix.

First off, we require the optical resonator to be stable. A necessary condition is that the beam
propagating inside the cavity must exactly retrace itself onto the path between the end mirrors
upon reflection from one of them. For this to happen, the radius of curvature of its wavefront
must match the radius of curvature of the mirrors at their respective positions. We indicate the
propagation axis as z, such that z = 0 is the position of the beam waist between the two mirrors
positioned at z1 and z2 with radius of curvatureR1 andR2, respectively. We follow the convention
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Figure 3.14: A sketch of a Gaussian beam’s behaviour along the propagation axis z: at z = 0
the spot size hits its minimum value w0 (beam waist) and it grows when moving away from this
position, following the w (z) function and hitting an amplitude of

√
2w0 at the Rayleigh distance.

The spreading angle θ is indicated by dashed lines.

in which the radius of curvature is considered positive when the beam is diverging as it propagates
to the right. From Eq. 3.31b, a standing wave will form only if

R (z1) = z1 +
z2R
z1

= −R1 (3.34a)

R (z2) = z2 +
z2R
z2

= R2 (3.34b)

Given a distance between mirrors of L = z2 − z1, for each mirror we can define the parameter
gi ≡ 1− L

Ri
with i = 1, 2. Therefore we have

z1 = −L g2 (1− g1)

g1 + g2 − 2g1g2
(3.35a)

z2 = L
g1 (1− g2)

g1 + g2 − 2g1g2
(3.35b)

As a consequence the Rayleigh range, beamwaist and spot sizes at the twomirrors will respectively
be given by

zR = L

√
g1g2 (1− g1g2)

g1 + g2 − 2g1g2
(3.36)

w2
0 =

2L

kλ

√
g1g2 (1− g1g2)

g1 + g2 − 2g1g2
(3.37)
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Figure 3.15: Propagation of a Gaussian beam inside a cavity formed by two spherical mirrors. For
the beam to resonator to be stable, the beam must trace itself back onto the optical path between
mirrors upon reflection from one of them. As a consequence, the wavefront radius of curvature at
each mirror position must match the mirror radius.

w (z1)
2 =

2L

kλ

√
g2

g1 (1− g1g2)
(3.38a)

w (z2)
2 =

2L

kλ

√
g1

g2 (1− g1g2)
(3.38b)

From Eqs.3.36-3.38 it is apparent that a standing wave is formed inside the resonator only when
the system satisfies the stability condition given by

0 ≤ g1g2 ≤ 1 (3.39)

It is easy to show how this model can be applied to the case of two planar mirrors described in
Sec.3.3.1, simply by considering their radius of curvature to be infinite. On the other hand, such
arrangement does not produce a stable optical resonator [28], hence for our experiments we chose
a hemispherical configuration featuring a plane mirror and a spherical one. In this geometry,R1 =
∞, R2 = R and g1 = 1, so that 0 < g2 < 1. As a consequence the cavity length must be smaller
than the radius of curvature of the spherical mirror. The beam waist is then located on the plane
mirror and its size is

w2
0 =

2L

kλ

√
g2

1− g2
=

2

kλ

√
L (R− L) (3.40)

while the beam radius at the position of the spherical mirror is

w (z2)
2 =

2L

kλ

√
1

g2 (1− g2)
=

2R

kλ

√
L

R− L
(3.41)
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Now that we found ourselves a stability criterion for optical resonators, we can have a discussion
on the eigenmodes of the intracavity field. In general, after one round trip, this can be described
as a propagation integral of the initial field

E(1) (x, y) = e−2ikλL

∫∫
K (x, y, x0, y0) E(0) (x0, y0) dx0 dy0 (3.42)

where the integral is evaluated over an arbitrary reference plane perpendicular to the cavity axis
whileK represents the propagation kernel. Solutions to this linear operator equation are given by
a set of eigenmodes Emn (x, y) determined by eigenvalues γmn satisfying the propagation relation

E(1)
mn (x, y) = e−2ikλLγmnE(0)

mn (x, y) (3.43)

Please note that this means the eigensolutions correspond to optical modes that trace themselves
exactly back onto the path between the cavity mirrors upon reflection from one of them. This was
the condition we set when looking for a stability criterion for the resonator. Although in general
our eigenvalue problem does not necessarily have a solution, we can prove that the Hermite-Gauss
functions satisfy said conditions. These are usually referred to as TEMmn and are given by

uoptmn (x, y, z) = umn
w0

w (z)
Hm

( √
2x

w (z)

)
Hn

( √
2y

w (z)

)
×

× exp
{
i [kλz − ψmn (z)]−

(
x2 + y2

) [
1

w2(z)
− ikλ

2R(z)

]}
(3.44)

wherem,n ∈ N,Hj represents the j-th Hermite polynomial while ψmn (z) is once again the Guoy
phase, now expressed by

ψmn (z) = (m+ n+ 1) arctan
z

zR
(3.45)

The perceptive reader will quickly notice that for m = n = 0, Eq.3.3.3 takes the form of the
field uopt00 (r, z) in Eq. 3.30, i.e. the fundamental mode of the intracavity field has Gaussian shape.
Furthermore, the Hermite Gauss functions form a complete basis, meaning that any resonant field
can be written as a linear combination of the cavity modes they describe

E (x, y) =
∑
mn

cmnEmn (x, y) (3.46)

Knowledge of the modes of an optical cavity allows us to reformulate its resonance condition. For
a standing wave to form inside the resonator, the phase change light undergoes after one round trip
needs to be an integer multiple of 2π. This means that at x = y = 0 we must get

kλ,pmnL− [ψmn (z2)− ψmn (z1)] = pπ (3.47)

with p ∈ N. This formula can easily be translated into terms of frequency

fpmn =
c

2L

[
p+

m+ n+ 1

π
arccos (

√
g1g2)

]
(3.48)

where p quantifyies the number of antinodes of the field along the cavity axis, hence it identifies a
specific longitudinal mode, whilem,n describe the transverse mode.
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3.3.4 Cavity design

(a)

(b)

Figure 3.16: a) Propagation of TEM00 inside a hemispherical cavity. The waist position located
on the plane mirror, where the radius of curvature diverges. At the position of the spherical mirror,
the radius of curvature of the Gaussian beam matches that of the mirror itself, R (L) = R. b) Eq.
3.40 allows us to determine the beam-waist size inside the cavity as a function of its length. The
red, blue and golden lines pinpoint the length values chosen for the cavity design in the different
versions of the feedback cooling experiment we performed and the corresponding accepted beam
waists.

Different versions of a feedback-cooling experiment will be presented in this thesis, based on dif-
ferent optical cavities. Although different mirror reflectivity values were chosen for the optical
resonators, they all feature a hemispherical geometry with a concave spherical mirror of radius of
curvature R = −10mm. This provides an upper boundary to the cavity size since, as we saw in
Sec. 3.3.3, its length needs to be shorter than R for the resonator to be stable. Furthermore, Eq.
3.40 allows us to determine how large the beam waist will be inside the cavity. How this relation
plays out is displayed in Fig. 3.16b. As Fig. 3.16a shows, given the choice of a hemispherical
cavity, the beam waist will be located on the flat mirror.
In general using a small cavity is beneficial, as for Fabry–Pérot resonator the optomechanical cou-
pling is inversely proportional to the cavity length [23]. Nevertheless, a trade-off must be found, as
practical considerations in the design of the optomechanical assembly must be taken into account.
For example, the distance between mirrors cannot be shorter than the thickness of the silicon chip
carrying the mechanical resonator, which is about 0.5mm. One more constraint is given by the
necessity for the optical mode to overlap with 150µm×150µm central pad of the mechanical
resonator. As our membranes are placed at submillimeter distance from the plane mirror, this con-
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dition translates into having w0 ≤ 75µm. For the three cavities used for feedback cooling, length
values of 1mm, 1.788mm and 1.568mm were chosen, respectively corresponding to waist sizes
of 38µm, 43µm and 42µm.
Differences between the three cavities are listed in Table 3.1, where the expected finesse values
calculated from Eq. 3.28 can be found. Difference in the transmissivity T of their mirrors brought
about a significant change in the theoretical finesse moving from a vertical geometry to a horizon-
tal one. The choice to decrease it was due to the availability of mirrors in our lab rather than to
scientific reasons.

Cavity Geometry L [mm] w0 [µm] Tplane mirror [ppm] Tspherical mirror [ppm] Ftheory

1 Vertical 1 38 200 10 29 917

2 Horizontal 1.788 43 400 200 10 470

3 Horizontal 1.568 42 400 10 15 322

Table 3.1: Some characteristics of the cavities used for of the feedback cooling experiments.

3.3.5 Mode-matching laser to cavity fundamental mode

Figure 3.17: Knife-edge data and fit. Our commercial profiler measures the beam radius along
orthogonal directions X and Y . Here we fit both datasets to Eq. 3.49. Unsurprisingly, the fit
results are extremely similar in the two directions, with a waist size of 692µm and 693µm and
waist position of −85mm and −83mm for theX and Y components, respectively. To choose our
mode-matching lenses, we simply considered the average between theX and Y values.

In all our measurements, we worked with the Gaussian-shaped fundamental mode of the cavity
field TEM00. The quality factor of our mechanical resonators is optimized only for the fundamen-
tal mechanical mode, which typically features a Gaussian intensity profile. Thus TEM00 repre-
sents the cavity mode of maximum overlap with the mechanical-displacement field, yielding the
strongest optomechanical interaction. Given the very specific spatial distribution of TEM00, it is
quite unlikely that our laser propagating in free space can match it. This is a vital aspect though, as
the higher the spatial overlap (mode-matching) between our laser and the fundamental cavity mode,
the higher is the transfer of energy between the two. The higher the mode-matching, the lower is
the amount of optical power wasted exciting higher-order cavity modes. Since our laser features
a Gaussian intensity profile too, once the waist size and position of TEM00 are determined, all
it takes is a few lenses to obtain a high mode-matching efficiency. Taking our horizontal cavity
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as an example, given its hemispherical configuration, its length and the radius of curvature of its
spherical mirror we can easily determine a beam waist of 43µm located on the incoupling plane
mirror. The beam waist size and position of our laser in free space can simply be measured by a
knife-edge technique. This is carried out shining the laser light on a powermeter and cutting the
beam with a slit, which is then moved in the planeXY perpendicular to the light propagation axis
z⃗. The Gaussian profile of intensity can thus be reconstructed in order to extrapolate the beam
radius at the position of the slit. Repeating this measurements for different positions of the slit
along z⃗ and fitting the z vs w (z) data to

w (z) = w0

√
1 +

(
z − z0
zR

)2

(3.49)

where z0 is a known reference position for the measurements, allows to determine position and size
of the beam waist. We used a commercial BP209-IR tool Dual Scanning Slit Beam Profiler from
Thorlabs to record our knife-edge data. Fig. 3.17 shows the measurement results. Fitting yields a
waist size of about 693µm and position of −84mm, where the negative sign indicates the beam
waist is located before the reference position z0. Choosing a set of two lenses with focal lengths of
−100mm and 150mm at a distance of 25mm and 360mm from reference z0, respectively, allows
to match our laser beam to the target TEM00 mode of our cavity.
As stated previously in Sec. 3.1.3.1, a similar approach can be used to mode-match the local
oscillator to the signal beam and increase the visibility of homodyne detection. In this case, lenses
are usually placed along the path of the local oscillator in order to match its spatial profile to
the signal beam. Please note that matching the local oscillator to the probe—not the other way
around—prevents an increase in the number of optical components in the path of the signal beam,
hence avoiding an increase of optical losses.

3.3.6 Optomechanical assembly
We will now present more details about how the two cavity assemblies were manufactured and
put together. They were both designed bearing a simple criterion in mind, which is to enhance
the spatial overlap between the fundamental modes of the mechanical and optical resonators. In
addition, the system must be located in high vacuum (10−5 to 10−9 mbar) in order to minimize
the effect of gas damping on the mechanical oscillator and maximize the mechanical quality factor.
The optomechanical assembly needs then to be fabricated out of materials with outgassing rate
as low as possible in high vacuum. While cavity mirrors and the mechanical-resonator chip are
made of vacuum-compatible materials, metals such as stainless steel, aluminium and copper were
chosen for the rest of the assembly.
3.3.6.1 Experimental setup I —Vertical cavity
The first version of our experimental setup was designed and built by Jan Bilek, who carried out
his PhD research in our group between 2015 and 2018. Its vertical geometry reflects the need to
minimize the detrimental effects of chip clamping on the mechanical quality factor [29]. It simply
relies on gravity to hold the sample in position on a plane parallel to the optical table. This is
achieved by orienting the cavity axis vertically, in the direction perpendicular to the plane of the
optical table and to the rest of the optical setup. Drawings of the optomechanical assembly are
presented in Fig. 3.18b-d. Using a 45°-mount mirror light is steered out of the optical-table plane
into the vertical direction and coupled to the cavity through the planemirror. This is held in position
by a clamp screwed into the bottom plate of the assembly. A fluorocarbon (Viton) o-ring is fitted
in between the mirror and the clamp to avoid damage to the optical component. The plane mirror
supports the Si chip carrying the mechanical resonator, which is aligned to the cavity axis with a
precision of±0.1mm by positioning it inside a cut-out on the flip side of bottom plate. The kind of
chips used in this version of the experiment feature a ∼ 10µm spacer that prevents the membrane
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from crashing against the plane mirror. The spherical mirror was held parallel to the plane one by a
manual XY stage (OWIS MKT 40B-D15-SH-V6) used for fine-tuning of the cavity-axis position
with respect to the central pad of the mechanical resonator. A piezo actuator was placed between
the XY stage and the concave mirror to control its position and lock the cavity resonance frequency
to the probing laser (more details about this will follow in the section about frequency-locking).
The whole structure is located inside a custom-made metal scaffold holding the cavity in position
and hanging from the top flange of the vacuum chamber. Except for the mirrors, all the components
inside the chamber feature a an aperture perpendicular to the direction of the cavity axis in order
to provide optical access from both sides.
Laser light can be steered through the center of the optomechanical cavity with a simple method. A
CCD camera is held vertically about 15 cm above the vacuum chamber’s top flange, which contains
an IR-coated glass window. Before aligning the laser to our cavity, the mechanical resonator inside
the cavity is imaged exploiting the high transmissivity of the mirrors for visible light. The spherical
mirror is thus shifted to a position over the membrane’s central pad using the XY stage. An IR
detector is then placed between the chamber window and the camera and laser light is aligned to
the cavity. After removing the detector, an IR sensor card can be held right below the incoupling
mirror in such a way that the secondary, visible-range emitted light can be imaged by the camera
as shown in Fig. 3.19. If such light does not go through the membrane central pad, the position
of the spherical mirror can be corrected using the XY stage. Please note that every adjustment of
the mirror position corresponds to a displacement of the optical resonator’s axis, hence laser light
must be realigned to the cavity using the IR detector. After some iteration, the light should cross the
center of both the mechanical resonator and the cavity and the chamber can be pumped down into
high vacuum. Although this represents the best approach we could find, the resulting alignment
between membrane and cavity is not precise enough. A poor overlap is then obtained between the
mechanical-displacement field and fundamental intracavity mode, yielding a low optomechanical
coupling. We will come back to this issue later in the chapter about experimental results, where
we will explain how we decided to redesign the entire cavity to fix it.
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(a) (b)

(c)

(d)

Figure 3.18: a) Picture of the vertical optomechanical assembly inside the vacuum chamber. The
central column hosting the cavity hangs from the top flange of chamber. b) Design of the vertical
optomechanical cavity. An exploded view of the assembly including optical cavity and on-chip
mechanical oscillator (in pink) is displayed. While the concave mirror was glued to the piezo
actuator, the plane one was clamped to the bottom of a ConFlat flange. A cut-out in the flange
plate provides a rough alignment for the position of the chip, which is supported by the plane mirror
itself. c) The steel cylinder was removed to give a better view of the 1mm-long cavity.d) Three-
quarters section view of the vertical assembly. While the XY stage, piezo actuators and mirrors
were commercially available, the stainless-steel scaffold was custom made in our workshop. The
piezo actuator is bound to a XY stage which is used to fine-tune the alignment of the cavity axis to
the membrane central-pad. Inset shows a bottom view of the cavity assembly. Images from [16].
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Figure 3.19: Vertical cavity: CCD image of a trampoline membrane seen through the spherical
mirror. To its corner the circle of the mirror apex is visible. The light spot overlapping with the
trampoline is in the visible spectrum as it is emitted by the IR sensor card used for alignment.

3.3.6.2 Experimental setup II —Horizontal cavity
In order to obtain a good overlap between the mechanical-displacement field and the fundamental
intracavity mode and to boost the optomechanical coupling, during my PhD I designed and built
two new optomechanical assemblies. These are based on the same optical geometry as the previous
cavity, with a 1-inch-diameter plane mirror and a spherical one with a diameter of 5mm and a ra-
dius of curvature of 10mm. Nevertheless, these new cavities feature two fundamental differences
with respect to the previous design. To begin with, the cavity axis is parallel to the optical table,
which means light can be steered into the optical resonator without exiting the setup plane. This
considerably shortens the distance light has to travel to reach the cavity, making mode-matching
much easier. Unlike the case of the vertical cavity, using an in-plane configuration enables to
actually see where the beam enters the cavity, making alignment easier. A high mode-matching
efficiency can thus be obtained with much less effort. Furthermore, better control over the path of
the backreflected light was achieved. Since our homodyne detection measurements are performed
on the light reflected off the cavity, spherical aberration can limit our detection efficiency in the
vertical-cavity setup. Small deformations of the backreflected beam due to misalignment of its
path yield an upper boundary to the mode-matching with the local oscillator, ultimately limiting
our homodyne visibility. This problem is easily fixed when using a horizontal configuration.
A second, more fundamental feature of our horizontal-cavity assembly is the fact that it repre-
sents a monolithic system. The relative positions of the cavity axis and the membrane’s central
pad are fixed by references embedded into the cavity mount and the chip carrying our mechanical
resonator. An area of 400× 400µm was removed from each corner of the silicon chips by chem-
ical etching during the microfabrication process. The precision of this process is limited by the
photolithography step, delivering an uncertainty of about ±10µm. Correspondingly, the shape of
a 500µm-deep square cut-out was engraved into the assembly mount in such a way the inward,
concave corners would match the etched-off features of the silicon chip (orange areas in 3.20b and
d), which can thus be positioned with extreme precision (Fig. 3.21 a). On the back-side of the
cut-out, a 200µm-thick ring was carved out with inner and outer diameters of 1.4mm and 3.2mm,
respectively (green areas in 3.20a and c), so that the spherical mirror can be positioned around it.
The assembly mount was manufactured by a CNC machining process capable of removing metal
layers from the opposite sides of an object at the same time. Processing both sides of the assembly
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simultaneously yields extreme precision in the relative alignment of their features, whose uncer-
tainty is estimated to be about ±5µm. Both the square cut-out and the reference ring located at
the bottom of larger cylindrical wells, designed to accommodate the mirrors (yellow areas in 3.20a
and c, blue areas in 3.20b and d). Once these have been entered, they’re held in position by metal
side plates (see Fig.d). As the chip features no embedded spacers and its membrane is oriented
toward the incoupling plane mirror, a silicon ring is used to prevent them from coming into con-
tact and cause damage (Fig. 3.21b). This ring has an additional function of providing tunability
to the cavity length and to the relative position of the membrane inside the optical resonator. To
prevent the chip from falling out of the cut-out, it was fixed to the assembly mount by two stripes
of Kapton tape. Once the whole structure is closed by clamping the side plates to the main body
of the assembly, no degree of freedom is allowed for the chip nor the curved mirror. Combining
the uncertainties given by the chip fabrication and the CNC processing, an overall uncertainty of
about 15µm is estimated for the relative alignment of the optical axis with respect to the center
of the membrane. Given a size of 150 × 150µm for the membrane central-pad, such a tolerance
should yield a very good overlap between the optical and mechanical-displacement fields.
Two separate optomechanical assemblies were built using this geometry, the former containing a
phononic membrane and the latter a topology-optimized trampoline. Also the optical properties
of the two assemblies differ due to the different mirror transmissivity (see Table 3.1). Finally, dif-
ferent thickness values were chosen for the Si ring spacers, yielding different cavity length. In
particular, a 420µm-thick ring was chosen for the first version and a 200µm-thick one for the
second.
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(a) (b)

(c)
(d)

(e) (f)

Figure 3.20: a and c) A metal ring (green) sticks out of the optomechanical assembly and it is used
as an inner boundary to position the spherical mirror. A square with removed corners is cut-out
(orange in Figs. b and d) from the opposite side of the assembly. Dimensions are chosen so that its
inward, concave corners match the etched-off corners of the membrane chip, which can then be fit
inside. Figs. e and f show the opposite sides of the optomechanical assembly design.
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(a) (b)

(c)

(d)

Figure 3.21: a) Mechanical-resonator chip is positioned inside a cut-out in the cavity mount. The
chip corners have been etched off in order to match the inward, concave corners of the cut-out,
thus ensuring the alignment between the cavity axis and the central pad of the membrane. b) The
chip is fixed to the cavity mount by two Kapton tape stripes to prevent it from toppling over when
the cavity axis is parallel to the optical table. As the membrane is bound to the the top surface of
the chip, a silicon ring spacer provides a small gap between the chip and the plane mirror to avoid
contact between them. The mirrors are then placed into the assembly (Fig. c) and held in position
by metal side plates (Fig.d). Both the main body of the assembly and the side plates feature circular
holes aligned with the membrane window of the silicon chip and the center of the spherical mirror,
in order to provide optical access to the cavity from both sides.
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3.3.6.3 Aligning laser to a cavity

Figure 3.22: Schematic of the components necessary to interface an optical setup with a linear
cavity, located inside a vacuum chamber.

(a) (b)

(c) (d)

Figure 3.23: Oscilloscope screenshots presenting different stages of cavity alignment. Blue traces
correspond to cavity transmission while the yellow ramp is the signal to the internal piezo of the
laser. In detail, we display the transmission spectra at a) step 8, b) step 10 and c) step 12. d) shows
the final result with TEM00 mode dominating over all the other modes. Scales are not comparable
between different plots as the detector gain was frequently adjusted during the process.
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We already explained in Sec. 3.3.5 how to choose lenses to mode-match our laser beam to the
cavity TEM00 mode. Now we can proceed to explain how a combination of such lenses with
mirrors can be used to couple light into the cavity with high efficiency. Our goal is to single out
the specific cavity mode TEM00 and transfer (ideally) all input optical power to it. In order to
precisely monitor which cavity modes we are exciting, the cavity frequency spectrum needs to be
swept through while aligning the laser to it. This can be achieved by continuously varying either
the cavity length or the frequency of the probing laser. We use the former approach to couple
light to our vertical cavity, whose spherical mirror is bound to a piezo actuator, to which we send
a ∼ 10Hz voltage ramp signal. Our horizontal cavities being monolithic, their size cannot be
changed and we resort to use a widely-tunable-frequency laser for alignment. We chose a Toptica
CTL1550, whose output frequency can be scanned applying a slow (∼ 10Hz) voltage ramp signal
to an internal piezo actuator. As a rule of thumb, the frequency scanning range must be larger than
the FSR of the cavity for alignment to be possible. While meeting this criterion is easy in the case
of a length-tunable cavity—we only need to choose a piezo of suitable stroke—it is a bit trickier
when using a frequency-tunable laser. In most commercial devices, the frequency scanning range
never exceeds 35GHz, while the FSR of our cavities is above 80GHz, as it can be worked out
from the length values reported in Table 3.1. Our Toptica CTL1550 allowed us to solve this issue
by varying the central wavelength around which frequency is modulated with a sensitivity of of
10 pm. Stitching together several 35GHz windows enabled us to reconstruct the frequency range
equivalent to one cavity FSR. For detection of the transmitted light while aligning, we recommend
the use of a photodetector with large area and adjustable gain, such as the PDA50B2 Ge switchable-
gain amplified detector.
We can refer to Fig. 3.22 to explain the method we follow for cavity alignment. For educational
purposes, here we present the specific example of our horizontal cavity. This method is rather
general though, therefore with a few tweaks we can apply it to any linear cavity. We start with a
clean optical table and an empty vacuum chamber on it. Here is what come next:

1. we arrange the mirrors outside the chamber to guide light along lines parallel to the screw-
hole lattice of the table, paying particular attention to the path between mirrors M2 and M3

and inside the chamber;

2. detector D is aligned to the beam after the chamber and a lens L focuses light onto it;

3. the cavity is positioned inside the chamber;

4. mirrors M3 andM4 (steering mirrors) are used to walk the beam onto its plane mirror—from
here on it is necessary to make sure the laser frequency is scanning;

5. when small optical modes appear in the transmitted light, we use M4 only to maximize their
signal and M3 to overlap the path of the light reflected off the cavity to input light;

6. once an optimum is achieved, the vacuum chamber is sealed and the vacuum pumps are
turned on;

7. while air is being removed, cavity mirrors tend to move. After the pressure sets below 10−4

mbar repeat step 5;

8. lens MML2 is positioned, making sure not to suppress the cavity modes (see Fig. 3.23a);

9. lens MML1 is added to the setup, positioning it in such a way to enhance the cavity modes;

10. the beam is walked using M4 to maximize the modes’ height and M3 to overlap back-
reflected light to the input (see Fig. 3.23b);

11. when an optimum is reached, one mode should dominate over all others;
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12. we adjust the position of the lenses while beam walking, trying to enhance this mode and
suppress the others (see Fig. 3.23c).

If the highest mode is indeed TEM00, we should be able to decrease the intensity of the other modes
to 1/50 times the height of the main one or even make them disappear (see Fig. 3.23d). If this is
not possible, we focus on a different mode and repeat the last step.

3.3.7 Cavity characterization
After discussing how our cavities were designed, built and aligned, it is about time to go through
their characterization. In particular, we measured their escape efficiency, linewidth and FSR using
the setup in Fig. 3.24. A λ

2 waveplate is used in combination with a PBS immediately after the
fiber outcoupler in order to regulate the input power to the cavity. Separate photodiodes are used
to detect light transmitted and reflected from the cavity and their output signal is monitored using a
Rohde & Schwarz RTM2054 oscilloscope. A polarization beam splitter followed by a λ

4 waveplate
is used before the cavity to make sure the reflected light is steered into a different path than the
input. For the the measurement of the cavity linewidth a phase modulator is needed. We chose a
MPZ-LN-10 electro-optic modulator (EOM) from iXblue Photonics. The RF signal controlling the
phase modulation was provided by the internal function generator of our network analyzer E5061B
from Keysight.

Figure 3.24: Setup used to characterize the optical cavity. Please note that the network analyzer
providing the RF input to the EOM is here indicated simply as a function generator to avoid any
confusion about its use in this scheme.

3.3.7.1 Cavity escape efficiency
Optical losses due to coupling light to the resonator can be quantified from the time spectrum of
the light transmitted through a cavity and reflected from it. In other words, referring to Eq. 3.29
we seek to estimate the ratio between the incoupling and outcoupling losses over the total optical
losses of the cavity

ηesc =
kex
k

(3.50)

where ηesc is usually referred to as escape efficiency or overcoupling factor of the cavity. First
of all, we need to quantify the mode-matching efficiency ηMM of input light to TEM00. This is
rather straightforward when looking at the time spectrum of light transmitted through the cavity,
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as it corresponds to the ratio between the power of the fundamental mode PTEM00 and the sum of
the power in all the modes Pi

ηMM =
PTEM00∑

i Pi
(3.51)

Assuming a linear behaviour of our detector, converting optical power into voltage, we obtain

ηmm =
VTEM00∑

i Vi
(3.52)

The value of ηmm is strictly dependent on the input light being well-aligned to the cavity. Me-
chanical relaxation of the optical components’ mounts tends to misalign the beam and this needs
to be constantly steered back onto its path. Thus ηmm undergoes small changes in the order of few
percents over time. This also means that if different light beams are steered into a cavity, the cavity
escape efficiency needs to be characterized for each of them independently. In order to avoid any
error in our data analysis, transmission and reflection time spectra were recorded for each beam
interacting with our cavities immediately before any measurement sensitive to the value of ηesc.
Here we present some spectra from the horizontal cavity setup as an example in Fig. 3.25. Fitting
lorentzian curves to the individual transmission modes, a mode-matching efficiency of 0.97 was
obtained for this dataset.

Figure 3.25: Example of transmission time spectra recorded for the horizontal cavity while scan-
ning the frequency of a Toptica CTL1550 laser. Fitting lorentzian functions to the peaks enables to
evaluate the mode-matching efficiency ηmm. Combining this with the information obtained from
the reflection spectrum (see inset) allows to estimate the intracavity losses L, hence the cavity es-
cape efficiency.

From the reflection time spectrum, the values of power reflected by the cavity at resonance Pres

and the input power Pin—reflected when light is off resonance—can be deduced. The intracavity
losses L can be calculated

L = Tin
1−

√
Pres−(1−ηmm)Pin

ηmmPin

1 +
√

Pres−(1−ηmm)Pin

ηmmPin

(3.53)
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where Tin is the transmissivity of the incoupling mirror. The escape efficiency is then given by

ηesc =
1−

√
1− Tin

2−
√
1− Tin −

√
1− L

(3.54)

For the case we present here as an example, the intracavity losses add up to 2 × 10−4, hence we
have ηesc = 0.73.

3.3.7.2 Optical losses and efficiencies
Having estimated the cavity escape efficiency ηesc, we now have a complete overview of what the
sources of optical loss are in our setup. We can thus define the total detection efficiency η

η = ηescν
2ηQEηopt (3.55)

where ν is the visibility of our homodyne setup and ηQE is the quantum efficiency of the pho-
todiodes used for homodyne detection. ηopt is the efficiency related to losses due to the optical
components in the setup.

3.3.7.3 Optical linewidth
We previously showed how to use the time spectrum of the light transmitted through the cavity
to estimate how efficiently light is coupled in. One more piece of information we would like to
extract is the linewidth of the cavity resonance in terms of frequency. In order to achieve this, we
need to calibrate the x-axis of our time spectra using a known frequency reference. One way con-
sists in applying a phase modulation with frequency fmod to the input light through an electro-optic
modulator (EOM)—essentially a voltage-controlled waveplate—as shown in Fig. 3.24. Such mod-
ulation produces sidebands around the beam carrier appearing at a spacing of fmod in frequency
domain. If the laser frequency or cavity length is scanned slowly eough compared to the cavity ring-
down time 1/k, in transmission these sidebands will appear as Lorentzian curves with a spacing
of tmod from the carrier. As varying the modulation frequency changes the distance tmod propor-
tionally (see Fig. 3.26a), when comparing the frequency spectrum to the one in time domain, we
obtain the relation

fmod

tmod
=

k

kt
(3.56)

where kt is the cavity linewidth in time domain. Fitting Lorentzian curves to the carrier peak and
sidebands, the fmod vs tmod

kt
curve can be reconstructed (see Fig. 3.26b). A simple linear fit allows

us to estimate a linewidth of 15.19MHz for the vertical cavity. In the horizontal-cavity setup,
two different lasers are operated simultaneously, producing what we call probe and cooling beams.
Their wavelength is tuned in such a way that each excites a cavity longitudinal mode separated
from the other by at least one FSR. The linewidth corresponding to the two excited modes is not
necessarily the same. In the first version of the horizontal cavity, both cavity modes feature a
linewidth around 18.07MHz and no appreciable difference between them. In the second version a
linewidth of 18.85MHz and 18.60MHz was found for the probe and cooling beam, respectively.
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(a)

(b)

Figure 3.26: a) Phase modulation of the light brings about the appearance of sidebands around the
beam carrier at a distance of±fmod in frequency domain. The purple and brown curves were offset
with respect to the blue one for better display. b) The horizontal-cavity transmission was recorded
for different modulation frequencies and Lorentzian curves were fitted to the carrier and sideband
peaks in each time trace (see an example in the inset). The cavity linewidth in terms of frequency
can be determined from the slope of a linear fit to the fmod vs tmod

kt
data.
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3.3.7.4 FSR, estimate of effective cavity length and finesse

Figure 3.27: Transmission from our second horizontal cavity showing the TEM00 (left, in blue)
and TEM10 (right, in blue) modes. The latter is enhanced by inducing a small misalignment of the
incoming light path using steeringmirrors placed before the cavity. Themagenta peak in themiddle
represents the sideband created by driving the EOM at a fixed frequency of 3GHz. Peaks were
fitted to Lorentzian curves (dashed lines) in order to extract their positions and calculate the time
spacing ∆t between the fundamental and first higher-order modes. This value is then converted
into frequency by comparison with the time spacing ∆tmod between the fundamental mode and
the sideband produced by phase-modulation of the incoming light.

When presenting the designs of our optomechanical assemblies in Sec. 3.3.4 we gave specific
values for the cavity length (see Table 3.1). One might be tempted to accept them as the real ones
and derive the cavity FSR from them using Eq. 3.22. This would be a mistake. Several factors
affect the cavity length, such as fabrication imprecision, errors in assemblying or bending of metal
parts under the pressure exerted by the screws. More importantly, the effective cavity length is
different from its physical length due to the penetration depth of the intracavity field inside the
mirror coatings. All these uncertainties bring about the need to carry out an estimation of the FSR
through experimental measurements.
Different methods can be used to measure the FSR of an optical cavity. Our approach consists in
introducing a small misalignment in the laser beam path to the cavity using the steering mirrors,
thus exciting the first higher-order Hermite-Gauss mode TEM10 (see Fig. 3.27). Using Eq. 3.48
we can determine the difference in frequency with respect to the TEM00 mode

δν = |f010 − f000| =
c

2πL
arccos

(√
1− L

R

)
(3.57)

The corresponding time spacing∆t between these twomodes can be measured simply by detecting
the light trasmitted through the cavity while scanning the laser wavelength or cavity length (see
Fig. 3.27). A ruler to convert this value into frequency is provided by phase modulating the light
at a fixed frequency fmod and using the relation
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∆t

∆tmod
=

δν

fmod
(3.58)

where∆tmod represents the time spacing between the TEM00 mode and the phase-modulation side-
band. Using this method we obtained an effective cavity length of 1.02mm for our vertical cavity
and 1.863mm and 1.614mm for the first and second version of our horizontal cavity, respectively.
Through Eq. 3.22, these correspond to FSR values of 146.96GHz, 80.47GHz and 92.89GHz, re-
spectively.
A widely-tunable laser was employed to align the light path to our horizontal cavities. This kind
of device usually features an internal wavemeter that can be used to characterize the cavity FSR.
While scanning the laser frequency, the amplitude of the voltage ramp to the internal piezo is set
to the minimum value enabling a scan through the cavity resonance. Smaller amplitudes would
lead to a deformation of the resonance shape due to the piezo turnaround. A marker is set at the
time position of the fundamental mode peak and the central-wavelength of the frequency scan is
recorded. Sweeping its value until a new cavity resonance overlaps to themarker allows tomeasure
the FSR in terms of wavelength difference. For the first horizonal cavity we assembled, resonances
were detected at the central wavelength of 1549.7425 nm and 1550.3915 nm. This difference of
0.649 nm corresponds to a FSR of 80.98GHz and, through Eq. 3.22, to an estimate of the cavity
length of 1.851mm. Analogously, a FSR of 93.28GHz was estimated for the second horizontal
cavity we assembled, corresponding to a cavity length of 1.607mm. Please note these values are
in good agreement with the ones obtained from the former method.
We can now determine the finesse of our cavities, simply using Eq. 3.26. A finesse of 9800 is
obtained for our vertical cavity, while values of 4500 and 4928 are computed for first and second
version horizontal cavity, respectively. These values are significantly lower than the expected ones
reported in Table 3.1. One first reason to that might be damage to the mirrors, increasing their trans-
missivity. This is probably the case for both the vertical cavity and the second horizontal cavity,
whose spherical mirrors appear clearly scratched to close inspection. One must then remember
that Eq. 3.28 neglects the effects of losses, assuming almost perfect mirrors. Nevertheless, there
might be more to this discrepancy. As a matter of fact, for dispersive optomechanical systems like
ours, the mechanical resonator divides the cavity into two smaller, strongly-interacting subcavities.
Hence the model on which Eq. 3.28 is based might be oversimplified.

3.3.8 Frequency locking
In this chapter we pointed out several times how the cavity resonance features Lorentzian intensity
in frequency domain. As a consequence, if the frequency of the laser input differs from the cavity
resonance frequency by more than k

2 , most of the input light will not enter the cavity. Unfortu-
nately it is basically impossible to build a macroscopic cavity which is always on resonance with
a given single-frequency laser. Nevertheless, most laser devices feature a degree of wavelength
tunability that can be used to adjust the frequency to the cavity resonance. Conversely, a cavity
mirror can be bound to a piezo actuator to continuously vary the cavity length in order to match
the laser wavelength. Even so, a variety of phenomena such as temperature fluctuations or laser
gain dynamics will cause the two frequencies to drift away from each other, hence their difference
needs to be constantly readjusted to zero. This procedure is usually referred to as frequency locking.
The idea is rather simple: the frequency difference between the cavity and the laser is continuously
monitored, producing a so called error function or error signal. This is then fed to an electronic
controller (typically a PID) which applies the necessary changes to bring its value back to a cho-
sen, fixed level (feedback). Different types of frequency-locking schemes can be implemented,
depending on how the error function is generated.
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3.3.8.1 Pound-Drever-Hall scheme

Figure 3.28: Transmission and reflection from the cavity are displayed as they appear while scan-
ning the laser frequency. The blue curve shows the PDH error function obtained demodulating
the reflection signal upon phase modulation of the input light. Each curve was normalized to its
maximum value.

The main frequency-locking scheme we used for the experiments described in this work is the
Pound-Drever-Hall (PDH) technique [30]. A phase modulation of frequency ωmod ≫ k is applied
to the light impinging onto the cavity

Ein = E0e
i(ωt+β sinωmodt) (3.59)

where β is usually referred to asmodulation depth. If this modulation is weak (meaning β is small),
we can disregard the terms of order higher than 1 in the Jacobi-Anger expansion and rewrite Eq.
3.59 in terms of Bessel functions

Ein ≈ E0

[
J0 (β) e

iωt + J1 (β) e
i(ω+ωmod)t − J1 (β) e

i(ω−ωmod)t
]

(3.60)

This shows how phase modulation brings about three components in the impinging beam: a carrier
at frequency ω and two (first-order) sidebands at frequencies ω ± ωmod. The total incident power
P0 = |E0|2 is then redistributed among the three components according to

Pc = J2
0 (β)P0 (3.61a)

Psb = J2
1 (β)P0 (3.61b)

where Pc and Psb represent the power in the carrier and in the sidebands, respectively. A reflection
coefficient F (ω) can be defined as ratio between the amplitudes of the reflected and input electric
fields

F (ω) =
Eref

Ein
=
r
[
exp

(
i ω
fFSR

)
− 1
]

1− r2 exp
(
i ω
fFSR

) (3.62)
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where a lossless, symmetric cavity has been assumed. Close to resonance, F is almost purely
imaginary, with Im [F (ω)] > 0 above resonance and Im [F (ω)] < 0 below resonance. Each
of the three components impinging onto the cavity will be reflected with a frequency-dependent
coefficient, so that the total reflected power is given by

Pref = Pc |F (ω)|2 + Psb

[
|F (ω + ωmod)|2 + |F (ω − ωmod)|2

]
+

+2
√
PcPsb ℜ [F (ω)F ∗ (ω + ωmod)− F ∗ (ω)F (ω − ωmod)] cosωmodt+

+ℑ [F (ω)F ∗ (ω + ωmod)− F ∗ (ω)F (ω − ωmod)] sinωmodt+ 2ωmod terms

(3.63)

The reflected power features a beat pattern with components oscillating at ωmod arising from the
interference between carrier and sidebands and at 2ωmod stemming from the interference between
sidebands. Attention is then drawn to the ωmod terms as they sample the phase of the reflected
carrier. Choosing ω ± ωmod causes the sidebands to be completely reflected when the carrier is
near resonance, hence we have

F (ω ± ωmod) ≈ −1 (3.64)

F (ω)F ∗ (ω + ωmod)− F ∗ (ω)F (ω − ωmod) ≈ −2iℑ [F (ω)] (3.65)

As the left-side term in Eq. 3.65 is purely imaginary, only the sine term in Eq. 3.63 will survive.
Since ℑ [F (ω)] is antisymmetric around resonance, we can deduce whether the laser frequency is
above or below the cavity resonance from this sine term, simply by demodulating and applying a
low-pass filter. Please note that the demodulation is performed bymixing our signal with a different
one sinωmodt from the same modulation source. Our error signal is then

ϵPDH = −2
√
PcPsbℑ [F (ω)F ∗ (ω + ωmod)− F ∗ (ω)F (ω − ωmod)] ≈ 4

√
PcPsbℑ [F ω)]

(3.66)

Let us now try to see through the formulas and look at what they mean. In the impinging light beam,
the higher-frequency sideband is in phase with the carrier, while the lower-frequency sideband is
out of phase by π. In reflection, if there is no phase shift of the carrier or the sidebands with respect
to each other, the detected photocurrent will carry no signal at the modulation frequency, as the
signals produced by the beating the carrier with the two sidebands cancel each other out. When
the carrier crosses the cavity resonance, it acquires a phase shift while the sidebands are unaffected
since they are too far away (ωmod ≫ k). The signals produced by the interaction between carrier
and sidebands will then differ and not cancel each other out, thus yielding a net photocurrent at the
modulation frequency.
Fig. 3.28 shows a comparison between reflection (black), transmission (red) and the error function
obtained through the PDH scheme (blue). As we can see, the error function is linear within the
cavity linewidth, hence it can be used to determine whether the laser is detuned to the red or blue
side of the cavity. It can be proven that an error function of the same shape is generated demodu-
lating and low-passing the transmission signal instead of the reflection.
The Pound-Drever-Hall method is designed to prevent several issues [31]. First off, since it is
based on phase modulation instead of amplitude modulation, the feedback loop can generally dis-
tinguish between the changes in intensity due to the frequency drifting away from resonance and
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those caused by fluctuations in the laser intensity, which are not coupled into the error signal. Be-
sides, the PDH scheme allows use of modulation frequencies far above DC, thus bringing about a
great reduction of the electronic noise contribution to the error function.

3.3.8.2 Different implementations of PDH scheme

Figure 3.29: Implementation of PDH frequency-lock scheme for our vertical cavity setup. Light
reflected off the cavity produces a photocurrent signal which is then demodulated by an analog
circuit consisting of a mixer and a low-pass filter. The same function generator provides both the
drive signal to the EOM and the beat signal for the demodulation circuit. The error function is
fed to an analog PID. This controls the cavity length through a piezo actuator in order to keep its
resonance locked to the laser frequency. An oscilloscope monitors the reflection signal, the error
function and the output of the PID.

The two feedback-cooling experimental setups we present in this work are based on different im-
plementations of the PDH frequency-lock scheme. In the vertical cavity setup (Fig.3.29), a dual-
channel function generator drives an iXblue MPZ-LN-10 EOM at a frequency of 28MHz. The
phase-modulated light beam is reflected off the cavity and detected by a Thorlabs APD430C/M
avalanche photodetector. Its output signal is demodulated by mixing with a 28MHz tone on an
analog circuit and then applying a low-pass filter with a cut-off frequency of 1MHz. It is important
to highlight that the same function generator provides both the driving signal to the EOM and the
local oscillator for the mixer, so that their relative phase difference does not drift. Moreover, this
enables to optimize the shape of the error function by tuning the initial phase of either signal in
the function generator, thus compensating for any phase delay in our setup. The error function
is then fed to an analog PID controller, whose output controls the cavity length by actuating a
Piezomechanik HPSt low-voltage piezo bound to the spherical mirror. The piezo maximum stroke
is about 16µm, enough to scan through several multiples of the cavity FSR. The piezo resonance
frequency with no weight load attached is about 30 kHz, high enough to avoid being excited by the
PID output. The plane mirror is not piezo-actuated to avoid coupling of the voltage noise to the
mechanical resonator. A Rohde & Schwarz RTM2054 oscilloscope monitors the reflection signal,
the error function and the PID output.
In the horizontal-cavity setup (Fig.3.30a), an EOM modulates the phase of our NKT Koheras Ad-
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justik E15 laser with a frequency of 35MHz (first horizontal cavity) or 14MHz (second horizontal
cavity). A fiber polarization controller is used to ensure the predefined input polarization direction
of the EOM is matched, otherwise residual polarization in the perpendicular direction may result
in amplitude modulation of our beam. Light transmitted throught the cavity is detected with a
Thorlabs APD430C/M avalanche photodetector, whose output is amplified and then passed to a
RedPitaya 125-14 FPGA digital controller. We use the software modules from PyRPL, an open-
source, Python-based package to run this RedPitaya [21]. In particular, using the IQ module we
drive the EOM, high-pass, frequency-mix and then low-pass again the transmission signal, thus
generating the PDH error function (see Fig. 3.30b). The PID module is used to lock the laser fre-
quency to our cavity resonance. Since the RedPitaya outputs a single-ended signal between 0 and
2V while our laser accepts a differential input between 0 and 5V, a THS4531ADGKEVM evalua-
tion module from Texas Instruments applies a fixed gain of 2.5 and provides an interface between
the two devices. Finally, the PyRPL oscilloscope module was used to monitor the transmission
signal, the error function and the PID output.
A slightly different version of the PDH technique described so far was applied to lock the Top-
tica CTL1550 laser to our horizontal cavity. In this case the phase modulation to the laser is not
provided by an external EOM, but rather modulating the current to the laser diode itself [32]. De-
tecting the light reflected from the cavity provides a signal which is fed back to the laser controller,
whose electronics takes care of the modulation and demodulation operations. The PID controller
for the frequency lock is managed by a proprietary software DLC pro Lock. We use a Thorlabs
APD430C/M avalanche photodetector to detect the reflected light.
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(a)

(b)

Figure 3.30: Implementation of PDH frequency-lock scheme for our horizontal cavity setup. a)
Experimental setup. Light transmitted through the cavity generates the input signal to a RedPitaya
which works as function generator, demodulation circuit, PID controller and oscilloscope. Its PID
output is passed to an evaluation module which applies a fixed gain and converts the FPGA single-
ended output into a differential signal. This controls the laser internal piezo in order to keep the laser
frequency locked to the cavity resonance. b) Screenshot of the browser interface for the PyRPL
IQ module showing the corresponding schematic. First the input goes through a high-pass filter,
then it is split into two signals, one mixed with a sine function, the other with a cosine. Setting the
gain to zero cancels the latter component, while the former is low-pass filtered and amplified by
a quadrature factor before reaching the output signal port, thus providing our error function. The
sine function used for down-mixing is multiplied by an amplitude factor, then redirected to the
output direct port, which is used to drive the EOM. Adjusting the phase phi of the sine function
enables to optimize the shape of the error function.

3.3.8.3 Cavity detuning
So far, we mainly discussed the possibility to lock the laser frequency on the cavity resonance or
vice versa, fixing the frequency difference between them (detuning) to zero. Sometimes applying
a non-zero detuning can also be useful, as we will see later in this chapter. We typically do this
by locking the frequency on resonance, then applying a voltage offset to the error function before
feeding it to the PID. The applied detuning∆ can be estimated by comparison of the transmission
voltage signal Vt to its peak value Vp. The latter is measured by scanning the laser frequency across
the cavity resonance. In units of cavity linewidth k, we obtain

∆

k
=

1

2

√
Vp
Vt

− 1 (3.67)
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3.4 Ringdown measurements of mechanical quality factor
When dealing with our mechanical resonators in Sec. 3.2.2 we defined their main physical prop-
erty, that is to say the high quality factor of certain specific modes. We did not go through how
this can be quantified because knowledge of the workings of our optical setup was considered nec-
essary. Having covered such topic, it is now time to describe the ringdown method [17], which
represents the most common technique to measure a mechanical quality factor.
Our mechanical resonators are designed to feature quality factors in the order of 106 or higher and
vibrational frequencies ranging between 100 kHz and 1.5MHz. This translates into a mechanical
linewidth of hundreds of mHz at most, while the lowest resolution bandwidth a commercial spec-
trum analyzer can offer is typically 1Hz. As a consequence, properly resolving our mechanical
modes is not possible and direct estimation of the quality factor from the displacement spectrum
is prevented. A way around this is found providing a strong excitation to the mechanical mode of
interest and then observing its amplitude decay over time.
The time evolution of the mechanical amplitude u (t) can be described by

u (t) = uoe−
πfMt

Q (3.68)

with u0 being the initial value, QM the quality factor, fM the mechanical frequency and πfM
QM

the
decay rate. It is usually convenient to use decibel-based units, hence we can define

udB (t) = 20 log10 (u (t)) (3.69)

whose time derivative is given by

dudB (t)

dt
= − 20π

ln 10
fM
QM

≈ −27.288
fM
QM

(3.70)

Eq. 3.70 can then be used to derive the quality factor from the slope of the time decay in dB scale

QM = − 20π

ln 10
fM

dudB/dt
≈ −27.288

fM
dudB/dt

(3.71)

Fig. 3.31a shows how our horizontal-cavity optical setup was arranged for the characterization of
the quality factor of our mechanical resonators. The sensing beam of light is provided by our NKT
Koheras Adjustik E15, which is modulated both in phase—to lock its frequency to the cavity where
the membrane is located—and in amplitude—to provide the excitation of the mechanical mode of
interest. A fiber polarization controller is placed before the amplitude modulator in order to match
its accepted input polarization and maximize the output optical power. Homodyne detection of
the phase of the light reflected off the cavity enables mechanical displacement measurement. The
spectrum is monitored using a spectrum analyzer, whose resolution bandwidth and frequency span
are set to 100Hz and 0Hz, respectively. When the amplitude modulation is stopped, the time decay
can be followed and the quality factor can be estimated. Fig. 3.31b shows the experimental data
for the lowest-frequency bandgap mode of the phononic membrane we used in the second version
of our feedback cooling experiment. Given a mechanical frequency of about 1.366MHz, a quality
factor of 2.12× 106 was estimated.
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(a)

(b)

Figure 3.31: Ringdownmeasurements. a) Experimental setup. RedPitaya 1 and RedPitaya 2 are re-
spectively used to handle the laser PDH frequency lock and the homodyne-detection phase lock. b)
Mechanical ringdownmeasurement of the lowest-frequency bandgapmode in the phononic-crystal
patterned membrane used for our feedback cooling experiment. Inset shows the displacement spec-
trum of the mode of interest.

3.5 Single-photon optomechanical coupling
The single-photon optomechanical coupling g0 is probably the most important experimental pa-
rameter in cavity optomechanics, as it quantifies the strength of the interaction between the optical
and mechanical-displacement field. Complex models attempt to describe all the factors affecting
its magnitude. Here we will refer to a rather simple one [33], considering a square membrane of
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Figure 3.32: Setup arrangement to characterize the single-photon optomechanical coupling in our
horizontal-cavity experiment. An analogous scheme was used for the vertical-cavity setup.

side lengthD located inside a Fabry-Perot cavity of lengthL. The oscillator is assumed to be made
of dense material subject to high stress, so that the bending effects are irrelevant and its normalized
vibrational normal modes are described by

ϕij (x, y) =
2

D
sin
(
iπx

D
+
iπ

2

)
sin
(
jπy

D
+
jπ

2

)
(3.72)

with i, j = 1, 2, ... and |x| , |y| ≤ D/2. In the plane parallel to the membrane, the intracavity field
mode of indices {mnp} features a normalized pattern given by

T̃mnp (x, y) =
Hn

(√
2x/w0

)
Hm

(√
2y/w0

)
w0

√
π2n+m−1n!m!

exp
(
−x

2 + y2

w2
0

)
(3.73)

whereHn(x) is the nth Hermite polynomial and w0 the cavity waist, while p defines the different
longitudinal modes. The single-photon optomechanical coupling rate between a chosen cavity
mode of frequency ω0 and the mode {ij} of the membrane oscillating at frequency Ωij is then

gmnp,ij =
2ℏω0

L

√
ℏ

meffΩij
Θij,mnpΛp (3.74)

where Λp describes the longitudinal component of the optical field. More importantly, Θij,mnp is
the transverse overlap integral between the cavity mode {mnp} and the mechanical mode {ij}
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Θij,mnp =
D

2

∫ D/2

−D/2
dx

∫ D/2

−D/2
dyT̃mnpϕij (x, y) T̃mnp (3.75)

Given the normalization of the involved mode functions, we have |Θi,mnp| ≤ 1. Eq. 3.74 gives us
some rather meaningful insight on the nature of g0. To begin with, g0 is inversely proportional to
the cavity length, making smaller cavities more suitable for experiments where an intense optome-
chanical interaction is required. This is the reason why our cavities are designed to be as small as
practical considerations allow. Furthermore, the coupling rate describes a one-on-one interaction
between a specific cavity mode {mnp} and a specific membrane mode {ij}. For a given oscilla-
tor mass and cavity length, the optomechanical coupling primarily depends on the spatial overlap
between these modes. This result also provides an a-posteriori justification for us to always work
with the fundamental mode of both cavity and mechanics. The quality factor of our membranes is
optimized only for their lowest-frequency mode, whose spatial profile has Gaussian shape in the
plane perpendicular to the light propagation axis. Since the fundamental cavity mode has Gaussian
profile as well, their overlap is expected to be the highest among all light-mechanics mode pairs.
Among the several techniques allowing the characterization of g0, here we will focus on two, re-
spectively based on the optomechanical spring effect and quantum noise thermometry. Fig. 3.32
shows how our horizontal-cavity setup was rearranged to carry them out. A NKT Koheras Ad-
justik E15 laser was used. Unlike the other measurement schemes presented in this work, the
PDH error function was generated by detecting the reflected light, using a Thorlabs PDA10CF-
EC InGaAs photodetector. This choice was due to the need to carry out measurements at very
low values of input optical power or to lock with detuning comparable to the cavity linewidth. In
both cases, the intensity of the transmitted signal is too weak to produce a stable lock and strong
frequency fluctuations appear. Please note that tapping off part of the reflected light and using it
for frequency stabilization instead of homodyne measurement is not always a viable option. It is
in this context only because the outcome of the characterization techniques presented here is not
affected by detection losses. When performing feedback-cooling, optical losses have a detrimental
role, hence we will adopt different strategies to avoid this tap-off. One more PBS was introduced
before the cavity, followed by a quarter-wave plate. The latter can be rotated in such a way that
a fraction of the light reflected by the cavity is also reflected off the PBS and focused onto the
detector used for frequency-locking. A Faraday Rotator (FR) is used to change the polarization
of the light reflected by the cavity and steer it towards the homodyne-detection setup. For the
thermometry measurements, an additional driving signal is sent to the EOM beside the one neces-
sary for PDH locking. The RedPitaya architecture allows to use several PyRPL function-generator
modules simultaneously and to sum their outputs directly on the FPGA board. This removes the
need for external function generators and analog signal combiners and prevents problems due to
impedance mismatch between the different devices.

3.5.1 Optomechanical spring effect
Cavity optomechanics is all about the two-level interaction between the intracavity light field and
the mechanical resonator. The radiation pressure causes a mechanical displacement, which in
return affects the intracavity photon number, hence the intensity of the radiation pressure itself.
This dynamical interaction gives rise to a stiffening or softening of the mechanical spring constant
which corresponds to a change in the mechanical resonance frequency [34]. Let us consider a
1D model where x is the amplitude of mechanical motion in a reference system centered at the
resonator equilibrium position. Our mechanical resonator is subject to a potential

V (x) =
meffΩ

2
M

2
x2 − 1

2
ℏkNmax

cav arctan

(
2

g0
xzpf

x+∆

k

)
(3.76)

59



CHAPTER 3. EXPERIMENTAL TECHNIQUES

Figure 3.33: Optomechanical spring effect was simulated for different values of input optical power
Pin and parameters g0

2π = 10Hz, ηesc = 1, k
2π = 15MHz and λ = 1550 nm. The blue dashed

line indicates the value ∆min
k = −

√
3
6 corresponding to the minimum frequency shift. On the

other hand, when the cavity is on resonance with the incoming light, no frequency shift is induced
(∆0 = 0, green dashed line).

withmeff being the resonator effective mass andΩM the mechanical angular frequency. Nmax
cav =

4ηesc
ℏΩLk

Pin represents the maximum number of intracavity photons (obtained at zero detuning) for a
given input optical power Pin and laser angular frequency ΩL. Looking at Eq. 3.76, we see V (x)
contains two contributions. The first is given by the intrinsic harmonic restoring potential of our
resonator, while the second describes the effect of radiation pressure. The latter term changes the
spring constant by an amount δkspring = ∂2Vrad(x0)

∂x2 where x0 ̸= 0 is the new mechanical equilib-
rium position, with ∂V (x0)

∂x = 0. This phenomenon is usually referred to as optomechanical spring
effect. The change in spring constant corresponds to a shift in mechanical resonance frequency
that can be quantified by imposing ∂2Vrad(0)

∂x2 = meffδ
(
Ω2
M

)
. In the bad cavity regime (k ≫ ΩM )

and for low light intensity (g0
√
Ncav ≪ k), we obtain

δΩM = 8∆
(g0
k

)2 Nmax
cav[

1 +
(
2∆
k

)2]2 (3.77)

Please note δΩM depends nonlinearly on the detuning but linearly on the input optical power
through Nmax

cav . Fig. 3.33 displays the behaviour Eq. 3.76 and shows the frequency shift is mini-
mum for∆min = −

√
3
6 k. In terms of input power, the minimum frequency shift is

δΩmin
M = δΩM

∣∣∣∣
∆min=−

√
3

6
k

= −3
√
3ηesc

ℏΩL

(g0
k

)2
Pin (3.78)
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(a) (b)

(c)
(d)

Figure 3.34: Characterization of g0 through measurement of optomechanical spring-effect of a
topology-optimized trampoline in our horizontal-cavity experiment. a) Homodyne measurements
of the mechanical spectrum were carried out for both ∆min

k = −
√
3
6 (blue trace) and∆0 = 0 (green

trace), using light reflected from the cavity to generate the PDH error function (Fig. b). Dashed
lines in Figs. a and b represent fitting to Lorentzian functions. c) Measuring the frequency shift
δΩmin

M between the two mechanical peaks for different values of the input power Pin and fitting
the data to Eq. 3.78 allows to determine the value of g0. d) Detuning values for which the PSD of
down-shifted mechanical modes was recorded. All data points fall within one standard deviation
from ∆min

k = −
√
3
6 .

The optical detuning also results in a change of mechanical damping rate ΓM into an effective
value Γeff = ΓM + Γopt, with

Γopt = g20
Nmax

cav

1 +
(
2∆
k

)2
(

k
k2

4 + (∆+ ΩM )2
− k

k2

4 + (∆− ΩM )2

)
(3.79)

As Γopt can be positive or negative, this leads to either an increase or decrease of the mechanical
damping, hence to cooling or amplification of the thermal fluctuations. Such a shift in damping rate
is a consequence of the optomechanical dynamical backaction, with the mechanical displacement
affecting the force applied by the light on the oscillator itself through radiation pressure. When the
incoming laser is detuned from the cavity, a phase delay occurs between the two, creating a force
component out of phase with the mechanical motion. In a thermodynamical picture, this means
the radiation pressure force applies a non-zero work on the mechanical resonator, corresponding
to an increase (amplification) or decrease (cooling) of the stored mechanical energy [34].
The optomechanical spring effect can be exploited to determine the optomechanical coupling. For
a given input power value, the laser is locked on resonance with the cavity (∆0 = 0, green trace
in Fig. 3.34b) and a homodyne spectrum of the back-reflected light is recorded, displaying a me-
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chanical mode at frequency ΩM/2π (green peak in 3.34a). The laser is then red-detuned from the
cavity and a down-shift of the mechanical frequency is observed. The amplitude of such detuning
is increased until the mechanical frequency hits a minimum at

(
ΩM + δΩmin

M

)
/2π, with δΩmin

M

having negative sign. A new homodyne spectrum is acquired (blue peak in 3.34a) and comparison
with the previous one enables to estimate δΩmin

M . Repeating this measurement for different values
of the input optical powerPin and then fitting the experimental data to Eq. 3.78 allows to determine
the value of the single-photon optomechanical coupling (Fig. 3.34c). Fig. 3.34d shows the detun-
ing corresponding to the downshifted mechanical mode at different input powers and ensures these
all correspond to the expected value ∆min

k = −
√
3
6 within a standard deviation. These values were

also used to derive the error bars in Fig. 3.34c. Data in Figs. 3.34 were recorded in the second
version of our horizontal-cavity setup, featuring a high-finesse cavity and a topology-optimized
trampoline (see Fig. 3.7c) and led to an estimate of g0 = 2π × (18.3± 0.6)Hz.

3.5.2 Quantum noise thermometry
An alternative method to estimate the optomechanical coupling was first pioneered by Gorodetksy,
Schliesser et al. in 2010 [35] and consists of a small thermometry experiment. The mechanical
displacement brings about fluctuations of the cavity resonance frequency which are transcribed
into the phase quadrature of the probing light. Homodyne detection allows to measure these fluc-
tuations, as long as the substraction photocurrent is calibrated into frequency units. This can be
done by applying a phase-modulation at frequency Ωcal to the light interacting with the cavity, so
that the input field Epr takes the shape

Epr (t) = E0eiΩLt+iβ sinΩcalt (3.80)

where ΩL and E0 are the laser frequency and amplitude. β is usually referred to as modulation
depth and its knowledge is a necessary requirement to carry out our calibration. We will later
explain how this parameter was measured for our EOM. The modulation interacts with our cavity
and detector and is tranformed into a modulation in the homodyne photocurrent according to the
transduction function K (Ω). Integrating the PSD of the measured photocurrent Sii around the
calibration tone we can measure the variance of the transduced phase fluctuations σ2cal. Comparing
this to the modulation depth, an estimate of the transduction function is obtained

K (Ωcal) =
σ2cal
β2

=
1

β2

∫
Ωcal

Sii
dΩ

2π
(3.81)

The transduction function does not vary appreciably over a small frequency range, thus for a
calibration tone close to the mechanical mode of interest we can assume K (Ωcal) ≈ K (ΩM ).
We can then convert the variance of the phase fluctuations at the mechanical mode frequency
σ2M =

∫
ΩM

Sii
dΩ
2π into terms of frequency fluctuations and obtain

σ2ω = σ2M
Ω2
M

K (ΩM )
(3.82)

The cavity frequency fluctuations induced by the mechanical motion have variance ⟨δΩ2
c⟩ =

g20 (2nth + 1) and since they are imprinted into the phase of the probing light, Eq. 3.82 can be
used to quantify them. Thus we obtain

σ2M
Ω2
M

K (ΩM )
= g20 (2nth + 1) (3.83)
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where nth = kBT
ℏΩM

is the number of thermal phonons populating our mechanical mode at tempera-
ture T . Please note that all our experiments are carried out at room temperature, hence T = 300K.
The single-photon optomechanical coupling is then given by

g20 =
Ω2
Mβ

2

(2nth + 1)

σ2M
σ2cal

(3.84)

Figure 3.35: Fit to the experimental data from the quantum-noise thermometry measurement per-
formed on a phononic membrane in a high-finesse cavity. Please note that while the mechanical
mode was fitted to a Lorentzian function (red, on the right), a gaussian shape was used for the
calibration tone (cyan, on the left).

This method was used to estimate the single-photon optomechanical coupling of a phononic mem-
brane (Fig. 3.7b) in a high-finesse cavity and the results are shown in Fig. 3.35. Following the
setup schematic shown in Fig. 3.32, an EOM applies phase modulation to the light traveling to-
wards the cavity. The modulation frequency was chosen close to the mechanical mode of interest
in order to avoid any relevant change in the transduction function. A spectrum containing both
peaks was acquired through homodyne detection and the mechanical resonance was fitted to a
Lorentzian curve, while the calibration tone was instead fitted to a Gaussian model [36]. Integrat-
ing the area under the two peaks and using Eq. 3.84, a single-photon optomechanical coupling of
g0 = 2π × (10.1± 0.8)Hz was estimated.
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3.5.2.1 EOM modulation depth

Figure 3.36: Setup used to calibrate the modulation depth of our EOM.

For the sake of completeness, here we will describe how the modulation depth of our EOM was
characterized. Electro-optical modulators are typically based on the Pockels effect, that is to say
they are made out of crystals whose birifrangence can be controlled by an applied electric field E.
The refraction index n (E) can be modeled as

n (E) = n− 1

2
rn3E (3.85)

where r is the Pockels coefficient. When an electromagnetic wave goes through the Pockels cell,
it undergoes a phase change∆ϕ depending on the voltage applied to the modulator

∆ϕ ≈ −πVin
Vπ

(3.86)

where Vπ is the half-wave voltage, the voltage required to induce a phase shift of π. The maximum
phase shift is then known as modulation depth

β = ∆ϕmax (3.87)

and it can be measured by a small interference experiment. Fig. 3.36 shows the setup we used to
this goal, featuring a fiber-based Mach–Zehnder interferometer. Light is injected through a first
50/50 fiber beam splitter (FBS). Our EOM was placed in one of the arms and a fiber stretcher in
the other. A fiber polarization controller (FPC) ensures the polarization of light in the two arms
is matched, so that when the interference is maximum when the two optical signals recombine in
a second 50/50 fiber beam splitter closing the interferometer. A Thorlabs PDA10CF-EC InGaAs
detector is placed in one of the FBS outputs. The stroke of the fiber stretcher piezo is such that
the relative phase between the two arms can be changed by several multiples of π. If the EOM
is driven by a voltage modulation Vmod (t) = Vmod sin (ωmodt) of amplitude Vmod and frequency
ωmod, the interferometer transforms the phase modulation into amplitude modulation. The signal
detected at the output of the interferometer is then

Pout (Vin) = α
Pin

2
[1 + cos (ϕ0 + β sinωmodt)] (3.88)
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where α represents the insertion losses and Pin the input optical power. ϕ0 = n∆LΩL
c is the phase

contribution related to the difference in path length∆L between the arms of the interferometer, with
n being the refractive index of the fiber material [37]. In order to obtain the maximum amplitude
of modulation at the output of the interferometer, ϕ0 can be stabilized around π/2 using a feedback
circuit similar to the one used for homodyne detection (see Sec. 3.1.2.1). The DC signal from the
detector is fed to a PID controller, whose output—after amplification—actuates a fiber stretcher.
The locking point is found simply by turning off the EOMmodulation, sending a ramp to the piezo
and then selecting the voltage corresponding to half the maximum of the detected signal. The
output of the interferometer displays then interference fringes that can be fitted to a sine function
(Fig. 3.37a), allowing to estimate β for the specific modulation amplitude applied to the EOM.
Varying this voltage, we can observe a linear dependence of the modulation depth on it (Fig. 3.37b).

(a)

(b)

Figure 3.37: a) Interference fringes obtained sending a Vmod = 1Vmodulation to the EOM. Fitting
data to a sine function enables to estimate the modulation depth β for this specific modulation
amplitude. b) Linear dependence between the modulation depth and the amplitude of the driving
signal.
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4 Optomechanical feedback cooling
We get now to the heart and soul of this thesis. This chapter will explain in detail what optome-
chanical feedback cooling is, how to run an experiment based on its protocol and what results can
be obtained. In particular, our goal is to approach the motional ground state of macroscopic me-
chanical resonators—whose sizes range from millimeters to hundreds of micrometers—operating
at room temperature, without using cryogenic equipment.
After an introduction to the theoretical framework and the working principles, the history of our
experiment will be explained. Two versions will be presented. The first was designed by Jan Bilek,
who carried out his PhD in our group [16]. I started out my work taking over from him, refining
the performance of the setup he built and carrying out meaningful measurements that will here be
discussed. Later, I designed and built my own setup, in order to achieve even better results. This
second version of the experiment will be presented in the latter half of this chapter. The criteria
I followed in planning what changes to make will be explained and the results I obtained will be
reported.

4.1 Theory of feedback cooling

Figure 4.1: Scheme of the feedback cooling of a mechanical resonator. A beam of light monitors
the displacement of amechanical resonator in a continuous fashion. The readout signal is processed
by a controller which actuates an additional feedback force acting on the mechanical resonator.

An optomechanical feedback cooling scheme is a two-sided protocol. On one hand, the position
of a mechanical oscillator is continuously measured, while on the other a negative-derivative force
damping is applied to its motion. The most usual approach consists of sensing the oscillator dis-
placement by a probe light so that information about the amplitude of the mechanical motion is
transcribed into the phase of the electromagnetic field. This information can then be accessed us-
ing a phase-sensitive detection scheme such as balanced homodyne detection and used to produce
a feedback force which is engineered to minimize the mechanical displacement itself [38]. This
force is typically proportional to the time derivative of the mechanical displacement, so its effect is
that of a viscose damping acting on the oscillator. In the experiments presented here the feedback
force is applied through a secondary beam of light named cooling beam. Other options have been
explored in literature though, such as piezo-driven [39] or electrical actuators [40]. Furthermore,
our scheme relies on the enhancement of the optomechanical interaction by an optical cavity. In
our opinion this represents the most effective approach to boost the sensitivity of displacement
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measurements. It prevents the readout signal from falling below the fundamental noise of the sys-
tem by increasing the number of interactions between every photon and the mechanical oscillator
[23]. Nevertheless, using a cavity is not strictly necessary for an optomechanical experiment and
the possibilities of cavity-free feedback cooling have recently been explored [41].
Fig. 4.1 describes the dynamics of our optomechanical system. We first consider a simple case,
without feedback loop. When the oscillator position is measured, the total force Ftot driving the
mechanical motion consists of two contributions: a thermal force Fth and the quantum backaction
force Fba, stemming from the amplitude-quadrature fluctuations of the radiation pressure force. In
frequency domain, the mechanical displacement x is then

(
Ω2
M − Ω2 − iΩΓM

)
x (Ω) = m−1

effFtot (Ω) (4.1)

where Ftot (Ω) = Fth (Ω) + Fba (Ω) and we define χM =
[
meff

(
Ω2
M − Ω2 − iΩΓM

)]−1 as the
mechanical susceptibility. Upon detection of the mechanical displacement, the optical shot noise
brings about a phase contribution which sets the fundamental noise floor and can be modeled as an
effective displacement imprecision noise ximp. Although backaction and imprecision noise both
originate from the light beam itself, they are uncorrelated in the case of a probe beam resonant with
the cavity, that is to say for zero detuning. Taking the extra noise term into account, the measured
mechanical displacement y will be

y (Ω) = x (Ω) + ximp (Ω) (4.2)

When the switches S in Fig. 4.1 are closed, the measurement outcome is fed to a controller of trans-
fer function hfb (Ω) which applies a feedback force Ffb (Ω) = hfb (Ω) y (Ω) to the mechanical
oscillator through radiation pressure. The system dynamics is then modified into

x (Ω) =
χM (Ω)

1− χM (Ω)hfb (Ω)
[Ftot (Ω) + hfb (Ω)ximp (Ω)] = χeff (Ω) [Ftot (Ω) + Fimp (Ω)]

(4.3)

y (Ω) =
χM (Ω)Ftot (Ω) + ximp (Ω)

1− χM (Ω)hfb (Ω)
(4.4)

χeff (Ω) =
χM (Ω)

1− χM (Ω)hfb (Ω)
(4.5)

The controller transforms the measurement imprecision noise ximp (Ω) into an additional force
term Fimp (Ω) = hfb (Ω)ximp (Ω). On the other hand, the response of the oscillator to the driv-
ing force is affected by the controller, with the initial mechanical susceptibility changing into an
effective one χeff (Ω). The result is an effective mechanical damping rate

Γeff = ΓM +
Im [hfb (ΩM )]

meffΩM
+ Γopt (4.6)

where the effect of dynamical backaction Γopt has been taken into account too. An appropriate
choice of the transfer function hfb (ΩM ), can then lead to the mechanical mode being damped and
cooled. Based on Eq. 4.3, the symmetrized singled-sided noise spectrum of the actual displacement
x is given by
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S̄xx (Ω) = |χeff (Ω)|2
(
S̄tot
FF (Ω) + |hfb (Ω)|2 S̄imp

xx (Ω)
)

(4.7)

while the outcome of a measurement of the mechanical displacement is described by

S̄yy (Ω) = |χeff (Ω)|2
(
S̄tot
FF (Ω) + |χM (Ω)|−2 S̄imp

xx (Ω)
)

(4.8)

We see that both these power spectral densities feature two contributions, one S̄tot
FF (Ω) related to

the sum of backaction and thermal force acting on the mechanical oscillator, the other S̄xx
imp (Ω)

coming from the imprecision noise of the measurement. In the jargon of feedback cooling experi-
ments, the power spectral densities described by Eqs. 4.7 and 4.8 are referred to as out-of-loop and
in-loop spectra, respectively. Under the hypothesis of validity of the equipartition theorem, the
effective phonon occupancy of the mechanical mode of interest can then be estimated from from
Eq. 4.7

n̄ =
1

2

(
⟨δp2⟩
2p2zpf

+
⟨δx2⟩
2x2zpf

− 1

)
≈
∫ ∞

0

S̄xx (Ω)

2x2zpf

dΩ

2π
− 1

2
(4.9)

Our goal throughout this work is to engineer the parameters of our feedback cooling protocol so
as to minimize the area under the out-of-loop spectrum S̄xx (Ω), hence the number of phonons
n̄. We will start at room temperature and attempt to get as close as possible to the regime where
n̄ < 1, representing the motional ground state of our mechanical resonator. The amplitude of the
typical feedback control transfer function is proportional to a tunable gain gfb, whose value can
be optimized in order to the maximize the effect of optomechanical cooling. Increasing the gain
above its optimal value drives the system into a regime where |hfb (Ω)| ≫ |Fimp (Ω) /ximp (Ω)|
and the imprecision force heats the mechanical resonator. Such a behaviour usually manifests as
a squashing of the noise floor below the shot-noise level in the in-loop spectrum S̄yy (Ω), induced
by the appearance of correlations between the oscillator displacement x and the imprecision noise
ximp [38]. Please note that this effect does not appear in the out-of-loop spectrum S̄xx (Ω), whose
area actually increases consistently with the rise in phonon number.

4.1.0.1 Driving forces
At the mechanical-mode frequency, the power spectral densities S̄imp

xx and S̄tot
FF can be expressed

in terms of multiples of quanta of the mechanical zero-point fluctuations, thus defining the corre-
sponding imprecision-noise phonons nimp and force-noise phonons ntot

S̄imp
xx (ΩM ) = nimp

8x2zpf
ΓM

(4.10)

S̄tot
FF (ΩM ) = ntot

8p2zpf
ΓM

(4.11)

For a resonant probe (∆ = 0) and in the bad cavity regime (k ≫ ΩM ), the imprecision noise in
balanced homodyne detection of the light coming out of an optomechanical cavity is given by

S̄imp
xx (ΩM ) =

x2zpf
4ηΓMC

(4.12)
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The imprecision phonon number can then be estimated by comparison with peak position spectral
density in the ground state Szp

xx =
4x2

zpf

ΓM

nimp =
S̄imp
xx (ΩM )

Szp
xx

=
1

16ηC
=

1

16η
(
nth +

1
2

)
Cq

(4.13)

where we defined the quantum cooperativityCq = C/
(
nth +

1
2

)
related to the interaction between

the optomechanical cavity and the probe beam. Please note how in the presence of losses η < 1,
we have an increase of the imprecision noise.
The effect of the radiation-pressure amplitude noise is to increase the force acting on themechanical
resonator. When the feedback loop is closed, one more force term Ffb is added, so that Ftot (Ω) =

Fth (Ω)+Fba (Ω)+Ffb (Ω) and Stot
FF (Ω) = Sth

FF (Ω)+Sba
FF (Ω)+Sfb

FF (Ω). At resonance with
the mechanical mode, each term of the total-force power spectral density carries a contribution
proportional to Szp

xx through a phonon number

S̄tot
FF (ΩM ) =

(
nth +

1

2
+ nba + nfb

)
4p2zpf
ΓM

= ntot
4p2zpf
ΓM

(4.14)

where nth = 1
2 coth

ℏΩM
2kBT ≈ kBT

ℏΩM
and nba = |C|. We also have nfb =

∣∣Ccool
∣∣ where Ccool is the

cooperativity related to the interaction between the optomechanical cavity and the cooling beam.
A corresponding quantum cooperativityCcool

q = Ccool/
(
nth +

1
2

)
can be defined. We then obtain

ntot =
S̄tot
FF (ΩM )

2Szp
xxm2

eff |χM (ΩM )|2
= nth+

1

2
+C+Ccool =

(
nth +

1

2

)(
1 + Cq + Ccool

q

)
(4.15)

4.2 Feedback controller

Figure 4.2: Schematic of our feedback controller. We detect the phase of the light emerging from
the cavity by homodyne detection and the resulting photocurrent is fed to a RedPitaya 125-14. This
hosts the PyRPL IQ software module that works as a digital bandpass filter with variable gain G1.
Its output goes through a low-noise amplifier of fixed gain G2 before providing an RF signal to
our amplitude modulator (AM).
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In feedback cooling, a fundamental role is played by the controller applying the feedback force. In
our experimental scheme, this function is performed by a digital filter which receives the homodyne-
detection AC photocurrent and produces the error function for the amplitude modulation of a sec-
ondary beam of light (cooling beam) interacting with the optomechanical cavity (see Fig. 4.2).
The filter output is first amplified, then it drives an electro-optical amplitude modulator MXAN-
LN-10 from iXblue Photonics, whose operational bandwidth (≈ 10GHz) is much broader than the
mechanical frequencies we work with (< 1.5MHz). Considering that also the bandwidths of our
detectors and amplifiers are in the order of tens of MHz, the controller operation is mainly defined
by the digital filter. We chose a bandpass Lorentzian filter and implemented it using a PyRPL IQ
software module hosted by a FPGA RedPitaya 125-14. This solution offers a wide tunability in
terms of central frequency, bandwidth and gain. The transfer function of such a filter is described
by 4.1

hfb (Ω) = gfbeiΩτ−iΦ

[
ΓfbΩ

Ω2
fb − Ω2 − iΓfbΩ

]2
(4.16)

where Ωfb and Γfb represent the filter central frequency and linewidth. The gain gfb is measured
in units of kgHz2 as it represents not only the electronic gain provided by the FPGA and the
amplifier but also all the factors related to the transduction of amplitude modulation into force. τ
is the delay time representing the sum of the propagation time through electronic components and
the computation time of the digital filter. The overall phaseΦ is adjusted experimentally through a
digital phase delay in the IQ module in order to get arg [hfb (ΩM )] ≈ π

2 . Under such condition the
effect of the applied force at ΩM can be described as a viscous damping while any deviation from
it will bring about a change in spring constant that corresponds to a shift in mechanical resonance
frequency. When performing feedback cooling, we usually start by setting Ωfb ≈ ΩM and the
digital gain G1 to a value such that its product with the fixed amplifier gain G2 is G1G2 ≪ 1.
The phase is then optimized and afterwards the filter bandwidth is adjusted by tuning the cutoff
frequency of the low-pass filters in the IQ module in order to maximize the induced mechanical
broadening. The resulting linewidth Γfb can be quantified by a separate measurement of the filter
transfer function, together with the delay time. As an example, we report the amplitude and phase of
the transfer function of the digital filter used to feedback cool the fundamental mode of a trampoline
at 132 kHz (Figs. 4.3). In this case, we measured Γfb = 9.72 kHz and τ = 380 ns. Once the filter
phase and bandwidth have been optimized, increasing the gain cools the targeted mechanical mode
reducing its phonon occupation.

4.3 Calibration of mechanical spectra
Before presenting our experimental results, it will be necessary to explain how to calibrate the
photocurrent spectra recorded using our spectrum analyzer into units of mechanical displacement
[23]. We begin by normalizing the measured open-feedback-loop photocurrent power spectral
density S̄ii (Ω) so that the shot noise S̄SN

ii (Ω) equals 1/2

S̄norm
ii (Ω) =

S̄ii (Ω)− S̄DN
ii (Ω)

2
[
S̄SN
ii (Ω)− S̄DN

ii (Ω)
] (4.17)

where S̄DN
ii (Ω) represents the detector dark noise. Focusing on the PSD value at mechanical

resonance, we can use Eq. 4.17 as a measure of the SNR

SNR = 2S̄norm
ii (ΩM )− 1 (4.18)
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(a)

(b)

Figure 4.3: a) Amplitude and b) phase of the transfer function of the digital filter used to feedback-
cool the fundamental mode of a trampoline at ΩM = 2π × 132 kHz. The red curve in Fig. a) was
obtained fitting the experimental data to Eq. 4.16. A network analyser Agilent E5061B was used
for this characterization. The vertical dashed line indicates the frequency of the fundamental mode
of a trampoline.

Please note that here we defined the SNR as the ratio between the normalized-signal peak value
minus the normalized noise floor—given by the shot noise—and the normalized shot noise. On the
other hand, for a probe resonant with the cavity, at the mechanical peak frequency the normalized
homodyne detection spectrum of mechanical displacement is given by

S̄norm
ii (ΩM ) =

1

2
+ 8η |Ceff (ΩM )|

(
nth +

1

2
+ |Ceff (ΩM )|

)
(4.19)

where |Ceff (ΩM )| = C
1+(2ΩM/k)2

. We then have

SNR = 16η |Ceff (ΩM )|
(
nth +

1

2
+ |Ceff (ΩM )|

)
(4.20)

With a bit of algebra we obtain

|Ceff (ΩM )| = 1

2

(
nth +

1

2

)[
−1 +

√
1− SNR

4η
(
nth +

1
2

)2
]

(4.21)
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We first use Eqs. 4.21 and 4.12 to estimate the imprecision noise of our measurement, which
corresponds to the calibrated shot noise. Then using the same normalization we defined at the
beginning, we can calibrate or mechanical spectrum into units of displacements simply by

S̄yy (Ω) = 2S̄norm
ii (Ω) S̄imp

xx (Ω) (4.22)

4.4 Optomechanical feedback cooling I
The first experimental setup I worked on during my PhDwas built by my predecessor Jan Bilek and
it was based on a trampoline oscillator located within the vertical-cavity optomechanical assembly
described in Sec. 3.3.6.1. After a description of both the optical setup and themechanical resonator,
experimental results will be presented.

4.4.1 Experimental setup

Figure 4.4: The experimental setup employed for feedback-cooling of a trampoline. Acronyms:
electro-optic modulator (EOM), amplitude modulator (AM), half-wave plate (λ2 ), polarization
beam splitter (PBS), Faraday Rotator (FR), beam splitter (BS), mode-matching lens (ML), local
oscillator (LO), homodyne detection (HD), spectrum analyser (SA), feedback filter (FBF), RedPi-
taya 125-14 (RP125-14), fiber stretcher (FB), variable attenuator (VA).

Fig. 4.4 shows the experimental setup employed for feedback cooling of a trampoline. A fiber-
coupled laser NKT Koheras BASIK E15 emits light at a wavelength around 1550 nm which then
propagates through an isolator before been split with a ratio of 90:10 by a fiber beam splitter. The
weaker light beam goes through a second fiber beam splitter and is divided in two halves of equal
power. One of them is directly outcoupled in free space and provides our probing beam. This
crosses a half-wave plate (λ/2) and PBS (PBS1) which are used to tune its power. It then goes
through several other optical components and reaches the plane mirror of our hemispherical cavity,
whose axis is oriented perpendicular to the optical table. Right before the cavity, two lenses (ML1
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and ML2) are placed to match its profile to the intracavity field, followed by two mirrors on tip-tilt
mounts. These steer the light in the plane of the optical table before a mirror mounted at a fixed
angle of 45◦ redirects it onto the direction perpendicular to the table. Inside the cavity, our me-
chanical resonator sits on top of the incoupling mirror, from which it is separated by a small silicon
spacer. Due to the need to minimize the gas damping of the mechanical motion, the optomechan-
ical assembly is located inside a vacuum chamber operated at a pressure around 10−7mbar. The
chamber windows are standard Thorlabs VPCH42-C, AR-coated for light at wavelength around
1550 nm. A large-area photodiode Thorlabs PDA50B2 is placed above the cavity curved mirror
for alignment purposes. This can be replaced by a CCD camera in order to image the mechanical
resonator and tune the relative position of the cavity axis. Light reflected from the cavity travels
back through PBS3 and a Faraday Rotator (FR) which rotates its polarization by 90◦, so that the
beam is reflected off PBS2 and steered into our homodyne detection setup. Here it is spatially over-
lapped with the local oscillator (LO) on PBS4. A half-wave plate rotates both their polarizations
by 45◦, so that PBS5 splits the total optical power in equal halves, which are then focused on the
two photodiodes of our homodyne detector (HD). The final waveplate is also used to compensate
for small electronic offsets in the two detection channels, so that the DC part of the substraction
photocurrent perfectly equals the electronic zero of the detector. The local oscillator is provided
from the 90% optical power emerging from the 90:10 fiber beam splitter. This propagates through
a fiber stretcher (FS) and a fiber variable attenuator (VA) before being outcoupled in free space,
where a halfwave plate and PBS6 fine-tune its power. Please note that since the local oscillator is
transmitted through PBS4 while the probe is reflected off it, the two beams have orthogonal polar-
ization and do not interfere before the final waveplate applies a 45◦ rotation. One more waveplate
is placed in the path of each beam to make sure its polarization matches the axis of PBS4 and mini-
mize the optical losses. The missing half of the optical power emerging from the 50:50 fiber beam
splitter propagates through fiber modulators of phase (EOM) and amplitude (AM) before being
outcoupled into free space and producing our cooling beam. This goes through a half-wave plate
and PBS7 where its power is adjusted, then a beam splitter, a waveplate rotating its polarization
by 90◦ and finally it is spatially overlapped to the probe beam on PBS3. Please note that their
electric fields have orthogonal polarization, as one is transmitted through and other reflected off
PBS3. The respective polarization directions are indicated by perpendicular arrows in Fig. 4.4. As
a consequence, although the cooling beam overlaps with the probe while propagating towards the
cavity, there is no interference between the two fields. Furthermore, the orthogonal polarization
allows them to be separated again by PBS3 after being reflected back, with the cooling beam being
steered towards its outcoupler. A beam splitter then taps off half of its power and steers it towards
a Thorlabs photodiode APD430C/M. This is used in combination with the EOM, the dual-channel
function generator, the multiplexer, a low-pass filter and an analog PID controller to produce a
Pound–Drever–Hall (PDH) scheme and lock the cavity frequency to the laser through actuation of
the piezo element holding the cavity curved mirror. Details on this scheme have been provided in
Sec. 3.3.8.2. The amplitude of the cooling beam is modulated by the feedback controller. More
in detail, the AC homodyne photocurrent is monitored by a spectrum analyser Keysight N9000B
CXA (SA) and fed to the RedPitaya (RP125-14) hosting the feedback filter (FBF) and a switch.
The filter functions as a delay line followed by a band-pass filter and an amplifier of tunable gain
G1. A fixed gain G2 is applied by an external amplifier whose output provides the RF signal to the
amplitude modulator. The DC component of the homodyne photocurrent provides the error func-
tion for an analog PID controller that actuates the fiber stretcher and locks the phase difference
between probe and local oscillator to π/2 allowing detection of pure phase quadrature.
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4.4.2 Trampoline

(a)

(b)

(c)
(d)

Figure 4.5: a)Microscope image of our tetheredmembrane (trampoline). b) Power spectral density
of the Brownian noise of our trampoline, showing discrete modes at a spacing comparable to the
frequency of the fundamental mode. The green square singles out the fundamental mode, which is
then displayed in Fig. c). d) Simulation of the out-of-plane displacement of the trampoline central
pad occurring at the fundamental-mode frequency.

Figure 4.6: Results from the mechanical-ringdown measurement for the trampoline fundamental
mode at 132 kHz. A quality factor of Q = 0.7× 106 was measured.
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The mechanical resonator used in this version of the experiment is a stressed silicon-nitride mem-
brane located at the center of a 1mm × 1mm square window etched through a silicon chip. The
membrane is composed of a 150µm×150µm central pad connected to the window frame by 5µm-
wide tethers and is depicted in Fig. 4.5a. This design was adapted from the work of Gröblacher’s
group at TUDelft [42], tailoring its parameters to our experiment. The resulting structures are usu-
ally referred to as trampolines and exhibit a Brownian-noise power spectral density featuring dis-
crete modes whose frequency spacing is comparable with their fundamental vibrational frequency,
as we show in Fig. 4.5b. In our mechanical resonator, the thickness of 50 nm brings about an
effective mass of 3.56 ng—inferred from a COMSOL finite element simulation—and a fundamen-
tal vibrational frequency ΩM/2π ∼= 132 kHz (4.5c). The low thickness of the membrane and the
ultra-high stress of the silicon-nitride layer provide a low energy dissipation rate for the phonons
of the fundamental mode. Using the ringdown technique described in Sec. 3.4, the corresponding
mechanical quality factor was measured to beQ = 0.7×106. The measurement data are displayed
in Fig. 4.6.

4.4.3 Experimental parameters

Experimental parameters
Laser wavelength 1550 nm

Cavity FSR 146.96GHz
Cavity linewidth k 2π × 15.19MHz
Cavity finesse F 9675

Escape efficiency ηesc 0.7

Efficiency of optical components ηopt 0.68

Homodyne visibility ν 0.80

Quantum efficiency of homodyne detection ηQE 0.76

Total homodyne-detection efficiency ηD = ηoptν
2ηQE 0.33

Total efficiency η = ηDηesc 0.31

Mechanical oscillator frequency ΩM 2π × 132 kHz
Mechanical quality factor Q 0.7× 106

Mechanical linewidth ΓM 0.189Hz
Effective mass meff 3.56 ng

Mechanical zero-point displacement amplitude xzpf 4.2 fm
Single-photon optomechanical coupling g0 2π × 3.3Hz

Feedback filter linewidth Γfb 2π × 9.72 kHz
Feedback filter delay τ 380 ns

Mechanical bath temperature T 300K
Thermal phonon occupancy number nth = kBT/ℏΩM ≈ 4.7× 107

Table 4.1: Specifications of the optomechanical setup used for feedback cooling of a trampoline.

Table 4.1 reports the main specifications of the experimental setup used for feedback cooling of
our trampoline’s fundamental mechanical mode. At the laser wavelength of ≈ 1550 nm, the short
cavity size of ≈ 1mm correponds to an FSR of 2π × 146.96GHz. The low transmission of the
mirrors (namely 200 ppm and 10 ppm for the plane and curved mirror respectively) brings about
a high finesse. Having found an optical linewidth of 2π× 15.19MHz for our cavity, the finesse is
estimated to be around 9675. Please note the high ratio between cavity linewidth and mechanical
frequency ΩM = 2π × 132 kHz places our system deep into the unresolved sideband (bad cavity)
regime, where k ≫ ΩM . The high asymmetry between the two mirrors’ reflectivities yields an
escape efficiency ηesc = 0.7.
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The total homodyne-detection efficiency is ηD = 0.33 and it is mainly limited by three factors.
First off, the light reflected from our cavity needs to go through many optical components, whose
intrinsic properties result in an optical efficiency ηopt = 0.68. Most of this power loss is supposed
to come from the Faraday Rotator, PBS3 and the vacuum chamber windows, whose transmissions
are respectively 0.92, 0.95 and 0.94. Reflection of both PBS2 and PBS4 is around 0.99. The
homodyne visibility ν = 0.80 stems from a suboptimal mode-matching of the probe to the local
oscillator. The long distance between the mode-matching lenses and the incoupling mirror of the
cavity (≈ 35 cm) combined with the out-of-plane geometry of our setup brings about spherical
aberrations of the beam profile of the back-reflected light which limit the mode-matching to the
local oscillator, hence the visibility. Finally, the photodiodes used for homodyne detection are
standard Thorlabs FDGA05, whose quantum efficiency is ηQE = 0.76. This means almost one
fourth of the impinging optical power is not detected. The total efficiency of the measurement is
then η = ηDηesc = 0.23.
The single-photon optomechanical coupling was measured using the spring effect as explained in
Sec. 3.5.1, obtaining a value of g0 = 2π× (3.3± 0.2)Hz. The measurement results are shown in
Fig. 4.7.

Figure 4.7: Determination of the single-photon optomechanical coupling through spring effect.
For our vertical cavity containing a trampoline, a value of g0 = 2π × (3.3± 0.2)Hz was found.

4.4.4 Results
We can finally present our first feedback cooling results. The spectra presented in Figs. 4.8a-
b were acquired using our spectrum analyser, whose resolution and video bandwidth were both
fixed to 1Hz. Every spectrum represents an average over 30 consecutive traces acquired under the
same experimental conditions. All these measurements were performed while locking the cavity
on resonance with our laser (∆ = 0) and the homodyne quadrature angle to π/2 in order to detect
pure phase quadrature. A power of PLO = 3mW was chosen for the local oscillator. Leaving
the feedback-controller switch open, a noise spectrum of the mechanical mode is first acquired
at room temperature, where the phonon occupancy number is nth = kBT/ℏΩM ≈ 4.7 × 107.
The switch is then closed and the filter gain G1 of the RedPitaya IQ module is set to such a value
that the overall electronic gain is G1G2 ≪ 1. Phase and bandwidth of the feedback filter are
thus adjusted to maximize the mechanical-mode broadening and minimize the mechanical-shift
given by deviations from the condition arg [hfb (ΩM )] = π/2. Afterwards, the electronic gain
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is increased by discrete steps and the effect is observed monitoring the mechanical mode on the
spectrum analyser. Fig. 4.8a shows the in-loopmechanical-displacement noise spectrummeasured
for different gain values and an input optical power of P p

in = 1µW and P c
in = 100µW for the

probe and cooling beam, respectively. Please note the shot noise appears as a flat line because
all spectra were normalized to it before calibration as explained in Sec. 4.3. The inset shows the
uncalibrated data. As we can see, our measurements are not shot-noise limited. Therefore, the
calibrated power spectral density cannot be fitted to Eq. 4.8, which considers the shot noise as the
sole source of non-resonant noise. We find a simple way around this problem by introducing a
ratio rnf (Ω) between the measurement noise floor and the shot noise. Eq. 4.8 is then modified
into

S̄yy (Ω) = |χeff (Ω)|2
(
S̄tot
FF (Ω) + rnf (Ω) |χM (Ω)|−2 S̄imp

xx (Ω)
)

(4.23)

Recalling Eqs. 4.13 and 4.15, the in-loop spectra were then fitted to Eq. 4.23 using nimp and
ntot as fitting parameters, as well as the filter gain gfb and phase Φ defined in Eq. 4.16. The re-
sults can be used to infer the actual mechanical-displacement spectrum S̄xx (Ω) described by Eq.
4.7. Fig. 4.8b shows a comparison between the measured in-loop spectrum S̄yy (Ω) (solid lines),
curves obtained fitting to Eq. 4.23 (dashed lines) and the inferred out-of-loop spectra S̄xx (Ω)
(dashed-dotted lines). For an electronic gain of 100, we observe the in-loop noise floor squash-
ing below the shot noise level. This happens when the filter gain exceeds its optimal value and
imprecision noise is fed back to the mechanics [43]. Please note that this noise reduction at the me-
chanical frequency only pertains to the measured power spectral density S̄yy (Ω), while the actual
mechanical-displacement spectrum S̄xx (Ω) still appears as a broad Lorentzian (brown dash-dotted
line in the plot). Integrating the area under the out-of-loop power spectral density allows to deter-
mine the phonon occupancy n̄ of our mechanical mode of frequency ΩM (see Eq. 4.9). Fig. 4.9
displays the results in the form of a n̄ vs Γeff graph. Error bars are not showed as their size is
smaller than the markers representing data. The lowest phonon occupancy n̄min = 39300 ± 800
was achieved for an electronic gain of 50 and an effective mechanical linewidth of 2π × 360Hz
(purple octagon in the plot). Such phonon number represents the minimum value achieved in this
version of the feedback cooling experiment. Increasing the gain above this value leads to the impre-
cision force heating up the mechanics and to the squashing phenomenon described above, hence
to an increase in phonon occupancy (orange octagon in the plot). Our results are compared with
a theoretical prediction computed using the nimp and ntot values estimated for zero gain and as-
suming arg [hfb (ΩM )] = π/2. This is displayed as a solid grey line in Fig. 4.9 and its minimum
phonon occupancy n̄min

th = 38789 lies within a standard deviation from the minimum value we
find experimentally.
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(a)

(b)

Figure 4.8: Feedback cooling. a) Spectra of the in-loop mechanical-displacement noise acquired
for different electronic gains. The dashed lines are obtained fitting the data to Eq. 4.23. The shot
noise (grey) appears as a flat line because in our calibration method all spectra are normalized to
it. Inset shows the corresponding uncalibrated power spectral densities. b) Comparison between
measured in-loop noise spectrum S̄yy (Ω) (solid lines), fit to Eq. 4.23 (dashed lines) and the in-
ferred out-of-loop displacement spectral density S̄xx (Ω) (dashed-dotted lines) for two values of
the electronic gain. Inset shows the inferred out-of-loop spectra obtained from the data in Fig. a.

4.4.5 Conclusions: how to move forward
The results presented above are encouraging. The phonon occupancy number of our mechanical
mode at frequency ΩM/2π = 132 kHz was decreased from its room-temperature value around
4.7× 107 down to n̄min = 39300. Although we are still far from the ground state (n̄gs < 1), this
represents approximately a fourfold improvement with respect to the lowest occupancy number
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Figure 4.9: Phonon number occupancy n̄ as a function of the effective mechanical linewidth Γeff .
Blue, green, purple and orange octagons represent the values extracted from the spectra in Figs.
4.8a-b. The red markers describe the values computed for other spectra from the same dataset. The
dotted pink line marks the lowest measured phonon occupancy n̄min = 39300± 800, represented
by the purple octagon. For higher gain, the phonon number increases again (orange octagon) due
to the imprecision noise correlating with the mechanics. Results are compared with a theoretical
prediction (grey line) obtained using the nimp and ntot values estimated for zero gain and assuming
arg [hfb (ΩM )] = π/2.

reported by Jan Bilek [16], who initiated our experiment on feedback-cooling of a trampoline and
harvested the first data during his time at QPIT. I started out my PhD taking over his experimental
setup and working to enhance its performances. It is relevant to discuss what changes I made, as
such considerations draw the roadmap I followed in designing my own version of the feedback
cooling experiment, whose results are presented in Sec. 4.5
In Jan’s experiment the same light beam was used to both sense the mechanical motion and ap-
ply the feedback force. Half of the optical power reflected off the cavity was steered towards the
homodyne detector. The rest was us used to produce the PDH error function and lock the cavity
frequency to the incoming laser. Such a scheme is very inconvenient, as small fluctuations of the
homodyne phase-lock result in detection of the intense amplitude modulation resonant with the
mechanical mode. Besides, tapping off half of the light for PDH locking results in massive optical
losses, detrimental to the efficiency of our feedback-cooling protocol. Both these problems are
solved using different beams to probe the mechanical motion and apply the feedback force. Direct
detection of the reflected cooling beam is then used to produce the PDH error function, avoiding
the increase of losses along the probe path. The two beams come from the same laser and feature
orthogonal polarizations, allowing their reflection to be separated by a PBS. However, due to the
imperfect extinction ratio of the PBSs, small fractions of each reflected beam leak into the path
of the other with an intensity of tens of nanowatts. This is enough for the cooling beam to be de-
tected in our homodyne scheme and for the probe beam to introduce an interference pattern in the
PDH-locking signal, making the frequency lock unstable. These side-effects can be minimized op-
erating at low power, at the cost of imposing an upper boundary to the setup performances. In the
version of the feedback-cooling experiment presented in Sec. 4.5, the cooling beam is produced by
a different laser than the probe and local oscillator, with the wavelengths of the two lasers differing
by an amount corresponding to several FSRs of the cavity. As the cooling beam cannot interfere
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with the probe nor the local oscillator, the PDH lock is not hindered and homodyne detection of
the cooling beam is not possible. Please note that in this case the two lasers rely on independent
locking schemes. Light transmitted through the cavity is detected to frequency-lock the probe laser
so that no tap-off of its reflection is required.
Optical losses need to be minimized in order to enhance the performance of our feedback cooling
scheme, tackling all their sources. To begin with, sub-optimal optical components must be re-
placed by less lossy ones. The same goes for the photodiodes used in homodyne detection, which
need to be replaced with higher quantum-efficiency ones. Some effort went into increasing the
visibility, which was ultimately limited to 0.80 due to spherical aberrations in the back-reflected
probe profile. Improving the alignment of back-reflected light through the mode-matching lenses
while keeping a high mode-matching efficiency of the cavity is rather cumbersome, due to the
long distance between the lenses and the cavity and to the out-of-plane geometry of the setup. The
next version of our feedback cooling experiment is based on cavities whose axis is parallel to the
optical table. The new optomechanical assembly and vacuum chamber were designed to minimize
the distance of the incoupling mirror from the mode-matching lenses. This allows to increase the
visibility above 0.9. The cavity escape efficiency can be increased by decreasing the reflectivity
of the incoupling mirror, although in this case a trade-off must be found in order to avoid a stark
decrease in optomechanical cooperativity.
As a rule of thumb, feedback cooling into the ground state requires the measurement-induced quan-
tum back-action to affect the mechanical motion at a rate Γba = 4

g20Ncav

k faster than the thermal
decoherence rate γth = ΓM (n̄+ 1/2). This translates into a condition on the optomechanical
quantum cooperativity

Γba

γth
=

4
g20Ncav

k

ΓM (n̄+ 1/2)
= Cq ⩾ 1 (4.24)

Under the experimental conditions of our experiment, an optical power of 1µW produces a coop-
erativity of about 2× 10−7, very far from our target. At first one might think such a low value can
be compensated for by increasing the input optical power, hence the intracavity photon number.
This is actually not experimentally feasible. The polarization-leakage problems discussed above
prevent us from using arbitrarily intense beams and homodyne detection requires a high power ra-
tio between local oscillator and signal (ideally at least 100 times). Since our detector’s electronics
typically saturates for an input power higher than few milliwatts, this brings about a limit to the
maximum probe power we can use. Other routes to increase cooperativity were thus explored. To
begin with, the cavity linewidth was decreased to 15MHz, lower by a factor of 32 with respect to
Jan Bilek’s experiment. Please note that decreasing the optical linewidth increases cooperativity
not only through their inverse proportionality relation, but also indirectly by increasing the number
of intracavity photons per unit of input optical power. Unfortunately, further linewidth reduction
is not possible as the mirrors used so far already represent the lowest-transmission option on the
market for a wavelength of 1550 nm.
The most convenient way for us to enhance Cq is through an increase the single-photon optome-
chanical coupling g0, given the quadratic relation between them. Eq. 3.74 shows g0 ∝ Θ with Θ
quantifying the spatial overlap between the mechanical and optical modes of choice. Recalling Eq.
3.75, we can easily simulate the behaviour of the optomechanical coupling for different positions
of the trampoline central pad with respect to the light propagation axis inside the cavity. As we
can see from Fig. 4.10, steering the optical field away from the center of the trampoline results in
a dramatic reduction of coupling. For this computation, the mechanical mode shape was imported
directly from the FEM simulation used to design the trampoline instead of using Eq. 3.72. Given
the strong impact of the spatial overlap over the optomechanical coupling, quite some effort went
into improving the alignment between our cavity and the trampoline. A value of g0 = 2π×3.3Hz
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measured, representing a fourfold increase with respect to what reported by Jan Bilek. Our optome-
chanical assembly allows the cavity spherical mirror to be moved around in the plane perpendicular
to the light propagation axis using an xy stage, whose precision is in the order of fractions of a mil-
limiter. This is not good enough, considering the side length of a trampoline central pad is around
150µm and the beam waist inside the cavity is approximately 40µm, while the side length of the
chip windows of our mechanical resonators ranges between 0.7 and 3 mm. A better approach is
found by designing an optomechanical assembly with no degrees of freedom, where the alignment
between the mechanical resonator and the cavity is defined by matching references etched into the
oscillator silicon chip and carved into the metal assembly. The alignment precision is then limited
by the error in the CNC machining of the assembly, which is estimated to be lower than 15µm.
The optomechanical cavities presented in the next section were built following this approach.

Figure 4.10: Optomechanical coupling as a function of the distance between the cavity axis and the
center of our trampoline. Coupling was normalized to its peak value at the center of the trampoline,
while distance was normalized to the trampoline side length d. Inset shows the beam positions
corresponding to the vertical lines.

Taking all changes into account, an increase of optomechanical cooperativity of around 500 times
per unit of intracavity photons was achieved with respect to Jan Bilek’s experiment. While we both
worked with the same trampoline, quantum optomechanical cooperativity can also be enhanced
by engineering the properties of the mechanical resonator, given the direct proportionality to its
mechanical quality factor. The two membranes presented in the next half of this chapter have been
designed bearing this criterion in mind.

4.5 Optomechanical feedback cooling II
The second half of my PhD was focused on designing and building an experimental setup capable
of producing better results than the previous one, thus feedback-cooling a mechanical mode even
closer to the ground state. This new setup was conceived around the idea of using a different,
in-plane cavity geometry and new kinds of mechanical resonators yielding higher quality factors.
In particular, a phononic membrane and a topology-optimized trampoline (TOTrampoline) were
placed in optical cavities with different properties. In the following, experimental results obtained
on both systems will be presented.
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4.5.1 Experimental setup

Figure 4.11: Experimental setup used for the second version of our feedback cooling experi-
ment. Acronyms: evaluation module (EM), fiber polarization controller (FPC), electro-optic mod-
ulator (EOM), amplitude modulator (AM), polarization beam splitter (PBS), beam splitter (BS),
Red Pitaya (RP), feedback filter (FBF), amplification gain (G), half-wave plate (λ/2), quarter-
wave plate (λ/4), Faraday rotator (FR), homodyne mode-matching lenses (HDMLs), cavity mode-
matching lenses (CMLs), homodyne detector (HD), spectrum analyser (SA), fiber stretcher (FS),
high-voltage amplifier (HVA), variable attenuator (VA), 90/10 fiber beam splitter (90:10).

Fig. 4.11 shows the setup used for the second version of our feedback-cooling experiment, which
is largely similar to the one described in Sec. 4.4.1 with some major differences. To begin with,
the axis of the cavity is parallel to the optical table, thus removing the need for a 45◦-mirror steer-
ing light onto the vertical direction. Combined with the smaller vacuum chamber, this allows for
a much shorter distance between the steering mirrors placed before the cavity and the incoupling
mirror, making mode-matching easier. The optomechanical assembly we use is described in de-
tail in Sec. 3.3.6.2. Matching references etched into the mechanical-resonator carrier chip and
machined into the assembly enable to precisely steer light through the center of the oscillator. As
mentioned above, separate lasers were used to sense the mechanical motion and apply the feedback
force. Given the need for low-phase noise, a NKT Koheras Adjustik E15 (red laser in Fig. Fig.
4.11) was chosen for the probe and 90% of its ouput power was tapped off using an asymmetric
fiber beam splitter to provide a local oscillator (LO) for homodyne detection. A fiber polarization
controller (FPC) ensures the laser polarization matches the optical axis of an EOM and prevents
the perpendicular polarization component from generating amplitude modulation of the light. The
phase modulator is used to implement a PDH scheme to lock the laser frequency to the cavity. As

83



CHAPTER 4. OPTOMECHANICAL FEEDBACK COOLING

the the optomechanical assembly allows no degrees of freedom for the cavity mirrors, frequency
stabilization is achieved actuating the internal piezo of the laser. The PDH error function is gen-
erated detecting light transmitted through the cavity by a photodiode Thorlabs APD430C/M and
feeding it to a Red Pitaya 125-14 (RP1) after a fixed gain G is applied. The digital device carries
out the function of signal generator, demodulation circuit and PID controller and its output goes
through an evaluation module (EM) providing an electronic interface with the laser. A Toptica
CTL 1550 (blue laser in Fig. Fig. 4.11) was chosen to provide the feedback force due to its low
amplitude noise and wide frequency tunability, which was exploited to align light to the cavity.
A photodiode Thorlabs PDA10CF-EC detects reflected light and its output is fed to the Toptica
laser controller, whose electronics generates the error function for frequency locking to the cavity.
More details about the two frequency-stabilization schemes are given in Sec. 3.3.8. Although the
laser beams are overlapped in free space onto PBS3 and have orthogonal polarization, small power
leakages generate the interference issues described in Sec. 4.4.5. We then take advantage of the
wide tunability of the Toptica laser and operate it at a wavelength corresponding to a spacing of
one cavity FSR from the NKT laser frequency, thus preventing interference. A quarter-wave plate
is placed before the cavity mode-matching lenses to maximize the probe light back-reflected into
the homodyne setup. Lenses (HDMLs) were added to the path of the local oscillator to increase
the homodyne visibility. The analog PID controller previously in use for phase lock in homodyne
detection was replaced by a digital one, hosted by a Red Pitaya 125-10 (RP2). A separate Red
Pitaya 125-10 (RP3) operates the feedback filter (FBF).

4.5.2 Phononic membrane

The first mechanical resonator we deal with is a phononic membrane, fabricated according to a
design proposed by Schliesser et al. in 2017 [24]. Fig. 4.12a shows a microscope image of it,
displaying a 3mm × 3mm silicon nitride layer within which a honeycomb hole pattern is fabri-
cated. The membrane thickness of approximately 20 nm yields a mass around 0.4 ng, whose value
was estimated by finite-element modeling. Due to the honeycomb structure, a phononic bandgap
opens within the continuum of out-of-plane vibrational modes of the membrane. Engineering
a defect at the center of the resonator causes the appearance of localized modes corresponding
to frequencies within the bandgap itself, as showed in Fig. 4.12b. These modes are usually re-
ferred to as soft-clamped modes as their shape gradually decays into the periodic structure, unlike
the modes of an unpatterned membrane surrounded by a rigid frame. Combined with the stress
redistribution brought about by the phononic crystal, this causes the localized modes to feature
a high quality factor. Our membrane, whose bandgap opens approximately between 1.27 and
1.5MHz, was engineered to maximize the quality factor of the lowest-frequency bandgap mode at
ΩM = 2π×1.366MHz, which exhibits a Gaussian profile (see simulation Fig. 4.12d). This mode
is the subject of our feedback-cooling experiment. Ringdown measurements have been performed
on it both while the membrane was part of a large silicon wafer and after dicing this into small
1 cm × 1 cm chips. A decrease of the mechanical quality factor was observed from an original
value of 3.0 × 107 down to 2.1 × 106. This drop of one order of magnitude was not investigated
thoroughly, but two hypotheses were made. To begin with, it could be due to contamination of
the chip. This explanation seems to be supported by a ≈ 60 kHz decrease of the mode frequency
observed after dicing the wafer, which may stem from particles depositing on the membrane and
increasing its mass. A second possibility is given by the different clamping technique used for the
diced chip, which might open more channels of phonon tunneling. This explanation is considered
less likely as phononic-crystal structures usually prevent such behaviour, isolating the bandgap
modes from the environment.
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(a)

(b)

(c) (d)

Figure 4.12: a) Microscope image of our phononic membrane, showing its honeycomb pattern
and the central defect. b) Noise power spectrum of our membrane, displaying the bandgap open-
ing amidst the continuum of vibrational modes. The green dashed square highlights the lowest-
frequency bandap mode at ΩM = 2π × 1.366MHz, which is the subject of our experiments. c)
Zoom-in on the lowest-frequency bandap mode. d) Simulation of the vibrational out-of-plane mo-
tion of the lowest-frequency bandgap mode, featuring a Gaussian profile.
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Figure 4.13: Ringdownmeasurement of the lowest-frequency bandgapmode of our phononicmem-
brane after dicing the wafer into chips, corresponding to a quality factor of 2.1× 106. Inset shows
results of the samemeasurement performed before dicing, which yield a quality factor of 3.0×107.

4.5.3 Phononic membrane: Experimental parameters
Table 4.2 reports the main parameters of our experimental setup. Due to practical considerations
in manufacturing and assembling, the cavity is about 1.85mm long, almost twice the size of the
previous one. This value includes the thickness of a 420µm silicon spacer placed between the
membrane and the incoupling mirror to prevent them from touching each other. At a wavelength
around 1550 nm, such length corresponds to an FSR of 80.47GHz. The plane and spherical mirrors
of the cavity feature a nominal transmission of 400 ppm and 200 ppm, respectively, leading to a
cavity linewidth of ≈ 2π × 18.08MHz at the operating wavelength of both lasers. The cavity
finesse is around 4453 and, given the mechanical mode frequency of ΩM = 2π × 1.366MHz, we
see that our system still lies within the unresolved sideband regime. The escape efficiency was
measured for both probe and cooling beam, obtaining values of 0.83 and 0.78, respectively. These
show an increase with respect to the 0.7 value obtained for the vertical-cavity setup.
Optical losses along the path of the probe light reflected off the cavity amount to an efficiency of
ηopt = 0.89. In order to achieve this increasewith the respect to the 0.68 value of the previous setup,
all the optical components have been either cleaned or replaced by new ones. Particular attention
was paid to the lossier components, such as the Faraday rotator and the PBSs. The former was
replaced by a new Thorlabs I1550R5 with 0.98 transmission. The standard Thorlabs PBSs used
in the previous experiment have been replaced by custom-made ones from Altechna, ensuring
minimum values of 97% for the transmission of p-polarization and 99.5% for the reflectance of
s-polarization. Using lenses to mode-match the local oscillator profile to the probe, visibility is
increased from the previous value of 0.8 to 0.9. This improvement was possible also thanks to
the horizontal-cavity geometry, which helps preventing spherical aberrations in the back-reflected
light. Photodiodes were not replaced for this experiment, so their quantum efficiency is still 0.76.
These numbers add up to an overall homodyne detection efficiency of ηD = 0.55 and to a total
efficiency of η = ηDηesc = 0.45.
The single-photon optomechanical coupling g0 between the lowest-frequency bandgap mode and
the fundamental intracavity mode at 1550.17 nm was measured by both spring effect and quantum
noise thermometry. The values obtained from these two techniques are 2π × (10.5± 0.3)Hz and
2π × (10.1 ± 0.8)Hz, respectively, and show a threefold increase with respect to the previous
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experiment. Measurement results are presented in Figs. 4.14a-b. It is remarkable that the two
techniques yield compatible results, at they are based on rather different assumptions. As the
CTL1550 laser is locked to a different longitudinal cavity mode at a wavelength of 1550.87 nm,
the coupling rate of the cooling field needs to be evaluated independently. We do so using the
spring effect again. In this case we first lock the E15 laser on resonance with the cavity and
perform homodyne detection of the probe beam observing the zero-detuning mechanical mode,
then the CTL1550 is locked on the red side of the cavity. Sweeping the cooling-beam power
we observe a proportional downshift of the mechanical frequency, from which we can infer a
single-photon optomechanical coupling of gcool0 = 2π × (9.6 ± 0.5)Hz. Please note that given
the≈ 150µm×150µm size of the membrane central defect compared to the≈ 3mm×3mm chip
window, good alignment between the cavity axis and the oscillator is even more critical than in the
case of trampolines, whose chip window was approximately 1mm wide. Attempts to feedback-
cool the motion of a phononic membrane in our vertical cavity were previously carried out with
very unsatisfactory results, as the poor spatial overlap between light and mechanical displacement
field yields a coupling rate below 2π × 1Hz.
Figs. 4.15a and b present a measurement of the amplitude and phase of the bandpass filter used for
feedback cooling of the lowest-frequency bandgap mode. A bandwidth of Γfb = 2π × 9.15 kHz
and a group delay of τ = 280 ns were measured.

Experimental parameters
E15 laser wavelength 1550.17 nm

CTL1550 laser wavelength 1550.87 nm
Cavity FSR 80.47GHz

Cavity linewidth at 1550.17 nm kp 2π × 18.07MHz
Cavity linewidth at 1550.87 nm kc 2π × 18.08MHz

Cavity finesse F 4453

Escape efficiency of probe beam at 1550.17 nm ηpesc 0.83

Escape efficiency of cooling beam at 1550.87 nm ηcesc 0.78

Efficiency of optical components ηopt 0.89

Homodyne visibility ν 0.90

Quantum efficiency of homodyne detection ηQE 0.76

Total homodyne-detection efficiency ηD = ηoptν
2ηQE 0.55

Total efficiency η = ηDηesc 0.45

Mechanical oscillator frequency ΩM 2π × 1.366MHz
Mechanical quality factor Q 2.1× 106

Mechanical linewidth ΓM 0.65Hz
Effective mass meff 0.4 ng

Mechanical zero-point displacement amplitude xzpf 3.9 fm
Single-photon optomechanical coupling, probe beam g0 2π × 10.3Hz
Single-photon optomechanical coupling, cooling beam gcool0 2π × 9.6Hz

Feedback filter linewidth Γfb 2π × 9.15 kHz
Feedback filter delay τ 280 ns

Mechanical bath temperature T 300K
Thermal phonon occupancy number nth = kBT/ℏΩM ≈ 4.58× 106

Table 4.2: Specifications of the optomechanical setup used for feedback cooling of the lowest-
frequency bandgap mode of our phononic membrane.
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(a)

(b)

Figure 4.14: Measurement of the single-photon optomechanical coupling of between the lowest-
frequency bandgap mode of our phononic membrane and the fundamental mode of the intracavity
field through a) spring effect and b) quantum noise thermometry. The values obtained are respec-
tively 2π × (10.5 ± 0.3)Hz and 2π × (10.1 ± 0.8)Hz. Coupling rate of the feedback field at a
wavelength of 1550.87 nm to the mechanical mode was measured independently through spring
effect, obtaining a value of gcool0 = 2π × (9.6± 0.5)Hz.
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(a)

(b)

Figure 4.15: a) amplitude and b) phase of the bandpass filter used for feedback cooling of the
lowest-frequency bandgap mode of our phononic membrane. The dashed cyan line indicates the
vibrational-mode frequency of interest. A filter linewidth of Γfb = 2π × 9.15 kHz and a group
delay of τ = 280 ns were measured.

4.5.4 Phononic membrane: Results
Figs.4.16a-b shows our best results for feedback cooling of the lowest-frequency bandgap mode
of a phononic membrane. Measurements were carried out following the same method explained
for the trampoline in the previous section. The input power of probe and cooling beam was set to
100µW each and the two lasers were locked on resonance with the cavity. Spectra of the in-loop
mechanical displacement were acquired averaging over 10 traces and setting both the resolution
and video bandwidth to 1Hz. As we can see from Fig.4.16a, our measurement is once again not
shot-noise limited. The shot noise appears as a flat line (grey in figure) because in our calibration
method all spectra are normalized to it. We detect the presence of a small mode around 1.367MHz.
Although this lies within the 2π × 9.15 kHz linewidth of our feedback filter, it is not subject to
feedback cooling due to its weak coupling to the light. Data were fitted to Eq. 4.23 in order to
infer the out-of-loop mechanical-displacement spectra displayed in Fig. Fig.4.16b. Increasing the
electronic gain decreases the area underneath the out-of-loop spectra, hence the phonon occupancy
number. Fig.4.17 shows a comparison between the Γeff vs n̄ data measured experimentally and
a theoretical model obtained using the nimp and ntot estimated from the zero-gain mechanical
displacement and setting arg [hfb (ΩM )] = π/2. Good agreement is found between theory and
experiment, with the initial phonon occupancy number of nth = 4.58×106 being cooled down to a
minimum of n̄min = 1800±200 for an effective linewidth of Γeff = 2π×3.39 kHz and electronic
gain of 30 (orange octagon). The minimum occupancy number predicted by our theoretical model
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is 1899. Increasing the electronic gain above the minimum-occupancy value causes squashing of
the in-loop mechanical displacement spectrum and heating of the mechanical resonator.

(a)

(b)

Figure 4.16: a) In-loop mechanical-displacement noise spectra of the lowest-frequency bandgap
mode of a phononic membrane acquired for different electronic gains. The dashed lines are ob-
tained fitting the data to Eq. 4.23. The shot noise (grey) appears as a flat line because in our
calibration method all spectra are normalized to it. The corresponding inferred out-of-loop spectra
are displayed in Fig.b.
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Figure 4.17: Feedback cooling of the lowest-frequency bandgap mode of a phononic membrane.
Phonon number occupancy n̄ as a function of the effective mechanical linewidth Γeff . Blue, green,
purple and orange octagons represent the values extracted from the spectra in Figs. 4.16a-b. The
red markers describe the values computed for other spectra from the same dataset. The dotted
yellow line marks the lowest measured phonon occupancy n̄min = 1800 ± 200, represented by
the orange circle. Results are compared with a theoretical prediction (grey line) obtained using the
nimp and ntot values estimated for zero gain and assuming arg [hfb (ΩM )] = π/2.
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4.5.5 Topology-optimized trampoline

(a)

(b)

(c)
(d)

Figure 4.18: a) Microscope image of our topology-optimized trampoline (TOT). b) Noise power
spectrum of our TOT, displaying discrete modes at a spacing comparable to the fundamental-
mode frequency. The pink dashed square highlights the fundamental vibrational mode at ΩM =
2π × 256 kHz, which is the subject of our experiments. c) Zoom-in on the fundamental mode. d)
Simulation of the vibrational out-of-plane motion of the fundamental mode.

The last mechanical resonator presented in this work is a topology-optimized trampoline (TOT or
TOTrampoline). This consists of a tethered membrane designed following a computational method
proposed by Dennis Høj while working in our group [17]. Optimization of the shape and propor-
tions of oscillators aiming at the enhancement of their coherence is usually performed following
human intuition and knowledge of approximative analytical solutions or simply by trial and error
in fabrication. This approach is inherently inefficient, as it leads to essentially overlook many
potential designs with better performances. On the other hand, topology optimization is a compu-
tational procedure widely used in engineering [44, 45] to determine the best geometry and material
distribution of a structure within a prescribed design domain. This technique can be applied and
fine-tuned to design mechanical resonators with fundamental vibrational modes of unprecedented
Qf product [46]. Dennis Høj’s algorithm follows a gradient-wise computational method based on
a physical model of the system. Material is redistributed within the structure through many itera-
tions in order to reach an optimal design minimizing or maximizing a particular figure of merit.
Fig. 4.18a shows a microscope image of our our TOTrampoline, featuring a 100µm×100µm cen-
tral pad connected by tethers to the 700µm× 700µm window of the carrier chip. Upon designing
the resonator these dimensions were fixed, while the remaining space within the window frame
was free to evolve following the topology optimization algorithm. The noise power spectrum of
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our TOTrampoline is depicted in Fig. 4.18b and displays discrete modes as in the case of the old-
generation trampoline presented in Section 4.4.2. The membrane thickness of 16 nm makes for an
effective mass of 1.06 ng, which combined with the high tensile strain of the silicon nitride layer
yields a frequency of ΩM = 2π × 256 kHz for the fundamental mode (see Fig. 4.18c).
Similarly to the phononic membrane, we observe a strong decrease of the mechanical quality factor
after dicing the silicon wafer into chips. This dropped from an original value of 1.1× 108 down to
1.7 × 106, as we show in Fig. 4.19. At the same time, the fundamental mode frequency lowered
from 268 kHz to 256 kHz. It is still unknown to us whether such decrease is due to contamination
of the samples during the dicing process or this is a result of the different clamping techniques used
for the whole silicon wafers and the single chips.

Figure 4.19: Ringdown measurement of the fundamental vibrational mode after dicing the wafer
into chips, corresponding to a quality factor of 1.7× 106. Inset shows results of the same measure-
ment performed before dicing, which present a quality factor of 1.1× 108.

4.5.6 TOTrampoline: Experimental parameters
Table 4.3 reports the experimental parameters used for feedback cooling of the TOTrampoline. We
used the same setup as in the case of our phononic membrane (see Secs. 4.5.1 and 4.5.3), although
some changes were made. The cavity length was modified replacing the 420µm-thick silicon ring
spacer with one of thickness 200µm, thus increasing the FSR to 92.89GHz. The plane and spher-
ical mirrors of the cavity were replaced by new ones featuring a transmission of 400 ppm and 10
ppm, respectively. The E15 and CTL1550 lasers were operated at a wavelength around 1550.28 nm
and 1551.01 nm, respectively. This results in a cavity linewidth of 2π × 18.85MHz and a finesse
of 4928 for the probe beam and to a linewidth of 2π × 18.60MHz and a finesse of 4994 for the
cooling beam. Cavity escape efficiencies of ηpesc = 0.83 and ηcesc = 0.76 were measured for the
probe and cooling beam, respectively.
As no other optical component was replaced along the probe path, the intrinsic optical losses still
add up to an efficiency ηopt = 0.89. More effort was put into optimizing the mode-matching be-
tween probe and local oscillator, resulting in a homodyne visibility of 0.95. The standard InGaAs
Thorlabs photodiodes used in homodyne detection were replaced by custom-made ones with 0.99
quantum efficiency manufactured at the Fraunhofer Heinrich Hertz Institute of Berlin. The ho-
modyne detection efficiency is then ηD = 0.79 and we obtain a total measurement efficiency of
η = 0.66.
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The single-photon optomechanical coupling g0 between the TOTrampoline fundamental mode and
the intracavity mode to which the probe beam with wavelength 1550.25 nm is locked was once
again measured by both spring effect and quantum noise thermometry. The values obtained are
respectively 2π × (18.3 ± 0.6)Hz and 2π × (18.6 ± 0.9)Hz, showing good agreement between
them. Figs. 4.20a and b show the experimental data. As the CTL1550 was locked to a different
longitudinal cavity mode at a wavelength of 1551.01 nm, the coupling rate of the cooling field was
measured independently using spring effect, obtaining a value of gcool0 = 2π × (17.5± 0.4)Hz.
Finally, the feedback filter linewidth was optimized to Γfb = 2π × 77.33 kHz and a group delay
of 340 ns was measured. Figs. 4.21a and b display the measured amplitude and phase of the filter.

Experimental parameters
E15 laser wavelength 1550.28 nm

CTL1550 laser wavelength 1551.01 nm
Cavity FSR 92.89GHz

Cavity linewidth at 1550.28 nm kp 2π × 18.85MHz
Cavity linewidth at 1551.01 nm kc 2π × 18.60MHz
Cavity finesse at 1550.28 nm Fp 4928

Cavity finesse at 1551.01 nm Fc 4994

Escape efficiency of probe beam at 1550.28 nm ηpesc 0.83

Escape efficiency of cooling beam at 1551.01 nm ηcesc 0.76

Efficiency of optical components ηopt 0.89

Homodyne visibility ν 0.95

Quantum efficiency of homodyne detection ηQE 0.99

Total homodyne-detection efficiency ηD = ηoptν
2ηQE 0.79

Total efficiency η = ηDηesc 0.66

Mechanical oscillator frequency ΩM 2π × 256 kHz
Mechanical quality factor Q 1.7× 106

Mechanical linewidth ΓM 0.15Hz
Effective mass meff 1.1 ng

Mechanical zero-point displacement amplitude xzpf 5.6 fm
Single-photon optomechanical coupling, probe beam g0 2π × 18.5Hz
Single-photon optomechanical coupling, cooling beam gcool0 2π × 17.5Hz

Feedback filter linewidth Γfb 2π × 77.33 kHz
Feedback filter delay τ 340 ns

Mechanical bath temperature T 300K
Thermal phonon occupancy number nth = kBT/ℏΩM ≈ 24.42× 106

Table 4.3: Specifications of the optomechanical setup used for feedback cooling of the fundamental
mode of our topology-optimized trampoline (TOT).
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(a)

(b)

Figure 4.20: Measurement of the single-photon optomechanical coupling g0 of between the fun-
damental vibrational mode of our topology-optimized trampoline and the fundamental mode of
the intracavity field at a wavelength of 1550.28 nm through a) spring effect and b) quantum noise
thermometry. The values obtained are respectively 2π× (18.3± 0.6)Hz and 2π× (18.6± 0.9)Hz.
Coupling rate was measured also for the cooling field at 1551.01 nm using the spring effect, ob-
taining gcool0 = 2π × (17.5± 0.4)Hz.
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(a)

(b)

Figure 4.21: a) amplitude and b) phase of the bandpass filter used for feedback cooling of the fun-
damental vibrational mode of our topology-optimized trampoline. The dashed cyan line indicates
the vibrational-mode frequency of interest. A filter linewidth of Γfb = 2π × 77.33 kHz and a
group delay of 340 ns were measured.

4.5.7 TOTrampoline: Results
Unlike the previous experiments, measurements on the TOTrampoline are close to being shot-noise
limited, with the excess noise lying only about 1 dB above the shot noise, as we show in Fig. 4.22a.
Although the precise cause of this excess-noise reduction was not investigated, we remark these
measurements were carried out under different conditions of optical power, visibility and photo-
diode quantum efficiency, hence direct comparison with the case of our trampoline and phononic
membrane is not possible.
Fig. 4.22b shows the results obtained for feedback cooling of the fundamental mode of a TOTram-
poline with an input power of 20µW and 5µW for the probe and cooling beam, respectively. Both
lasers were locked on resonance with the cavity. Spectra of the in-loop mechanical displacement
were acquired averaging over 30 traces and setting both the resolution and video bandwidth to 1Hz.
Data were fitted to Eq. 4.23 and the out-of-loop spectra were thus inferred (Fig. 4.22c). Integrating
the area under these, the phonon occupancy number n̄ was computed. Fig. 4.23 shows the Γeff

vs n̄ curve, with Γeff being the effective mechanical linewidth. Cooling of the fundamental mode
from nth = 24.42×106 down to n̄min = (2940±40)was achieved for an electronic gain of 9 and
effective linewidth of 2π × 2.5 kHz, representing our best result for this kind of mechanical res-
onators. Errobars were omitted as their lenght is smaller than the diameter of the dots representing
the experimental data. Comparing with the theoretical model given by the nimp and ntot values
inferred at room temperature and assuming arg [hfb (ΩM )] = π/2, we obtain a good agreement,
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with a predicted minimum phonon occupancy of n̄min
theory = 2974.

(a)

(b)

(c)

Figure 4.22: a) In-loop mechanical displacement spectrum in the absence of feedback cooling. The
excess noise lies about 1 dB above the shot noise level. b) In-loop mechanical-displacement noise
spectra of the fundamental mode of our TOTrampoline for different electronic gains. The dashed
lines are obtained fitting the data to Eq. 4.23. The corresponding out-of-loop spectra are shown in
Fig. c.
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Figure 4.23: Phonon number occupancy n̄ of our TOTrampoline as a function of the effective
mechanical linewidth Γeff . Blue, green, purple and orange circles represent the values extracted
from the spectra in Figs. 4.22a-c. The red markers describe the values computed for other spec-
tra from the same dataset. The dotted yellow line marks the lowest measured phonon occupancy
n̄min = 2940 ± 40, represented by the purple circle. Results are compared to a theoretical pre-
diction (grey line) obtained from the nimp and ntot values estimated at zero gain and assuming
arg [hfb (ΩM )] = π/2.
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5 Conclusions
In the previous chapter, we presented the theory of optomechanical feedback cooling and our exper-
imental realization of such protocol. Two versions of the experiment were presented, with the first
one designed by my predecessor PhD candidate Jan Bilek and modified by me. This allowed feed-
back cooling of the fundamental vibrational mode of a trampoline from room temperature down
to a minimum phonon occupancy of 39300 phonons. The estimated quantum cooperativity for a
1µW input power was about 2×10−7, far below the unitary value necessary to reach the motional
ground state of a mechanical resonator. A second version of the experiment was then conceived
to increase this number. A new optomechanical assembly was designed to ensure a better spatial
overlap between the intracavity field and the center of our mechanical resonators. This resulted in
an increase of single-photon optomechanical coupling of up to six times with respect to the first
setup. A phononic membrane and a topology-optimized trampoline (TOTrampoline) were chosen
to replace the first tethered membrane given their higher mechanical quality factor. In order to min-
imize the imprecision noise, measurement inefficiencies were reduced. All sources of loss were
examined, including homodyne visibility, intrinsic optical losses and quantum efficiency of the
photodiodes and significant efforts were made to increase the corresponding efficiencies. For an
input power of 1µW, the new setup features a quantum cooperativity of 2×10−6 and 4×10−6 in the
case of the phononic membrane and the topology-optimized trampoline, respectively. Although
these values are still far below unity, they represent an improvement of one order of magnitude with
respect to the previous setup and an about 5000-fold improvement with respect to Jan Bilek’s work
[16]. Furthermore, in comparison with the first version of the experiment, the horizontal cavity of-
fers a superior optical stability, enabling use of higher optical power and further enhancement of
the quantum cooperativity. Room-temperature feedback cooling of the lowest-frequency bandgap
mode of a phononic membrane and of the fundamental mode of a topology-optimized trampoline
led to a minimum occupancy number of 1800 and 2940, respectively. We highlight that although
a lower phonon number was achieved for the phononic membrane, this also features a lower room-
temperature occupancy thanks to its 1.37MHz mechanical frequency, about five times higher than
the 260 kHz frequency of the TOTrampoline. The ratio between the room-temperature mechani-
cal occupancy and the minimum achieved value is 2538 for the phononic membrane and 8300 for
the TOTrampoline. The effective temperature corresponding to the minimum occupancy number
obtained by feedback cooling is then 120mK for the phononic membrane and 40mK for the TO-
Trampoline.
Previous works on feedback cooling of mechanical resonators with MHz frequencies into the
ground state partly based their success on the use of cryogenic equipment to pre-cool the me-
chanical mode of interest and lower its thermal occupancy [38]. The measurements presented
in this work were carried out at room temperature, in order to avoid the practical limitations re-
lated to cryogeny and offer the possibility for a scalable experiment. The operating wavelength of
1550 nm was chosen to offer a wide variety of opportunities of integration with other experimental
platforms, especially in the field quantum communication [47] and computation [48]. Being based
on homodyne detection of light reflected off a high-finesse single-sided cavity, our experimental
scheme is favourable for use of sources of non-classical light. In particular, previous experimental
work carried out in our group proved the advantage of probing the mechanical motion with phase-
squeezed light [40], which results in a higher detected SNR. Although significant effort went into
minimizing the optical losses, further work might be required since optical inefficiencies have a
strong detrimental effect on the properties of squeezed light [49].
In this work, we attempted to harness the expertise on fabrication of microresonators with high
quality factors developed in our group in the last few years [17]. We studied three different res-
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onator geometries, i.e. a trampoline, a phononic membrane and topology-optimized trampoline.
In particular, the last oscillator was based on an original design conceived by Dennis Høj during
his PhD in QPIT [46]. Unfortunately, ringdown measurements revealed a discrepancy between
data acquired before and after dicing the silicon wafers carrying the membranes into chips. Origi-
nal quality factors as high as 108 were observed to decrease to 106, causing a severe limitation in
the performance of our feedback-cooling scheme. The cause of this reduction was not thoroughly
investigated and its origin is not clear. Possible causes are represented by sample contamination
happening during the dicing process or by an enhancement of the phonon tunneling losses due to
clamping of our mechanical resonators in the horizontal cavity assembly. Although neither hy-
potesis could be ruled out, we notice that for both the phononic membrane and the TOTrampoline
also a decrease of mechanical frequency in the order of few percentages was observed after the
chips were diced out. This could be due to an increase in the oscillator mass, seemingly supporting
the contamination hypothesis. If such a dramatic drop in quality factor could be prevented, an in-
crease of two orders of magnitude in quantum cooperativity would be achieved, thanks to its direct
proportionality to the mechanical quality factor.
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