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Abstract

Quantum computers can potentially revolutionize computational science and technology, but
their full-scale realization has proven to be an enormous challenge. A central issue is that
noise severely limits the performance of quantum computers. To make quantum computers
fault tolerant, quantum error-correction protocols are needed. A promising type of quantum
error correction is bosonic error correction in which each qubit is encoded into the continuous
variables of a bosonic mode. Experimental progress over the past two decades has enabled a
high degree of control over several continuous-variable quantum systems, making bosonic codes
a promising direction towards fault tolerance.

In this thesis, I investigate two prominent groups of continuous-variable quantum systems and
propose novel schemes for quantum state generation and manipulation in these systems, with a
primary focus on bosonic error correction.

The first group is optics, in which Gaussian operations across a large number of modes can be
easily implemented. Optical platforms thus have many favorable features in terms of scalability
and control, but losses constitute a central challenge. While losses can in principle be mitigated
with bosonic quantum error-correcting codes, implementing these codes with available techniques
is non-trivial. Here, I present schemes to optically generate and perform error correction on cat
codes through linear optics and photon counting. Furthermore, I propose a method to generate
Gottesman-Kitaev-Preskill (GKP) states using a cavity quantum electrodynamics system as a
non-Gaussian resource. Finally, I show that, contrary to common belief, the cubic phase gate is
not a suitable resource for non-Clifford operations of GKP states.

The second group consists of systems in which strong boson-qubit couplings allow for the effi-
cient implementation of conditional displacement gates. With current technology, this includes
trapped ions and microwave cavity modes coupled to superconducting circuits. Here, I present
and analyze improved protocols to generate and measure GKP states encoded in such systems.
Additionally, I present two more general-purpose quantum continuous-variable algorithms. The
first algorithm is a method to generate squeezed states in the absence of a squeezing Hamiltonian,
by instead superimposing multiple coherent states in phase space. The second algorithm is a
method to transfer arbitrary continuous-variable states into a discrete-variable qubit register.

In summary, the protocols presented herein aim to facilitate and expand the possibilities for
control of continuous-variable quantum systems with existing and near-future technology.
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Resumé (Danish)

Kvantecomputere kan potentielt revolutionere computervidenskab og -teknologi, men deres realis-
ering har vist sig at være en yderst vanskelig udfordring. Et centralt problem er, at støj i høj grad
begrænser ydeevnen af kvantecomputere. For at gøre kvantecomputere fejltolerante er kvante-
fejlkorrektion derfor nødvendig. En lovende type af kvante-fejlkorrektion er bosoniske koder,
hvor hver qubit er indkodet i de kontinuerte variable af en bosonisk tilstand. Eksperimentelle
fremskridt over de sidste to årtier har muliggjort en høj grad af kontrol over de kvantemekaniske
egenskaber af systemer med kontinuerte variable, hvilket har gjort bosoniske koder til en lovende
tilgang til fejltolerance.

I denne afhandling investigeres to typer af kvantesystemer med kontinuerte variable, og nye
protokoller til at generere og manipulere kvantetilstande i disse systemer fremlægges med et
primært fokus p̊a bosonisk fejlkorrektion.

Det første system er optik, hvori Gaussiske operationer over mange tilstande nemt kan imple-
menteres. Optik har s̊aledes mange fordele i forhold til skalering og kontrol, men tab udgør en
central udfordring. Selvom tab i princippet kan mitigeres med bosoniske fejlkorrigerende koder,
er det uvist, hvordan disse koder kan implementeres med nuværende teknikker. I denne afhan-
dling præsenteres metoder til at generere og udføre fejlkorrektion p̊a optiske katkoder ved hjælp
af lineær optik og fotontælling. Derudover præsenteres en metode til at generere Gottesman-
Kitaev-Preskill (GKP) tilstande ved hjælp af kavitetskvanteelektrodynamik som en ikke-Gaussisk
ressource. Endeligt viser jeg, at den kubiske fasegate ikke er en egnet ressource til at udføre ikke-
Clifford operationer p̊a GKP tilstande.

Det andet system best̊ar af platforme, hvori en stærk boson-qubit kobling muliggør en effek-
tiv implementering af betingede forskydningsgates. Med nuværende teknologi inkluderer dette
fangede ioner og mikrobølgekavitetstilstande koblet til superledende kredsløb. Jeg præsenterer
og analyserer forbedrede protokoller til at generere og m̊ale GKP tilstande i disse systemer.
Derudover præsenteres to kontinuertvariable kvantealgoritmer med mere generelle form̊al. Den
ene algoritme er en metode til at generere klemte tilstande i fraværet af et klemme-Hamilton ved
at lave en superposition af kohærente tilstande. Den anden algoritme er en metode til at flytte
vilk̊arlige kontinuertvariable tilstande til et diskretvariabelt qubit register.

Samlet set har resultaterne, der er præsenteret i denne afhandling, til form̊al at facilitere og
udvide mulighederne for at kontrollere kontinuertvariable kvantesystemer gennem teknologi, der
er tilgængeligt i dag eller i den nærmeste fremtid.
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Chapter 1

Introduction

1.1 Quantum computing

Before diving into the details of continuous-variable quantum information processing, we warm
up by going through a brief introduction to quantum computing in order to motivate the field and
clear up a few common misconceptions. The concept of a quantum computer was first suggested
by Richard Feynman in the early 1980’s [1]. His motivation was based on the observation that
quantum mechanics seemingly cannot be simulated efficiently by conventional classical (non-
quantum) computers. That is, classical computers cannot always efficiently predict the behavior
of quantum systems. An important concept here is the notion of efficiency, which means that
the number of components, or bits, in the computer should not increase exponentially with the
number of elements, e.g. particles or photons, that the computer is trying to simulate. Similarly,
the time required for the computer to carry out the simulation should not increase exponentially
with the size of the physical system. Thus, the fact that quantum systems in general require an
exponentially large classical computer to simulate, means that it quickly becomes impractical,
and even impossible, to predict the behavior of modest sized quantum systems. As an example,
the spin state of a system consisting of 60 electrons is in general described by 260 ≈ 1018 complex
numbers. For comparison, Summit, one of the worlds largest supercomputers, has a memory
capacity of 2.5 × 1017 bytes [2], making it insufficient to even store the state of 60 electrons.
And while that example might be conquerable by the next generation of supercomputers, going
to 300 electrons requires 2300 ≈ 1090 complex numbers, which exceeds the number of atoms
in the universe. So not only are such quantum systems impractical to simulate exactly with
classical computers, it even becomes strictly impossible given the finite amount of resources in
the universe, and even more so given the finite amount of resources we can allocate to computers
on Earth.

Quantum computers overcome this problem by storing and manipulating information using quan-
tum bits, qubits, instead of conventional bits. Similarly to a conventional bit, which can store
either a 0 or a 1, a qubit is described by two distinguishable states, |0〉 and |1〉. Here, the bracket
notation, |·〉, signifies that these are quantum states, meaning that a qubit can take on any
superposition state of the form

c0|0〉+ c1|1〉, (1.1)

where the coefficients c0 and c1 are complex numbers satisfying |c0|2 + |c1|2 = 1. The classical
bit is then a special case of the qubit, for which one of the coefficients is zero. At first glance, it

1



Chapter 1. Introduction 2

might appear that a quantum bit can store infinitely more information than a classical bit, since
the coefficients can take on infinitely many values. For example, one might be tempted to state
that a single bit can encode the four-bit string ’1010’ by setting c0 = 0.0101. However, while the
qubit can indeed be set to this state, we run into a problem when we want to retrieve the input
bit string. This is because a measurement of the qubit always returns either a 0 with probability
|c0|2, or a 1 with probability |c1|2. Furthermore, the state of the qubit after the measurement is
reduced to a classical bit corresponding to the measurement outcome, such that the exact values
of the coefficients before the measurement are erased. So unless we want to run a casino, it is
not the fact that the qubit coefficients can take on infinitely many values that gives quantum
computers an edge.

Instead, the difference between the computational power of a bit and a qubit is much more
subtle, and arises from the fact that the complex-valued qubit coefficients can interfere in ways
that classical bits cannot. For example, an important operation of a quantum computer is the
Hadamard gate, H, which is defined by applying the transformations

|0〉 H→ 1√
2
|0〉+

1√
2
|1〉 and |1〉 H→ 1√

2
|0〉 − 1√

2
|1〉. (1.2)

Thus either of the states |0〉 and |1〉 are transformed into superpositions of |0〉 and |1〉 by the
Hadamard gate. A weak classical analogue to this would be to randomly set the state of the
input bit to either 0 or 1. However, applying the Hadamard gate to a qubit in a superposition
state with c0 = c1 = 1/

√
2 we get:

1√
2
|0〉+

1√
2
|1〉 H→ 1√

2

(
1√
2
|0〉+

1√
2
|1〉
)

+
1√
2

(
1√
2
|0〉 − 1√

2
|1〉
)

=

(
1

2
+

1

2

)
|0〉+

(
1

2
− 1

2

)
|1〉

= |0〉. (1.3)

Thus, the superposition state is transformed into the state |0〉 with certainty due to the negative
interference of the |1〉 term. Such interference behavior cannot be simulated with a single classical
bit, and opens up new types of algorithms using quantum computers.

Of course, since a single qubit is completely described by just 2 numbers, c0 and c1, we can easily
simulate it with a few bits in a classical computer. However, when we go to many-qubit systems
this is no longer the case. This is because we need to store a complex number for each possible
configuration of bits, i.e. 4 numbers for 2 qubits (combinations {00, 01, 10, 11}), 8 numbers for
3 qubits (combinations {000, 001, 010, 011, 100, 101, 110, 111}), and in general 2n numbers for n
qubits.

Furthermore, these multi-qubit superposition states give rise to correlations between the qubits,
denoted entanglement, which are beyond what can be explained with classical physics. For
example, consider the two-qubit state 1√

2
|0〉|0〉+ 1√

2
|1〉|1〉. Measuring one qubit gives either 0 or

1 with probability 50:50, and measuring the second qubit will always give the same result as the
first. Thus the two states are perfectly correlated. This correlation by itself is not particularly
impressive as one could spoof those results with classical bits by choosing the number 0 or 1
randomly and then preparing two classical bits in the chosen state. However, an interesting
behavior appears when applying the Hadamard gate to each of the qubits individually, in which
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case we get

1√
2
|0〉|0〉+

1√
2
|1〉|1〉

H on
both qubits−−−−−−−→ 1

2
√

2
(|0〉+ |1〉)(|0〉+ |1〉) +

1

2
√

2
(|0〉 − |1〉)(|0〉 − |1〉)

=
1

2
√

2

(
(1 + 1)|0〉|0〉+ (1 + 1)|1〉|1〉+ (1− 1)|0〉|1〉+ (1− 1)|1〉|0〉

)
=

1√
2
|0〉|0〉+

1√
2
|1〉|1〉. (1.4)

That is, the anti-correlation terms |0〉|1〉 and |1〉|0〉 are cancelled out due to quantum interference,
such that the state of the qubits is completely unchanged and they remain perfectly correlated!
But if the Hadamard gate is applied to either |0〉|0〉 or |1〉|1〉, which represent our non-quantum
spoof, the anti-correlation terms would not cancel out and measurement outputs would instead be
completely random and uncorrelated between the two bits. Classical bits are therefore insufficient
to reproduce the level of correlation present in entangled particles [3].

The effects of superposition, interference and entanglement thus allows for behaviours which are
impossible to replicate efficiently without qubits. Yet, due to the complex dynamics of quantum
systems, the probabilistic nature of qubits, and the high efficiency of modern classical computers,
harnessing these quantum phenomena into useful quantum algorithms is no trivial task. A
breakthrough occurred in 1994 when Peter Shor famously showed that quantum computers can
be used to factor large integers with an exponential speed-up over classical computers [4]. This
was a shocking result, partly due to the fact that the difficulty of factorization underlies the
so-called RSA encryption scheme which is widely used in modern cryptography. An efficient
factorization algorithm would therefore enable the decryption of RSA encoded messages, which
has huge, negative, implications to the general public. Furthermore, the fact that quantum
computers can be used for factorization–a problem which is seemingly completely unrelated to
quantum mechanics–begs the question of what other algorithms can be sped up by quantum
computers. Another seminal quantum algorithm is Grover’s search algorithm from 1996 [5],
which provides a quadratic speed up for searching unstructured data, and has a much wider
application potential compared to Shor’s algorithm.

Since the 90’s, many new quantum algorithms have been devised [6], which has driven an increas-
ing amount research and interest in quantum computers across a wide range of fields. A notable
example is quantum machine learning [7, 8] which aims to leverage quantum algorithms to en-
hance machine learning tasks. Meanwhile, the original motivation of Feynman to simulate phys-
ical systems has merged the fields of computational chemistry and quantum computing [9, 10],
which could lead to discoveries of novel medicinal drugs and new materials. Other application
potentials include problems in climate change [11], finance [12] and energy optimization [13].

1.2 Quantum error correction

The past two decades have seen an accelerating worldwide effort to realise functional quantum
computers, and notably there is now experimental evidence that quantum computers can indeed
exponentially outperform classical computers in certain tasks [14–16]. Yet, quantum computers
have so far solved exactly zero real-world problems. This is because building quantum computers
with multiple controllable and interacting qubits has proven to be an enormously challenging
task. A key challenge is to prevent undesired errors from accumulating during the execution
of an algorithm. In particular, any interaction between a qubit an its environment can cause
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the quantum information stored in the qubit to leak out into the environment. This means,
that in practice superposition states are typically stable only on timescales much smaller than a
second, and entanglement can be observed between only a handful of qubits. To move beyond
this regime, we need to design qubits which can be isolated from their environment, but at the
same time be controlled and interact with each other. The good news is that we don’t need
perfect qubits to build a useful large-scale quantum computer. Instead, we can program the
quantum computer itself to detect and correct small errors, preventing them from accumulating.
This is known as quantum error correction.

The key principle of quantum error correction is to redundantly spread each qubit of information
across multiple physical systems, such that even if one or more physical qubits fail, the logical
information can still be retrieved. A simple classical example is to copy a single bit onto three
bits, i.e. 0 becomes 000 and 1 becomes 111. If one of the bits flips due to noise, we can still guess
what the original state was by taking a majority vote. This means that the effective error rate
of the logical information can be reduced, provided the probability of two simultaneous errors is
low. Essentially, multiple faulty bits are used to simulate a single good bit.

The field of classical error-correcting codes has been well developed for a long time, and more
advanced techniques than the example above exist which require much lower resource overheads
[17, 18]. Such techniques are routinely used in conventional information processing to the point
where we would never expect a conventional computer to make a computational error.

Implementing error correction of quantum computers, on the other hand, is much more difficult
for three main reasons: First, while the only type of error for a classical bit is a bit flip, i.e. an
undesired change from a 0 to a 1 or vice versa, qubits can also experience phase errors. That
is, a qubit in the state 1√

2
|0〉+ 1√

2
|1〉 might change to the state 1√

2
|0〉 − 1√

2
|1〉. Since the phase

is a key element to quantum computers, such an error can drastically change the outcome of a
quantum algorithm. Thus, a quantum error-correcting code needs to detect not only bit flips,
but also phase flips. Second, the act of measurement changes the quantum state, as described
earlier. While a classical error-correcting code can measure each bit directly, we cannot directly
observe the qubits individually as this would destroy any superposition state. Third, due to the
complexity of controlling physical systems at the quantum level, the error rate of qubits are in
practice much, much higher than that of classical bits.

The first two reasons above mean that conventional error correction cannot be directly transferred
to quantum computers. Instead, completely new quantum error-correcting codes have to be
developed. The first such code was proposed by Peter Shor in 1995 [19], in which 9 physical qubits
are used to implement a single logical qubit. Another encoding was subsequently independently
proposed by Andrew Steane in 1996 [20] using only 7 physical qubits. Since then, the field
of quantum error correction has rapidly matured and many different quantum error-correcting
codes have been discovered.

So what makes a good quantum error-correcting code? Essentially, we would like to be able to
perform arbitrarily long computations, yet if the single-qubit error rates are non-zero, they will
eventually add up and ruin the calculation. To prevent this, we need to be able to suppress the
effective error rates of the logical qubits to arbitrarily low levels. Fortunately, this is achievable,
for example by concatenating multiple layers of a code. Using Shor’s code, one can use 9 logical
qubits, each comprising 9 physical qubits to realize an even better logical qubit consisting of a
total of 81 physical qubits. This can be iterated to reduce the logical error rate to arbitrarily low
levels, at the cost of a larger and larger resource overhead. Of course, the more qubits, the larger
the chance that a single physical qubit experiences an error. For quantum error correction to
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work, the code should fix more errors than it introduces, which is only possible if the physical error
rate is lower than a certain threshold. Different codes have different thresholds, and preferably
we would want to use a code with a high threshold to relax the requirements on the physical
qubits. Additionally, we would prefer an efficient reduction of the logical error rate when we
increase the number of qubits, in order to minimize the total number of required physical qubits.
Finally, the code should only require local interactions between physical qubits, as it can be
very challenging, if not impossible, to implement direct interactions between an arbitrary pair of
qubits in a quantum computer.

Arguably, the most promising quantum error-correcting code is the surface code [21–23] as it can
be implemented with qubits in a square lattice architecture, and it has a fault-tolerance threshold
of about 1%, which is rather high. Still, with the surface code it is expected that more than 1000
physical qubits will be needed for each logical qubit in order to reach sufficiently low logical error
rates to implement e.g. Shor’s factorization algorithm [24,25]. This is a huge resource overhead
and so efforts to reduce this overhead are needed to make quantum computers practical.

Designing qubits of a high quality at the physical level is essential to get below the fault-tolerance
threshold, and extremely good qubits will eventually be required in order to reduce the resource
overhead of quantum error correction to manageable levels. One approach towards designing
such high-quality qubits is to encode each qubit into a bosonic system and use bosonic error
correction to add an additional layer of protection against noise. Contrary to the qubit-based
error correction described above which uses multiple physical systems to simulate a single logical
qubit, bosonic error correction uses multiple states of a single bosonic mode to encode a logical
qubit. A such bosonic mode could for example be an optical field or the motion of a trapped
ion. These systems have infinitely many energy levels which can provide a suitable redundancy
for error correction. A classical analogue is found in optical communication systems where laser
pulses are used to transmit classical bits. In such systems, a bit value of 1 can be represented by
a high energy pulse, such that even when photons are inevitably lost throughout the optical fiber,
the pulses still have enough energy to be correctly identified at the receiver. Unfortunately, we
cannot directly use this simple classical strategy to make robust qubits, due to the possibility of
phase errors. Instead, more advanced encodings, specifically tailored to protect quantum states,
have been developed. These codes, and in particular the cat code [26, 27] and the Gottesman-
Kitaev-Preskill (GKP) code [28], are the primary focus of this thesis. While the mathematical
frameworks of these codes have been well described, their implementation in real-world systems
remains challenging, limiting their usefulness in practice. This thesis presents novel techniques
and strategies to implement and control these bosonic codes, tailored for state-of-the-art ex-
perimental settings. Hopefully, the results presented herein can thus guide future experimental
efforts towards implementing bosonic codes and, ultimately, the realization of useful quantum
computers.

1.3 Thesis structure

The remainder of this thesis is structured as follows:

In chapter 2 we introduce the mathematical framework of continuous-variable quantum systems
as well the cat code and the GKP code.

Chapters 3 to 10 contain the research papers of Refs. [29–36] which were produced as a result of
this PhD project. The content of these papers is exactly as their most recent/published versions.

Chapter 3 presents a method for generating four-component cat states from two-component cat
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states using photon counting. With loss being the dominant source of noise in optical systems,
the cat code might be a suitable encoding for optical systems. However, few proposals exist
on how to optically generate the required four-component cat states. Here, we show that two
two-component cat states can be “merged” to create a single four-component cat state using
optical components.

Chapter 4 presents a method for performing error correction on optical cat-code qubits. While
the cat code is a promising encoding to protect against losses, its implementation in optics has so
far remained unclear. Here, we show that error correction can be performed in a teleportation-
based setup using photon counters and logical Bell-encoded cat states.

Chapter 5 presents a method for generating optical GKP states using a cavity QED system.
While multiple protocols have been proposed to generate GKP states, none of them have so far
been successfully implemented in optics. However, it has recently been experimentally demon-
strated that a cavity QED system can be used to generate optical Schrödinger’s cat states. Here,
we show how such a system can also be used to generate GKP states and analyze the performance
for systems of finite cooperativity and escape efficiency.

Chapter 6 analyzes the performance of cubic phase gates when used to implement non-Clifford
gates on GKP qubits. We show that the cubic phase gate is not a suitable resource for the GKP
code, and that non-Clifford gates should instead be implemented through gate teleportation of
encoded magic states.

Chapter 7 presents a method to deterministically generate GKP states through conditional dis-
placement gates. The proposal builds upon previously implemented protocols, but eliminates
the need for qubit measurements. This allows for faster generation of GKP states which we show
should ultimately result in higher quality states.

Chapter 8 presents a method to perform logical GKP state measurements in the absence of
homodyne detectors. Homodyne detectors are usually the preferred method to measure GKP
states, but these are not readily available in the systems for which GKP states have so far
been experimentally generated. Here, we show that it is still possible to perform high-fidelity
measurements in these systems by utilizing qubit interactions through conditional displacements.

Chapter 9 presents a method to deterministically generate squeezed vacuum states through
conditional displacements. Squeezed vacuum states are a central resource for many continuous-
variable quantum tasks. Here, we show how they can be generated from vacuum without the
need to engineer a squeezing Hamiltonian.

Chapter 10 presents a protocol to transfer arbitrary continuous-variable states to a discrete-
variable qubit register using conditional displacements. This allows for qubits to store continuous-
variable states and could open up new types of control in qubit-coupled continuous-variable
systems.

Finally, chapter 11 concludes the work, and outlines relevant near-term challenges and directions
for continuous-variable quantum platforms.



Chapter 2

Quantum continuous variables

In this section we introduce the quantum mechanical mathematical background and formalism
used throughout the thesis. As one can easily fill a textbook on this subject [37–41], not every
aspect will be explained in full mathematical rigor. Instead, we will simply introduce the most
relevant aspects of quantum continuous-variables, before introducing the cat and GKP quantum
error-correcting codes.

2.1 Fundamentals of quantum continuous variables

The fundamental mathematical objects of quantum mechanics are states and operators. In the
Schrödinger picture, a state represents a physical system, and thus contains all the information
there is to know about that particular physical system. Mathematically, the states are vectors
with a dimensionality depending on the type of physical system. For continuous-variable sys-
tems the dimensionality is infinite. Meanwhile, the operators are used to probe and change the
states, and can be categorised into two groups: observables and unitary transformations. For
now, we focus our attention to observables, returning to unitary transformations in Section 2.3.
Observables, as the name suggests, represent physical quantities, or properties, that we are able
to observe for a given system. Some common examples are the position and momentum of a
particle along a specific axis. For each observable we associate a Hermitian operator, Â, from
which we can furthermore identify its eigenstates, |a〉, and corresponding eigenvalues, a. These
quantities thus satisfy

Â|a〉 = a|a〉. (2.1)

Physically, the eigenvalues are the possible measurement outcomes of the corresponding physical
quantity. Here, we focus our attention to observables for which the the possible measurement
outcomes span a continuous interval, as is the case for position and momentum.

A central principle in quantum mechanics is the superposition principle. Let a Â denote any
observable with continuous eigenvalues and corresponding eigenstates |a〉. The superposition
principle states that any state |ψ〉 can be represented as a superposition (weighted sum) of these
eigenstates:

|ψ〉 =

∫
daψ(a)|a〉, (2.2)

7
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where the complex-valued function
ψ(a) = 〈a|ψ〉, (2.3)

is called the wavefunction of the state with respect to the observable Â. Applying 〈a′| to Eq.
(2.2) we get

〈a′|ψ〉 = ψ(a′) =

∫
daψ(a)〈a′|a〉, (2.4)

from which we conclude that the observable eigenstates should satisfy

〈a′|a〉 = δ(a′ − a), (2.5)

where δ is the Dirac delta function. Additionally, applying
∫
da |a〉〈a| to Eq. (2.2) get(∫

da |a〉〈a|
)
|ψ〉 =

∫
da

∫
da′ ψ(a′)|a〉〈a|a′〉 =

∫
daψ(a)|a〉 = |ψ〉, (2.6)

from which we obtain the identity relation∫
da |a〉〈a| = Î , (2.7)

where Î is the identity operator.

According to quantum mechanics all measurements are fundamentally probabilistic, and the
wavefunction therefore only allows us to calculate the probability density of a particular mea-
surement outcome through the Born rule,

P (a) = |〈a|ψ〉|2 = |ψ(a)|2. (2.8)

Since a measurement of the observable Â should always return some outcome, the probability
density should integrate to 1: ∫

P (a)da =

∫
|ψ(a)|2da = 1. (2.9)

Thus the wavefunction of any physical state should be normalized to
∫
|ψ(a)|2 = 〈ψ|ψ〉 = 1.

Note that the eigenstates of continuous-variable observables are not normalizable since 〈a|a〉 =
δ(0) 6= 1. Thus, for continuous variables, the observable eigenstates do not represent physical
states, but are rather a mathematical tool from which we build actual physical states, according
to the superposition principle of Eq. (2.2).

2.1.1 Density matrices

For each pure state, |ψ〉, we can construct a corresponding object ρ = |ψ〉〈ψ| called the density
matrix. Just like the state vector |ψ〉, the density matrix contains a complete description of the
state. Moreover, we can use the density matrix formalism to construct more general states, such
as a classical probabilistic ensemble of pure states

ρ =
∑
k

pk|ψk〉〈ψk|, (2.10)

where all the pk’s are positive and sum to 1, just like a classical probability distribution. However,
the decomposition of (2.10) is not unique, and so the interpretation of the state as a distribution
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of pure states is not unique either. If there are no representations for which the density matrix
can be described by a single pure state, we say that the state is mixed.

Similarly to state vectors, density matrices can be expanded in terms of the eigenstates of an
observable

ρ =

∫
da′ da′′Ψ(a′, a′′)|a′〉〈a′′|, (2.11)

with a corresponding wavefunction

Ψ(a′, a′′) = 〈a′|ρ|a′′〉. (2.12)

Additionally, the probability density of observing measurement outcome a is given by

P (a) = 〈a|ρ|a〉 = Ψ(a, a). (2.13)

Density matrices are particularly useful when a system of interest becomes entangled with its
environment. Generally, when two systems interact they become entangled and can be described
by the combined two-mode state vector

|ψ1,2〉 =

∫
da1 da2 ψ1,2(a1, a2)|a1〉 ⊗ |a2〉. (2.14)

This two-mode state vector has a corresponding density matrix

ρ1,2 = |ψ1,2〉〈ψ1,2| =
∫
da′1 da

′′
1 da

′
2 da

′′
2 ψ1,2(a′1, a

′
2)ψ∗1,2(a′′1 , a

′′
2)|a′1〉〈a′′1 | ⊗ |a′2〉〈a′′2 | (2.15)

In the real world it is extremely difficult to perfectly isolate a quantum system from its envi-
ronment, and so most quantum systems will rapidly become entangled with a larger and larger
environment. However, if the initial quantum system is a logical state in our quantum computer,
we are not so interested in the state of the environment around it, and furthermore we typically
cannot control or measure the environment at the quantum level anyway. Conveniently, the
density matrix formalism allows us to write a density matrix that describes only the mode of
interest, by tracing out the environment mode, i.e.

ρ1 = Tr2(ρ1,2). (2.16)

The single-mode density matrix wavefunction is then given by

Ψ1(a′, a′′) =

∫
daψ1,2(a′, a)ψ∗1,2(a′′, a). (2.17)

If modes 1 and 2 were initially entangled ρ1 will not correspond to a pure state, i.e. it cannot be
written as |ψ〉〈ψ|, and it is therefore equivalent to a statistical mixture of pure states. Thus in-
teractions with an environment introduce classical uncertainties, or noise, to the logical quantum
state, which will eventually drown out vital quantum features if not properly dealt with.

2.1.2 Position and momentum

We now introduce the position and momentum operators, which are the central continuous-
variable observables of this thesis. We denote the one-dimensional position operator by q̂1. This

1Often x or X are used to represent position, but for quantum information this symbol is already reserved for
the Pauli x operator and thus q is chosen as the convention in this chapter. Still, we will later deviate from this
logic and use x or X to denote the position quadrature in the papers of chapters 3, 5, 6, 7 and 9. I apologize for
this inconvenience.



Chapter 2. Quantum continuous variables 10

operator represents exactly what it sounds like, namely the position coordinate of a given particle
along some predefined axis. Thus, for a particle with wavefunction ψ(q), the probability density
of seeing it at position q is equal to |ψ(q)|2.

The momentum operator should allow us to find the momentum wavefunction of a particle. It
turns out that a sensible, although perhaps non-trivial, definition of the momentum operator in
terms of the position wavefunction is

p̂ = −i~ ∂
∂q
. (2.18)

The eigenstates of the momentum operator are the states satisfying

p̂|p〉 = p|p〉 ↔ −i~∂ψp(q)
∂q

= pψp(q). (2.19)

This is solved by the position wavefunction given by

ψp(q) = Ne
i
~pq, (2.20)

where N is a constant which is found by constraining the wavefunction to satisfy the normaliza-
tion relation of Eq. (2.5):

〈p′|p′〉 =

∫
dq N∗e−ip

′qNeipq = |N |2
∫
dq e

i
~ (p−p′)q = δ(p− p′). (2.21)

From the relation 1/2π
∫
dz ei(x−x

′)z = δ(x − x′) we conclude that N = 1/
√

2π~, i.e. the
momentum-eigenstates in the position basis are:

|p〉 =
1√
2π~

∫
dq eipq|q〉, ψp(q) =

1√
2π~

eipq. (2.22)

Importantly, |ψp(q)|2 is uniform and non-zero for all q, meaning that a state with perfectly well-
defined momentum has a completely random position. Conversely, the momentum wavefuction
of the position eigenstates are

ψq(p) = 〈q|p〉 =
1√
2π~

∫
dq′ eipq

′
〈q|q′〉 =

1√
2π~

e−iqp, (2.23)

which have completely random momentum. This feature is captured more generally by the
Heisenberg uncertainty principle which relates the uncertainties of two observables, Â and B̂, by

∆A∆B ≥
1

2
|〈[Â, B̂]〉|, (2.24)

where ∆O =

√
〈Ô2〉 − 〈Ô〉2 is the standard deviation of the observable Ô, 〈Ô〉 = 〈ψ|Ô|ψ〉 is the

expectation value of Ô and [Â, B̂] = ÂB̂− B̂Â is the commutator. For position and momentum,
we can find the commutator by applying it on an arbitrary position wavefunction:

[q̂, p̂]ψ(q) = −i~
(
q
∂ψ(q)

∂q
− ∂(qψ(q))

∂q

)
= −i~

(
q
∂ψ(q)

∂q
− q ∂ψ(q)

∂q
− ∂ψ(q)

∂q

)
= i~ψ(q). (2.25)

Thus
[q̂, p̂] = i~, (2.26)
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and therefore

∆q∆p ≥
~
2
. (2.27)

As a consequence, there exists no state for which measurements of both the position and mo-
mentum will always return a well-defined value.

An important feature of the momentum is, that the momentum wavefunction is completely
determined by the position wavefunction since

ψ(p) = 〈p|ψ〉 = 〈p|
∫
dq ψ(q)|q〉 =

∫
dq ψ(q)〈p|q〉 =

1√
2π~

∫
dq ψ(q)e−iqp. (2.28)

That is, the momentum wavefunction is the Fourier transform of the position wavefunction.
Conceptually, the momentum is thus encoded in the phase of the position wavefunction and
vice-versa.

2.1.3 Electromagnetic field quadratures

Another relevant continuous-variable system is the electromagnetic field. The value of the electric
field at a particular point in space is a physical observable quantity and can thus be associated
with a quantum mechanical Hermitian operator. Furthermore, from optics we know that it
is often convenient to break down the electromagnetic field into frequency components. With
a slight foresight and abuse of notation, we denote the electric field of a specific frequency
with the operator q̂, which is also called the amplitude quadrature. According to Maxwell’s
equations, the electric field evolves over time, and from this evolution it makes sense to define
a “momentum” operator for the electric field, denoted p̂, which we call the phase quadrature
operator. The phase quadrature thus describes the rate of change of the electric field. For a
standing electromagnetic field wave in a cavity, p̂ is proportional to the magnetic field. The
amplitude and phase quadratures turn out to obey the commutation relation [q̂, p̂] ∝ i, just like
the position and momentum of a particle. From this it follows that the quadrature operators q̂
and p̂ defined here have all the same quantum mechanical relations and properties as the position
and momentum described in the previous section. This conveniently allows us to use a single
mathematical formulation to describe two physically very different systems. In the following we
will refer to q̂ and p̂ as position and momentum, keeping in mind that they could as well represent
electromagnetic quadratures.

2.1.4 The Wigner function

While both the position and momentum of a state are completely described by the position
wavefunction, it is nonetheless useful to have a representation that more directly includes both
position and momentum. For example, the position and momentum of a classical particle along
a specific axis can be represented by a point in a two-dimensional phase space with coordinates
of position and momentum. Furthermore, if the precise position and momentum are unknown,
we can instead consider a probability distribution over this phase space.

Due to the intrinsic relationship between the position and momentum wavefunctions, a similar
phase-space distribution function for quantum states is bit more tricky to define. In fact, it turns
out that there are multiple different meaningful ways to define such a function. One of these is
the Wigner function which was defined by E. Wigner and L. Szilard [42], and is given in terms
of the density matrix by

W (q, p) =
1

π~

∫ ∞
−∞

dy
〈
q + y

∣∣∣ρ∣∣∣q − y〉e2ipy/~. (2.29)
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Although the definition might appear a bit obscure at first glance, it turns out that the Wigner
function has many useful properties. First, just like the wavefunction, the Wigner function gives
a complete description of the state with respect to the position and momentum observables.
Moreover, unlike the wavefunction, the Wigner function is real-valued for all physical states. This
means that the Wigner function can be easily visualized. Additionally, the marginal distributions
of the position and momentum behave just like that of a classical probability distribution, i.e.:

P (q) =

∫
dpW (q, p), P (p) =

∫
dqW (q, p). (2.30)

Consequently, the Wigner function is normalized according to:∫
dq

∫
dpW (q, p) = 1. (2.31)

But unlike a classical probability distribution, the Wigner function can take on negative values.

Another pleasant feature of the Wigner function is that different quantum states are visually
distinguishable by their Wigner functions. This follows from the fact that the overlap between
two states can be calculated from the overlap of their Wigner functions:

|〈ψ1|ψ2〉|2 =

∫
dq

∫
dpW1(q, p)W2(q, p). (2.32)

So if the states are orthogonal, |〈ψ1|ψ2〉|2 = 0, their Wigner functions must be different enough
to make the above integral 0. While the Wigner function can be used as useful a mathematical
tool, it will primarily be used as a visualisation tool in this thesis, allowing us to gain some
intuition on the behavior continuous-variable quantum states. In section 2.2 we will see some
examples of Wigner functions of different states.

2.1.5 Fock representation

Besides the position and momentum operators, a central observable in continuous-variable quan-
tum mechanics, and indeed in all of quantum mechanics, is the Hamiltonian, Ĥ, which describes
the energy of a particular system. The Hamiltonian is important, as it allows us to calculate
how a state changes over time according to the Schrödinger equation,

d

dt
|ψ(t)〉 = − i

~
Ĥ|ψ(t)〉. (2.33)

The exact form of the Hamiltonian depends on the physical system, but a particularly important
case for this thesis is that of the harmonic oscillator,

Ĥ =
1

2
~ω
(
p̂2 + q̂2

)
. (2.34)

For q̂ and p̂ representing position and momentum, the p̂2 term corresponds to the kinetic energy
while the q̂2 term corresponds to potential energy in a quadratic potential. Thus Eq. (2.34) is
the Hamiltonian for a particle trapped in a quadratic potential, where ω is the angular frequency
of oscillation and q̂ and p̂ have been non-dimensionalized such that the position is in units of√
~/mω and the momentum is in units of

√
mω~ where m is the mass of the particle. As an

example, the length scale for the motion of the trapped calcium ion used in the experiment of
Ref. [43] is on the order of 10 nm. Note that in these units, the commutation relation of q̂ and
p̂ is [q̂, p̂] = i, which is the convention used throughout this thesis.
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For q̂ and p̂ representing electric field quadratures, Eq. (2.34) is exactly energy of the electro-
magnetic field in vacuum at the frequency ω, obtained from quantizing Maxwell’s equations with
a suitable non-dimensionalization.

It turns out that although q̂ and p̂ represent continuous observables, the Hamiltonian of the
harmonic oscillator has discrete eigenvalues corresponding to possible energy levels,

En = ~ω
(
n+

1

2

)
, (2.35)

with corresponding eigenstates |n〉 for all non-negative integer n. These states are called Fock
states and form an orthonormal basis, so any wavefunction can be described in the Fock basis as

|ψ〉 =

∞∑
n=0

cn|n〉, (2.36)

where cn = 〈ψ|n〉, and |cn|2 is the probability of measuring the energy of the state to be En. Thus∑
n |cn|2 = 1. Physically, we interpret the state |n〉 as containing n bosonic excitations, which we

call phonons in the case of trapped particle, or photons if we are considering the electromagnetic
field.

The Fock states are related to the position states through [37]

〈q|n〉 =

√
1√
π2nn!

e−
q2

2 Hn(q), (2.37)

where Hn is the n’th Hermite polynomial.

Some very useful operators for the Fock representation are the annihilation operator â, its con-
jugate the creation operator â†, and their product the number operator n̂ = â†â. These are
defined by the relations

â =
1√
2

(q̂ + ip̂), â† =
1√
2

(q̂ − ip̂), (2.38)

or conversely,

q̂ =
1√
2

(â+ â†), p̂ =
1

i
√

2
(â− â†). (2.39)

The harmonic oscillator Hamiltonian can therefore be rewritten as

Ĥ = ~ω
(
â†â+

1

2

)
. (2.40)

These operators have particularly simple relations to the Fock states:

â|n〉 =
√
n|n− 1〉, â†|n〉 =

√
n+ 1|n+ 1〉, n̂|n〉 = n|n〉. (2.41)

Thus the annihilation operator subtracts an excitation while the creation operator adds an ex-
citation. Since the annihilation and creation operator are neither Hermitian nor unitary they
do not by themselves correspond to any physical observable or deterministic process. However,
other operators can be expanded in terms of the annihilation and creation operators, allowing
us to interpret physical processes in terms of exchange of energy quanta.
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2.2 States

We now go through some typically encountered states, all of which are visualized by their Wigner
functions, position and momentum marginal distributions, and Fock basis distributions in Fig.
2.1.

The vacuum state. The vacuum state is shown in Fig. 2.1a and is the lowest possible energy
state of the harmonic oscillator, i.e. the state |0〉 in the Fock basis. The position wavefunction
can be obtained from Eq. (2.37) and is given by the Gaussian function

ψvac(q) =
1

π1/4
e−

q2

2 . (2.42)

Furthermore, the momentum wavefunction is equal to the position wavefunction and the standard
deviation of the position and momentum is ∆q = ∆p = 1√

2
, meaning the vacuum state saturates

the Heisenberg uncertainty principle. Still, the vacuum state has a non-zero probability for
measurements of q 6= 0 and p 6= 0, i.e. the vacuum exhibit small fluctuations in both the position
and momentum.

Thermal states. Many real-world systems exchange energy with their surrounding, which
eventually brings the state into thermal equilibrium with its environment. A state in such
thermal equilibrium is characterised by its temperature, T , and can be described by a density
matrix in the Fock basis as

ρthermal =
1

n+ 1

∞∑
n=0

(
n

n+ 1

)
|n〉〈n| (2.43)

where n = 〈n̂〉 = [exp(~ω/kBT ) − 1]−1, where kB is the Boltzmann constant. A thermal state
with n = 2 is shown in Fig. 2.1b.

Coherent states. The coherent state is the closest we get to a classical oscillation of a trapped
particle, or the electromagnetic field of a laser. These states can thus have high energy and highly
defined position and momentum. Coherent states can be considered as displaced versions of the
vacuum state, as exemplified in Fig. 2.1c. They are parametrized by the expectation value of
their position and momentum, which for coherent states are written compactly by the complex
number α = 1√

2
〈q〉 + i 1√

2
〈p〉. Note here the factor 1/

√
2, which is a consequence of our unit

choice. The position wavefunction is

ψcoh(q) =
1

π1/4
e−(q−

√
2Re(α))2/2ei

√
2Im(α)q, (2.44)

and the Fock basis representation is

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉. (2.45)

An interesting property of coherent states is that they are eigenstates of the annihilation operator
with eigenvalue α,

â|α〉 = α|α〉, (2.46)

as can be verified from Eqs. (2.41) and (2.45). However, since â is not Hermitian, α is not an
observable quantity, i.e. it cannot be determined in a single-shot experiment.
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Figure 2.1: A zoo of quantum continuous-variable states. The colormaps show the Wigner
functions, W (q, p), the line plots show the position and momentum probability distributions,
|ψ(q)|2 and |ψ(p)|2, and the bar plots show the Fock basis distributions, |cn|2. The scale of the
position and momentum probability distributions vary from state to state.
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Squeezed vacuum. The squeezed vacuum states have an asymmetric phase space distribution,
such that the uncertainty in the position is reduced at the cost of an increased uncertainty in
momentum or vice versa. Squeezed vacuum states thus have an uncertainty in one quadrature
which is below that of the vacuum state. The magnitude of the uncertainty reduction, or ”squeez-
ing”, is quantified by the squeezing parameter r. Positive r correspond to a reduced position
uncertainty while negative r correspond to a reduced momentum uncertainty. Like the vacuum
and coherent states, the position wavefunction of the squeezed vacuum is also a Gaussian:

ψsqz(q) = er/2
1

π1/4
e−

q2

2e−2r . (2.47)

and the Fock basis coefficients are given by

cn =


1√

cosh(r)
(− tanh(r))n/2

√
n!

(n/2)!! for even n,

0 for odd n.
(2.48)

Note that despite the name, squeezed vacuum states also have support on states other than the
vacuum state, and therefore have a higher average energy than the vacuum.

The standard deviation of the position of a squeezed vacuum state is given by ∆q = e−r/
√

2,
and often the squeezing parameter is expressed in units of dB, denoting the reduction in the
variance with respect to the vacuum, i.e.

r[dB] = −10 log10(e−2r) =
20

ln(10)
r ≈ 8.7r (2.49)

Figs. 2.1(d-f) show different squeezed vacuum states with 5 dB squeezing, -5 dB squeezing, and
15 dB squeezing, which corresponds to the largest experimentally achieved level of squeezing [44]

Fock states. Wigner functions of the Fock states, i.e. the energy eigenstates, with excitation
numbers 1, 2 and 10 are shown in Fig. 2.1(g-h). These have the characteristic feature of being
rotationally symmetric, with large uncertainties in both the position and momentum. Despite
their deceivingly simple formulation as states with well-defined energy, high energy Fock states
are very challenging to generate experimentally, especially in optics. Fock states are thus highly
non-classical states, which is also evident by the negative values of their Wigner functions.

Cat states. Another non-classical state is the Schrödinger’s cat state, which is a superposition
of two coherent states, typically at opposite points in phase space, i.e. |α〉 + eiφ|−α〉. Here,
φ is the quantum phase between the coherent states. The Wigner functions for α = 2 and
φ = 0 and φ = π are shown in Fig. 2.1j and k. There are three notable parts of these Wigner
functions, namely the two positive Gaussian peaks at ±α and an oscillating contribution between
them. Importantly, the central oscillating term is a signature of the quantum phase φ, and the
value of φ determines the phase of this oscillation. Physically, this is revealed in the momentum
marginal distribution, which exhibits fluctuations on a scale smaller than the vacuum quantum
uncertainty.

Other states. The states considered so far represent some of the historically most interesting
continuous-variables states, which all have certain structures giving rise to Wigner functions with
different symmetries or dissectible elements. However, we should keep in mind that infinitely
many different states are allowed by the laws of quantum mechanics, e.g. by choosing what-
ever normalizable Fock basis coefficients we like. An example of a state with randomly chosen
complex coefficients under a suitable energy constraint is show in Fig. 2.1l. For this state, the
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positive and negative parts of the Wigner function have no clear separation or structure, and
thus it becomes difficult to associate a physical interpretation to any specific point of the Wigner
function. One might question how such a state can be produced experimentally or whether it
has any applications. We will not attempt to address those questions here, but instead we simply
show it as a remainder of the richness and diversity continuous-variable quantum states.

2.3 Gates

In order to use quantum states as computational resources in a quantum computer, we need
to be able to control and manipulate them. As mentioned, quantum states evolve according to
the Schrödinger equation, Eq. (2.33). Solving the Schrödinger equation, we find that a mode in
the initial state |ψ(0)〉 evolves to the state |ψ(t)〉 = exp(−itĤ/~)|ψ(0)〉 after time t, assuming
a time-independent Hamiltonian. The evolution is thus described by the unitary operator Û =
exp(−itĤ/~). By controlling the Hamiltonian, we can therefore change one quantum state into
another. Exactly how the Hamiltonian is controlled in experiment depends greatly on what kind
of physical system we are considering and which unitary we wish to implement. In the perspective
of the quantum states representing carriers of logical information in quantum computer, we refer
to such a discrete unitary evolution as a quantum gate. Some common continuous-variable gates
are:

Rotation gate. The rotation gate is the one generated by the harmonic oscillator and can be
written as,

R̂(θ) = exp(−iθn̂) = eiθ/2 exp
(
− iθ

2
(q̂2 + p̂2)

)
. (2.50)

For the harmonic oscillator, this gate is implemented simply by waiting for a time t = θ/ω. The
effect of the rotation gate is to rotate the state by an angle θ is phase space. Thus the rotation
gate corresponds to a transformation of the Wigner function according to

W (q, p)→W
(

cos(θ)q + sin(θ)p,− sin(θ)q + cos(θ)p
)
. (2.51)

Displacement gate. The displacement gate is defined as

D̂(β) = exp(αâ† − α∗â) = exp
(
i
√

2(Im[α]q̂ − Re[α]p̂)
)
. (2.52)

The effect of the displacement gate is to displace the state in phase space and corresponds to
the Wigner function transformation

W (q, p)→W
(
q −
√

2 Re[α], p−
√

2 Im[α]
)

(2.53)

Thus the displacement operator can be used to generate any coherent state from the vacuum
state through |α〉 = D̂(α)|vac〉.

Squeezing gate. The squeezing gate is defined as

Ŝ(ξ) = exp
(1

2
(ξ∗â2 − ξâ†2)

)
= exp

(
i
r

2

[
cos(φ)(q̂p̂+ p̂q̂)− sin(φ)(q̂2 − p̂2)

])
(2.54)

with ξ = reiφ. The squeezing operator ”squeezes” the state in phase space by contracting it in
one direction while expanding it in the orthogonal direction. This corresponds to the Wigner
function transformation

W (q, p)→W
(
(er cos2(φ) + e−r sin2(φ))q + cos(φ) sin(φ)(er − e−r)p,

cos(φ) sin(φ)(er − e−r)q + (er sin2(φ) + e−r cos2(φ))p
)
, (2.55)
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which for φ = 0 this simplifies to

W (q, p)→W (erq, e−rp). (2.56)

Conditional displacement gate. Although not as common as the previously mentioned gates,
the conditional displacement gate is a central element of chapters 7-10 and is therefore given an
introduction here. It is a two-mode gate acting on a system consisting of a continuous-variable
mode and a 2-dimensional qubit mode,

CDk(β) = exp
(
iσ̂k ⊗ [−Re(β)p̂+ Im(β)q̂]

)
= |+k〉〈+k| ⊗ D̂

(
β√
2

)
+ |−k〉〈−k| ⊗ D̂

(
− β√

2

)
, (2.57)

where σ̂k with k ∈ {x, z, y} denotes a qubit Pauli matrix with eigenstates |+k〉 and |−k〉. The
conditional displacement thus performs a displacement of the continuous-variable mode in a
direction depending on the state of the qubit. This will in general entangle the qubit and the
continuous-variable mode. Alternatively, the conditional displacement can also be interpreted
as a rotation of the qubit with a magnitude depending on the state of the continuous-variable
mode. For example, for purely imaginary β we can write:

CDk(i|β|) =

∫
dq exp(iq|β|σ̂k)⊗ |q〉〈q| (2.58)

Thus the qubit is rotated around the k axis with a direction and magnitude proportional to the
position of the continuous-variable mode.

There are different methods to implement a conditional displacement, depending on the physical
platform. Here, we present a method suitable for a trapped ion as well a method suitable for a
microwave field coupled to a superconducting circuit.

To implement a conditional displacement in a trapped ion platform, we can utilize the coupling
between a phononic mode of the ion (the continuous-variable mode) and its internal electronic
energy levels [45, 46]. Trapped ions typically have a rich energy structure, with multiple viable
qubit subspaces [47]. Here, we restrict our attention to a qubit subspace comprising two long-
lived electronic energy levels, |g〉 and |e〉, separated by an energy gap in the optical frequency
domain, such that a resonant laser can drive transitions between the two states. The motional
modes are typically in the MHz range and can be addressed by tuning lasers to the so-called
motional sidebands, as shown in Fig. 2.2a. Physically, if a laser is blue-detuned from the qubit
resonance such that the photon energy equals the qubit transition energy plus that of a phonon,
both the qubit and a phonon can be simultaneously excited. This is described by the operator
σ̂+â

† with σ̂+ = |e〉〈g|. Meanwhile, such laser can also stimulate a simultaneous decay of the
qubit and a phonon, represented by the operator σ̂−â with σ̂− = |g〉〈e|. In total, the Hamiltonian
of the system in this blue motional sideband, in a rotating frame, is

1

~
Ĥblue = Ωblueσ̂+â

† + Ω∗blueσ̂−â, (2.59)

where Ωblue depends on the coupling strength and phase of the laser. Similarly, if the laser is
red detuned, a photon can be absorbed to excite the qubit while annihilating a phonon, or the
qubit can deexcite while exiting a phonon. The Hamiltonian in this case is thus

1

~
Ĥred = Ωredσ̂−â

† + Ω∗redσ̂+â. (2.60)
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Figure 2.2: (a): Energy structure of a trapped ion with two electronic states {|g〉, |e〉} plus a
ladder of motional states, {|0〉, |1〉, ...}. The arrows indicate the blue and red motional sideband
transitions. (b): Evolution of a point represented by a complex number, z0, of the Wigner
function under the transformations used to implement a conditional displacement gate from a
dispersive Hamiltonian, e.g. in a superconducting platform. The two different directions at step
2 correspond to the evolution associated with the qubit states |g〉 and |e〉 respectively. The dotted
curves indicate circles centered at the origin, along which the state rotates due to the dispersive
coupling.

Driving both transitions simultaneously with a bichromatic laser with real Ωblue = Ωred ≡ Ω we
get:

1

~
Ĥ = Ω (σ̂+ + σ̂−)

(
â+ â†

)
=
√

2Ωσ̂xq̂, (2.61)

which is exactly the generator of a conditional displacement. Additionally, by tuning the phases
of Ωred = |Ω|eiφred and Ωblue = |Ω|eiφblue we can achieve the more general expression

1

~
Ĥ =

√
2|Ω|

(
eiφ− σ̂+ + e−iφ− σ̂−

) eiφ+ â† + e−iφ+ â√
2

, (2.62)

with φ+ = (φblue + φred)/2 and φ− = (φblue − φred)/2, which corresponds to a displacement in
an arbitrary quadrature direction conditioned on an arbitrary qubit direction in the x-y plane of
the Bloch sphere.

The conditional displacement gate can also be implemented in superconducting circuits, as
was done in [48], through a driven dispersive coupling between a microwave cavity field (the
continuous-variable mode) and a superconducting qubit. The dispersive Hamiltonian in a rotat-
ing reference frame is

1

~
Ĥ = −χ

2
n̂σ̂z + iE(t)â† − iE∗(t)â, (2.63)

where σ̂z is the Pauli-z operator of the transmon and E(t) is a microwave drive resonant with
the cavity frequency. The conditional displacement is achieved by implementing a sequence of
fast displacements through the microwave drive along with waiting periods of free Hamiltonian
evolution [49], which we describe below. To show mathematically that the sequence implements
a conditional displacement, we can use the fact that the involved continuous-variable operations
are Gaussian and thus simply corresponds to a coordinate transformation of the Wigner function.
We find this transformation by keeping track of a point in the Wigner function, denoted by the
complex number z0 = q0 + ip0. The sequence is depicted in Fig. 2.2b and is as follows:
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1. A short intense pulse causes a large displacement of magnitude α of the cavity mode,

z0 → z0 + α. (2.64)

2. The cavity evolves for time T/2 under the dispersive Hamiltonian, rotating it in a direction
depending on the state of the transmon,

z0 + α→ (z0 + α)e±iTχ/4, (2.65)

with '+' corresponding to the qubit in the state |0〉 and '−' corresponding to the qubit in
the state |1〉.

3. The cavity is displaced in the opposite direction by magnitude −2α and simultaneously
the transmon is flipped by a σ̂x gate using another microwave drive resonant with the
transmon,

(z0 + α)e±iTχ/4 → (z0 + α)e±iTχ/4 − 2α. (2.66)

4. The cavity evolves again for time T/2 under the dispersive Hamiltonian, but in the direction
opposite to the first rotation due to the flip of the transmon,

(z0 + α)e±iTχ/4 − 2α→
[
(z0 + α)e±iTχ/4 − 2α

]
e∓iTχ/4. (2.67)

5. The cavity is displaced back again with magnitude α,[
(z0 + α)e±iTχ/4 − 2α

]
e∓iTχ/4 →

[
(z0 + α)e±iTχ/4 − 2α

]
e∓iTχ/4 + α

= z0 + 2α
(

1− e∓iTχ/4
)

= z0 + 2α(1− cos(Tχ/4))± i2α sin(Tχ/4) (2.68)

We thus end up with an unconditional displacement along the α direction, and a conditional
displacement in the orthogonal direction. The strength of the unconditional part compared to
the conditional part vanishes for T � χ/4, but the unconditional part can also be removed simply
by slightly adjusting the final displacement pulse. Importantly, a large conditional displacement
can be implemented on a time scale smaller than 1/χ by choosing a sufficiently large α, i.e. using
an intense microwave drive.

Even if the microwave displacement pulses are not instantaneous, we can still model the system
as a transformation of the Wigner function coordinates. In particular, the Hamiltonian can be
transformed into a differential equation for the coordinates, with the n̂ term corresponding to a
rotation and the drive term corresponding to a velocity:

dz(t)

dt
= ±iχ

2
z(t) +

√
2E(t). (2.69)

For E(t+ T/2) = −E(t) and a flip of the sign of the rotation term at t = T/2, the solution is

z(T ) = z(0) +

∫ T/2

0

dt′
√

2E(t′)
(
e±it

′χ/2 − e±i(T/2−t
′)χ/2

)
= z(0) +

∫ T/2

0

dt′
√

2E(t′) (cos(t′χ/2)− cos((T/2− t′)χ/2))

± i
∫ T/2

0

dt′
√

2E(t′) (− sin(t′χ/2) + sin((T/2− t′)χ/2)) . (2.70)

Thus we still obtain an unconditional displacement and a conditional displacement.
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2.4 Noise channels

While we typically think of gates as operations which we can control and apply in any sequence,
e.g. in order to implement a quantum algorithm, quantum states also interact with their envi-
ronment in uncontrollable ways. This causes decoherence of the quantum states which can be
detrimental if not properly dealt with. Noise can be modelled using the Master equation, which
generalizes the Schrödinger equation in terms of density matrices and accounts for interactions
with an environment which is subsequently traced out. The Master equation is

d

dt
ρ = − i

~
[Ĥ, ρ] +

∑
j

κj

(
L̂jρL̂

†
j −

1

2

(
L̂†jL̂jρ+ ρL̂†jL̂j

))
(2.71)

where L̂j are called the Lindblad operators which depend on the type of the noise and κj
denotes the strength of each noise type, which depends on how strongly the system couples to its
environment. For Ĥ = 0, e.g. by considering a rotating reference frame, the Master equation can
be solved to find the density matrix at time t, which can be written in the Kraus representation
as [50]

ρ(t) =
∑
k

K̂k(t)ρ(0)K̂†k(t), (2.72)

where K̂k(t) are called the Kraus operators. From Eq. (2.72) we can interpret the noisy evolution
as a discrete channel which applies one of the operators K̂k(t) to the state according to the

probability distribution given by Tr(K̂k(t)ρK̂†k(t)). Since we do not know exactly which operator
was applied, the state becomes mixed. In essence, quantum error correction can be thought of as
the process of estimating which K̂k was applied and, if possible, apply a corrective gate to undo
the effect of that particular Kraus operator. The estimation is done by probing the state ρ(t)
using carefully designed measurements that do not collapse the encoded quantum information.
In section 2.5 we will see a couple of examples of this.

Here, we go through some of the most common continuous-variable noise channels. The effects
of each of these channels are exemplified in Fig. 2.3, which shows the evolution of a probe state
given by a superposition of two displaced squeezed vacuum states. This probe state exhibits both
squeezing and Wigner function negativities and therefore serves to highlight some important
effects of the different channels.

Loss. Loss represents a loss of excitations and is typically the dominant noise channel in optics.
It is given by the Lindblad operator

L̂(loss) = â, (2.73)

or equivalently the Kraus operators

K̂
(loss)
k =

√
1

k!

(
l

1− l

)k
âk(1− l)n̂/2. (2.74)

where l = 1 − e−κt is the fraction of the total energy lost. Each Kraus operator corresponds
to the event of losing k excitations. From Fig. 2.3 we see that loss impacts the probe state in
multiple ways. First, the position peaks are shifted towards the center of phase space, which is
intuitively expected for a loss of energy. Second, the squeezed peaks are broadened along the
squeezing direction, such that their widths closer match that of the vacuum state. Finally, the
central oscillating region gets washed out. This can be understood as a simultaneous broadening
of the negative and positive parts of the oscillation, causing the entire region to be destructively
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Figure 2.3: Effect of some common noise channels on a probe state given by a superposition of
two displaced squeezed vacuum states. The strengths for all five channel are set to κt = 0.1.

cancelled out. The impact of a reduced oscillation amplitude is also seen in the momentum
marginal distribution, which shows a much less pronounced oscillation.

Amplification. Amplification is in some sense the opposite of loss, and represents a gain of
energy. It is described by the Lindblad operator

L̂(amp) = â†, (2.75)

or the Kraus operators

K̂
(amp)
k =

√
1

k!

1

G

(
G− 1

G

)k
â†kG−n̂/2, (2.76)

where G = eκt is the gain. Amplification is typically not a relevant adversarial noise channel
in physical systems. However, it is sometimes applied on purpose in a controlled fashion to
counteract the peak-shifting effects of loss. Unlike the classical description of an amplification
channel which simply multiplies the power with the gain, the quantum amplification channel
unavoidably also adds a bit of noise, and as a consequence also adds energy to the vacuum state.
As seen in Fig. 2.3, amplification pushes the position peaks out, while also broadening them. As
with the loss channel, this broadening causes a significant damping of the central oscillations of
the Wigner function.

Dephasing. Dephasing causes a random rotation of the state according to a Gaussian distribu-
tion with standard deviation σφ, i.e.:

ρ→ 1√
2πσφ

∫
dφ e

− 1
2
φ2

σ2
φ R̂(φ)ρR†(φ). (2.77)
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This evolution is also described by the Master equation with the Lindblad operator

L̂(deph) = n̂, (2.78)

with σ2
φ = κt. Additionally, the channel can be described by the Kraus operators [51,52]

K̂
(deph)
k =

σkφ√
k!
e−

1
2σ

2
φn̂

2

n̂k. (2.79)

As seen in Fig. 2.3, dephasing causes a rotational smearing of the state in phase space. As a
consequence, parts of the Wigner function further from the origin experience a larger distortion.
Since the Kraus operators are functions of only n̂ and thus diagonal in the Fock basis, the
dephasing channel does not add or remove excitations from the state.

Thermalization. Thermalization occurs when a system exchanges energy with an environment
of temperature T , and can mathematically be described by a combination of loss and amplifica-
tion with Lindblad operators

L̂
(therm)
1 =

√
n+ 1â and L̂

(therm)
2 =

√
nâ†, (2.80)

with n = [exp(~ω/kBT )−1]−1. Loss is thus a special case of thermalization in the limit of T → 0.
The thermal channel is equivalent to loss proceeded by amplification [53] and can therefore be
described by the Kraus operators

K̂
(therm)
k1,k2

= K̂
(amp)
k2

(G′)K̂
(loss)
k1

(l′), (2.81)

with

G′ = (1− e−κt)n+1, l′ =
(1− e−κt)(n+ 1)

(1− e−κt)n+1
. (2.82)

Alternatively, if e−κt > n/(n+1), the thermal channel is equivalent to pre-amplification followed
by loss, giving the Kraus operators

K̂
(therm)
k1,k2

= K̂
(loss)
k2

(l′′)K̂
(amp)
k1

(G′′), (2.83)

with

G′′ =
e−κt

e−κt − (1− e−κt)n
, l′′ = (1− e−κt)(1 + n) (2.84)

As seen in Fig. 2.3, the effect of thermalization is qualitatively the same as that of loss, i.e. a
shift towards the phase space origin and a peak broadening. Comparing to the loss channel, we
note that the peak broadening effect is more severe, which makes sense as the thermal channel
combines peak broadening of both loss and amplification.

Gaussian displacement. The Gaussian displacement channel is a normally distributed random
displacement of the state in phase space

ρ→ 1

2πσ2
α

∫
d2α e

− 1
2
|α|2

σ2
α D̂(α)ρD̂†(α). (2.85)

This channel can be described by the Master equation with the Lindblad operators

L̂
(Gauss)
1 = â and L̂

(Gauss)
2 = â†. (2.86)
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with 2σ2
α = κt. Comparing to the thermalization channel, the Gaussian displacement channel

corresponds to the limit of n → ∞ and κ → 0 with constant nκ = 2σ2
α/t. Gaussian displace-

ment can thus be thought of as heating. Therefore, similarly to the thermalization channel,
the Gaussian displacement channel is equivalent to loss followed by amplification, giving Kraus
operators

K̂
(Gauss)
k1,k2

= K̂
(amp)
k2

(G′)K̂
(loss)
k1

(l′), (2.87)

with

G′ = 1 + 2σ2
α, l′ =

2σ2
α

2σ2
α + 1

. (2.88)

If 2σ2
α < 1, the Gaussian displacement channel is also equivalent to amplification followed by

loss, giving Kraus operators

K̂
(Gauss)
k1,k2

= K̂
(loss)
k2

(l′′)K̂
(amp)
k1

(G′′), (2.89)

with

G′′ =
1

1− 2σ2
α

, l′′ = 2σ2
α. (2.90)

As seen in Fig. 2.3, the Gaussian displacement channel causes a broadening of the peaks, with
no change in their position. Again, such peak broadening causes a rapid washout of oscillating
parts of the Wigner functions.

2.5 Bosonic quantum error correction

As we have seen, bosonic modes are represented by infinite-dimensional vectors, and therefore
a single bosonic mode can in principle encode infinitely many qubits. However, in section 2.4
we saw that small amounts of noise can quickly erase quantum features, such as squeezing and
Wigner function negativity. Therefore, in practice we would not be able to distinguish between
many different quantum states if they were encoded in a single bosonic mode. Instead, the goal of
bosonic quantum error correction is to encode a single qubit into a single bosonic mode, in such
a way that logical states remain distinguishable in the presence of small errors. This means that
physical errors should not directly translate into logical errors, e.g., 1% loss should not result in
1% qubit errors.

Recall from the previous section that noisy channels can be thought of as an adversarial entity
applying an unknown Kraus operator to the state. The goal of the error-correcting code is
to guess which Kraus operator was applied and undo its effect, without disturbing the logical
information. The act of guessing the Kraus operator is typically referred to as a syndrome
measurement. A helpful guiding principle to find useful error-correcting codes that allows for
successful error correction are the Knill-Laflamme conditions [54]:

〈0L|K̂†aK̂b|1L〉 = 0 (2.91)

〈0L|K̂†aK̂b|0L〉 = 〈1L|K̂†aK̂b|1L〉, (2.92)

where K̂a and K̂b are arbitrary Kraus operators from the set of possible Kraus operators given
by the channel, and |0L〉 and |1L〉 are the encoded logical states. The first condition states
that logical states remain orthogonal under the possible errors. This is a necessary condition
for us to be able to recover the logical state after the syndrome has been identified. The second
condition implies that the norm of the logical states are identical under each possible syndrome.
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This is required for us to be able to perform the syndrome measurement without disturbing the
logical information. If the Knill-Laflamme conditions are satisfied, we can in principle correct
any error described by the set of Kraus operators. Unfortunately, for many physically relevant
noise channels it is impossible to find a set of logical states which satisfy the Knill-Laflamme
conditions. For example, under the loss channel there is a possibility for any state to be mapped
to the vacuum state, meaning we can never satisfy Eq. (2.91). What we can do instead, is to
find codes for which the Knill-Laflamme conditions are satisfied, or approximately satisfied, for
the most likely syndrome outcomes.

In this thesis we consider two different codes, namely the cat code [26] and the Gottesman-
Kitaev-Preskill (GKP) code [28]. Throughout the thesis, relevant aspects of these codes will be
introduced as they are needed, and therefore we will not give an exhaustive introduction here.
Instead, we will simply highlight key features of the codes in order to develop our intuition and
motivate the remaining chapters.

2.5.1 The cat code

The cat code was proposed in 2012 by Leghtas et al. [26] and is designed to protect against losses.
The computational basis states are two-component Schrödinger’s cat states:

|0cat〉 =
|α〉+ |−α〉√
2(1 + e−2|α|2)

=
1

cosh(α2)

∞∑
n=0

(α2)n√
(2n)!

|2n〉, (2.93a)

|1cat〉 =
|iα〉+ |−iα〉√
2(1 + e−2|α|2)

=
1

cosh(α2)

∞∑
n=0

(−α2)n√
(2n)!

|2n〉. (2.93b)

Some different logical qubit states of the cat code are visualized in Fig. 2.4a. Importantly, the
states have support only on even Fock states. Thus, if we measure the state in the Fock basis and
find an odd number of photons, we can infer that a photon has been lost. Of course, measuring
the state in the Fock basis will collapse the state to a Fock state and so is not a good idea.
Instead, the ideal syndrome measurement is a Fock basis parity measurement, which tells us
whether a photon has been lost without collapsing the state to a single Fock state.

There are a few important things to note about the cat code. First, the cat code satisfies
â2(|0cat〉+ |1cat〉) ∝ (|0cat〉−|1cat〉). Thus the operator â2 implements a logical Z gate. However,
â2 is involved in the k = 2 Kraus operator for loss, Eq. (2.74), and so this event results in an
undetectable error. Therefore, the cat code is only suitable in cases where single-photon loss
events are the dominant noise source, i.e. when the loss, l, is small.

Second, the basis states are generally not orthogonal, i.e., 〈0cat|1cat〉 = cos(α2)/ cosh(α2). Thus
the first Knill-Laflamme criteria, Eq. (2.91), is not even satisfied for the identity channel. This
means that the cat code has intrinsic errors, which must be suppressed by choosing sufficiently
large α.

Third, even single-photon losses can cause decoherence for the cat code when α is small. This
is most easily seen by considering the limit of α → 0, in which case the logical Pauli X states
take the form |+cat〉 = |0cat〉 + |1cat〉 → |0〉 and |−cat〉 = |0cat〉 − |1cat〉 → |2〉. In this case, if a
syndrome measurement tells us that the state contains an odd number of photons, i.e., a photon
has been lost, we know that the initial state cannot have been |+cat〉 as this state had no photons
to lose to begin with. Thus the syndrome measurement collapses the state in the Pauli X basis.
To avoid this, we again need to choose α sufficiently large.
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Figure 2.4: (a): Wigner functions, quadrature distributions and Fock basis distributions of the
logical Pauli eigenstates for the cat code with α = 2.5. (b): Average error rate (see text around
Eq. (2.94)) of the cat code under different noise channels.

In conclusion, α cannot be too small for the cat code to work well. However, as we increase α
we also increase the chance of two-photon losses. Thus α should be optimized depending on the
amount of loss in the system.

Let us now attempt to quantify the error-correction capabilities of the cat code. Previous studies
have quantified the cat code in terms of channel fidelity [55], Hashing bound [55] and syndrome
measurement fidelity [27]. Here, we complement those figures of merit with one that is based
on the requirement that logically different states should remain distinguishable under the noise
channel. In particular, we consider how well we can discriminate between two initially logically
orthogonal states after they have been subjected to noise. The probability to correctly distinguish
between two states ρ0 and ρ1 is bounded by the Helstrom bound [56]:

pcor =
1

2
+

1

4
(||ρ0 − ρ1||1), (2.94)
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with || · ||1 denoting the trace norm. The chance of misidentification is then perr = 1− pcor. For
our figure of merit we consider pairs of states in each of the three logical Pauli directions. For
each direction we calculate a corresponding error rate, pXerr, p

Y
err and pZerr. For example, 1−pZerr is

the probability correctly to distinguish the states |0L〉 and |1L〉 after each of them have undergone
the same noise channel. Finally we compute the average pavg

err = (pXerr + pYerr + pZerr)/3. Unlike the
entanglement fidelity and Hashing bound studied in [55], pavg

err depends on our choice of logical
basis states and not just the space spanned by these states. This means that the non-zero overlap
of the basis states are explicitly included in pavg

err , yielding imperfect performance in the absence
of noise.

The result for the cat code undergoing loss, dephasing and Gaussian displacement is shown in
Fig. 2.4b. The results are compared to a simple Fock state encoding for which the logical basis
states are the |0〉 and |1〉 Fock states. As the Fock encoding has no intrinsic error-correction
capabilities, its logical error rate, pavg

err , is approximately proportional to the physical error rate
for all three noise channels. We see that the cat code beats the simple encoding in terms of losses,
as expected, provided α is suitably chosen. Additionally, as the magnitude of losses decreases,
the optimum value of α increases in order to reduce the overlap of the cat states.

The cat code is also seen to perform well in the presence of dephasing. Indeed, recalling that
the dephasing channel does not change the Fock basis probability distribution, the Pauli X
states, |0cat〉+ |1cat〉 and |0cat〉− |1cat〉, remain perfectly orthogonal for any degree of dephasing.
Moreover, since the Pauli Z states, |0cat〉 and |1cat〉, can be distinguished by the position of their
constituent coherent states which are relatively far from each other in phase space, these can still
be distinguished well after small amounts of dephasing. In total, this makes the cat code rather
robust against dephasing.

For the Gaussian displacement channel, however, the cat code has no error correcting capabilities.
This is because the parity syndrome measurement of the cat code cannot tell the difference
between a loss event and an amplification event. Since both of these are possible for the Gaussian
displacement channel, we can no longer identify the correct syndrome, and are thus unable to
correct this type of noise.

The cat code has been generalized by Bergmann and van Loock in 2016 [27], as well as by Li et
al. [57], to superpositions of S + 1 coherent states :

|0cat,S〉 ∝
S∑
k=0

R̂

(
2kπ

S + 1

)
|α〉 (2.95a)

|1cat,S〉 ∝
S∑
k=0

R̂

(
(2k + 1)π

S + 1

)
|α〉 (2.95b)

This generalization also includes the simpler coherent state encoding [58–60], corresponding to the
case of S = 0. These general cat codes can correct S excitation losses. However, higher S values
also require larger values of α in order to keep the overlap between the logical states negligible. A
further generalization was put forward in 2019 by Grimsmo et al. [61], which considers arbitrary
states instead of coherent states to produce an even broader class of rotation-symmetric bosonic
codes, which also includes the so-called binomial codes [62]. Such a generalization makes sense
because discrete phase-space rotation symmetry is equivalent to a spacing of the support of the
state in the Fock basis. For example, any state with 2-fold rotation symmetry has support only
on every 2nd Fock state, and states with 3-fold symmetry have support on every 3rd Fock state,
etc. Such gaps in the Fock basis can in turn enable the detection of a number of lost photons
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equal to the size of the gaps. However, while some of these generalizations perform better than
the original cat-codes in some aspects [55], their experimental realization and manipulation is
also correspondingly increasingly complex, especially in optics. Meanwhile, since the original cat-
code is based on only a few coherent states, one can construct specialized preparation protocols
that more efficiently utilize experimentally available interactions [29, 63, 64] to generate and
manipulate these “simpler” states. As a consequence, the original cat code [26] is so far the only
quantum error-correcting code, bosonic or otherwise, which has managed to successfully increase
the lifetime of a qubit beyond what is possible without error correction [65].

2.5.2 The GKP code

The GKP code is named after its inventors Gottesman, Kitaev and Preskill who proposed it
in 2000 [28]. The code was originally designed to protect against the Gaussian displacement
channel, but has turned out to be suitable against loss as well [53,55]. The ideal GKP states are
superpositions of equidistantly spaced position eigenstates:

|0GKP〉 =
∑
s∈Z
|q = 2s

√
π〉 (2.96a)

|1GKP〉 =
∑
s∈Z
|q = (2s+ 1)

√
π〉 (2.96b)

If a GKP state experiences an unknown shift in the q direction, this can be revealed by measuring
the value of q modulus

√
π. We can then actively displace the state back by the measured value,

and if the true displacement was less than
√
π/2, we will have correctly reset the GKP qubit to

its original state. Importantly, the GKP states in the p basis can be written as:

|0GKP〉 =
∑
s∈Z
|p = s

√
π〉 (2.97a)

|1GKP〉 =
∑
s∈Z

(−1)s|p = s
√
π〉, (2.97b)

i.e., they have the same structure in the p basis and thus displacements in the p direction can also
be corrected. Since any displacement can be decomposed into a displacement in the q direction
plus a displacement in the p direction, the GKP code can correct small displacements in all
directions. Of course, the GKP states as defined in Eqs. (2.96b) are nonphysical as they are not
normalizable and have infinite energy under the harmonic oscillator Hamiltonian. Therefore, we
can only hope to realise them approximately. There are a few different ways to define approximate
GKP states [66]. One definition, which is quite physically intuitive, is to replace the position
eigenstates with displaced squeezed vacuum states, and enforce a Gaussian envelope over the
sum, such that peaks far away from the origin are dampened:

|0̃GKP〉 ∝
∑
s∈Z

e−
(2
√
πs)2

2∆2 D̂
(
s
√

2π
)
Ŝ(r)|vac〉 (2.98a)

|1̃GKP〉 ∝
∑
s∈Z

e−
(2
√
π(s+ 1

2 ))
2

2∆2 D̂

((
s+

1

2

)√
2π

)
Ŝ(r)|vac〉, (2.98b)

where r is the squeezing parameter of each peak and ∆ is the width of the envelope. In the limit
of r →∞ and ∆→∞, i.e., for infinitely squeezed states with an infinitely broad envelope, these
approximate states converge to the ideal GKP states. Fig. 2.5a shows some of the logical states
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Figure 2.5: (a): Wigner functions, quadrature distributions and Fock basis distributions of the
logical Pauli eigenstates for the GKP code with 12 dB squeezing. (b): Average error rate (see
text around Eq. (2.94)) of the GKP code under different noise channels.

of the GKP code with r = 1.38 (corresponding to 12 dB squeezing) and ∆ = er which results in
equal squeezing of q and p peaks.

In Fig. 2.5b we examine how robust the GKP code is against noise, using the same figure of
merit as for the cat code above. As expected, approximate GKP states with larger squeezing
generally perform better. Additionally, we see that the GKP code is robust against both loss,
dephasing and displacement errors. We can understand this by examining the Wigner functions
of the GKP state. These consist of peaks, which for high amounts of squeezing are well-defined
and separated from each other. Therefore, any type of broadening, e.g. from loss or Gaussian
displacements, does not cause an immediate “collision” of positive and negative regions, as is
the case for e.g. cat states or Fock states. As a result, small local perturbations of the Wigner
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Figure 2.6: Different error-correction circuits for the GKP code. (a): The circuit originally pro-
posed in [28], also known as Steane-type error correction. (b): Error-correcting circuit proposed
by Glancy and Knill [67]. B̂ denotes 50/50 beamsplitters and the strengths of the squeezing
operations are r = log(

√
2) ≈ 3 dB. (c): Teleportation-based error correction as proposed in [68].

The state |∅GKP〉 is called a GKP qunaught state [68], and is similar to a regular GKP state
but with an adjusted lattice spacing.

function do not disturb the encoded quantum information.

Another important feature of the GKP code is, that both error correction and logical operations
can be performed using Gaussian operations. The original GKP paper [28] proposed the circuit
shown in Fig. 2.6a to perform error correction. This consists of a relatively simple two-mode
q̂p̂-type interaction, which is known as a sum gate, in addition to two ancilla GKP states and
two homodyne detectors. The homodyne detections of the ancilla modes effectively carry out
the required stabilizer measurement of q and p modulus

√
π, which is then fed forward to a

corrective displacement operation. A modified error-correction circuit, shown in Fig. 2.6b, was
proposed in [67] which uses a 50/50 beamsplitter interaction, B̂, instead of the experimentally
challenging sum gate. However, this approach requires an inline squeezing operation which is also
challenging. It was later shown [69] that this inline squeezing can be removed by slightly changing
the ancilla states. A third type of GKP error correction was proposed in [68] and is shown in Fig.
2.6c. This method is based on using a GKP-encoded Bell state to perform teleportation-based
error correction. Apart from not requiring inline squeezing, this third method has been shown
to perform better than the previous methods when considering ancilla states with finite amounts
of squeezing [70]. The main challenge of GKP-based error correction is thus centered on the
task of generating high-quality states, particularly in optics where beamsplitters and homodyne
detectors are easily implemented.

In the years following their proposal, not much interest was given to the GKP code, likely because
the required logical states are highly non-classical and non-trivial to produce experimentally.
However, beginning in the mid 2010’s the interest in GKP states surged. In fact, GKP-based
research has seen a split into two different directions. In one direction, the GKP code has
turned out to be particularly suitable in conjunction with measurement-based continuous-variable
quantum computing [71,72]. This is particularly relevant in the field of optics, where large cluster
states capable of performing arbitrary Gaussian transformations can be produced using only a
few optical components [73–76]. Using GKP states, such cluster states can perform universal
fault-tolerant quantum computing [77, 78]. However, producing GKP states in optics remains a
central unsolved challenge.

In another direction, GKP states have been generated experimentally in a trapped-ion platform
[43] and in a microwave cavity coupled to a superconducting circuit [48]. The common trait
of these systems is, that they allow for efficient boson-qubit couplings which provide a suitable
non-Gaussian element required for the generation of GKP states [79]. However, in these systems
beamsplitters and homodyne detectors are not as readily implemented as in optics. Thus, there
is an open question on how to most efficiently utilize the GKP states in these systems.
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Finally, it was recently proposed to encode GKP states in the current of a superconducting
circuit [80], opening up a possible third branch of GKP-based quantum computing.

In summary, GKP states might be able to significantly reduce the effects of noise, but no single
platform have yet demonstrated all the required elements to realise their full potential.



Chapter 3

Deterministic generation of a
four-component optical cat state

In this chapter we present the paper “Deterministic generation of a four-component optical cat
state” [29], authored by Jacob Hastrup, Jonas S. Neergaard-Nielsen and Ulrik L. Andersen. This
work is published in Optics Letters.

3.1 Abstract

The four-component cat state represents a particularly useful quantum state for realizing fault-
tolerant continuous variable quantum computing. While such encoding has been experimentally
generated and employed in the microwave regime, the states have not yet been produced in the
optical regime. Here we propose a simple linear optical circuit combined with photon counters
for the generation of such optical four-component cat states. This work might pave the way for
the first experimental generation of fault-tolerant optical continuous variable quantum codes.

3.2 Introduction

Quantum continuous variables (CV) have recently emerged as a promising platform for scalable
quantum computing and communication. The main challenge, as for any other quantum informa-
tion platform, is the ability to manipulate, store and communicate CV quantum information in a
fault-tolerant manner in the presence of noise. In order to cope with noise, different bosonic error
correction codes have been proposed, including the Gottesman-Kitaev-Preskill (GKP) codes, the
cat codes and the binomial codes [26, 28, 55, 57, 61, 62, 81]. These codes have recently been ex-
perimentally generated in microwave cavity fields coupled to superconducting circuits [48,65,82]
and in the vibrational mode of a single trapped ion [43,83], and have been used to demonstrate
quantum error correction and universal gate set operations.

While the superconducting circuit and ion platforms are highly suitable for the storage and
manipulation of quantum information, they are less suitable for communication over larger dis-
tances. Bosonic error-correcting codes for long-distance communication will eventually require
the usage of a low-loss optical platform where the codes will be embedded in the CV optical

32
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quadratures of light [84,85]. Moreover, optical encoding is not only relevant for communication:
There is an increasing interest in CV optical quantum computing partly fuelled by the recent
advances in producing one-dimensional [86,87] and two-dimensional [74,75] CV cluster states

There have been several theoretical proposals on the generation of optical GKP codes using either
deterministic or probabilistic schemes. The most feasible approach is based on linear optics and
photon counting detectors in which the required, and notoriously difficult, optical non-linear
transformation is enabled by the non-Gaussian photon counter [88, 89]. Another interesting
approach requires an initial resource of cat states from which GKP states can be grown with a
linear optical beam splitter network and homodyne detection [90,91].

On the other hand, there are very few proposals for the direct generation of cat codes in the
optical regime and the hope is that this might be significantly simpler than the generation of
GKP states. Cat codes [26,57] consist of four-component cat states comprising superpositions of
four coherent states, in contrast to the more common optical cat state which is a superposition
of two coherent states. These latter states have undergone numerous experimental studies and
have been produced in the optical regime using probabilistic approaches based on linear optics
and photon counting [92–96], and very recently, using a deterministic approach based on the
Jaynes-Cumming interaction between light and a single atom in a high-finesse cavity [64].

One approach for generating four-component cat states was very recently proposed by Thekka-
dath et al. [97]. Their method uses photon number resolving detectors and coherent state ancillas
to project one mode of a two-mode squeezed vacuum state into an approximate two- or four-
component cat state. However, their method is probabilistic, with low success probability for
larger cat states, and furthermore it requires high two-mode squeezing to obtain four-component
cat states with high fidelity.

In this article, we propose a simple circuit for the deterministic generation of an optical four-
component cat state based on linear optics and photon counting using an initial resource of
either two-component cat states or single-photon-subtracted squeezed states. While using two-
component cat states will produce exact four-component cat states, the usage of single-photon-
subtracted squeezed states is able to produce approximate four-component cat states with rea-
sonable amplitudes.

3.3 Protocol

One can define four mutually orthogonal four-component cat states as

|Φk〉 =
1

Nk

(
|β〉+ (−1)k|−β〉+ (−i)k|iβ〉+ ik|−iβ〉

)
∝
∞∑
n=0

βn√
n!
δn(mod 4),k|n〉 (3.1)

for k = 0, 1, 2, 3, where Nk is a normalization factor and β is the coherent state amplitude.
δa,b is the Kronecker delta, i.e. the 4-component cat states have support on every 4th photon
number state. The main result of this article is that these states can be readily produced by
interfering two two-component cat states on a balanced beam splitter followed by a projective
measurement as illustrated in Fig. 3.1. If the two input cat states are given by (|α〉+ |−α〉)/Nα
and (|iα〉+|−iα〉)/Nα respectively, where α is the cat state amplitude andNα = (2(1+e−2|α|2))1/2

is the two-component normalization factor, the beam splitter ÛBS = eπ/4(â
†
1â2−â1â

†
2) transforms
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Figure 3.1: Schematic of proposed idea for generating four-component cat states using a bal-
anced beam splitter and a projecting measurement. The state is generated probabilistically by
projecting onto vacuum with an on-off photon counter (or a heterodyne detector) or is generated
deterministically by projecting onto any photon number state using a photon number resolving
detector.

the input state as

(|α〉1 + |−α〉1)(|iα〉2 + |−iα〉2)
50:50 BS−−−−−→ |β〉1|iβ〉2 + |−iβ〉1|−β〉2 + |iβ〉1|β〉2 + |−β〉1|−iβ〉2

where β = αeiπ/4. By transforming mode 2 into the Fock basis, the output state, |Ψ〉, can be
written as

|Ψ〉 =
e−|β|

2/2

N2
α

∞∑
n=0

(iβ)n√
n!

(
|β〉1 + (−1)n|−β〉1 + (−i)n|iβ〉1 + in|−iβ〉1

)
|n〉2, (3.2)

It is clear that by projecting mode 2 onto a photon number state |n〉2, using a photon number
resolving detector (PNRD), the resulting state in mode 1 is the exact four-component cat state
given in Eq. (3.1) with k ≡ n (mod 4). As all outcomes of the PNRD will herald a four-
component cat state, the circuit is deterministic.

We next examine the impact on the fidelity of a non-unity quantum efficiency of the PNRD.
The PNRD with quantum efficiency η is modelled by a perfect PNRD following a lossy channel
with transmission η. For this detector we compute the fidelity, F = 〈Φn|ρ|Φn〉, where ρ is
the generated state and |Φn〉 is the target depending on the measurement result of the photon
number n ≡ 0, 1, 2, 3 (mod 4). The resulting expected fidelities over all measurement outcomes
(a numerical cut-off at n = 20 was used for simulation) for four different input two-component
cat states are shown in Fig. 3.2a. It is clear that a non-unity detector efficiency largely impacts
the quality of the detected states, and it is therefore important to use a PNRD with very high
efficiency. We note that there has been significant progress in developing high-efficiency PNRDs
reaching nearly 100% quantum efficiency [98, 99]. Fig. 3.2b shows the Wigner functions of the
output states when measuring n ≡ 0 (mod 4) photons with η = 0.9 for |β| = 1.5 (i) and |β| = 2.5
(ii), as well as the corresponding pure states obtained when η = 1 (iii, iv). For |β| = 1.5, the
phase-space features of the state are still clearly visible with imperfect detection. For |β| = 2.5
the interference patterns are significantly dampened, particularly in the center of the state, but
some negativity is still present. Thus, even though the fidelity is low (54%), the characteristic
phase-space features of the four-component cat state are still present.

Since larger photon number states are more sensitive to loss than smaller number photon states,
one should expect the fidelity to depend on the measurement outcome. However, for |β| ≥ 2
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Figure 3.2: (a) Fidelities between the actual and target four-component cat states for different
input cat states as a function of the PNRD quantum efficiency. The fidelity is the mean fidelity
for all measurement results, weighted according to the probability of obtaining each result, and
the shaded areas show the standard deviation. (b) Wigner functions for four different realizations
as marked by (i–iv) in the upper figures.

Figure 3.3: Quantum Fisher information with respect to phase space displacements defined as

QFIφ = 8 limε→0

(
1−

√
F (ρ0, ρε,φ)

)
/ε2 with the displaced state ρε,φ = D̂(eiφε)ρ0D̂

†(eiφε). For

four-component cat states the QFI is independent of φ.

the fidelity is practically independent of the measurement outcome, as seen in Fig. 3.2a. This
is because the increasing difficulty of detecting many photons with an imperfect detector, which
would cause a lower fidelity for large n, is counteracted by the fact that the initial photon
distribution decays exponentially for large n. For completeness, we also plot in Fig. 3.3 the
state’s quantum Fisher information (QFI) with respect to phase space displacements for different
detector efficiencies. It represents the state’s ability to sense phase space displacements [100,101]
(irrespective of the direction) as the sensitivity scales as the QFI inverse. We note that for states
generated with a non-unity efficiency PNRD, the sensitivity is optimized for a finite value of |β|.
For comparison, the QFI of a coherent state is 4, independent of the amplitude.

We have now seen that four-component cat states can be produced deterministically using a
PNRD. Using an on-off photon detector, which is typically more experimentally feasible, one can
still produce an exact four-component cat state by projecting onto the vacuum state, |n = 0〉2.
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Figure 3.4: Fidelity and probability of the resulting state, post-selecting on a single ’on’ event
using m on-off detectors (e.g. avalanche photodiodes (APDs)) as a function of the amplitude of
the input cat states

The state is produced with a success rate of P = e−|β|
2
(

1 + e−2|β|2 + 2e−|β|
2

cos(|β|2)
)
/(1 +

e−2|β|2)2 employing an ideal on-off photon counter. One could also project onto vacuum using a
heterodyne detector and post selecting on results near (x, p) = (0, 0).

Since the probability of successfully projecting mode 2 onto the vacuum state decreases expo-
nentially with |β|, it is also interesting to investigate the quality of the cat state when projecting
onto the other outcome of the on-off photon detector as this will often be more probable. It
is described by the projector Ωn>0 = I − |0〉〈0| and corresponds to a projection onto all Fock
states except vacuum. Using such a measurement, the heralded output will contain a mixture of
four different four-component cat states rendering the state mixed with the degree of mixedness
determined by the amplitude of the input cat states. As a result, the fidelity drops rapidly as
shown by the m = 1 curve in Fig. 3.4. For very low amplitudes, the output is fairly pure (and the
fidelity high) while for amplitudes larger than ∼ 0.5, the fidelity experiences a rapid decrease.
This is explained by the increased occurrence of higher-order Fock states which the detector
cannot discriminate.

One can improve the fidelity by equally splitting mode 2 into m modes and subsequently mea-
suring each mode with an on-off photon detector [102]. The POVM element corresponding to
observing exactly 1 ’on’ click is

∑∞
n=1m

−(n−1)|n〉〈n|. As seen in Fig. 3.4, having multiple de-
tectors allows for larger high fidelity cat states. The probability of observing exactly 1 ’on’
click is shown by the dashed lines, showing reasonable success probabilities for |β| ∈ [0.5, 2].
Post-selecting on a higher number of clicks would similarly allow for even larger cat states with
reasonable success probability given a sufficient number of detectors.

We have now shown that exact four-component cat states can be produced using a simple circuit
if we have at our disposal a pair of two-component cat states. The two-component cat states
can be produced deterministically using the strong interaction between a single atom and light
as recently demonstrated [64]. However, knowing that single photon-subtracted squeezed states
resemble two-component cat states [92], it is interesting to investigate the possibility of using
such states as inputs to the circuit for the generation of approximate four-component cat states.
Using two single photon-subtracted squeezed vacuum states, â1Ŝ1|0〉 and â2Ŝ

†
2|0〉, where âi is

the annihilation operator for mode i = 1, 2 and Ŝi = er/2(â2
i−â

†2
i ) is the squeezing operator with
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Figure 3.5: (a) Fidelity of output states relative to the ideal target state as a function of the
amplitude of the target state where the input states to the circuit are photon-subtracted squeezed
states. (b) The squeezing parameters r of the input states are chosen for each β to optimize the
fidelity. (c) The probability of measuring n photons for the corresponding optimum squeezing
parameter, r. (d) Left: Wigner functions of the output states marked by (i) and (ii) in (a) and
(b). Right: corresponding Wigner functions of the exact 4-component cat state target.

r being the squeezing parameter, as the input cat states, the state after the beam splitter reads

ÛBS

(
â1Ŝ1â2Ŝ

†
2|0〉1|0〉2

)
=

1

2

1

cosh(r)

∑
n

tanhn(r)

(√
n(n− 1)|n− 2〉1 −

√
(n+ 2)(n+ 1) tanh2(r)|n+ 2〉1

)
|n〉2 (3.3)

where we have used the equality ÛBSâ1â2 = 1
2 (â2

1− â2
2)ÛBS. It is clear that the scheme will herald

a two-photon Fock state, |2〉1, when projecting on |0〉2 and a three-photon Fock state, |3〉1, when
projecting on |1〉2. It is, however, more interesting to project onto even higher Fock states as this
will herald Fock state superpositions, e.g. the (unnormalized) states

√
2|0〉1−

√
6 tanh2(r)|4〉1 and√

6|1〉1 −
√

20 tanh2(r)|5〉1 are produced when the PNRD counts 2 and 3 photons, respectively.
In Fig. 3.5a we present the fidelity of these states with respect to the ideal four component cat
states for different photon counting measurement outcomes from 0 to 9 photons. In these plots
we have optimized the squeezing parameter for each realization to maximize the fidelity, with
the optimized values shown in Fig. 3.5b and corresponding probability of measuring n photons
shown in Fig. 3.5c. Note, that all measurement results of more than 1 photon yield a state
which approximates a four-component cat state to some degree, according to (3.3), even if the
squeezing parameter is chosen to optimize the fidelity for a specific outcome. In experiment, one
might therefore post-select on several measurement outcomes. The abrupt drop in fidelity at
small |β| for n ≥ 6 is due to the lowest Fock term missing from the output state, compared to
the exact four-component cat state, as seen in (3.3). Fig. 3.5d shows the Wigner functions of
the generated approximate states marked by (i) and (ii) in Fig. 3.5a, in comparison to the exact
target states.
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As shown in [92], better two-component cat states can be produced by subtracting multiple
photons from squeezed states. From numerical analysis we have found that using such states as
input will also result in even higher fidelity output states. However, it is an open question whether
arbitrarily large high-fidelity 4-component cat states can be produced with this approach.

3.4 Conclusion

In conclusion, we have proposed a simple circuit for the generation of four-component cat states
which eventually could be used for fault-tolerant quantum computing and communication. The
scheme is deterministic and exact if two-component cat states and photon-number-resolving
detectors are available.



Chapter 4

All-optical cat-code quantum
error correction

In this chapter we present the paper “All-optical cat-code quantum error correction” [30], au-
thored by Jacob Hastrup and Ulrik L. Andersen. This work is available at arxiv.org (arXiv:2108.12225).

4.1 Abstract

The cat code is a promising encoding scheme for bosonic quantum error correction as it allows for
correction against losses—the dominant error mechanism in most bosonic systems. However, for
losses to be detected efficiently without disturbing the encoded logical information, one needs to
implement a parity measurement of the excitation number. While such a measurement has been
demonstrated in the microwave regime using a superconducting transmon ancilla, it has remained
unclear how it can be implemented in the optical regime. Here, we introduce a teleportation-
based error-correction scheme for the cat code, using elements suitable for an optical setting.
The scheme detects and corrects single-photon losses while restoring the amplitude of the cat
states, thereby greatly suppressing the accumulation of errors in lossy channels.

4.2 Introduction

Quantum states are notoriously vulnerable to external noise sources, posing a central challenge
towards making useful quantum technologies. To overcome the effects of noise, numerous quan-
tum error-correction protocols have been developed over the past 25 years. The main idea behind
quantum error correction is to redundantly encode each logical qubit into a larger Hilbert space,
such that noise can be detected before it accumulates into logical errors. The most common
approach is to use multiple physical modes to encode each qubit. Alternatively, one can encode
a qubit into multiple energy levels of a single bosonic mode [27, 28, 55, 59, 61, 62, 65, 81]. Such
bosonic encoding can provide an advantage in terms of hardware efficiency, reducing the number
of physical modes per logical qubit. Furthermore, bosonic error correction—and in particular the
cat code—has been experimentally used to extend the lifetime of a qubit beyond what is achiev-
able in the same system without error correction [65]; a feat which remains to be demonstrated
in conventional qubit systems.

39
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A prominent bosonic system is the electromagnetic field, which has seen much development
towards quantum technologies in recent years in both the optical regime [64,74–76,78,103] as well
as the microwave regime [48,65,82,104]. In this work, we are concerned with the optical regime,
which provides several advantages. For example, optical field modes are naturally in the vacuum
state at room temperature, limiting the requirement for cryogenics. Additionally, optical modes
are easily entangled using beamsplitters, enabling large-scale entanglement [73–75]. Furthermore,
travelling optical modes constitute an uncontested platform for quantum communication.

However, optical losses can rapidly wash out vital quantum signatures. Therefore, the quantum
states should be encoded such that small losses can be detected and corrected before they ac-
cumulate. The two most promising bosonic encodings against losses [55] in the optical regime
are the Gottesman-Kitaev-Preskill (GKP) code [28, 77, 105, 106] and the cat code [26, 27, 57].
The GKP code, in particular, has in recent years gained renewed interest and numerous new
developments for optical systems have been witnessed. This interest has largely been fueled by
the potential ease of implementing gates and error correction, given a supply of high-quality
encoded states. However, GKP-encoded states have yet to be produced in the optical regime,
and theoretical analyses indicate that GKP states of useful quality will be challenging to produce
using practical noisy components [31,105].

Meanwhile, optical two-component Schrödinger’s cat states—which are the encoded states of the
cat code—have already been produced experimentally [64, 94]. And while their superpositions,
corresponding to four-components Schrödinger’s cat states remain to be produced optically, sev-
eral schemes have been proposed for this task [29,97,107]. But unlike the GKP codes, there has
been no proposal on how to implement gates or perform error correction on cat codes using tools
available in the optical regime, thereby limiting their use in practice. In this work, we address
part of this issue by proposing an all-optical teleportation setup which allows for single-photon
losses to be detected and corrected without disturbing the encoded logical information.

4.3 Protocol

The logical basis states of the cat code are two-component Schrödinger’s cat states given by:

|0L〉 =
|α〉+ |−α〉√
2(1 + e−2|α|2)

, (4.1)

|1L〉 =
|iα〉+ |−iα〉√
2(1 + e−2|α|2)

, (4.2)

where |α〉 is a coherent state. The amplitude, α, which we assume to be real, should be chosen
to optimize the performance of the code, as we will discuss later. Note that due to the finite
overlap between coherent states, 〈β1|β2〉 = ei Im(β∗1β2)e−|β1−β2|2/2, the logical basis states are
generally not orthogonal, i.e. 〈0L|1L〉 = cos(α2)/ cosh(α2). However, the exponential increase of
the hyperbolic cosine causes the overlap to quickly vanish for α ' 2.

The encoded states in the Fock basis are given by:

|0L〉 =
1

cosh(α2)

∞∑
n=0

(α2)n√
(2n)!

|2n〉, (4.3)

|1L〉 =
1

cosh(α2)

∞∑
n=0

(−α2)n√
(2n)!

|2n〉. (4.4)
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Figure 4.1: (a): Proposed error-correction circuit for performing all-optical error correction of the
cat codes. The input state to be corrected is mixed on a 50:50 BS with one half of a logical Bell
state and the output modes are subsequently measured with PNRDs. This teleports the input
state to the other half of the Bell state while correcting single-photon losses. (b): Probability
of obtaining measurement result (n1, n2) for an input logical state with amplitude α = 2.5,
without losses. The results are either distributed with both modes around α2, or with one mode
containing 0 photons and the other mode containing about 2α2 photons, in accordance with Eq.
(4.6).

Notably, the states have support only on every second photon-number state, which is a common
property of states with a 2-fold phase-space symmetry [61]. Therefore, we can detect if a single
photon (or an odd number of photons) has been lost by measuring the photon-number parity
of the state. Furthermore, the logical Pauli-X eigenstates |±L〉 ∝ |0L〉 ± |1L〉 have support only
on every fourth photon number, with |+L〉 having support on n ≡ 0 (mod 4) and |−L〉 having
support on n ≡ 2 (mod 4). Thus a direct photon-number measurement realises a measurement
in the logical X-basis. To detect photon loss without collapsing the logical state, we therefore
need to extract information only on the parity without getting any information on the exact
photon number.

This can be done using the error-correction circuit illustrated in Fig. 4.1a. It consists of a 50:50
beamsplitter (BS), two photon-number-resolving detectors (PNRDs), and an ancilla resource
state in the form of a logical Bell state, |0L〉|0L〉 + |1L〉|1L〉, where the bar denotes cat states
with a reduced amplitude that matches that of the input state after loss. In the Appendix we
present a proposal on how this logical Bell state could be produced optically. The input state
interferes with one half of the logical Bell state on the BS, the outputs of which are measured
with the PNRDs. As a result of this measurement, the input state is teleported to the other
half of the Bell state, while correcting for single-photon losses, i.e. Knill-type error correction is
performed [108]. Conceptually, since each mode of the Bell state contains an even number of
photons the parity of the total number of photons measured by the PNRDs is determined by the
parity of the input state, enabling the detection of losses. Meanwhile, since the state is mixed
with the one half of the Bell state, we do not reveal information on the exact number of photons
in the input state. Additionally, as the logical state is teleported onto a fresh cat-state ancilla,
the cat-state amplitudes are restored to their initial values.

Before further discussions on the error-corrective properties of the circuit we interrogate the
functionality of the qubit teleportation circuit in the absence of losses. Consider an arbitrary
logical input state, µ|0L〉 + ν|1L〉, written in the coherent state basis (neglecting normalization
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and with subscripts denoting the different modes):

[
µ(|α〉1+|−α〉1)+ν(|iα〉1+|−iα〉1)

][
(|α〉2+|−α〉2)(|α〉3+|−α〉3)+(|iα〉2+|−iα〉2)(|iα〉3+|−iα〉3)

]
.

(4.5)
As the BS transforms coherent states according to |β1〉1|β2〉2 → |(β1+β2)/

√
2〉1|(−β1+β2)/

√
2〉2,

the transformed state can be written in the form

→µ
[
|
√

2α〉1|0〉2 + |0〉1|−
√

2α〉2 + |0〉1|
√

2α〉2 + |−
√

2α〉1|0〉2
]
|0L〉3

+ ν

[
|i
√

2α〉1|0〉2 + |0〉1|−i
√

2α〉2 + |0〉1|i
√

2α〉2 + |−i
√

2α〉1|0〉2
]
|1L〉3

+ µ

[
|α̃〉1|−α̃∗〉2 + |α̃∗〉1|−α̃〉2 + |−α̃∗〉1|α̃〉2 + |−α̃〉1|α̃∗〉2

]
|1L〉3

+ ν

[
|α̃〉1|α̃∗〉2 + |−α̃∗〉1|−α̃〉2 + |α̃∗〉1|α̃〉2 + |−α̃〉1|−α̃∗〉2

]
|0L〉3, (4.6)

where α̃ = (α+ iα)/
√

2 and ∗ denotes complex conjugation. Two distinct cases appear: Either,
one of the modes 1 and 2 is in the vacuum state with the other in a coherent state of magnitude√

2α, or both modes are in coherent states of magnitude |α̃| = α. In the regime where α is not
too small, these two cases are distinguished by the PNRD results, as illustrated in Fig. 4.1b. In
the first case, the coefficients µ and ν get mapped to the correct corresponding logical state in
mode 3. In the second case, the coefficients get swapped, in which case a corrective logical X
gate should be applied. Further analysis (see Appendix) shows that measurement results with a
total photon number of 2 (mod 4) add a -1 phase to the ν term, thus requiring a logical Z gate
correction. In summary, the circuit performs a teleportation of mode 1 onto mode 3, with the
measurement result signaling which Pauli correction should be applied to mode 3 to retrieve the
input state, just like standard qubit teleportation.

An important caveat should be noted: Knowing whether a logical X correction should be applied
relies on the fact that we can distinguish the first two lines of Eq. (4.6) from the last two with the
PNRDs. If α is too small, the probability of measuring e.g. (n1, n2) = (0, 4) has contributions
from both cases. That is, the central contributions in Fig. 4.1b overlap with the edge cases. It
turns out that the total probability in this case depends on the input state, and in particular,
such measurement results become a weak unwanted logical X measurement (See Appendix for
details). To intuitively understand this, consider the extreme case of measuring (n1, n2) = (0, 0).
This can only occur if both arms before the BS have support on the vacuum state. But the state
|−L〉 does not have support on the vacuum, and so this measurement projects the input state
onto |+L〉. This can thus effectively cause logical depolarization of e.g. logical Z or Y states. To
avoid this, we should choose large enough α, such that this measurement result becomes unlikely.

To characterize the performance of the circuit, we consider how well input logical Pauli-eigenstates
remain distinguishable. That is, we consider three sets of input states, {|0L〉, |1L〉}, {|+L〉, |−L〉}
and {|+iL〉, |−iL〉}, where |±iL〉 ∝ |0L〉± i|0L〉 denotes the logical Pauli-Y eigenstates. Denoting
the channel realized by the error-correction circuit by C, averaging over the PNRD measurement
results weighted according to their probability distribution and keeping track of any induced
Pauli-rotations, we calculate the resulting, generally mixed, output states, e.g. ρZ0 = C(|0L〉) and
ρZ1 = C(|1L〉). We then calculate the probability of misidentifying the input 0 state as a 1 or vice
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Figure 4.2: (a): The lossy channel LΓ is divided into smaller segments, Lγ with N error correc-
tion steps. (b): Minimum measurement error probability of input logical Pauli states after N
applications of the correction circuit of Fig. 4.1a, averaging over all possible PNRD measurement
outcomes. N = 0 corresponds to the identity channel. (c,d): Minimum error probability after a
lossy channel divided into N+1 smaller segments with N correction circuits distributed between
the lossy segments.

versa, which is bounded by the Helstrom bound [56]:

pZerr =
1

2
− 1

4
(||ρZ0 − ρZ1 ||1), (4.7)

where || · ||1 denotes the trace norm. We consider the Helstrom bound to focus our attention to
the intrinsic properties of the circuit.

Similarly, we denote the error probabilities of the Pauli X and Y states as pXerr and pYerr. We then
define the average of these error rates as our figure of merit,

perr ≡ (pXerr + pYerr + pZerr)/3. (4.8)

A value of perr = 0.5 thus corresponds to a complete loss of the logical information, while perr = 0
is a perfect preservation of the information.

Fig. 4.2b shows the performance of the error-correction circuit in the absence of any losses,
repeatedly applying the circuit N times to the same state. The red N = 0 curve thus simply
corresponds to the identity channel. For this curve, we note that perr goes to 1/3 for small α. This
is due to the indistinguishability of the logical Z and Y states, which all converge to the vacuum
state in the limit of small α. The logical X states, however, remain perfectly distinguishable for
all non-zero α, resulting in a total average error rate of 2/3× 0.5 = 1/3.

When applying the teleportation circuit, perr increases at small α due to the weak Pauli X
measurement discussed earlier. This effect accumulates when applying the circuit multiple times.
However, if α is sufficiently large, e.g. at α = 4, this effect becomes negligible even when the
circuit is applied many times.

We now consider the case of lossy input states. Losses of magnitude Γ are described by the
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Figure 4.3: Wigner functions for cat states with α = 3 before loss (input), after Γ = 1 dB loss
without error correction, and Γ = 1 dB loss divided by N = 100 error correction steps. Top row:
input logical Z state. |0L〉. Bottom row: input logical X state, |+L〉. The shown error-corrected
states are averaged over PNRD measurement results, and post-selected such that the required
corrective Pauli rotation adds up to the identity.

channel

LΓ(ρ) =

∞∑
l=0

K̂
(l)
Γ ρ(K̂

(l)
Γ )†, (4.9)

with Kraus operators:

K̂
(l)
Γ =

√
Γ

1− Γ

l
âl√
l!

√
1− Γ

n̂
. (4.10)

For a fixed total loss, Γ, we break the channel into N + 1 equal segments using N correction
circuits, yielding the total channel (Lγ ◦ C)N ◦Lγ with segment loss γ = 1− N+1

√
1− Γ, as shown

if Fig. 4.2a.

Fig. 4.2c and d show the performance for Γ = 1 dB and Γ = 5 dB respectively, with units in
dB defined as −10 log10(1 − Γ). For non-zero losses we now observe an optimum value of α,
depending on N . This is because states with large α contain more photons on average, and are
thus more sensitive to losses. The error-correction circuit can correct single-photon losses, but
not two-photon losses, and so α should be small enough to make two-photon losses improbable.
Importantly, we see that repeated application of the correction circuit throughout the channel
can significantly suppress the effects of loss.

As seen in Fig. 4.2c and d, more frequent error correction, i.e. larger N , allows for fewer errors
by suitably optimizing α. However, in practice we are limited in how frequently we can perform
error correction. This limitation can be due to finite amounts of hardware but also due to finite
losses introduced by the imperfect components of the error correction circuit itself.

Fig. 4.3 compares the Wigner functions of the input states |0L〉 and |+L〉, with and without error
correction for Γ = 1 dB total loss and N = 100 error-correction steps. We see that the states,
and in particular the negativities, are well-preserved by the error-correction protocol.
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Figure 4.4: (a): Minimum error probability as a function of total channel loss, when performing
error correction after every 0.1 dB (green), 0.01 dB (blue) or 0.001 dB (red) loss. The dotted
line corresponds to direct transmission of a logical cat state through the channel. For all curves,
α is chosen to minimize perr. (b): Minimum error probability as a function of the loss between
error-correction steps for a total amount of loss of 5 dB (green), 3 dB (blue) and 1 dB (red).
The dotted lines show the corresponding uncorrected cases.

Fig. 4.4a shows how well the error-correction circuit protects against loss when optimizing over
α, with an amount of loss between error-correction steps of 0.1 dB (2.3%), 0.01 dB (0.23%) and
0.001 dB (0.023%). Comparing to the uncorrected case (dotted line), we see that error correction
needs to be applied quite frequent to gain an advantage.

In addition to loss correction in quantum communication, the circuit can also be relevant for loss
correction in optical quantum computing. In particular, we can imagine a temporal measurement-
based computation scheme similar to what has been demonstrated in continuous-variable optics
[73, 76], where a single set of detectors can be used to perform arbitrarily many subsequent
teleportations to repeatedly error-correct an encoded bosonic qubit. Of course, for such a scheme
to be useful, we also need to be able to implement gates on the encoded state, which is outside
the scope of this work.

The more frequently we apply error correction, the faster we might accumulate errors due to the
intrinsic weak Pauli X measurement of the circuit, as was shown in Fig. 4.2b. To suppress this
effect we require larger α, which in turn results in more losses. It is therefore relevant to ask
whether this trade-off is favourable, i.e. how low can the total error rate be. This is examined
in Fig. 4.4b, showing perr as a function of the segment loss, γ, for different total loss channels,
optimizing α for all curves. On the log-log plot we observe a linear relationship between perr

and γ, indicating that the error can indeed in principle be made arbitrarily low given frequent
enough error correction and a suitable choice of α. In practice this relationship will be limited
by hardware constraints, such as detector inefficiencies and Bell state preparation inefficiencies,
which need to be negligible compared to γ for Fig. 4.4 to hold.

4.4 Conclusion

We have presented an all-optical scheme for performing quantum error correction on bosonic cat-
code qubits, allowing single-photon loss events to be detected and corrected. The scheme relies
on photon counting and logical Bell state resources and works like a conventional teleportation
scheme in the absence of loss. For small cat-state amplitudes, some measurement results of
the protocol act as a weak unwanted logical Pauli X measurement, thereby effectively inducing
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depolarization around the X-axis. To minimize this effect, α should be optimized accordingly.

While frequent error correction is needed to effectively suppress errors using the proposed scheme,
the errors can in principle be made arbitrarily low, greatly surpassing the uncorrected state. This
work thus constitutes a step towards optical cat-based fault-tolerant quantum computation.
Important future work will be to find methods of optically implementing gates on the encoded
states, and improving the quality of experimentally generated cat-states.

4.5 Appendix A: Teleportation without losses

As stated in the main text, the state after BS interaction is given by:

ÛBS (µ|0L〉1 + ν|1L〉1) (|0L〉2|0L〉3 + |1L〉2|1L〉3)

=µ

[
|
√

2α〉1|0〉2 + |0〉1|−
√

2α〉2 + |0〉1|
√

2α〉2 + |−
√

2α〉1|0〉2
]
|0L〉3

+ ν

[
|i
√

2α〉1|0〉2 + |0〉1|−i
√

2α〉2 + |0〉1|i
√

2α〉2 + |−i
√

2α〉1|0〉2
]
|1L〉3

+ µ

[
|α̃〉1|−α̃∗〉2 + |α̃∗〉1|−α̃〉2 + |−α̃∗〉1|α̃〉2 + |−α̃〉1|α̃∗〉2

]
|1L〉3

+ ν

[
|α̃〉1|α̃∗〉2 + |−α̃∗〉1|−α̃〉2 + |α̃∗〉1|α̃〉2 + |−α̃〉1|−α̃∗〉2

]
|0L〉3, (4.11)

We now consider how mode 3 is projected when we measure n1 and n2 photons in modes 1 and
2 respectively. For this we make use of the relation

〈n|β〉 = e−|β|
2/2 β

n

√
n!
. (4.12)

First, we consider the case when n1 6= 0 and n2 6= 0, in which case only the last two lines
contribute. Recalling that α̃∗ = −iα̃ we get:

〈n1|1〈n2|2ÛBS (µ|0L〉1 + ν|1L〉1) (|0L〉2|0L〉3 + |1L〉2|1L〉3)

=
e−|α|

2

√
n1!n2!

α̃n1+n2(in1 + in2)(1 + (−1)n1+n2)

(
µ|1L〉3 +

(−1)n1 + (−1)n2

2
ν|0L〉3

)
. (4.13)

There are a few things to note in this expression: First, the prefactor 1 + (−1)n1+n2 yields 0
whenever n1 and n2 are of different parity, i.e. when the total photon number is odd. Thus
we are guaranteed to measure an even total photon number, as expected since the input states
contains only even photon numbers. Second, the prefactor in1 + in2 yields 0 whenever n1 and
n2 are different modulus 4, assuming equal parity of n1 and n2. This is less trivial, and a result
of quantum interference on the BS. This can also be seen in Fig. 4.1b. Third, the coefficients
get swapped, i.e. µ is mapped onto |1L〉 and ν to |0L〉, requiring a corrective logical X gate, as
stated in the main text. Finally, the [(−1)n1 + (−1)n2 ]/2 term contributes a (−1) phase factor
whenever n1 and n2 are odd, requiring a corrective logical Z gate. Since n1 ≡ n2 (mod 4) this
corresponds to the cases when n1 + n2 ≡ 2 (mod 4).
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Next, we consider the case when n2 = 0 and n1 6= 0:

〈n1|1〈0|2ÛBS (µ|0L〉1 + ν|1L〉1) (|0L〉2|0L〉3 + |1L〉2|1L〉3)

=
e−|α|

2

√
n1!

(
√

2α)n1(1 + (−1)n1) (µ|0L〉3 + in1ν|1L〉3)

+
e−|α|

2

√
n1!

α̃n1(in1 + 1)(1 + (−1)n1)

(
µ|1L〉3 +

(−1)n1 + 1

2
ν|0L〉3

)
=
e−|α|

2

√
n1!

√
2
n1
αn1(1 + (−1)n1)

×
[(
µ+

ein1π/4

√
2
n1

(in1 + 1)
(−1)n1 + 1

2
ν

)
|0L〉3 +

(
in1ν + (in1 + 1)

ein1π/4

√
2
n1

µ

)
|1L〉3

]
. (4.14)

When n1 ≡ 2 (mod 4) this reduces to:

∝ [µ|0L〉3 − ν|1L〉3] . (4.15)

That is, we recover the state with a corrective logical Z gate. When n2 ≡ 0 (mod 4) we get:

∝

[(
µ+

(−1)n1/4

√
2
n1−2 ν

)
|0L〉3 +

(
ν +

(−1)n1/4

√
2
n1−2 µ

)
|1L〉3

]
. (4.16)

In this case we induce a non-correctable error on the output state. However, when n1 is large,
the expression reduces to µ|0L〉3 + ν|1L〉3, i.e. we recover the state without error. On the other
hand, when n1 = 4, for example, we get (µ− 0.5ν) |0L〉3 + (ν − 0.5µ) |1L〉3. In this case, the
amplitudes are reduced when µ and ν are of the same sign, and increased when their signs differ.
Thus this measurement outcome is more likely for |−L〉 states compared to |+L〉 states, i.e. the
measurement becomes a weak logical Pauli X measurement. To avoid this, α should be chosen
sufficiently large to reduce the probability of this measurement outcome for all logical input
states.

Finally, we consider the case when n1 = n2 = 0:

〈0|1〈0|2ÛBS (µ|0L〉1 + ν|1L〉1) (|0L〉2|0L〉3 + |1L〉2|1L〉3)

= 4e−|α|
2

(µ+ ν) [|0L〉3 + |1L〉3] . (4.17)

In this case, the output is completely independent of the input. Furthermore, this outcome does
not occur when µ = −ν, and thus the result projects the output onto the |+L〉 state. Again, to
avoid this scenario α should be chosen sufficiently large.

4.6 Appendix B: Teleportation with losses

We now look more detailed at the loss channel. As described in the main text, loss is described
by Kraus operators

K̂
(l)
Γ =

√
Γ

1− Γ

l
âl√
l!

√
1− Γ

n̂
, (4.18)
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where the l’th Kraus operator K
(l)
Γ corresponds to the case of loosing l photons. The effect of

this operator on the encoded state is:

K̂
(l)
Γ (µ|0L〉+ ν|1L〉) =

√
Γ

1− Γ

l
âl√
l!

[
µ
(
|α
√

1− Γ〉+ |−α
√

1− Γ〉
)

+ µ
(
|iα
√

1− Γ〉+ |−iα
√

1− Γ〉
)]

∝ âl
(
µ|0L〉+ ν|1L〉

)
, (4.19)

where |0L〉 and |1L〉 denote logical states with the reduced amplitude αΓ ≡ α
√

1− Γ. The l = 0
term is corrected by the circuit as described in Appendix A, by scaling the amplitude of the first
mode of the Bell state accordingly to αΓ.

For l = 1 we get the state:

K̂
(1)
Γ (µ|0L〉+ ν|1L〉) ∝ µ (|αΓ〉 − |−αΓ〉) + iν (|iαΓ〉 − |−iαΓ〉) . (4.20)

Repeating the calculations of Appendix A, keeping track of the new (-1) signs, we find the output
state for the different photon-number measurement results. When n1 6= 0 and n2 6= 0 we get:

〈n1|1〈n2|2ÛBS â
(
µ|0L〉1 + ν|1L〉1

)
(|0L〉2|0L〉3 + |1L〉2|1L〉3)

=
αΓe

−|αΓ|2

√
n1!n2!

α̃n1+n2

Γ (in2 − in1)(1− (−1)n1+n2)

×
[
µ|1L〉3 +

i

2

(
(−1)n1 + (−1)n2 + 2in1+n2

)
ν|0L〉3

]
. (4.21)

This time we find a contribution only when n1 + n2 is odd, as expected. Again, a corrective X
gate should be applied when n1 6= 0 and n2 6= 0. Additionally, as we only need to consider odd
n1 + n2, the factor on the |0L〉3 term reduces to (−1)(n1+n2+1)/2, i.e., a corrective Z rotation is
required when n1 + n2 ≡ 1 (mod 4).

When n1 6= 0 and n2 = 0:

〈n1|1〈0|2ÛBS â
(
µ|0L〉1 + ν|1L〉1

)
(|0L〉2|0L〉3 + |1L〉2|1L〉3)

=
αΓe

−|αΓ|2

√
n1!

(
√

2αΓ)n1(1− (−1)n1)
(
µ|0L〉3 + in1+1ν|1L〉3

)
+
αΓe

−|αΓ|2

√
n1!

α̃n1

Γ (1− in1)(1− (−1)n1)
(
µ|1L〉3 + (−1)(n1+1)/2ν|0L〉3

)
=
αΓe

−|αΓ|2

√
n1!

(
√

2αΓ)n1(1− (−1)n1)

×
[(
µ+

ein1π/4

√
2
n1

(1− in1)(−1)(n1+1)/2ν

)
|0L〉3 +

(
in1+1ν +

ein1π/4

√
2
n1

(1− in1)µ

)
|1L〉3

]
.

(4.22)

When n1 ≡ 1 (mod 4):

∝

[(
µ− eiπ/4(n1−1)

√
2
n1+1 ν

)
|0L〉3 +

(
−ν +

eiπ/4(n1−1)

√
2
n1+1 µ

)
|1L〉3

]
. (4.23)



49 Chapter 4. All-optical cat-code quantum error correction

When n1 ≡ 3 (mod 4):

∝

[(
µ+

eiπ/4(n1+1)

√
2
n1+1 ν

)
|0L〉3 +

(
ν +

eiπ/4(n1+1)

√
2
n1+1 µ

)
|1L〉3

]
. (4.24)

Thus we get an uncorrectable contribution in both cases. However, for large n1 this error vanishes

due to the factor
√

2
n1+1

, and the input state is recovered by applying a logical Z correction
when n1 ≡ 1 (mod 4). Finally, the case n1 = n2 = 0 occurs with probability 0, as we expect to
measure an odd number of photons if we have lost one photon in the input state.

For l = 2 we get

K̂
(2)
Γ (µ|0L〉+ ν|1L〉) ∝ µ|0L〉 − ν|1L〉. (4.25)

That is, two-photon loss corresponds to an undetectable logical Z rotation.

To summarise, we can distinguish between the cases l = 0 and l = 1 by the parity of the total
number of photons detected, n1 + n2. In both cases, a logical X correction should be applied
whenever both detectors measure more than 0 photons. Additionally, a logical Z correction
should be applied whenever the total photon number modulus 4 is 1 or 2.

4.7 Appendix C: generation of logical Bell states with cav-
ity QED

Here we propose a method to generate the required logical Bell states. This is inspired by the
experiment by Hacker et al. [64], which used a cavity QED system to generate a two-component
cat state, |α〉 + |−α〉. The cavity QED system consists of a cavity containing an atom with a
three-level energy structure, |↓〉, |↑〉 and |e〉, where the |↑〉 ↔ |e〉 transition is resonant with the
cavity. By preparing the atom in the (|↓〉, |↑〉)-subspace and reflecting a coherent state pulse
off the cavity, the reflected state obtains a phase shift depending on the state of the atom.
In particular, the reflection coefficients can be written as (see Supplementary Information of
Ref. [64])

r↑ = 1− 2κr(i∆ + γ)

(i∆ + κ)(i∆ + γ) + g2
, r↓ = 1− 2κr

i∆ + κ
, (4.26)

where κr is the coupling rate between the input free-space mode and the cavity, κ is the total
decay rate of the cavity, ∆ is the detuning between the input field and the cavity, γ is the
spontaneous decay rate of the state |e〉 via modes other than the cavity mode and g is the
coupling strength between the atom and the cavity.

When ∆ = 0 and in the regime where κ ≈ κr and g2 � κγ we get r↑ = 1 and r↓ = −1,
so for the atom in the initial state |+〉 = (|↑〉 + |↓〉)/

√
2 a reflected coherent state becomes

|α〉 → (|α〉|↑〉 + |−α〉|↓〉)
√

2. Subsequently measuring the atom in the state |+〉 projects the
optical field into the cat state ∝ |α〉 + |−α〉. Additionally, according to Eq. (4.26) and as
was experimentally demonstrated in [64], for ∆ 6= 0 we can obtain various phases between the
coefficients r↑ and r↓. In particular, for ∆ ≈ κ (still in the regime κ ≈ κr and g2 � κγ and
further assuming g � κ) we get a π/2 phase shift between the reflection coefficients. Thus, if a
cat state is reflected onto this detuned cavity with the atom prepared in the |+〉 state, we obtain
the state

|α〉+ |−α〉 → 1√
2

(|α〉+ |−α〉)|↑〉+
1√
2

(|iα〉+ |−iα〉)|↓〉, (4.27)
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where the output state is written in a frame such that α is real. Measuring the atom now projects
the optical field onto a 4-component cat state. However, if we instead reflect a second cat state
off the cavity we get:

1√
2

[
(|α〉1 + |−α〉1)|↑〉+ (|iα〉1 + |−iα〉1)|↓〉

][
|α〉2 + |−α〉2

]
→ 1√

2

[
(|α〉1 + |−α〉1)(|α〉2 + |−α〉2)|↑〉+ (|iα〉1 + |−iα〉1)(|iα〉2 + |−iα〉2)|↓〉

]
. (4.28)

Measuring the atom in the |+〉 state projects the two optical modes into the desired Bell state,

→ 1

2

[
(|α〉1 + |−α〉1)(|α〉2 + |−α〉2) + (|iα〉1 + |−iα〉1)(|iα〉2 + |−iα〉2)

]
. (4.29)



Chapter 5

Generation of optical
Gottesman-Kitaev-Preskill states
with cavity QED

In this chapter we present the paper “Generation of optical Gottesman-Kitaev-Preskill states with
cavity QED” [31], authored by Jacob Hastrup and Ulrik L. Andersen. This work is submitted
for publication and is available at arxiv.org (arXiv:2104.07981).

5.1 Abstract

Gottesman-Kitaev-Preskill (GKP) states are a central resource for fault-tolerant optical continuous-
variable quantum computing. However, their realization in the optical domain remains to be
demonstrated. Here we propose a method for preparing GKP states using a cavity QED system
which can be realized in several platforms such as trapped atoms, quantum dots or diamond color
centers. We then further combine the protocol with the previously proposed breeding protocol
by Vasconcelos et al. to relax the demands on the quality of the QED system, finding that GKP
states with more than 10 dB squeezing could be achieved in near-future experiments.

5.2 Introduction

Quantum error correction is an essential step towards building large-scale quantum computers
with realistic noisy components. In 2001, Gottesman, Kitaev and Preskill (GKP) proposed an
error correction protocol in which each qubit is encoded into the continuous variables of an infinite
dimensional bosonic mode [28]. With this encoding, small errors such as displacements and losses
of the bosonic mode [53,55] can be corrected using only Gaussian operations, thus providing an
experimentally friendly and efficient framework, especially in the case where the bosonic mode
is represented by an optical field. GKP error correction is particularly suitable in combination
with optical cluster states [72, 77, 105, 106], a field which have seen tremendous progress in
recent years [74–76]. Additionally, GKP error correction can be used in long distance quantum
communication schemes [109, 110], implementing quantum repeaters using only beamsplitters,
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homodyne detectors and GKP ancilla resource states [68].

However, the encoded states themselves, denoted GKP states or grid states, are non-Gaussian
and have proven extremely difficult to produce experimentally. Only in recent years have the
states been produced in the motional mode of a trapped ion [43,111] and in a microwave cavity
field coupled to a superconducting circuit [48]. Crucially, they remain to be demonstrated in the
optical domain, despite several proposed generation schemes [88–91,112,113]. One promising ap-
proach is to interfere squeezed states on a multimode interferometer and project one output mode
into an approximate GKP state by measuring the remaining modes with photon number resolving
detectors [89, 105]. Progress in high quality photon number resolving detectors could make this
experiment feasible in the near future. However, the method is fundamentally probabilistic and
thus needs multiplexing to be scalable, which imposes a large resource overhead. Furthermore,
it is unclear how efficient and noise tolerant the protocol is for generating highly squeezed GKP
states (> 10 dB squeezing), which are likely required to achieve fault-tolerance [77,78,106].

Another proposal is to build the GKP state using squeezed Schrödinger’s cat states as the non-
Gaussian element [90,91]. The advantage of this approach is that it uses only beamsplitters and
homodyne detectors, and that it can be made fully deterministic [91]. However, it requires large
amplitude cat states, which are challenging to produce in optics. Still, recently Hacker et al.
demonstrated the experimental generation of optical cat states, by reflecting a light pulse off an
optical cavity containing an atom [64]. This method can in principle be used to generate cat
states of arbitrary amplitude, although the method requires both high cooperativity and large
escape efficiency which is experimentally challenging.

In this work, inspired by the experimental progress reported in [64], we propose to use cavity
quantum electrodynamics (QED) to generate approximate GKP states by iteratively reflecting
squeezed states off a cavity containing a 3-level system. We thus extend the cat generation pro-
tocol of [64] by inputting squeezed states, and by applying multiple interactions. We analyse the
performance in systems with finite cooperativity and escape efficiency to determine the expected
quality of the produced state with realistic devices. Furthermore, we combine the protocol with
the cat breeding protocol of ref [90], which turns out to heavily relax the requirements on the
quality of the cavity QED system. Finally, we propose a method to generate the input squeezed
states also using the cavity QED system, eliminating the need for a squeezed light source at the
cavity QED resonance frequency.

5.3 Preliminaries

GKP states

We describe the optical mode as a single bosonic mode with annihilation and creation operators
â and â† and corresponding quadrature operators x̂ = 1√

2
(â+ â†) and p̂ = 1√

2i
(â− â†) satisfying

[x̂, p̂] = i.
The aim of our work is to produce good approximate GKP states with a square lattice. In this
work the relevant approximation is a finite superposition of squeezed states [114]:

|0GKP〉 ∝
∑
s

D̂
(√

2πs
)
Ŝ(r)|vac〉,

|1GKP〉 ∝ D̂
(√

π/2
)
|0GKP〉, (5.1)
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where D̂(α) = exp(αâ† − α∗â) is the displacement operator and Ŝ(r) = exp
(

1
2 (r∗â2 − râ†2)

)
is

the squeezing operator. The summation index, s, is over a finite number of integers around 0.
GKP states have a periodic comb structure in both x and p quadratures with high quality GKP
states consisting of highly squeezed peaks in both quadratures. Large squeezing in x is achieved
with large r as is evident from Eq. (5.1) while large squeezing in p is achieved by including many
terms in the sum. For a finite number of terms, the squeezing in p can be further improved by
weighing the superposition of Eq. (5.1) such that terms further from the origin have less weight.
In this work we quantify the quality of the produced GKP states by their amount of effective
squeezing [101] in each quadrature, defined as:

∆x =

√√√√ 1

2π
ln

(
1

|〈D̂(i
√

2π)〉|2

)
(5.2)

∆p =

√√√√ 1

2π
ln

(
1

|〈D̂(
√

2π)〉|2

)
. (5.3)

The amount of squeezing is commonly denoted in dB as ∆dB = −10 log10(∆2). For the approx-
imate GKP state of Eq. (5.1) one obtains ∆x = e−r while ∆p depends on the number of terms,
e.g. ∆p = (6.6, 10.4, 13.7)dB for (2, 4, 8) terms respectively [33].

Cavity QED system

Since GKP states are non-Gaussian we require a non-Gaussian element to generate them. In this
work, we propose to use a cavity QED system as the central and only non-Gaussian element.
In particular, we consider the reflection of an incoming optical field onto a single-mode cavity
containing a 3-level system, as depicted in Fig. 5.1a. The 3-level system consists of two low
energy states, |0〉 and |1〉, and one high energy state, |e〉, which can be optically excited from the
state |1〉 through a Jaynes-Cumming Hamiltonian with coupling strength g. In this paper we
denote this 3-level system as an “atom”, e.g. as the one used in the experiment of [64]. However,
this atom could also be artificial such as a charged quantum dot [115–117] with the states |0〉 and
|1〉 denoting spin states and |e〉 denoting a charged exciton state, or it could be a diamond color
center [118,119], such as the nitrogen-vacancy center or silicon-vacancy center, where the states
|0〉 and |1〉 are represented by spin ground states and |e〉 is an excited spin state. The cavity
resonance frequency and the frequency of the incoming field are equal and tuned to match the
|1〉 ↔ |e〉 transition. To couple light into and out of the cavity, one end of the cavity is constructed
with a slightly transparent mirror with a coupling rate κc to an external free-space field. With
the atom prepared in the (|0〉, |1〉) subspace, an optical field mode reflected on the cavity ideally
experiences a controlled phase rotation, R̂c, depending on the state of the atom [64,120]:

R̂c ≡ eiπn̂ ⊗ |0〉〈0|+ Î⊗ |1〉〈1| (5.4)

If the system is initially in the state |+〉 = (|0〉+ |1〉)/
√

2, an incoming optical state, |ψ〉, evolves
as:

R̂c|ψ〉 ⊗ |+〉 = (eiπn̂|ψ〉 ⊗ |0〉+ |ψ〉 ⊗ |1〉)/
√

2. (5.5)

Subsequently measuring the system in state |+〉 yields:

〈+|R̂c|ψ〉 ⊗ |+〉 = (eiπn̂|ψ〉+ |ψ〉)/
√

2. (5.6)
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Figure 5.1: (a): Cavity QED system consisting of a cavity containing a 3-level system in which
two levels resonantly couple to the cavity field. The cavity couples to a free-space field with rate
κc and to undesired scattering and loss modes with rate κl. Additionally, the excited state of
the 3-level system can spontaneously decay trough modes different from the cavity mode with
rate γ. Ideally, the cavity imprints a controlled rotation, R̂c (Eq. (5.4)), on the reflection of
an incoming mode. (b) Circuit diagram for the GKP state generation protocol. (c) Repeated
applications of displacements and controlled rotations evolves an initial squeezed vacuum state
into an approximate GKP state. (d) Preparing the atom in an unequal superposition, |+̃〉, in
the second to last step allows for the final state to have a two-level amplitude weighting of the
squeezed peaks.

For example, for a coherent state input we obtain a Shrödinger’s cat state, as was recently
experimentally demonstrated [64].

Realistic systems, however, are limited by losses and scattering into unwanted modes at rate
κl, as well as spontaneous decay of the excited state of the atom through modes different than
the cavity mode at rate γ. In the Supplementary Material we describe how to model these
imperfections. The imperfections are conveniently described by the cooperativity,

C =
g2

2γκ
, (5.7)
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and escape efficiency

η =
κc
κ
, (5.8)

where κ = κl+κc is the total cavity loss. Both C and η should preferably be as large as possible.
However, there is a trade-off between the cooperativity and the escape efficiency. This is because
the cooperativity can be increased by decreasing κc while the escape efficiency is increased by
increasing κc. Since we would like both high cooperativity and high escape efficiency one has
to carefully tune the cavity coupling rate by engineering the cavity design. In the following we
therefore quantify the system in terms of the internal cooperativity [121], defined as

C0 =
g2

2κlγ
=

C

1− η
. (5.9)

Thus, for fixed g, κl and γ, the internal cooperativity does not depend on the coupling rate κc.
Note also that the internal cooperativity is always larger than the actual cooperativity, C0 ≥ C.
In the following analysis we numerically optimize κc for each C0 in order to optimize the effective
squeezing of the output states.

5.4 Results

The idea of our proposed protocol is to repeatedly use the controlled rotation imposed by the
cavity to generate an approximate GKP state, as illustrated in Fig. 5.1b and c. That is, inputting
a displaced squeezed vacuum state we obtain a squeezed Schrödinger’s cat state. Displacing and
reflecting the output state on the cavity again further doubles the number of squeezed peaks in
the output state and repeating this N times yields a state of the form of Eq. (5.1) with 2N peaks.
The displacement amplitude at the at n’th step is given by

D̂n = D̂
(

2n−1
√
π/2

)
. (5.10)

For a sufficiently squeezed input state the probability to obtain the measurement result |+〉 N
times is 1/2N . However, the first interaction can be made deterministic, by adding a feed-forward
displacement operation since

D̂
(
i
√
π/(2
√

2)
)(

D̂(
√

2π)− D̂(−
√

2π)
)
Ŝ(r)|vac〉 ≈

(
D̂(
√

2π) + D̂(−
√

2π)
)
Ŝ(r)|vac〉 (5.11)

Thus a 4 peak state, which can yield up to 10.4 dB squeezing can be generated with probability
0.5, while an 8 peak state, yielding up to 13.7 dB squeezing, can be generated with probability
0.25.

The solid lines of fig. 5.2a show the obtainable amount of squeezing using the protocol with
finite-cooperativity systems. In addition to optimizing κc, we also numerically optimize the
amount of input squeezing (See Supplementary Material for details on the input squeezing). The
optimization is done by optimizing min(∆x,∆p) such that we ensure effective squeezing in both
quadratures. Additionally, we can slightly further improve the performance by slightly tuning
the displacement amplitudes and the atomic superposition state (details in the Supplementary
Information).

The dashed lines of Fig. 5.2a show the result when implementing these two modifications. Note
that for both the solid and dashed lines, there exists an optimal number of interactions, N , for
each value of the internal cooperativity. This is because noise from the cavity adds up over
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Figure 5.2: (a) Achievable amount of effective squeezing generated by the protocol outlined in
Fig. 5.1 with a noisy cavity, as a function of internal cooperativity, C0 (Eq. (5.9)), optimizing
the cavity output coupling rate and the input squeezing parameter. N denotes the number of
interactions with the cavity. The dashed lines further optimize over the displacement magnitudes
and the initial state of the atom. (b) Wigner functions and quadrature distributions for the states
generated with C0 = 200 and C0 = 2000 using N = 1 and N = 2 respectively, corresponding to
open circles in (a).

multiple interactions, and thus at some point the noise added from the cavity outweighs the
effect of increasing the number of peaks in the state. Fig. 5.2b shows the Wigner functions and
quadrature probability distributions of the achievable states with C0 = 200 and N = 1 (left)
and C0 = 2000 and N = 2 (right). For C0 = 200 the produced state is essentially a squeezed
Schrödinger’s cat state, but the quadrature distributions reveal the onset of the desired comb-like
structure. For C0 = 2000 we see a clear grid structure in the Wigner function and a narrowing
of the peaks in the quadrature distribution.

As is evident from Fig. 5.2, the protocol demands very high values of the internal cooperativity
to produce high-squeezing grid states. This is due to the multiple interactions required with the
noisy cavity, as well as the demanding simultaneous requirements of high cooperativity and high
escape efficiency.

To reduce the demands on the cavity QED system we propose to combine the protocol with the
Schrödinger’s cat state based breeding protocol of Ref. [90]. In that protocol, we begin with a
squeezed cat state of the form

|sqcat〉 =
[
D̂
(√

π
√

2
M−1

)
+ D̂

(
−
√
π
√

2
M−1

)]
Ŝ(r)|vac〉, (5.12)

where M is the number of iterations of the breeding protocol. Two such squeezed cat states are
combined on a 50:50 beamsplitter and the p quadrature of one mode is measured with a homodyne
detector. Conditioned on the result p = 0, the other mode is projected into an approximate GKP-
like state. This protocol is then iterated, combining two such output states on another 50:50
beamsplitter and projecting one mode out with homodyne detection, etc. After M iterations,
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Figure 5.3: Achievable amount of effective squeezing obtained with the cat breeding method [90],
using input squeezed cats generated with the cavity QED system. M refers to the number
of rounds of the breeding protocol. The dashed lines show the result when fine tuning the
displacement amplitude to partly compensate losses in the cavity. (b) Wigner functions and
quadrature distributions using C0 = 200 and C0 = 2000 with M = 2 and M = 3 respectively,
corresponding to the points marked with open circles in (a).

the resulting output is an approximate GKP state of which ∆p increases with the number of
iterations and ∆x equals the squeezing of the initial input cat states. One important feature of
this breeding protocol is that homodyne detectors and beamsplitters can be implemented with
near unity efficiency. Thus the experimental challenges are focused on producing high quality
squeezed cat states. Note from Eq. (5.12) that the amplitude of the initial squeezed cat states
depends on the number of iterations, M . Thus to achieve a highly squeezed approximate GKP
state we require a large amplitude squeezed cat state, which is more sensitive to noise, such as
loss, and thus experimentally more demanding.

A deterministic version of this protocol was proposed in [91], by adding a feed-forward displace-
ment to the final state. Furthermore, it was shown in [91] that this deterministic approach
on average generates GKP states with ∼ 1 dB more squeezing compared to the probabilistic
approach.

Fig. 5.3(a) shows the obtainable amount of effective squeezing generated with the breeding pro-
tocol, using squeezed cat states produced by a single reflection on the cavity. As with Fig. 5.2 we
also optimize the displacement of the squeezed cat, with the results shown by the dashed lines.
We see a substantial increase in the amount of achievable squeezing, reaching more than 10 dB
for an internal cooperativity around C0 = 1300, corresponding to a cooperativity of C = 25 and
escape efficiency η = 0.98. Note that we have to generate 2M squeezed cat states to breed each
approximate GKP state. Even though each of these squeezed cats are generated under noisy
conditions, they still breed into an approximate GKP state with more squeezing than what is
possible solely using the cavity. Fig. 5.3b shows Wigner functions and quadrature distributions
of two example states generated with C0 = 200 and C0 = 2000 using M = 2 and M = 3 re-
spectively. Comparing to Fig. 5.2c we observe clear improvement in the quality of the produced
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states.

The results presented in Fig. 5.3 are generated using the original probabilistic approach [90],
as it allows efficient evaluation of the effective squeezing levels with mixed state inputs, which
enables us to numerically optimize the cavity coupling rate and input squeezing levels. However,
as mentioned, the protocol can be made fully deterministic following [91], with the added benefit
of an expected slight increase in the squeezing levels.

Finally, we address the input squeezed light source. Ideally, one might want to use squeezed light
generated from parametric down conversion, as this method can yield very high squeezing values.
However, the wavelength and temporal mode profile of the squeezed light from such a source
might not be straightforwardly compatible with a high cooperatively cavity QED system. In
the Supplementary Material we therefore propose a method to generate squeezed states starting
from a coherent state, using the cavity QED system.

5.5 Conclusion

We have presented a method for generating approximate GKP states using a cavity QED system
as the central non-Gaussian element. The performance is in practice limited by the internal
cooperativity of the system. State of the art systems have demonstrated internal cooperatives of
up to 200 [116,119] which could produce approximate GKP states with 4.4 dB squeezing, which
can be improved to 5.5 dB through the breeding method of [90]. However, improved cavity
designs are rapidly being developed across multiple platforms, and designs with cooperativities
exceeding 1000 have been proposed [122], which could push the achievable amount of effective
squeezing above 10 dB in the near future.

5.6 S1: Realistic reflection channel

Here we show how to model the realistic cavity described by finite cooperativity and escape
efficiency. We wish to determine reflected field mode by a quantum channel described by Kraus
operators as

ρ→
∑

(ml,mγ)∈N2
0

K̂ml,mγρK̂
†
ml,mγ

, (5.13)

where ρ denotes the density matrix of the incoming optical field. As we shall show in the following,
the Kraus operator K̂ml,mγ corresponds to the event of losing ml photons to unwanted cavity
losses and mγ photons via scattering of the atom. We use standard input-output theory to model
the system [39, 123]. Thus the input and output fields, âin and âout, are related to the cavity
field, âc in the Heisenberg picture as:

âout =
√

2κcâc + âin. (5.14)

The quantum Langevin equation for the cavity field operator, including excess losses to the mode
âl is given by:

˙̂ac = − i
~

[âc, Ĥ]−
√

2κcâout −
√

2κlâl + κâc, (5.15)

where Ĥ is the cavity Hamiltonian and κ = κl + κc. We consider first the case of the atom in
the |1〉, |e〉-subspace. The cavity Hamiltonian is given by the Jaynes-Cummings Hamiltonian:

Ĥ = ~ωcâ†câc + ~ωaσ̂z/2 + ~g
(
âcσ̂+ + â†cσ̂−

)
, (5.16)



59 Chapter 5. Generation of optical Gottesman-Kitaev-Preskill states with cavity QED

where σ̂z = −|1〉〈1|+ |e〉〈e|, σ̂− = |1〉〈e| and σ̂+ = |e〉〈1| and g is the coupling rate. Additionally,
we consider the quantum Langevin equation for the operator σ̂−, including atomic decay into
modes different from the cavity mode, denoted âγ :

˙̂σ− = − i
~

[σ̂−, Ĥ] + σ̂z(−γσ̂− +
√

2γâγ). (5.17)

Inserting Ĥ we get:

˙̂ac = −iωcâc − igσ̂− −
√

2κcâout −
√

2κlâl + κâc (5.18)

˙̂σ− = −iωaσ̂− + igâcσ̂z + σ̂z(−γσ̂− +
√

2γâγ). (5.19)

These are solved for the cavity field in the frequency domain at resonance, assuming weak
excitation of the atom such that 〈σ̂z〉 = −1:

âc(ω) =

√
2κcâout(ω) +

√
2κlâl(ω) + ig

√
2γ

γ−i∆a
âγ(ω)

κ− i∆c + g2

γ−i∆a

, (5.20)

where ∆c = ωc − ω and ∆a = ωa − ω. Inserting into the input-output relation, (5.14):

âin(ω) =
(κ− i∆c + g2

γ−i∆a
− 2κc)âout(ω)− 2

√
κlκcâl(ω)− i2g

√
γκc

γ−i∆a
âγ(ω)

κ− i∆c + g2

γ−i∆a

= r1âout(ω) + t1âl(ω) + Γâγ(ω) (5.21)

At resonance, ∆c = 0 and ∆a = 0, the coefficients can be written in terms of the cooperativity,
C = g2/(2γκ), and escape efficiency, η = κc/κ as:

r1 =
2C + 1− 2η

2C + 1
(5.22)

t1 = −
2
√
η(1− η)

2C + 1
(5.23)

Γ = −i2
√

2ηC

2C + 1
. (5.24)

In the case of the atom in state |0〉 the relevant coefficients are obtained by setting g = 0
(corresponding to C = 0). This gives:

r0 = 1− 2η (5.25)

t0 = −2
√
η(1− η), (5.26)

and no scattering from the atom. In total, the input field transforms as:

âin → (r0âout + t0âl)⊗ |0〉〈0|+ (r1âout + t1âl + Γâγ)⊗ |1〉〈1| (5.27)

To find the corresponding Kraus operators we consider the transformation of an arbitrary pure
input state,

|ψ〉 =

∞∑
n=0

cn|n〉in =

∞∑
n=0

cn
(â†in)n√
n!
|0〉in. (5.28)



Chapter 5. Generation of optical Gottesman-Kitaev-Preskill states with cavity QED 60

Inserting Eq. (5.27):

|ψ〉 →
∑
n

cn√
n!

[
(r0â

†
out + t0â

†
l )⊗ |0〉〈0|+ (r1â

†
out + t1â

†
l + Γâ†γ)⊗ |1〉〈1|

]n
|0〉out|0〉l|0〉γ

=
[∑

n

cn√
n!

(r0â
†
out + t0â

†
l )
n
]
|0〉out|0〉l|0〉γ ⊗ |0〉〈0|

+
[∑

n

cn√
n!

(r1â
†
out + t1â

†
l + Γâ†γ)n

]
|0〉out|0〉l|0〉γ ⊗ |1〉〈1|. (5.29)

For simplicity we consider now the term containing |1〉〈1|. The |0〉〈0| is expanded in a similar
fashion:∑

n

cn√
n!

(r1â
†
out + t1â

†
l + Γâ†γ)n|0〉out|0〉l|0〉γ

=
∑
n

cn√
n!

n∑
m=0

(
n
m

)
(r1â

†
out)

n−m(t1â
† + Γâ†γ)m|0〉out|0〉l|0〉γ

=

∞∑
n=0

cn√
n!

n∑
m=0

(
n
m

)
(r1â

†
out)

n−m
m∑

mγ=0

(
m
mγ

)
(t1â

†
l )
m−mγ (Γâ†γ)mγ |0〉out|0〉l|0〉γ . (5.30)

Reordering the summations as
∑∞
n=0

∑n
m=0

∑m
mγ=0 =

∑∞
m=0

∑m
mγ=0

∑∞
n=m and applying the

creation operators:

=

∞∑
m=0

m∑
mγ=0

∞∑
n=m

cn√
n!

(
n
m

)(
m
mγ

)
rn−m1 t

m−mγ
1 Γmγ

×
√

(n−m)!
√

(m−mγ)!
√
mγ !|n−m〉out|m−mγ〉l|mγ〉γ . (5.31)

When tracing out the lossy modes, we obtain an incoherent mixture of the terms in the inner
sum. Each of these terms corresponds to losing mγ photons from scattering of the atom and
ml = m−mγ photons to excess cavity losses. Looking at one of these terms:

∞∑
n=ml+mγ

cn√
n!

(
n

ml +mγ

)(
ml +mγ

mγ

)
× rn−ml−mγ1 tml1 Γmγ

√
ml!
√
mγ !

√
(n−ml −mγ)!|n−ml −mγ〉

=

∞∑
n=ml+mγ

cn√
n!

(
t1
r1

)ml ( Γ

r1

)mγ 1√
ml!mγ !

â
ml+mγ
out rn̂1 |n〉

=

(
t1
r1

)ml ( Γ

r1

)mγ 1√
ml!mγ !

â
ml+mγ
out rn̂1 |ψ〉. (5.32)

Similarly, when including also the |0〉〈0| term in Eq. (5.29), the term corresponding to losing
(ml,mγ) photons is:[

δmγ ,0

(
t0
r0

)ml âmlout√
ml!

rn̂0 ⊗ |0〉〈0|+
(
t1
r1

)ml ( Γ

r1

)mγ â
ml+mγ
out√
ml!mγ !

rn̂1 ⊗ |1〉〈1|

]
|ψ〉 ≡ K̂ml,mγ |ψ〉.

(5.33)
From this we identify the Kraus operator corresponding to the loss of (ml,mγ) photons:

K̂ml,mγ = δmγ ,0

(
t0
r0

)ml âml√
ml!

rn̂0 ⊗ |0〉〈0|+
(
t1
r1

)ml ( Γ

r1

)mγ âml+mγ√
ml!mγ !

rn̂1 ⊗ |1〉〈1|. (5.34)
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Figure 5.4: x and p quadrature distributions for different approximate GKP states, each com-
posed of Npeaks = 8 peaks of 10 dB squeezing with different peaks weightings. (a) Equal weight-
ing. (b) Two-level weighting. (c) Binomial weighting.

5.7 S2: Squeezing in the limit η → 1 and C →∞
Here we calculate the effective squeezing levels of ideal states generated by the protocol. These
can be written in the form

|ψGKP〉 =
∑
s

csD̂
(√

π/2s
)
Ŝ(r)|vac〉. (5.35)

For logical 0 states, cs is zero for odd s, while for logical 1 states, cs is zeros for even s. For
sufficiently large r such that neighbouring states are non overlapping, normalization is achieved
by
∑
s |cs|2 = 1. The expectations value used to calculate the the effective squeezing level is

given by

〈D̂
(
i
√

2π
)
〉 = e−πe

−2r

, (5.36)

〈D̂
(√

2π
)
〉 =

∑
c∗scs+2, (5.37)

again assuming negligible overlap between neighbouring states. Thus the effective squeezing
level in the x quadrature depends only on r, while the effective squeezing in the p quadrature is
independent of r and depends instead only on the distribution of the peaks.

Equal weighting

The states generated directly with the cavity, i.e. by the circuit of Fig. 5.1b after N steps have
Npeaks = 2N non-zero coefficients of equal amplitude 1/

√
Npeaks. Fig. 5.4a shows the quadrature

distributions of this state with 8 peaks. For Npeaks peaks Eq. (5.37) yields:

〈D̂
(√

2π
)
〉 =

Npeaks − 1

Npeaks
. (5.38)
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For Npeaks = 2, 4 or 8 we then get ∆p = 6.6dB, 10.4dB or 13.7 dB respectively. In the limit of

many peaks, i.e. large Npeaks we get ∆p ≈
√

1/(πNpeaks) and thus doubling the number of peaks
increases the amount of squeezing with 3 dB.

Two-level weighting

As mentioned in the main text, the effective squeezing can increased by imposing an envelope
over the coefficients cs. In our protocol, we can create a two-level envelope by preparing the
atom in an uneven superposition, a|0〉+b|1〉 with |a|2 + |b|2 = 1, in the second to last interaction.
In the resulting normalized output GKP state, the innermost half of the peaks have amplitude√

2a/
√
Npeaks while the outermost half have amplitude

√
2b/
√
Npeaks, as shown in Fig. 5.4b. In

this case we get from Eq. (5.37):

〈D̂
(√

2π
)
〉 =

Npeaks − (4|b|2 + 2|a|2 − 4Re[a∗b])

Npeaks
. (5.39)

This expression is optimized for a =
√

1/2 + 1/
√

20 and b =
√

1/2− 1/
√

20, in which case we
get

〈D̂
(√

2π
)
〉 =

Npeaks −

∼0.76︷ ︸︸ ︷
(3−

√
5)

Npeaks
. (5.40)

In the limit of large Npeaks we get ∆p ≈
√

3−
√

5
√

1/(πNpeaks) corresponding to 1.2 dB more
squeezing compared to the equal-amplitude distribution. Comparing Fig. 5.4a and b we see that
imposing the two-level weighting of the peaks helps to reduce the noise of the p-distribution.

Binomial weighting

The states generated with the cat-breeding protocol also take the form of Eq. (5.35), but with
Npeaks = 2M + 1 peaks forming a binomial distribution of the coefficients [90]. Thus the expec-
tation value from Eq. (5.37) is:

〈D̂
(√

2π
)
〉 =

∑Npeaks−2
k=0

(
Npeaks − 1

k

)(
Npeaks − 1
k + 1

)
∑Npeaks−2
k=0

(
Npeaks − 1

k

)2

=

(
2(Npeaks − 2)
Npeaks − 1

)
(

2(Npeaks − 1)
Npeaks − 1

)
=
Npeaks − 1

Npeaks
, (5.41)

where the 2nd equality follows from Vandermonde’s identity in both the numerator and denom-
inator. Coincidentally, this expectation value is the same as for the equal weighting, Eq. (5.38),
despite the quadrature distributions being quite different. Fig. 5.4c shows the binomial weighting
with 8 peaks. Comparing to the equal weighting, Fig. 5.4a, the binomial distribution greatly
reduces the p-quadrature noise floor, but at the cost of broadening the peaks. This trade-off
happens to be such that 〈D̂

(√
2π
)
〉 remains unchanged. Note that this does not necessarily
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Figure 5.5: Effective squeezing in the least squeezed quadrature, min(∆x,∆p), in dB of the states
generated with N = 2 as a function of input squeezing and internal cooperativity.

imply that the two states perform identically in practice, as this will depend on the specifics of
the error correction protocol.

5.8 S3: Input squeezing

Fig. 5.5 shows the achievable effective squeezing withN = 2 as a function of internal cooperativity
and input squeezing, numerically optimizing the coupling rate and displacement amplitudes at
each point. For a given internal cooperativity there exists an optimum input squeezing level.
This is because a heavily x-squeezed input state has a larger envelope in the p-quadrature. As the
state experiences losses during generation, peaks at large |p| experience a shift towards 0, thus
shifting relative to the GKP lattice which degrades the effective squeezing level. In general, the
achievable output squeezing is a few dB lower than the optimum input squeezing. This is because
the effective squeezing in the x-quadrature is completely determined by the input squeezing. As
the input state experiences noise from the cavity, the squeezing level in the x-quadrature is thus
reduced by a few dB in the produced state, compared to the squeezing of the input state.

5.9 S4: Displacement amplitudes

Fig. 5.6 shows the numerically optimized displacement amplitudes. When the internal coopera-
tivity is large, the optimal amplitudes converge to that of Eq. (5.10) for the cavity-only protocol

(a) and
√
π
√

2
M−1

for the cat breeding protocol (b), as expected. However, when the internal
cooperativity is smaller, we find that the optimal displacement is slightly larger than for the
perfect cavity. The slightly larger displacement partly compensates for the loss induced by the
cavity. Note that the compensation only works because the noise of cavity reflection channel is
not described by pure loss, but by the more complicated channel of Eq. (5.13). The input state
thus effectively experience more loss than the coherence between the generated peaks [64], which
enable a slight compensation to re-position the peaks on the GKP lattice in the x-quadrature
without causing unwanted shrinking of the lattice in the p-quadrature.
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Figure 5.6: Numerically optimized displacement amplitudes as a function of internal cooperativ-
ity.

Figure 5.7: Optimal cooperativity (left axis, thick lines) and escape efficiency (right axis, thin
lines) as a function of the achievable effective squeezing using only the cavity (a) and with the
cat-breeding method (b). The vertical lines shows the achievable amount of effective squeezing
in the limit of η → 1 and C →∞.

5.10 S5: Required cooperativity and escape efficiency

As discussed in the main text one should optimize the cavity coupling rate to ensure simultaneous
high escape efficiency and cooperativity. Fig. 5.7 shows the resulting optimized values of the
cooperativity and escape efficiency as a function of the achievable amount of squeezing with
a fixed internal cooperativity. For example, 10 dB squeezing can be obtained using N = 3
interactions with a system with C = 110 and escape efficiency η = 0.997 using the cavity only
or C = 25 and η = 0.98 with M = 3 steps of the cat-breeding protocol.

5.11 S6: Calculation of effective squeezing parameters

To perform simulations of the reflection channel, we represent our state numerically in the Fock
basis with a max photon number cut-off up to 230. The Fock-state description is convenient, as
the Kraus operators describing the channel, Eq. (5.13), is represented in terms of annihilation
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operators, which have a simple and sparse Fock state representation,

â =
∑
k

√
k|k − 1〉〈k|. (5.42)

Additionally, the displacement operator can be computed as

D̂(α) =
∑
k,l

√
k!

l!
αl−ke−|α

2/2Ll−kk (|α|2)|l〉〈k|. (5.43)

where L are the generalized Laguerre polynomials. Finally, squeezed states are represented by

Ŝ(r)|vac〉 =
1√

cosh(r)

∑
k

√
(2k)!

2kk!
(−tanh(r))k|2k〉. (5.44)

This allow us to simulate the total circuit of Fig. 5.1b and compute the effective squeezing levels
of the output state.
For the cat breeding protocol, the Fock representation becomes less efficient, as it involves the
combination of two modes, thus squaring the required dimensionality in the Fock basis. Instead,
the p-quadrature basis is convenient. The transformation from the Fock basis to the p basis is
done via the relation

|n〉 =

∫
dp

√
1√
π2nn!

e−p
2/2Hn(p)|p〉 (5.45)

where Hn is the n’th Hermite polynomial. An arbitrary mixed single-mode state is described in
the p basis by a wavefunction ψ(p, p′):

ρ =

∫ ∫
dpdp′ψ(p, p′)|p〉〈p′|. (5.46)

Two modes with identical wavefunctions mixing on a 50:50 beamsplitter is described by the
transformation:

ψ(p1, p
′
1)ψ(p2, p

′
2)→ ψ

(
p1 + p2√

2
,
p′1 + p′2√

2

)
ψ

(
p1 − p2√

2
,
p′1 − p′2√

2

)
. (5.47)

Measuring mode 2 at p2 = 0 leaves the other mode in the state

→ ψ

(
p1√

2
,
p′1√

2

)2

. (5.48)

Iterating this procedure M times results in the transformation

ψ(p, p′)→ ψ

(
p
√

2
M
,
p′
√

2
M

)2M

. (5.49)

The expectation values used to calculate the effective squeezing levels can be evaluated as:

〈D̂(
√

2π)〉 = Tr

(∫
dp

∫
dp′ψ(p, p′)D̂(

√
2π)|p〉〈p′|

)
= Tr

(∫
dp

∫
dp′ψ(p, p′)e−i2

√
πp|p〉〈p′|

)
=

∫
dpψ(p, p)e−i2

√
πp, (5.50)
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Figure 5.8: (a) Achievable amounts of quadrature squeezing using the protocol of Fig. 5.8 with
input vacuum states and small displacement amplitudes. (b) Example quadrature distributions
of the obtainable squeezed states generated with C0 = 200 and C0 = 2000 choosing N = 2 and
N = 3 respectively, corresponding to the points marked with open circles in (a). The dotted line
shows the quadrature distribution of the vacuum state for comparison.

and

〈D̂(i
√

2π)〉 = Tr

(∫
dp

∫
dp′ψ(p, p′)D̂(i

√
2π)|p〉〈p′|

)
= Tr

(∫
dp

∫
dp′ψ(p, p′)|p+ 2

√
π〉〈p′|

)
=

∫
dpψ(p− 2

√
π, p). (5.51)

We thus compute the input cat state in the Fock-basis, then use Eq. (5.45) to calculate the mixed

state wavefuncion along the lines
(
p
√

2
M
, p
√

2
M
)

and
(

(p− 2
√
π)
√

2
M
, p
√

2
M
)

from which we

obtain the expectation values to compute the effective squeezing levels using Eqs. (5.49)-(5.51).

5.12 S7: Generation of squeezed vacuum states

Here we show how to generate the required initial squeezed states, using the cavity QED system
and coherent state inputs. The idea is that a squeezed state can be represented as a superposition
of coherent states [35]:

Ŝ(r)|vac〉 ∝
∫

exp

(
− α2

e2r − 1

)
D̂(iα)|vac〉dα, (5.52)

which holds for r > 0 and the integral is over real α. By creating a discrete superposition
of closely spaced coherent states on a line in phase space, we can approximate Eq. (5.52) to
achieve an approximate squeezed state. Indeed, quadrature squeezed states were observed in [64]
using only two coherent states. We therefore propose to use the method of Fig. 5.1, but with
a vacuum input and smaller displacement amplitudes chosen in the p direction. The resulting
amount of quadrature squeezing is shown in Fig. 5.8a, where we have numerically tuned the
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displacement amplitude to optimize the squeezing. As expected, as the intrinsic cooperativity
of the cavity increases, we can achieve larger amounts of quadrature squeezing using a suitable
number of interactions. Fig. 5.8b shows the resulting x quadrature distributions at a C0 = 200
and C0 = 2000 for N = 2 and N = 3 interactions, i.e. states composed of 4 and 8 coherent
states on the x = 0 axis respectively, showing clear quadrature squeezing relative to the vacuum
(dotted line).

While squeezed states can be generated directly from vacuum states using the cavity QED system,
comparing the results of Figs. 5.8 and 5.3 the squeezing levels are lower than the approximate
squeezing levels achievable using the same intrinsic cooperativity with the cat breeding method
of Fig. 5.3. Thus for the cat breeding approach without an external squeezed vacuum source,
the approximate squeezing levels will be limited to those presented in Fig. 5.8.



Chapter 6

Unsuitability of cubic phase gates
for non-Clifford operations on
Gottesman-Kitaev-Preskill states

In this chapter we present the paper “Unsuitability of cubic phase gates for non-Clifford opera-
tions on Gottesman-Kitaev-Preskill states” [32], authored by Jacob Hastrup, Mikkel V. Larsen,
Jonas S. Neergaard-Nielsen, Nicolas C. Menicucci and Ulrik L. Andersen. This work is published
in Physical Review A.

© 2021 American Physical Society.

6.1 Abstract

With the Gottesman-Kitaev-Preskill (GKP) encoding, Clifford gates and error correction can be
carried out using simple Gaussian operations. Still, non-Clifford gates, required for universality,
require non-Gaussian elements. In their original proposal, GKP suggested a particularly simple
method of using a single application of the cubic phase gate to perform the logical non-Clifford
T-gate. Here we show that this cubic phase gate approach performs extraordinarily poorly, even
for arbitrarily large amounts of squeezing in the GKP state. Thus, contrary to common belief,
the cubic phase gate is not suitable for achieving universal fault-tolerant quantum computation
with GKP states.

6.2 Introduction

The Gottesman-Kitaev-Preskill (GKP) encoding of a qubit into a quantum harmonic oscilla-
tor [28] is a particularly promising approach towards fault-tolerant quantum computation. In
particular, all Clifford operations, including error correction, can be implemented using only
Gaussian operations along with a supply of ancillary GKP basis states. Furthermore, the GKP
encoding scheme has been shown to outperform other bosonic codes against loss [53, 55], which
is the dominant noise source in most bosonic systems. For these reasons, the GKP encoding has

68
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gained much interest in recent years, both theoretically and experimentally, across multiple ex-
perimental platforms. Most prominently, the states have been generated in trapped-ion [43] and
microwave cavity platforms [48]. Furthermore, in the optical regime, large 2-dimensional clus-
ter states have been produced [74, 75], which enable scalable fault-tolerant measurement-based
quantum computation when combined with high quality GKP states [72].

A critical step towards universality is the ability to perform non-Clifford operations on the
encoded qubits. For GKP qubits, two different approaches for non-Clifford operations were
proposed in the original paper [28]. The first approach is to use logical magic states, such as the
encoded Hadamard eigenstate, to implement the non-Clifford T-gate via gate teleportation. Such
magic states can be distilled using only the computational basis states and Gaussian operations
[124], or they can be generated directly using non-Gaussian resources such as photon counting
[28, 72, 89] or coupling to a two-level system [33, 48]. The second approach is to apply a single
cubic phase gate in combination with Gaussian operations [28]. In principle, the cubic phase
gate enables universal control of the oscillator [125], including any desired operations on the
GKP state. However, a significant overhead, requiring many applications of the cubic phase
gate, is typically required to approximate most non-Gaussian operations well with cubic phase
gates. The promise that a single application would suffice to implement a logical non-Clifford
operation therefore strongly motivates the development of cubic phase gates for applications with
GKP states. GKP also showed that the cubic phase gate could be implemented using a cubic
phase state and teleportation with Gaussian operations. Since the ideal cubic phase state is
nonphysical, requiring infinite energy, this teleportation-based technique is always approximate.
Still, even when using an ideal cubic phase gate the approach is only suitable for GKP states
with an asymmetric noise distribution, as was pointed out by GKP in their original paper [28].

In this paper we analyse the details of the cubic phase gate approach and show explicitly that it
performs surprisingly poorly, unless the GKP state is prepared with an unrealistic noise distri-
bution. We consider only a perfect implementation of the cubic phase gate in order to discount
any imperfections e.g. from finite energy cubic phase states. The results presented here thus rep-
resent a best-case scenario for the cubic phase gate approach. The poor performance is therefore
solely due to the intrinsic and unavoidable noise present in the GKP states. We also com-
pare the performance to that achieved using a GKP-encoded magic state via gate teleportation,
demonstrating that the magic state offers a significantly better approach.

6.3 Preliminaries

We consider a bosonic mode of a quantum harmonic oscillator with position and momentum
quadrature operators x̂ and p̂ satisfying [x̂, p̂] = i with vacuum variance Var(x̂) = Var(p̂) = 1/2.
A detailed review of GKP states and their error-correcting properties can be found elsewhere
[28,105,126]. We focus on the approximate square GKP states consisting of a sum of equispaced
position-squeezed states under a Gaussian envelope:

|0L〉 ∝
∑
s∈Z

e−π(2s)2∆2
p/2

∫
dx e

− (x−2s
√
π)2

2∆2
x |x〉 (6.1)

|1L〉 ∝
∑
s∈Z

e−π(2s+1)2∆2
p/2

∫
dx e

− (x−(2s+1)
√
π)2

2∆2
x |x〉, (6.2)

where “L” denotes logical qubit states, ∆x and ∆p quantifies the amount of squeezing, or noise, in
the x- and p-quadratures respectively, and |x〉 are the position eigenstates, i.e. x̂|x〉 = x|x〉. Note
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that the squeezing is that of each of the peaks of the state, not the overall state, i.e. each peak
in the x- and p-quadrature has a measured variance of ∆x/2 and ∆p/2 respectively. Hence, ∆x

and ∆p can be arbitrarily low simultaneously [101]. Numerical values of the squeezing are often
expressed in decibels (dB) as −10 log10(∆2). Importantly, a small amount of noise in p enforces
a wide envelope in x and vice versa. In the limit of infinite squeezing, i.e. (∆x,∆p)→ (0, 0), the
position wave functions of the computational basis states approach Dirac combs with spacing
2
√
π.

We now consider how to implement the non-Clifford T-gate, also known as the π/8-gate,

T̂ = |0L〉〈0L|+ eiπ/4|1L〉〈1L|, (6.3)

which, when combined with the Clifford gate set, constitutes a universal gate set. GKP proposed
to use a cubic phase gate in combination with shearing and displacement to implement the T-
gate:

ÛT = exp

[
i
π

4

{
2

(
x̂√
π

)3

︸ ︷︷ ︸
cubic phase

+

(
x̂√
π

)2

︸ ︷︷ ︸
shear

− 2
x̂√
π︸ ︷︷ ︸

displacement

}]
. (6.4)

One can check that this gate applies a π/4 phase shift to peaks positioned at odd multiples of√
π since

2x3 + x2 − 2x ≡

{
0 (mod 8) for even x,

1 (mod 8) for odd x.
(6.5)

For ideal GKP states with support only at integer multiples of
√
π, ÛT thus acts as a perfect

T-gate. However, approximate GKP states also have support outside these grid points where
ÛT does not exactly apply a 0 or π/4 phase shift. This is illustrated in Fig. 6.1a, showing the
GKP wave function of |+L〉 = (|0L〉 + |1L〉)/

√
2, along with the polynomial in ÛT modulo 2π.

Only for the peaks close to x = 0 is the phase shift approximately correct over the width of each
peak. For peaks further from the origin, e.g. for |x|/

√
π > 3 in the case of Fig. 6.1a, there is a

large phase variation across the peaks. The peaks far from the origin thus effectively experience
a random phase shift. This results in an increased amount of noise in the p-quadrature, which is
seen in Fig. 6.1b. Furthermore, the output state is highly asymmetric with a long tail at positive
p. This is because ÛT can be interpreted as a momentum displacement with an x-dependent
displacement magnitude scaling as x2. Peaks at large |x| thus get displaced to large p-values.

How does this noise behave as we increase the amount of squeezing in the state? On one hand, as
we decrease ∆x the width of each peak decreases, thus decreasing the total phase variation across
each peak. On the other hand, as we decrease ∆p, peaks further from the origin appear due to
the Fourier relation between x̂ and p̂. These new peaks now experience a larger phase variation
as seen in Fig. 6.1a. It turns out that for ∆x = ∆p, new peaks appear at a rate comparable to
the rate at which they narrow, such that the gate fidelity does not converge to 1 when increasing
the squeezing. This is qualitatively illustrated in Fig. 6.1c, showing the momentum probability
density summed over values of p modulo 2

√
π. Even as the squeezing approaches very large

values, the probability density retains a non-zero noise floor with significant support outside
integer multiples of

√
π.

This poor noise distribution was pointed out in the original paper by GKP [28], stating that
one needs to ensure that ∆x � ∆p in order to use ÛT as a logical T-gate. However, this
condition is highly impractical to maintain. For example, the logical Hadamard gate, which is
implemented by a π/2 phase rotation, ÛH = exp(iπ/4(x̂2 + p̂2)), also swaps the noise of the
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Figure 6.1: (a): Position (x) probability density (blue) of |+L〉 = (|0L〉 + |1L〉)/
√

2 with ∆x =
∆p = 15 dB. Also plotted in black is the phase shift imposed by the operator ÛT (Eq. (6.4)).
The white circles show the value of the phase shift at integer multiples of

√
π. The right window

is a zoom in on the peaks further from the origin. These peaks experience a large phase variation
across their width, greatly limiting the performance of ÛT as a T-gate. (b): Momentum (p)
probability density of ÛT |+L〉 compared to the target state T̂ |+L〉 = (|0L〉 + eiπ/4|1L〉)/

√
2.

(c): Momentum probability densities summed over values of p mod 2
√
π, i.e. |ψ(p2

√
π)|2 =∑

s |ψ(p + 2s
√
π)|2 for 15-30 dB squeezing, for ÛT |+L〉 and T̂ |+L〉. The ratio of the heights of

the T̂ |+L〉 peaks remain constant as the squeezing is increased.

x- and p-quadratures, i.e. swapping ∆x ⇔ ∆p. Additionally, since we want low noise in both
quadratures, i.e. both ∆x � 1 and ∆p � 1, the condition ∆x � ∆p requires an extremely low
value of ∆x, which will be difficult, if not impossible, to produce and maintain experimentally.
In the following we quantify the above considerations numerically and analytically.

6.4 Error-corrected fidelity

One could try to perform GKP error correction to correct the noise generated by ÛT . Here
we consider the best-case scenario of perfect error correction i.e. using ideal GKP ancillas with
infinite squeezing in order to discount any imperfections in the error correction protocol. Such
perfect error correction corresponds to a measurement-dependent displacement followed by a
projection of the state into the ideal 2-dimensional GKP subspace [124]. The output state is thus
described by a qubit which depends on the input state and the syndrome measurement outcome.
Averaging the output states over all syndrome outcomes, we generally obtain a mixed state
described by a qubit density matrix ρ. Fig. 6.2a shows the position of ÛT |+L〉 on the Bloch sphere
after error correction for various squeezing levels. For decreasing ∆x = ∆p the state converges
to a point well-inside the Bloch sphere, and not to the target state |T 〉 = (|0〉 + eiπ/4|1〉)/

√
2.

The situation is improved by considering an asymmetric noise distribution, e.g. when ∆p = 5∆x

(corresponding to 14dB less squeezing in the p-quadrature), as expected. Fig. 6.2b shows the
qubit fidelity after error correction, F = 〈ψ|T̂ †ρT̂ |ψ〉, to the target state T̂ |ψ〉, averaged over
four states forming a regular tetrahedron in the bloch sphere [127]. For ∆x = ∆p we find that

the fidelity is lower for ÛT compared to doing nothing, i.e. applying the identity gate, Î, for
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Figure 6.2: (a): x-y plane of the Bloch sphere with the average qubit output of the GKP error
correction scheme with ÛT |+L〉 as input. Each dot corresponds to a step of 5 dB in the squeezing
level of the x-quadrature. (b): Average fidelity [127] with the target qubit state, for the qubit
with density matrix, ρ, of the GKP error corrected qubits obtained after application of ÛT , the
identity gate Î and an ideal logical T-gate, calculated for both ∆p = ∆x (solid) and ∆p = 5∆x

(dotted) in the input state, as well as the fidelity obtained by the magic state approach with
gate teleportation [28].

all squeezing levels. Thus for symmetric noise, ÛT is a worse T-gate than the identity gate!
Again the situation is improved by asymmetric noise, but the fidelity increases slowly with ∆x

compared to an ideal T-gate.

For comparison we also plot the fidelity obtained when using GKP-encoded magic states to
teleport the T-gate, as proposed in [28] using the following circuit:

|ψL〉

eix̂1p̂2

ei
x̃m
2 x̂ ei

1
2 x̂

2 ≈ T̂L|ψL〉

|TL〉 |x〉
•

where |ψL〉 denotes an arbitrary GKP encoded input state. The squeezing level of the magic
state ancilla, |TL〉 = (|0L〉 + eiπ/4|1L〉)/

√
2, is set equal to that of the input states. The feed-

forward displacement, exp [i(x̃m/2)x̂], where x̃m = xm −
√
πbxm/

√
πe is the remainder of the

measurement result modulus
√
π, centers the output wavefunction on the GKP lattice. The feed-

forward shear, exp
[
i(1/2)x̂2

]
, performs a corrective logical phase gate on the output, conditioned

on a logical 1 measurement of the ancilla [28]. The finite squeezing of the ancilla and the phase
distortion of the shear gate result in a performance which is worse than the ideal T-gate, but the
approach is significantly better than the cubic phase gate approach.

6.5 Modular bosonic subsystem fidelity

An alternative framework for reducing a bosonic state to a 2-dimensional GKP qubit was recently
proposed by Pantaleoni et al. [128]. The idea is to decompose an arbitrary bosonic state, |Ψ〉,
into a qubit part and a continuous part, i.e.

|Ψ〉 = |0〉 ⊗ |ψ0〉+ |1〉 ⊗ |ψ1〉. (6.6)

The decomposition is done by binning the wave function around even and odd multiples of
√
π

and stitching the bins together to form two new wave functions |ψ0〉 and |ψ1〉, as illustrated in
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Figure 6.3: (a): Illustration of the modular bosonic subsystem decomposition technique [128] for
a random wave function, Ψ(x). The position wave function is decomposed by binning it around
even and odd multiples of

√
π and stitching the bins together to form two new wave functions,

ψ0 and ψ1. (b): Fidelity with the target qubit state, (|0〉+ eiπ/4|1〉)/
√

2 of the qubit part of the
input state ÛT |+L〉, after tracing out the continuous parts with the modular bosonic subsystem
decomposition technique for different values of ∆x and ∆p.

Fig. 6.3a. Tracing out the continuous part we are left with a qubit state which contains the logical
information of the state. Further details on this technique can be found in the supplementary
material and in Ref. [128]. Using this method we can again analyse the fidelity of ÛT |+L〉 with
the target state in the qubit subspace, thus providing a complementary figure of merit. The
result is shown in Fig. 6.3b. Again we observe that in order to obtain a high fidelity, we need
an excess amount of squeezing in the x-quadrature. For example, to achieve a fidelity of 0.95,
we require ∆x > 25 dB, which is significantly more than the squeezing thresholds set for fault-
tolerance using magic states to implement a T-gate [72,129–131]. For ∆x = ∆p we again observe
a convergence in the fidelity below 1. In fact, in the limit of infinite squeezing, (∆x,∆p)→ (0, 0),
one can derive the following analytical result (see supplementary information):

F =
1

2
+

1

2

1√
1 +

(
3∆x

2∆p

)2
. (6.7)

Thus the fidelity is bounded, confirming the poor performance even in the limit of infinite squeez-
ing. In particular, for the realistic case of ∆x = ∆p we get F = 1/2 + 1/

√
13 ≈ 0.78 < 1. To

obtain a higher fidelity we require ∆x � ∆p in which case Eq. (6.7) reduces to

F ≈ 1−
(

3

4

∆x

∆p

)2

, for ∆x � ∆p, (6.8)

which goes to 1 in the limit ∆x/∆p → 0, as expected. Again, such unbalanced noise ratio is
not realistic to maintain during a calculation since the logical Hadamard gate (i.e. a Fourier
transformation) swaps the noise between the quadratures.
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6.6 Conclusion

We have analysed the performance of the GKP T-gate implemented via the cubic phase gate.
All calculations were performed assuming a perfect cubic phase gate, and thus represents a
best-case scenario compared to approximate implementations using cubic phase states. In the
case of square GKP states with equal squeezing in the position and momentum quadrature we
have explicitly shown that the noise generated by the T-gate is detrimental, for all squeezing
levels. The poor performance is solely due to the noise inherent in all physical GKP states, and
cannot be circumvented through error correction. It can in principle be mitigated by using highly
asymmetrical GKP states, but this strategy is not compatible with other manipulations of the
state, such as the logical Hadamard gate (i.e. a Fourier transform), which swaps the noise of the
position and momentum quadratures. Although we have focused our analysis on square GKP
states, it is clear that other GKP grids, e.g. hexagonal GKP states, will suffer from the same
issues. That is, the rapid variation of the phase applied by the cubic phase gate with respect to
x will eventually cause detrimental issues at large |x| for any grid. In fact, one can generalise this
to any operator consisting of a finite polynomial in x̂, as the derivative of any finite polynomial
is unbounded. Instead, the T-gate should be implemented using GKP-encoded magic states, and
efforts towards optical GKP-based quantum computation should be focused on the generation
of GKP states and not on the development of cubic phase gates or cubic phase states.

6.7 Supplementary Material

Here we derive Eq. (6.7) from the main text. As explained in the main text, the main idea
behind the modular bosonic subsystem decomposition technique [128] is to divide the continuous
Hilbert space of the bosonic mode into a 2-dimensional part, describing the logical content of
the GKP qubit, and a continuous part. Tracing out the continuous part leaves us with a mixed
qubit state, which can be analysed e.g. in terms of fidelity to a target qubit. The decomposition
is done by binning the x-quadrature wave function into bins around even and odd multiples of√
π, as illustrated in Fig. 6.3a. An arbitrary pure state can thus be written as:

|Ψ〉 = |0〉 ⊗ |ψ0〉+ |1〉 ⊗ |ψ1〉 (6.9)

where

|ψ0〉 =
∑
s∈Z

∫ (2s+1/2)
√
π

(2s−1/2)
√
π

dxΨ(x)|x〉 (6.10a)

|ψ1〉 =
∑
s∈Z

∫ (2s+1/2)
√
π

(2s−1/2)
√
π

dxΨ(x−
√
π)|x〉 (6.10b)

with Ψ(x) = 〈Ψ|x〉 and Z denoting the integers. Note that the states |ψ0〉 and |ψ1〉 are not
individually normalized but satisfy 〈ψ0|ψ0〉+ 〈ψ1|ψ1〉 = 〈Ψ|Ψ〉 = 1. Tracing out the continuous
mode leaves a qubit with density matrix

ρ =

(
〈ψ0|ψ0〉 〈ψ1|ψ0〉
〈ψ0|ψ1〉 〈ψ1|ψ1〉

)
. (6.11)

The fidelity to the target state T̂ |+〉 = (|0〉+ eiπ/4|1〉)
√

2 is given by

F = 〈+|T̂ †ρT̂ |+〉 =
1

2
+ Re

(
eiπ/4〈ψ1|ψ0〉

)
. (6.12)
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We now calculate 〈ψ1|ψ0〉 for |Ψ〉 = ÛT |+L〉. The normalized wave function of the approximate
GKP state |+L〉 = (|0L〉+ |1L〉)/

√
2 for small ∆x and ∆p is given by [28]

Ψ|+L〉(x) =
1

π1/4

√
∆p

∆x

∑
s

exp

(
− (
√
πs)2

2
∆2
p

)
exp

(
− (x−

√
πs)2

2∆2
x

)
. (6.13)

Multiplying ÛT we get:

ΨÛ |+L〉(x) =

1

π1/4

√
∆p

∆x

∑
s

exp

[
i
π

4

{
2

(
x√
π

)3

+

(
x√
π

)2

− 2
x√
π

}
− (
√
πs)2

2
∆2
p −

(x−
√
πs)2

2∆2
x

]
. (6.14)

Using Eqs. (6.10) we can now calculate the overlap 〈ψ1|ψ0〉, assuming negligible overlap between
neighbouring peaks in the GKP wave function, which is valid when ∆2

x � 1:

〈ψ1|ψ0〉 =
1√
π

∆p

∆x

∑
s

(
exp

[
− (2s

√
π)2

2
∆2
p

]
exp

[
− ((2s+ 1)

√
π)2

2
∆2
p

]

×
∫ (2s+ 1

2 )
√
π

(2s− 1
2 )
√
π

dx exp

[
−iπ

4

(
6
x2

π
+ 8

x√
π

+ 1

)]
exp

[
− (x− 2s

√
π)2

∆2
x

])
. (6.15)

For ∆2
x � 1 we can expand the limits of the integrals to ±∞ and evaluate using the formula for

Gaussian integrals, ∫ ∞
−∞

dx e−ax
2+bx+c =

√
π

a
ec+

b2

4a , (6.16)

where from Eq. (6.15) we identify

a =
1

∆2
x

+ i
3

2
, b =

4s
√
π

∆2
x

− i2
√
π, and c = −4s2π

∆2
x

− iπ
4
. (6.17)

Inserting and rewriting:

〈ψ1|ψ0〉 =
∆p

∆x

√
1

∆2
x

+ i 3
2

∑
s

{
exp

[
− 4π

(
1

∆2
x

− 1

∆2
x

(
1 + 9

4∆4
x

) + ∆2
p

)
s2

− 2π

(
∆2
p +

3∆2
x

1 + 9
4∆4

x

)
s− π

(
∆2
x

1 + 9
4∆4

x

+
1

2
∆2
p

)]

× exp

[
−iπ

(
1

1 + 9
4∆4

x

(
6s2 + 4s− 3

2
∆4
x

)
+

1

4

)]}
. (6.18)

Now consider the term in the exponential of the last factor. For small |s| we have (6s2 + 4s −
(3/2)∆4

x)/(1+(9/4)∆4
x) ≡ 0 (mod 2) and thus the last factor reduces to exp [−iπ/4]. If ∆4

x � ∆2
p

this holds for all non-vanishing terms in the sum. For ∆2
x,∆

2
p � 1 the terms in the sum then

change slowly with s, and we can approximate the sum with an integral:
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〈ψ1|ψ0〉 =

∆pe
−iπ4

∆x

√
1

∆2
x

+ i 3
2

∫
ds exp

[
− 4π

(
1

∆2
x

− 1

∆2
x

(
1 + 9

4∆4
x

) + ∆2
p

)
s2

− 2π

(
∆2
p +

3∆2
x

1 + 9
4∆4

x

)
s− π

(
∆2
x

1 + 9
4∆4

x

+
1

2
∆2
p

)]
. (6.19)

The integral can again be evaluated using Eq. (6.16) with

a = 4π

(
1

∆2
x

− 1

∆2
x

(
1 + 9

4∆4
x

) + ∆2
p

)
, b = −2π

(
∆2
p +

3∆2
x

1 + 9
4∆4

x

)
and c = −π

(
∆2
x

1 + 9
4∆4

x

+
1

2
∆2
p

)
. (6.20)

Before inserting, we consider the limit of small ∆x and ∆p in which we get

a→ π(9∆2
x + 4∆2

p), (6.21)

b→ π(6∆2
x + 2∆2

p), (6.22)

c→ π(∆2
x +

1

2
∆2
p), (6.23)

e
b2

4a → 1, (6.24)

ec → 1. (6.25)

Evaluating the integral we thus get:

〈ψ1|ψ0〉 = e−i
π
4

∆p√
9∆2

x + 4∆2
p

√
1 + i 3

2∆2
x

→
∆x→0

e−i
π
4

∆p√
9∆2

x + 4∆2
p

. (6.26)

Inserting in Eq. (6.12):

F =
1

2
+

∆p√
9∆2

x + 4∆2
p

=
1

2
+

1

2

1√
1 +

(
3∆x

2∆p

)2
. (6.27)



Chapter 7

Measurement-free preparation of
grid states

In this chapter we present the paper “Measurement-free preparation of grid states” [33], authored
by Jacob Hastrup, Kimin Park, Jonatan B. Brask, Radim Filip and Ulrik L. Andersen. This
work is published in npj Quantum Information.

7.1 Abstract

Quantum computing potentially offers exponential speed-ups over classical computing for certain
tasks. A central, outstanding challenge to making quantum computing practical is to achieve
fault tolerance, meaning that computations of any length or size can be realised in the presence
of noise. The Gottesman-Kitaev-Preskill code is a promising approach towards fault-tolerant
quantum computing, encoding logical qubits into grid states of harmonic oscillators. However,
for the code to be fault tolerant, the quality of the grid states has to be extremely high. Approx-
imate grid states have recently been realized experimentally, but their quality is still insufficient
for fault tolerance. Current implementable protocols for generating grid states rely on measure-
ments of ancillary qubits combined with either postselection or feed forward. Implementing such
measurements take up significant time during which the states decohere, thus limiting their qual-
ity. Here we propose a measurement-free preparation protocol which deterministically prepares
arbitrary logical grid states with a rectangular or hexagonal lattice. The protocol can be readily
implemented in trapped-ion or superconducting-circuit platforms to generate high-quality grid
states using only a few interactions, even with the noise levels found in current systems.

7.2 Introduction

Quantum computing offers exponential speeds-ups in solving certain computational problems,
with wide-ranging consequences for information processing, information security, fundamental
physics and chemistry and more. Impressive progress has been achieved towards realising quan-
tum computing, including recent experimental demonstration of a quantum advantage over clas-
sical computation [14]. However, real devices are subject to noise and imperfections. As com-
putations grow in size and complexity, errors accumulate and eventually destroy any quantum

77
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advantage unless mitigated. Achieving fault tolerance, where errors are corrected sufficiently fast
to allow scalable computation, is a central challenge to making universal quantum computing
practical.

Quantum error correction (QEC) enables large-scale quantum computing in the presence of
noise by redundantly encoding logical qubits into a larger Hilbert space. In traditional, discrete-
variable QEC many physical qubits make up a single logical qubit. However, in 2001 Gottesman,
Kitaev and Preskill (GKP) proposed encoding a logical qubit into the infinite-dimensional Hilbert
space spanned by the continuous variables of a single bosonic mode [28]. With this encoding,
small displacement errors of the bosonic mode can be detected and corrected using only simple
Gaussian operations. Furthermore, recent results have shown that the GKP code also performs
very well against boson loss [55], in many cases outperforming other bosonic codes designed
specifically against loss such as cat codes [26, 65] and binomial codes [62, 82]. In fact, numer-
ical optimization suggests that the hexagonal GKP code might be the optimal loss-resistant
code among all bosonic codes [53]. Additionally, GKP codes have recently been shown to have
applications within continuous-variable QEC [132] and quantum metrology [101].

An ideal GKP code is embedded in an idealized grid state which forms a lattice structure,
consisting of an infinite superposition of position eigenstates. Such states require infinite energy
and are hence unphysical. Importantly, however, it is possible to use approximate grid states with
finite energy, composed of finitely squeezed states to achieve fault tolerance by concatenating
the GKP code with discrete-variable error-correcting codes, provided that the grid states are
sufficiently quadrature squeezed. In 2014, a conservative threshold for fault tolerance of 20.5
dB squeezing was derived for a measurement-based quantum computing approach [72]. Later
this threshold was significantly reduced to less than 10 dB squeezing by exploiting the analog
information contained in the syndrome measurements [129, 133]. Other approaches such as
concatenating the GKP code with the surface code [131], the toric code [134, 135] and Knill’s
C4/C6 code [136] have recently been proposed. For any of these proposals the squeezing threshold
will depend not only on the involved codes, but also on the type and magnitude of the noise
and experimental errors of the given system. It is therefore crucial to test the feasibility of these
approaches with high-quality grid states experimentally. Additionally, as with any quantum
error-correcting code, one would ideally use grid states with squeezing levels well above the
threshold to avoid impractical resource overheads associated with the repeated concatenation of
the codes.

The preparation of grid states have, however, proven to be highly challenging. Recently, such
states were prepared for the first time in ground-breaking experiments in the motional state of a
trapped ion [43] and in a microwave cavity field coupled to a superconducting circuit [48]. The
states realised in these experiments clearly exhibit the required grid structure in phase space.
However, the quality of the states needs to be improved for implementation with fault tolerant
schemes. The main experimental limitation is that during the preparation protocol, the states
accumulate noise e.g. from boson dephasing and losses, rendering the produced grid states noisy.
To minimize this noise one has to increase the speed of the preparation protocol. The state-
preparation protocols currently implemented in experiment use oscillator-qubit couplings and
rely on repeated measurements of the ancilla qubit. These measurements and their associated
processing times constitute about half of the total preparation time. Therefore, to improve the
quality of the GKP codes, it is crucial to replace the slow measurement-based approach with a
faster approach.

It has previously been theoretically and experimentally established that arbitrary bosonic states
can be deterministically prepared using a qubit coupling via the Jaynes Cummings Hamiltonian
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[137–140]. These methods build up the state in the Fock basis and require a number of steps
proportional to the number of Fock states supporting the target state. However, since noise such
as qubit dephasing and boson loss is built up during each step [140], such methods are ineffective
for preparing large useful grid states, which require support on at least 25-100 photons to achieve
10-16 dB of effective squeezing.

In this work, we present a measurement-free grid-state preparation protocol, which is significantly
faster than known methods, without introducing additional resources. The key interaction of our
protocol is the Rabi interaction Hamiltonian between an oscillator and a two-level system [141,
142], which can be effectively simulated in trapped-ion and microwave systems. This interaction
is also used in the experiments of Refs. [43,48]. Such interactions were recently shown to enable
deterministic, non-Gaussian operations by using many weak interactions [143, 144]. Here, we
instead use only a few, but stronger interactions, to generate the highly non-Gaussian grid
states. Our work thus provides further demonstration of Rabi interactions as a powerful and
versatile non-Gaussian resource in trapped ion and superconducting circuit platforms.

The speed-up obtained with our approach is large enough to prepare grid states with more than
10 dB of effective squeezing in practical systems that are readily available in both trapped-ion
and microwave cavity platforms. Compared to current experiments this is an improvement of 3
to 6 dB under the same amounts of physical noise. With a further reduction of noise levels in
future experiments, our protocol enables the generation of grid states with squeezing levels well
above the fault-tolerance threshold levels, thus facilitating scalable quantum computing.

7.3 Results

Preliminaries

In this section we review the basic structure of grid states and the figures of merit used in this
article. For a more extensive review, see e.g. Ref. [105].

Bosonic modes of harmonic oscillators are associated with the creation and annihilation operators
â and â† and the corresponding dimensionless quadrature operators X̂ = 1√

2
(â + â†) and P̂ =

1√
2i

(â − â†) satisfying [X̂, P̂ ] = i. The 2-dimensional code space of the GKP-code is defined in

the common +1 eigenspace of the stabilizer operators

Ŝz = D̂(α) and Ŝx = D̂(β). (7.1)

Here D̂(x) = exâ
†−x∗â = ei

√
2(−Re(x)P̂+Im(x)X̂) is the displacement operator with displacement

amplitude x, satisfying the commutation relation

[D̂(α), D̂(β)] = 2i sin(Im(αβ∗))D̂(α+ β). (7.2)

By choosing Im(αβ∗) = 2π we ensure that the stabilizers commute, which enables the existence
of simultaneous eigenstates. Furthermore we can define logical operators

ẐL = D̂
(α

2

)
, X̂L = D̂

(
β

2

)
, and ŶL = D̂

(
α+ β

2

)
, (7.3)

which commute with the stabilizers and anti-commute with each other. The logical GKP qubit
states, |0〉GKP and |1〉GKP, are then defined as the ±1 eigenstates of ẐL. These satisfy the
expected logic X̂L|0〉GKP = |1〉GKP and X̂L|1〉GKP = |0〉GKP.
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The relative directions and magnitude of α and β determine the lattice of the corresponding
grid states. For example, rectangular grid states are generated by α = i2π/β∗. Further choosing
β =
√

2π yields the square grid states for which the code space is symmetric with respect to X

and P . Alternatively, choosing α = i
√

4√
3
π and β = e−i

π
3 α yields the hexagonal grid states.

In the following we will consider only the square grid, returning to the case of rectangular and
hexagonals grids in Section 7.3. The (unnormalizable) ideal square grid states can be written as:

|0〉GKP =
∑
s∈Z

D̂
(
s
√

2π
)
|X = 0〉

|1〉GKP =
∑
s∈Z

D̂

((
s+

1

2

)√
2π

)
|X = 0〉 (7.4)

where |X = 0〉 denotes the eigenstate of X̂ with eigenvalue 0 and Z denotes the set of integers.
The ideal grid states are thus infinite superpositions of equidistant position eigenstates and their
Wigner functions are an infinite grid of 2-dimensional delta-functions (see Fig. 7.2(b)). Ideal
grid states can be approximated by finite-energy states in several ways. The most commonly
used representation for deriving fault tolerance thresholds is a superposition of finitely squeezed
states of width e−r under a Gaussian envelope of width κ−1:

|0̃〉GKP ∝
∑
s∈Z

e−
(2
√
πs)2

2κ−2 D̂
(
s
√

2π
)
Ŝr|vac〉

|1̃〉GKP ∝
∑
s∈Z

e−
(2
√
π(s+ 1

2 ))
2

2κ−2 D̂

((
s+

1

2

)√
2π

)
Ŝr|vac〉, (7.5)

where Ŝr = e−
1
2 r(â

2−â†2) is the squeezing operator (not to be confused with the stabilizers Ŝx
and Ŝz). The squeezing parameter r and envelope κ characterises the quality of the states in
the X- and P -quadratures respectively and in the limit (e−r, κ)→ (0, 0) the approximate states
converge to the exact states of equation (7.4). For κ = e−r the states can correct noise equally
well in X and P .

However, physical grid states will never exactly be of the form given in equation (7.5). First,
physical states are not pure and are generally described by a density matrix ρ̂. Secondly, the
exact Gaussian envelope can be difficult to obtain and most preparation protocols yield a finite
sum of squeezed states. Therefore, the parameters r and κ are not well-defined for practically
realizable states. Instead, more generic figures of merit, the effective squeezing parameters, have
been suggested in Ref. [101]. They quantify the effective degree of squeezing in each quadrature
of the peaks constituting the grid state and are defined as:

∆X =

√√√√ 1

2π
ln

(
1

|〈D̂(i
√

2π)〉|2

)
(7.6)

∆P =

√√√√ 1

2π
ln

(
1

|〈D̂(
√

2π)〉|2

)
, (7.7)

where the effective squeezing levels in units of dB are given by ∆dB = −10 log10(∆2). The
expectation values in these definitions are exactly the expectation values of the stabilizers Ŝz
and Ŝx for square GKP states. High quality grid states should therefore have |〈Ŝz/x〉| ≈ 1,
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in which case ∆X/P → ∞ dB. These definitions also have the nice property that for squeezed

states they reproduce the squeezing parameter, i.e. ∆X(Ŝr|vac〉) = e−r and ∆P (Ŝr|vac〉) = er.
Furthermore, for approximate square lattice grid states of Eq. (7.5) we extract the parameters
∆X(|0̃〉GKP) = e−r and ∆P (|0̃〉GKP) ≈ κ. The last approximation is very accurate for e−r, κ > 10
dB. Thus, if the state resembles a grid state consisting of a grid of squeezed peaks in phase-space,
the effective squeezing parameters approximately quantify the squeezing of these peaks in each
quadrature direction.

However, it is important to note that the effective squeezing is not directly related to the fault-
tolerance thresholds. Most GKP-based fault-tolerance thresholds are derived based on the spe-
cific, approximate states given in Eq. (7.5) and refer to r and κ. Any other state can therefore in
general not be guaranteed to enable fault tolerant computations, even when the effective squeez-
ing parameters are both above these thresholds. Moreover, the effective squeezing parameters
say nothing about the logic state of the GKP qubit, e.g. a mixed code state might be strongly
squeezed, but might not necessarily be useful for quantum computing.

Nevertheless, it is reasonable to assume that states with a high degree of effective squeezing
can be used for fault tolerance if they otherwise closely resemble the approximate pure grid
states of Eq. (7.5), e.g. in terms of their fidelity with the approximate states. In the further
analysis we therefore compliment the effective squeezing parameters with the fidelity to verify
the appropriateness of using the effective squeezing parameters as quantifiers of the protocol
performance. Moreover, we also verify that the produced states have the expected grid structure
in terms of their Wigner function. Another alternative figure of merit is the effective shift
error [67] which is discussed and calculated in Supplementary Note S1.

Preparation protocol

Several proposals exist for the preparation of approximate grid states [28, 48, 79, 88–91,112,113,
145, 146]. The original GKP paper [28] includes a proposal based on an radiation-pressure-like

interaction between two bosonic modes under the Hamiltonian X̂1â
†
2â2 in the quantum non-linear

regime. However, experimental realization of the required strongly nonlinear coupling has proven
highly challenging and has not yet been achieved.

In [145], a preparation protocol based on the Rabi interaction Hamiltonian P̂ σ̂x (where σ̂x is
the Pauli-x matrix), between the bosonic mode and a two-level system was proposed. Such
an interaction can be realized in trapped ions [45] and microwave cavities [48]. This protocol,
however, has three main drawbacks: First it is probabilistic, with a success probability inversely
proportional to the mean photon number of the generated state. Secondly, the output states have
a box-shaped envelope rather than the Gaussian envelope of equation (7.5). This means that the
effective squeezing parameters are suboptimal given the number steps required to prepare the
states. Hence, excessively large states need to be generated to obtain useful effective squeezing.
Finally, the protocol requires qubit measurements, which in realistic systems will constitute a
significant contribution to the total preparation time during which the state decoheres.

The two first issues were solved by Terhal and Weigand in Ref. [79]: By adding a single
measurement-based feed-forward displacement operation as well as suitable qubit rotations, the
protocol is made deterministic. Furthermore, by using a different strength of the Rabi interac-
tions, the envelope of the output state is made nearly Gaussian, making the protocol much more
efficient. However, their protocol still relies on qubit measurements, which limits the quality of
the states that can be realistically generated in the laboratory today.
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Figure 7.1: Overview of the grid state preparation protocol. a Circuit diagram of the
measurement-free grid state generation protocol. The bosonic mode interacts with the qubit
through a sequence of Rabi gates with interaction Hamiltonians of the form P̂ σ̂x and X̂σ̂y to
produce an approximate GKP 1 logic state without measurements. b The Rabi gates can be
viewed either as conditional displacements on the bosonic mode depending on the qubit state or
conditional rotations of the qubit depending on the bosonic state. c Illustration of the protocol
for N = 3 for an infinitely squeezed input state. The ket above each peak in the wave function
represents the state of the qubit entangled with the given peak. The displacement gates V̂ split
each peak in two, creating an entangled state. The disentangling gates Ŵ then rotate the qubit
depending on the boson state to remove the entanglement. The preparation gates Û rotate the
qubit before the displacement gates to control the envelope of the resulting state.
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Our protocol addresses all the above mentioned problems by adding additional short Rabi inter-
actions of the form X̂σ̂y, which effectively act as “deterministic measurements” by disentangling
the bosonic mode and the qubit and further enables us to shape the envelope of the state. This
interaction can be obtained from the P̂ σ̂x Hamiltonian by simple rotations of the qubit and the
bosonic mode, i.e. σ̂y = e−iπ/4σ̂z σ̂xe

iπ/4σ̂z and X̂ = e−iπ/2n̂P̂ eiπ/2n̂. Similarly, both interaction

types can be obtained from the more commonly considered Rabi Hamiltonian X̂σ̂x. Fig. 7.1(a)
shows a circuit diagram of the protocol. It consist of N groups of interactions, each consisting
of 3 gates:

• a preparation gate, Ûk = eiukX̂σ̂y .

• a displacement gate, V̂k = eivkP̂ σ̂x .

• a disentangling gate, Ŵk = eiwkX̂σ̂y .

These interactions can be interpreted as either conditional displacements of the bosonic mode
or conditional rotations of the qubit, as illustrated in Fig. 7.1(b). Since the preparation and
disentangling gates are of the same type, i.e. X̂σ̂y, the preparation gate of round k can be
combined with the disentangling gate of round k−1 into a single gate. The interaction strengths
of the displacement and disentangling gates are given by

vk =

{
−
√
π2N−1, if k = 1,

√
π2N−k if k > 1.

(7.8)

wk =

{
−
√
π

4 2−(N−k), if k < N ,
√
π

4 if k = N .
(7.9)

while the interaction strengths of the preparation gates, uk, are found numerically (see Sup-
plementary Note S2). In the first round the optimal preparation gate strength is u1 = 0 i.e.
Û1 = Î so Û1 is thus ignored in Fig. 7.1(a). The input state is a squeezed vacuum state Ŝr|vac〉
and the output state is an approximation to the state |1〉GKP, which can subsequently be trans-
formed into an arbitrary grid state, as will be discussed later. Note that all gates commute

with D̂(i
√

2π) = ei2
√
πX̂ . Therefore, ∆X is left invariant under the protocol, i.e. the effective

squeezing of the output state in the X-quadrature is ∆X = e−r. The effect of the protocol is
thus to create a superposition of 2N squeezed states and thereby improve ∆P . The effect of each
gate is illustrated in Fig. 7.1(c) for the case of N = 3, but the procedure can be extended for
arbitrary N .

Infinitely squeezed input states

To illustrate the functionality of the gates, we first consider an infinitely squeezed input state,
|X = 0〉. For brevity we will use the notation |X = x0〉 = |x0〉x in the following. The first
operation is the displacement gate V̂1 which creates an entangled boson-qubit state:

V̂1|0〉x|0〉 =
1√
2

(∣∣2N−1
√
π
〉
x
|+〉+

∣∣−2N−1
√
π
〉
x
|−〉
)
, (7.10)

where |±〉 = (|0〉 ± |1〉)/
√

2. The disentangling gate then rotates the qubit to erase the entan-
glement:

Ŵ1V̂1|0〉x|0〉 =
1√
2

(∣∣2N−1
√
π
〉
x
−
∣∣−2N−1

√
π
〉
x

)
|1〉. (7.11)
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Figure 7.2: Quality of states generated with finite squeezing. a Effective squeezing in the P
quadrature, ∆P , as a function of squeezing in the X quadrature of the input state after N
rounds. ∆X is invariant under the protocol. The dashed line is ∆P = ∆X = e−r. b Left:
Wigner functions of the generated states for N = 2 and N = 3 with 11.5 dB and 16.6 dB input
squeezing respectively. The plotted states are marked with (i) and (ii) in (a). Right: Wigner
functions of the target approximate GKP states given by equation (7.5).

We have thus created a superposition between two squeezed states. The second round splits each
of these peaks in two, creating a total of four peaks:

(Ŵ2V̂2Û2)(Ŵ1V̂1)|0〉x|0〉 =

1√
2

(
− b1

∣∣−3 · 2N−2
√
π
〉
x

+ a1

∣∣−2N−2
√
π
〉
x
− a1

∣∣2N−2
√
π
〉
x

+ b1
∣∣3 · 2N−2

√
π
〉
x

)
|1〉. (7.12)

The coefficients are controlled by the preparation gate and are given by a1 = sin(π/4+2N−1
√
πu2)

and b1 = cos(π/4 + 2N−1
√
πu2). The third round creates 8 peaks and so on for a total of 2N

peaks after N rounds. Thus, the resulting state is 1√
2

2N∑
k=1

ck
∣∣(2k − 2N − 1

)√
π
〉
x

 |0〉, (7.13)

where the coefficients ck can be optimized by tuning the strengths of the preparation gates
(see Supplementary Note S2). For these infinitely squeezed input states we can obtain ∆P =
{6.6, 11.6, 16.6, 20.6} dB, for N = {1, 2, 3, 4}, and ∆X = ∞ dB as ∆X is determined solely by
the initial squeezing of the input state.
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Finitely squeezed input states

For a finitely squeezed input state the protocol outlined above is not exact, and in particular
the disentangling operation is not exact. Thus, after tracing out the qubit the resulting state is
mixed, but the effect on ∆P of the output state is very small. This can be seen in Fig. 7.2(a)
which shows ∆P as a function of the input squeezing. Since ∆X = e−r is preserved during the
protocol, high effective squeezing can be obtained simultaneously in both quadratures even with
finitely squeezed input states.

Note that, as seen from Fig. 7.2, even with vacuum input a significant amount of effective
squeezing can be obtained. By applying the protocol twice, once in each quadrature direction, we
can therefore generate grid-like states with high degrees of effective squeezing in both quadratures.
However, a careful analysis (presented in Supplementary Note S3) shows that these states are not
well-defined pure states in the GKP basis, and therefore, seemingly, unsuitable for GKP-based
computations.

In Fig. 7.2(b) (left) we present the Wigner functions of the generated states for N = 2 and N = 3
with input squeezing of 11.5 dB and 16.6 dB respectively, in which case equal effective squeezing
in X and P is obtained. For comparison, we also plot the Wigner functions of the corresponding
target approximate grid states given by equation (7.5) with the same amount of squeezing (right
plots in Fig. 7.2(b)). For N = 2 we observe very small differences in the edges of the states which
are caused by the cut-off in the number of squeezed states in the superposition of the generated
state. Despite these differences, the resulting fidelity is already 93.5%. For N = 3 the differences
becomes much less pronounced and the fidelity increases to 99.3%. Thus, very few rounds of
operations are required to make grid states with high effective squeezing and near unity fidelity
to the commonly considered approximate grid states of equation (7.5).

Preparation of arbitrary logical states

The state generated so far is the logical |1〉 state of the square GKP code. It is, however,
important to be able to generate an arbitrary logical grid state, i.e. of the form c0|0〉GKP +
c1|1〉GKP. In particular, magic states, such as |H〉 = cos(π/8)|0〉GKP + sin(π/8)|1〉GKP are
highly important as they serve as resources for performing non-Clifford operations via gate
teleportation [147].

Furthermore, non-square rectangular grid states–which are equivalent to squeezed square grid
states–are also a useful resource, as they remove the need for in-line squeezing using a newly
developed modified Glancy and Knill error recovery scheme [69]. In the following we thus discuss
how to generate the arbitrary logical grid state with both rectangular and hexagonal lattices.

We first note that rectangular lattices map onto square lattices simply by scaling the quadratures,
i.e. X̂ → CX̂ and P̂ → C−1P̂ where C is the scale factor. These scalings can consequently be
straightforwardly implemented by appropriate scaling of the interaction parameters, i.e. u→ Cu,
v → C−1v and w → Cw. To generate hexagonal states we utilize the fact that the hexagonal

logical |1〉 state is identical to the logical |1〉 state of the rectangular lattice with α = i
√

4√
3
π

and β =
√√

3π. We can thus also initialize the logical |1〉 state of the hexagonal lattice.

The circuit diagram shown in Fig. 7.3(a) shows how to map the logical |1〉 state into arbitrary
logic states using three Rabi-interactions û, v̂ and ŵ. The idea is to proceed with the scheme
for generating the logical |1〉 state, but exploiting the linearity of the protocol and the fact that
the effect of the displacement gate depends on the state of the qubit. Therefore, by initializing
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Figure 7.3: Preparation of arbitrary logical GKP states. a Circuit diagram for preparing arbi-
trary logical GKP states. b Wigner functions for various logical square grid states numerically
generated using our scheme with N = 3 and 16.6 dB input squeezing. c Wigner functions for var-
ious logical hexagonal grid states generated using N = 3 and 15 dB input squeezing. The arrows
in the top plot of (b) and (c) show the directions and magnitude of the stabilizer displacements
Ŝz and Ŝx.

the qubit in the state c0|−〉 − c1|+〉, we effectively transfer the coefficients of the qubit onto the
grid state, leaving the qubit in the |0〉 state. The additional two, unconditional, displacement
operations ensure that the resulting state is on the lattice. The first operation D̂(α/4) can be
effectively implemented during the preparation protocol by inverting the sign of wN , while the
second unconditional operation D̂(β/4) simply shifts the lattice for all states and can therefore
be virtually implemented by a shift of reference frame. The strength of the first conditional
operation u′, and the qubit-dependence φ of the preparation gate û depends on the target logical
state and are found by numerical optimization (σ̂φ = cos(φ)σ̂x+sin(φ)σ̂y represents a generalized
Pauli operator in the x–z plane). The gate û is not crucial for the scheme, but only improves
the quality of the output states by allowing a degree of control over the envelope of the output



87 Chapter 7. Measurement-free preparation of grid states

Figure 7.4: Effects of physical noise sources. Effective squeezing in X and P for a square grid
state as a function of noise rate for different noise sources during the preparation protocol. γ is

the noise rate and T is the time required to implement eiX̂σ̂y and eiP̂ σ̂x .

state. The strength of the disentangling gate ŵ is w′ = −π/(
√

2Re(β)).

Fig. 7.3(b) and (c) show the Wigner functions of various logical states with square and hexagonal
lattices respectively, numerically generated using this protocol, showing clear, well-defined grid
structures.

Effects of noise

We now consider the effect of relevant noise sources on our protocol. To include noise effects
in our model, we consider each gate as being implemented with a specific Hamiltonian for a

set duration, e.g. the gate eicX̂σ̂y is implemented via the Hamiltonian Ĥ = 1
T X̂σ̂y within the

time t = cT . To simulate the added noise, we use a master equation approach in which noise is
included in the Lindblad terms L̂:

dρ

dt
= − i

~
[Ĥ, ρ] + L̂ρL̂† − 1

2

(
L̂†L̂ρ+ ρL̂†L̂

)
, (7.14)

where ρ is the density matrix of the composite boson-qubit system. We consider four common
noise channels:

• Boson loss: L̂ =
√
γâ

• Boson dephasing: L̂ =
√
γ(ââ† + â†â)

• Boson heating: L̂1 =
√
γc(n̄+ 1)â, L̂2 =

√
γcn̄â

†
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• Qubit dephasing: L̂ =
√
γσ̂z

• Qubit decay: L̂ =
√
γ(σ̂x + iσ̂y)/2

For the boson heating Lindbladian n̄ is the mean occupation of the environment which couples to
the system with rate γc. Here we consider the case of large n̄ such that

√
γc(n̄+ 1) ≈

√
γcn̄ ≡ γ,

such that the heating rate of the system is constant. The effect of these noise sources on the
effective squeezing of the output states is shown by the solid lines in Fig. 7.4. For each noise
source we consider N = 2 and N = 3 rounds with 11.5 dB and 16.6 dB squeezed input states
respectively. It is clear that our protocol is sensitive to all types of noise. By increasing N
we also increase the implementation time of the protocol, thus increasing the effect of noise.
Therefore, there exists an optimal number of rounds that depends on the magnitude and type
of noise. E.g. for large noise contributions, two rounds (N = 2) of the scheme produces states
with higher effective squeezing degrees than three rounds (N = 3), and this is simply a result of
the extended time over which noise can accumulate. This clearly illustrates the importance of a
fast preparation protocol.

Even though the quality of the generated states is limited by qubit and bosonic errors, the
effect of qubit errors can be significantly suppressed by adding a few qubit measurements, after
each of the disentangling gates Ŵ . In the noiseless case, the qubit should be in a known state,
disentangled from the bosonic mode at these points, as illustrated in the rightmost windows of
Fig. 7.1(c). Therefore, if we measure the qubit in a different state, we know that an error has
occurred, and the realization should be discarded and the protocol restarted. The result of such a
postselection strategy is shown by the dashed lines in Fig. 7.4, demonstrating that we can improve
the effective squeezing of the output state by several dB. Bosonic errors, on the other hand, are
largely unaffected by the postselection strategy. Thus, when these errors are dominating the
only way to improve the output states is to increase the interaction speed or reduce the rate
of the noise. For the calculation of Fig. 7.4 we assumed instantaneous measurements to isolate
the effect of qubit projections. In real systems the measurements will take time, during which
noise accumulates thus resulting in lower effective squeezing parameters. However, compared
to the measurement-based schemes, e.g. phase-estimation [79], we require exponentially fewer
measurements and therefore still attain a significant speed-up.

Using realistic noise parameters and operation speeds from recent experiments with trapped
ions [43] and microwave cavities [48], we find that grid states with effective squeezing param-
eters above 10 dB in both quadratures can be realistically generated in both platforms using
input states squeezed by 11 dB (see Supplementary Note S4). Squeezing levels of 12.6 dB in
trapped ions [46] and 10 dB in microwave cavities [148] have been experimentally generated.
The method used for generating squeezed states in trapped ions has been experimentally demon-
strated to be compatible with further manipulation using Rabi gates [43], while the method used
in the microwave regime requires specialized structures which could compromise the quality of
subsequent gates. However, it has recently been shown that Rabi gates can be used to deter-
ministically generate the required squeezed vacuum states starting from vacuum [35]. Thus the
protocol presented in this work can readily be implemented in any qubit-oscillator system where
Rabi interactions can be efficiently implemented.
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7.4 Discussion

In conclusion, we have presented a measurement-free protocol to deterministically prepare GKP
states using only few interactions of the type X̂σ̂y and P̂ σ̂x, which are readily available in
trapped-ion and microwave-cavity platforms. Our protocol requires no measurements, resulting
in a speed-up over previous methods, which enables the generation of grid states with high
effective squeezing levels. Furthermore, by adding a few measurements we can partly detect qubit
errors, thus making the protocol robust against qubit noise. Although the exact requirements
for general CV states (i.e. states not exactly on the form of Eq. (7.5)) to enable fault-tolerance
with the GKP encoding are yet unknown, it seems reasonable that states generated using this
protocol suffices, due to their high fidelity with the commonly considered approximate grid states
of Eq. (7.5).

Finally, our protocol exemplifies the versatility of sequential applications of non-commuting Rabi
Hamiltonians, e.g. P̂ σ̂x and X̂σ̂y, demonstrating that highly non-Gaussian states can be deter-
ministically engineered with only a few of these interactions. The full power of such repeated
combination of Rabi interactions remains still relatively unexplored, but we expect that many
other interesting applications are possible using this technique.

During the publication of this manuscript the protocol was experimentally implemented in a
trapped ion system [111].

7.5 S1: Effective shift error

In [67] it was show that small displacement errors on ideal grid states can be perfectly corrected,
if the magnitude of the displacements are less than

√
π/6. Furthermore, any bosonic state ρ can

be expanded in a basis of shifted ideal grid states:

ρ =

∫ √π
−
√
π

du

∫ √π
−
√
π

du′
∫ √π/2
−
√
π/2

dv

∫ √π/2
−
√
π/2

dv′ρuv,u′v′ |u, v〉〈u′, v′|, (7.15)

where
|u, v〉 = π−

1
4 D̂(u/

√
2)D̂(−iv/

√
2)|0〉GKP. (7.16)

The effective shift error, defined as the probability that an approximate logical 0 GKP state has
an intrinsic displacement error larger than

√
π/6 is then given by:

P
√
π/6

error = 1−
∫ √π/6
−
√
π/6

du

∫ √π/6
−
√
π/6

dvρuv,uv. (7.17)

As pointed out in [105], a low P
√
π/6

error is both sufficient and necessary for useful GKP states. Fig.

7.5 shows P
√
π/6

error of the states generated using our protocol. The tendency for smaller P
√
π/6

error for
large N and large input squeezing confirms that the generated states are indeed suitable for the

GKP error correction protocol. For comparison, the dotted line shows P
√
π/6

error of the approximate
grid states given by Eq. (7.5) of the main text. For low input squeezing and high N our states
perform slightly better than the approximate states. This is because high N states have low

errors in the P quadrature, independent of the input squeezing. However, since P
√
π/6

error depends
on the quality of the state in both X and P , we cannot keep improving it by solely increasing
N , without also increasing the input squeezing, and vice versa, as seen from Fig. 7.5.
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Figure 7.5: Effective shift error as a function of input squeezing. Dashed lines show the limits
for infinite squeezing. The black dotted line shows the effective shift error for the approximate
GKP states given by Eq. (7.5) of the main text.

7.6 S2: Preparation gate interaction strengths

The preparation gates are used to shape the envelope of the prepared grid state in order to
optimize the quality of the states. For infinite input squeezing, the coefficients of Eq. (7.13) from
the main text for N ∈ 2, 3, 4 are:

• N = 2:

c1 = cos(π/4 + 2
√
πu2)

c2 = sin(π/4 + 2
√
πu2) (7.18)

• N = 3:

c1 = cos(π/4 + 4
√
πu2) cos(π/4 + 6

√
πu3)

c2 = cos(π/4 + 4
√
πu2) sin(π/4 + 6

√
πu3)

c3 = sin(π/4 + 4
√
πu2) cos(π/4 + 2

√
πu3)

c4 = sin(π/4 + 4
√
πu2) sin(π/4 + 2

√
πu3) (7.19)

• N = 4:

c1 = cos(π/4 + 8
√
πu2) cos(π/4 + 12

√
πu3) cos(π/4 + 14

√
πu4)

c2 = cos(π/4 + 8
√
πu2) cos(π/4 + 12

√
πu3) sin(π/4 + 14

√
πu4)

c3 = cos(π/4 + 8
√
πu2) sin(π/4 + 12

√
πu3) cos(π/4 + 10

√
πu4)

c4 = cos(π/4 + 8
√
πu2) sin(π/4 + 12

√
πu3) sin(π/4 + 10

√
πu4)

c5 = sin(π/4 + 8
√
πu2) cos(π/4 + 4

√
πu3) cos(π/4 + 6

√
πu4)

c6 = sin(π/4 + 8
√
πu2) cos(π/4 + 4

√
πu3) sin(π/4 + 6

√
πu4)

c7 = sin(π/4 + 8
√
πu2) sin(π/4 + 4

√
πu3) cos(π/4 + 2

√
πu4)

c8 = sin(π/4 + 8
√
πu2) sin(π/4 + 4

√
πu3) sin(π/4 + 2

√
πu4) (7.20)
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Table 7.1: Optimal interaction strengths uk, and resulting effective shift errors and effective
squeezing for N = 1, 2, 3, 4. The optimal distribution is calculated by optimizing over all ck in
Eq. (7.13) and the flat distribution is given by equal ck’s, which is obtained by removing the
”preparation gate” in our protocol.

Optimize P
√
π/6

error Optimize ∆P

N FOM [u1, .., uN ] This work
Optimal

distribution
[u1, .., uN ] This work

Optimal
distribution

Flat
distribution

1 P
√
π/6

error
∆P

[0]
3.9× 10−1

6.6 dB
3.9× 10−1

6.6 dB
[0]

3.9× 10−1

6.6 dB
3.9× 10−1

6.6 dB
3.9× 10−1

6.6 dB

2 P
√
π/6

error
∆P

[0, 0.045]
9.3× 10−2

11.6 dB
9.3× 10−2

11.6 dB
[0, 0.093]

9.7× 10−2

11.7 dB
9.7× 10−2

11.7 dB
1.2× 10−1

10.4 dB

3 P
√
π/6

error
∆P

[0, 0.053,
0.033]

2.3× 10−3

16.6 dB
2.1× 10−3

16.6 dB
[0, 0.04,
0.026]

6.7× 10−3

17.0 dB
7.6× 10−3

17.0 dB
7.8× 10−2

13.7 dB

4 P
√
π/6

error
∆P

[0, 0.038,
0.027, 0.015]

6.1× 10−5

20.6 dB
5.1× 10−7

19.9 dB
[0, 0.024,

0.015, 0.008]
1.8× 10−3

22.3 dB
1.3× 10−3

22.6 dB
3.3× 10−2

16.9 dB

and cm = c2N−m+1 form > 2N−1. Using these expressions one can tune the interaction strengths,
uk, to optimize the quality of the prepared grid state with respect to any desired figure of merit
(FOM). In general, for the finite sum of 2N infinitely squeezed states as given by Eq. (7.13), the
expectation value of D̂(

√
2π) used to calculate ∆P (Eq. (7.3)) is given by

〈D̂(
√

2π)〉 =
1

2

2N−1∑
s=1

c∗scs+1, (7.21)

and the grid-state-basis wavefunction ρuv,uv used to calculate P
√
π/6

error (Eq. (7.17)) is given by

ρuv,uv = 2π−1/2
∣∣∣ 2N−1∑
s=1

cs+2N−1 cos(2
√
πsv −

√
π)
∣∣∣2δ(u), (7.22)

assuming symmetry around X = 0, i.e. cm = c2N−m+1.

Table 7.1 shows the calculated optimal interaction strengths and obtained FOMs when optimizing

P
√
π/6

error and ∆P respectively. For comparison, we also compute the FOMs for the unconstrained
optimal distribution, i.e. when freely optimizing over all possible coefficients ck. We see, that
even though we have only N degrees of freedom to tune 2N − 1 independent variables, we can
obtain practically optimal FOMs. The only notable difference is for N = 4 when optimizing

P
√
π/6

error , for which the optimal distribution is two orders of magnitude better than what can be
obtained in our scheme. However, for practical purposes, the quality of the generated states will
be limited by external noise sources, and therefore the optimal number of rounds will likely be
limited to N = 3 (see Supplementary Note S4 7.8).

We also list the values of the FOMs corresponding to a flat distribution, i.e. where all ck’s are
equal. Such a distribution is obtained in our scheme by removing the preparation gates. For
N ≥ 3 we see a significant improvement by tuning the peaks compared to the flat distribution.

For comparison, the technique of adaptive phase estimation [79] also prepares a finite super-
position of squeezed states. For M = 7 rounds of phase estimation, 8 peaks are obtained
corresponding to N = 3 in our scheme. The quality of the states obtained depends on mea-

surement results, but the best-case scenario for M = 7 has P
√
π/6

error = 4.1× 10−3 and ∆P = 16.1

compared to P
√
π/6

error = 2.3 × 10−3 and ∆P = 16.6 for N = 3 of our protocol. Our protocol thus
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outperforms adaptive phase estimation for any measurement outcome. However, the phase esti-
mation protocol has the advantage of generating one peak at a time, and therefore the number of
rounds can be better tuned to optimize the output state given the noise of the particular system.
Yet, we believe that the main advantage of our protocol is the lack of measurements, which
ultimately significantly speeds up the protocol, resulting in less accumulated noise. Additionally,
for trapped-ion systems, qubit measurements can disturb the bosonic mode depending on the
outcome, thus requiring postselection even with the phase estimation protocol. Therefore phase
estimation does not scale well in this system, as the success probability decreases exponentially
with the number of rounds.

We generally note that P
√
π/6

error is a much more sensitive FOM compared to ∆P . For example,
for N = 4 the effective shift error can be improved by several orders of magnitude by tuning the
coefficients, whereas the effective squeezing is “only” improved by less than 5 dB, i.e. less than an
order of magnitude. Note also, that forN = 3 the difference in ∆P when optimizing ∆P compared

to P
√
π/6

error is only 0.4 dB, where the difference in P
√
π/6

error is approximately a factor 3. This shows
that states with similar effective squeezing can have significantly different effective shift errors.
Since the effective shift error is more directly related to the error-correcting properties of the
GKP states, care should therefore be taken when comparing only effective squeezing parameters.

For the results presented in the main text of this paper we have chosen uk’s to optimize P
√
π/6

error .
For finite squeezing we have found no noticeable improvement in the FOMs by further tuning
the uk’s to take into account the finite squeezing, and we have therefore used the values of uk
listed in Table 7.1 for all simulations.

7.7 S3: No initial squeezing

In Fig. 7.2(a) we showed that high effective squeezing can be generated without any initial
squeezing in the bosonic mode. This raises the question whether the protocol can be used to
generate grid states directly from vacuum. In particular, one can start from vacuum and apply
the protocol twice, once in each quadrature direction, to generate high effective squeezing in both
quadratures simultaneously. The Wigner functions of the states generated with this approach are
shown for N = 2 and N = 3 in the insets of Fig. 7.6. The states have a clear grid-like structure,
but it is not immediately clear if they represent useful GKP logic states, i.e. if they approach
the form c0|0〉GKP + c1|1〉GKP for some coefficients c0 and c1. To examine this, we calculate the
expectation value of the rotated Pauli operators

ÛL = (|c0|2 − |c1|2)ẐL + 2 Re(c′0c1)X̂L + 2 Im(c′0c1)ŶL. (7.23)

If the generated state approaches a logical GKP state we should have |〈ÛL〉| → 1 for some (c0, c1).
Fig. 7.6 shows the maximum value of |〈ÛL〉| as a function of N . We observe that |〈ÛL〉| does not
appear to converge to 1, showing that the states do not represent useful GKP logic states. Still,
The generated states do have high effective squeezing in both quadratures, so they would be a
useful resource for detecting displacements [101].

7.8 S4: Realistic noise parameters

Grid states were generated for the first time very recently in the motional state of a trapped
ion [43] and in a microwave cavity field coupled to a superconducting circuit [48]. These exper-
iments obtained effective squeezing parameters of ∆X ,∆P ∈ [5.5; 7.3] and ∆X ,∆P ∈ [7.4; 9.5]
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Figure 7.6: Maximum expectation value over all rotated Pauli-operators in the GKP-logical
subspace for states generated without initial squeezing. The states are generated by applying
the protocol of Fig. 7.1(a) (main text) twice with a π/2 rotation of the bosonic mode in between.
As N increases the expectation value does not converge to 1, showing that these states do not
represent pure GKP logical states. The insets show the Wigner functions of the generated state
for N = 2 and N = 3.

respectively. Note that grid states require high effective squeezing in both directions simultane-
ously, so for a fair comparison one might consider the effective squeezing in the direction with
the least amount of squeezing, i.e. min(∆X ,∆P ), which in this case 5.5dB and 7.4dB for the two
experiments respectively. To benchmark our protocol, we simulate it with the Lindblad master
equation, Eq. (7.14), using the parameters given in the experiments, as listed in Table 7.2. The
calculated FOMs as a function of input squeezing are shown in Fig. 7.7. In both platforms we
can obtain more than 10 dB effective squeezing in both quadratures simultaneously with > 11 dB
input squeezing. For the trapped ion platform the optimal number of rounds is with N = 2. For
the microwave cavity platform both N = 2 and N = 3 allows for more than 10 dB output effec-
tive squeezing for sufficient input squeezing, with N = 3 reaching 12 dB using the measurement
strategy measurement as explained in the main text (dashed lines of Fig. 7.7).
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Figure 7.7: Effective squeezing and effective shift error as function of input squeezing as simulated
using the master equation Eq. (7.14), using the noise types and strengths associated with recent
experiments using trapped ions [43] and microwave cavities [48], as listed in Table 7.2.

Table 7.2: Interaction timescale and relevant noise types and rates in recent experiments with
microwave cavities [48] and trapped ions [43]. The interaction timescale, T , is the time required

to perform the operations eiX̂σ̂y or eiP̂ σ̂x .

Trapped ion [43]

Interaction timescale T = 11 µs

Phonon dephasing
γ−1 = 140 ms
γT = 7.7× 10−5

Microwave cavity [48]

Interaction timescale T = 0.34 µs

Qubit decay
γ−1 = 50 µs
γT = 6.8× 10−3

Qubit dephasing
γ−1 = 60 µs
γT = 5.7× 10−3

Photon decay
γ−1 = 245 µs
γT = 1.4× 10−3



Chapter 8

Improved readout of
qubit-coupled
Gottesman-Kitaev-Preskill states

In this chapter we present the paper “Improved readout of qubit-coupled Gottesman-Kitaev-
Preskill states” [34], authored by Jacob Hastrup and Ulrik L. Andersen. This work is published
at Quantum Science and Technology.

© 2021 IOP Publishing Ltd

8.1 Abstract

The Gottesman-Kitaev-Preskill encoding of a qubit in a harmonic oscillator is a promising build-
ing block towards fault-tolerant quantum computation. Recently, this encoding was experi-
mentally demonstrated for the first time in trapped-ion and superconducting circuit systems.
However, these systems lack some of the Gaussian operations which are critical to efficiently
manipulate the encoded qubits. In particular, homodyne detection, which is the go-to method
for efficient readout of the encoded qubit in the vast majority of theoretical work, is not readily
available, heavily limiting the readout fidelity. Here, we present an alternative read-out strategy
designed for qubit-coupled systems. Our method can improve the readout fidelity with several
orders of magnitude for such systems and, surprisingly, even surpass the fidelity of homodyne
detection in the low squeezing regime.

8.2 Introduction

Scalable fault-tolerant quantum computation requires physical qubits which can be stored, ma-
nipulated and read-out with very high fidelity. One promising approach for realising such high
quality qubits, which has received an increasing attention in recent years, is to encode each
qubit into the bosonic mode of a quantum harmonic oscillator, such as the motion of a trapped
particle, or a microwave or an optical field mode. There are several proposals for such en-
codings [26, 28, 43, 48, 61, 62, 65, 82, 105, 126], including the Gottesman-Kitaev-Preskill (GKP)

95
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code [28, 43, 48, 105, 126] which has many advantageous properties. In particular, with GKP
states, a universal set of operations can be performed using solely Gaussian resources [124,149],
which are generally considered easy and efficient to implement, particularly in optics. Addition-
ally GKP states can be combined with continuous variable cluster states [72,129] or the surface
code [131, 135] to achieve fault-tolerance. Furthermore, the GKP code has been shown to out-
perform other encoding schemes in terms of its efficiency in correcting against loss [53,55], which
is the main noise factor in many bosonic systems.

These favourable features have sparked numerous new studies on applying GKP states for optical
quantum computing [74, 75, 105]. Still, the generation of GKP states in the optical regime has
proven extremely challenging and has so far not been demonstrated experimentally, despite
several theoretical proposals [88–91, 150]. However, recently GKP states were generated for the
first time in the motional state of a trapped ion [43] and in a microwave cavity field coupled to
a superconducting circuit [48]. These experiments were made possible by the strong coupling
between a bosonic mode and an ancillary qubit, enabling non-Gaussian transformations of the
bosonic mode, which is required to produce GKP states. Yet, these experimental platforms lack
some of the crucial Gaussian operations that are required for complete manipulation, stabilization
and read-out of the encoded GKP qubit [28]. Therefore, new methods specifically designed to
qubit-coupled systems are required to take full advantage of the GKP encoding in these systems.
For example, stabilization has already been demonstrated using the qubit-coupling [48], but
the lack of homodyne detection, i.e. direct measurement of the bosonic quadrature operators,
severely limits the read-out fidelity [126].

Here we propose an improved readout scheme for qubit-coupled GKP states. Our method relies
on mapping the logical information of the GKP qubit onto the ancilla qubit state. This is similar
to the known method based on phase-estimation [79], but by adding an additional interaction
between the qubit and the oscillator, we achieve much higher read-out fidelity. In particular,
for a GKP state composed of peaks of width ∆, the read-out error of our scheme scales as ∆6

whereas the previously used method based on qubit-coupling scales as ∆2. Thus, as an example,
for a 10 dB squeezed GKP state our method improves the read-out fidelity from 96.22% with
known techniques to 99.98%.

8.3 Preliminaries

We consider GKP states which are encoded into a bosonic mode with quadrature operators q̂
and p̂ satisfying [q̂, p̂] = i. The code states of the square GKP encoding are defined in the
common +1 eigenspace of the commuting displacement operators D̂(

√
2π) and D̂(i

√
2π), where

D̂(α) = e
√

2i(−Re[α]p̂+Im[α]q̂). The computational basis states are then defined as the ±1 eigen-
states of D̂(i

√
π/2), which acts as a logical Pauli Z operator. However, ideal GKP states are

unphysical, as they require infinite energy. Instead, the physically relevant basis states are thus
only approximate eigenstates of the logical Pauli Z operator, i.e. 〈D̂(i

√
π/2)〉 ≈ ±1. There are

multiple ways of expressing such approximate states. In this work we consider the commonly
used expression for which the basis states consist of a superposition of multiple squeezed states
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Figure 8.1: Wigner functions and quadrature distributions of the approximate GKP states given
by Eq. (8.1a) for symmetric ∆ = κ−1 with 9 and 15 dB squeezing respectively. The dashed lines
in the quadrature distributions show the vacuum quadrature distribution (not normalized) for
comparison.

of width ∆, under a Gaussian envelope of width κ:

|0̃〉 ∝
∑
s∈Z

e−(
√

π
2 2s)

2
/κ2

D̂

(√
π

2
2s

)
Ŝ∆|vac〉 (8.1a)

|1̃〉 ∝
∑
s∈Z

e−(
√

π
2 (2s+1))

2
/κ2

D̂

(√
π

2
(2s+ 1)

)
Ŝ∆|vac〉, (8.1b)

where |vac〉 is the vacuum state and Ŝ∆ = e−
i
2 ln(∆)(q̂p̂+p̂q̂) is the squeezing operator. These

approximate code states approach the ideal states for (∆, κ−1) → 0. The amount of squeezing
is often expressed in dB as ∆dB = −10 log10(∆2). Fig. 8.1 shows example Wigner functions
and quadrature distributions of the GKP |0̃〉 states with 9 and 15 dB squeezing respectively.
For comparison, experimentally produced states have so far demonstrated measured stabilizer
expectation values of 〈D̂(

√
2π)〉 = 0.56 and 〈D̂(i

√
2π)〉 = 0.41 corresponding to effective squeez-

ing levels [101] of 5.5-7.3 dB in a trapped ion [43] and 〈D̂(
√

2π)〉 = 0.62 and 〈D̂(i
√

2π)〉 = 0.5
corresponding to 6.6-8.2 dB effective squeezing in a microwave cavity [48]. Note that since the
measurement of the stabilizers in these experiments are prone to imperfections during the mea-
surement process, the actual squeezing levels could be slightly higher and care should be taken
when directly comparing the different platforms. In principle, the protocols used in those ex-
periments can produce arbitrarily large amounts of squeezing, but in practice the performance
is limited by noise, such as bosonic dephasing and losses as well as errors introduced via qubit
couplings [43,48].

It is common to consider the symmetric case where ∆ = κ−1, but in this paper only ∆ is
relevant, as we consider only read-out in the computational, i.e., Pauli Z basis. If instead one
wishes to read out the GKP qubit in the Pauli X basis, this is done by changing q̂ → p̂ and
p̂→ −q̂ in the following operations in which case κ−1 becomes the relevant quantity. While we
initially consider the pure states of (8.1) we will later turn to more realistic mixed states.

We now consider the problem of how to reliably distinguish between the states |0̃〉 and |1̃〉 in a
physically relevant setting. In particular, we wish to minimize the measurement error probability

perr =
1

2
(p(1|0) + p(0|1)), (8.2)

where p(x|y) is the probability of obtaining measurement outcome x given the input state y.
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Since the approximate states |0̃〉 and |1̃〉 are not orthogonal, this problem is ultimately bounded
by the Helstrom bound [56]:

perr ≥ perr,Helstrom =
1

2

(
1−

√
1− |〈0̃|1̃〉|2

)
. (8.3)

The Helstrom bound drops very rapidly with decreasing ∆, but is generally not achievable in
a realistic setting. Instead, homodyne detection is often considered as a practical and efficient
read-out method. With this method, the state is measured in the bosonic q̂-basis, and the results
closer to even multiples of

√
π are considered a 0 while results closer to an odd multiple of

√
π are

considered a 1. The measurement error probability for homodyne detection, assuming a negligible
overlap between neighbouring squeezed states of the basis states, i.e. |〈vac|Ŝ†∆D̂(

√
2π)Ŝ∆|vac〉| ≈

0, is given by:

perr,homodyne = erfc

(√
π

2∆

)
≈ 2

π
∆e−

π
4∆2 , (8.4)

where the second approximation follows from a series expansion of the complementary error
function. The exponential term in Eq. (8.4) causes the measurement error probability to drop
rapidly with decreasing ∆, i.e. homodyne detection is very efficient for highly squeezed states.

However, while homodyne detection can be efficiently implemented in free-space optics, it is less
practical for microwave cavities or trapped ions. Instead, these systems can couple to an ancilla
qubit, e.g. a superconducting transmon qubit for the microwave platform or an internal spin
state for the trapped ions, and the state of the ancilla qubit can subsequently be measured. In
particular, it is possible to realise a Rabi-type interaction Hamiltonian, q̂σ̂x, where σ̂x is the
Pauli X operator of the qubit [48, 83]. The action of this Hamiltonian is sometimes referred to
as a conditional displacement, as the bosonic mode gets displaced in a direction depending on
the state of the qubit, entangling the qubit and the oscillator. Such interaction can be used to
read-out a GKP-qubit using the following simple circuit [43,48,126]:

|ψ〉GKP
bosonic mode

Ux

(
i
√
π

2

)
|0〉

qubit

(8.5)

where

Uk(β) = exp [i (−Re[β]p̂+ Im[β]q̂) σ̂k] (8.6)

for k ∈ {x, y, z}. The expected measurement outcome of the qubit is Prob(|1〉) = 1
2

(
1− Re

〈
D̂
(
i
√

π
2

) 〉)
.

For ideal GKP basis states for which
〈
D̂
(
i
√

π
2

) 〉
= ±1 we achieve a perfect read-out. For the

approximate states |0̃〉 and |1̃〉, with negligible overlap between neighbouring squeezed states, we

have
〈
D̂
(
i
√

π
2

) 〉
= ±e−π4 ∆2

, so the measurement error probability is:

perr,simple =
1

2

(
1− e−π4 ∆2

)
≈ π

8
∆2. (8.7)

This scaling is significantly worse than the homodyne strategy of Eq. (8.4). The scaling can be
improved by running the circuit multiple times and considering a majority vote, but because of
the measurement back-action this strategy has diminishing returns. Additionally, multiple runs
of the circuit results in an increased total measurement time during which the state accumulates
noise.
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8.4 Protocol

In this work we propose to modify the circuit in (8.5), adding an additional Rabi-type interaction
of the type p̂σ̂y with interaction strength λ:

|ψ〉GKP

Uy (−λ) Ux

(
i
√
π

2

)
|0〉

(8.8)

For |λ| � 1, the measurement error probability of this circuit is given by (derivation given in
Appendix A):

perr,improved =
1

2

(
1− e−π4 ∆2

(
e−

λ2

∆2 + sin(
√
πλ)
))

, (8.9)

which reduces to that of Eq. (8.7) for λ = 0 as expected. However, for λ 6= 0 it is possible to

achieve a better scaling. The minimum is achieved for λ satisfying 2λ
∆2 e

−λ2/∆2

=
√
π cos(

√
πλ),

which for small ∆ is approximately at λ =
√
π∆2/2. Inserting this into Eq. (8.9) and expanding

to lowest order in ∆ we get:

perr,improved ≈
5π3

384︸︷︷︸
∼0.4

∆6, (8.10)

i.e. a significantly better scaling than (8.7). The measurement error probabilities of the different
methods are compared in Fig. 8.2a. The blue curve shows the result of circuit (8.8), with the
optimum λ chosen for each point. We see a clear improvement over the simple circuit in (8.5), i.e.
for λ = 0, even when using multiple runs of the simple circuit. For a squeezing of less than 9 dB
the modified circuit even outperforms homodyne detection. We found that using circuit (8.8) we
could not further improve the performance using multiple rounds and majority voting. This is
because the measurement back-action upon getting the wrong measurement heavily modifies the
input state, making subsequent measurement rounds useless (see Appendix B for details). One
important thing to note is, that the optimum interaction parameter, λ, depends on the quality,
or ∆, of the input GKP state. This is different from the homodyne measurement strategy or the
simple circuit, both of which are constructed independently on the quality of the input state.
Therefore, it is important to calibrate the modified measurement circuit, i.e. tuning λ, according
to the squeezing of the input state. Fig. 8.2b shows the performance when fixing λ at different
values. For large amounts of squeezing we see that the circuit performs optimally only for input
states in a narrow region. In a practical setting it might be difficult to consistently fix the
squeezing level of the state to be measured, as it could depend on previous operations of the
state. Therefore, the average measurement error probability will likely be higher than what is
predicted by Eq. (8.9). However, from Fig. 8.2b we see that the results are generally improved
compared to the simple circuit for a wide range of ∆.

So far we have considered only the states of Eq. (8.1). However, these states might not necessarily
be physically realistic as, for example, they are pure. Instead, we can construct more general
mixed GKP states by applying a Gaussian displacement channel of strength σ to the pure states
of Eq. (8.1):

ρµ =
1

πσ2

∫
d2αe−

|α|2

σ2 D̂(α)|µ̃〉〈µ̃|D̂†(α), (8.11)

where ρµ is the density matrix of the output state and µ ∈ {0, 1}. The performance of the simple
circuit (8.5) does not depend on the exact form of the input state but only on the expectation
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Figure 8.2: (a): Measurement error probability, perr, for various measurement strategies. The
red λ = 0 lines correspond to circuit (8.5), while the blue line corresponds to circuit (8.8) with
the interaction parameter λ chosen to minimize perr. (b): Performance for fixed λ as a function of
the input squeezing. For large amounts of squeezing the optimal performance is only achieved in
a narrow range, requiring good knowledge of the input state. (c): Performance for mixed states
generated by applying the Gaussian displacement channel, Eq. (8.11), to the pure input states
of Eq. (8.1). For such states, the purity, P , heavily impacts the performance of the protocol,
although the performance is always improved compared to the simple circuit.
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value
〈
D̂
(
i
√

π
2

) 〉
. In fact, one can use a similar expectation value to define an effective squeezing

parameter ∆eff as [101]:

∆eff =

√√√√ 1

2π
ln

(
1

|〈D̂(i
√

2π)〉|2

)
, (8.12)

allowing us to describe the amount of squeezing in an arbitrary state. For the states of Eq. (8.1)
we simply have ∆eff = ∆. For the mixed state of Eq. (8.11) we have ∆eff =

√
∆2 + 2σ2. By

tuning ∆ and σ we can thus now construct GKP states of arbitrary purity, P = Tr(ρ2), and
effective squeezing. Fig. 8.2c shows the performance of the circuit for states of different purity.
We see that the performance degrades for mixed states, although we still obtain superior behavior
compared to the simple circuit. This performance degradation can be understood by the fact
that the circuit (8.8) is not robust against shifts of the GKP state by an integer multiples of the
GKP lattice spacing along the p-axis, i.e. shifts of the type D̂(i

√
2πn) for integer n. Usually, such

shifts leaves the logical information of the GKP state intact, and indeed they do not affect the
measurement result using homodyne detection or the simple circuit in (8.5). However, for the
circuit in (8.8) we have Uy(−λ)D̂(i

√
2πn) = ei2nλ

√
πσ̂yD̂(

√
2πn)Uy(−λ). Thus a displacement of

one or more lattice spacings along the p-axis before the measurement circuit induces an unwanted
qubit rotation around the y-axis. The mixed state can to some degree be interpreted as a pure
approximate GKP state which has experienced an unknown integer lattice displacement. This
therefore results in an unknown rotation of the qubit which ultimately increases the error rate of
our circuit. In the literature, GKP states are commonly only quantified in terms of their squeezing
level, with the purity being less relevant as it plays no role for e.g. homodyne detection. It is
therefore unclear what levels can be expected in experimental setting, which will also likely vary
between platforms. Note that the mixed states were constructed in one particular way in this
paper, i.e. by combining Eqs. (8.1) and (8.11). The purity alone might therefore not accurately
describe performance of the protocol for other states. Still, the result of Fig. 8.2c indicates that
high quality states with features beyond just the squeezing are required to take full advantage
of the improved measurement scheme.

8.5 Conclusion

We have presented a protocol for efficient read-out of a GKP state in a qubit-coupled oscillator.
Our protocol reduces the measurement error rate from a ∆2-scaling with previously known meth-
ods to a ∆6-scaling, enabling low error rates in the absence of homodyne detection. Our protocol
is sensitive to the exact form of the input state, with a reduced performance for mixed states.
However, our results demonstrate that homodyne detection might not be crucial to efficiently
utilize the GKP encoding, e.g. in microwave cavities or trapped ions.

Note added: After preparing this paper, we became aware of a parallel work by de Neeve et.
al [111] which experimentally implements the measurement protocol presented here on a trapped-
ion platform. Furthermore, they provide a physical interpretation of the improvement obtained
by the added interaction. Additionally, we became aware of work by Royer et. al [151], which
considers similar alternating Rabi-type interactions to autonomously generate and stabilize ap-
proximate GKP states. Those works thus complement the analysis presented in this paper.
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8.6 Appendix A: Improved measurement error probability

Here we derive Eq. (8.9) of the main text. To do so we calculate the probability of measuring
the qubit in state 0 after the application of circuit (8.8) with input GKP state |0̃〉 or |1̃〉. This
probability is given by the norm of the (not normalized) post-measurement state, |〈ψ0|ψ0〉|,
where |ψ0〉 = 〈0|Ux

(
i
√
π

2

)
Uy (−λ) |ψ〉 ⊗ |0〉 with input GKP state |ψ〉 given by Eq. (8.1). First

we compute the operation 〈0|Ux
(
i
√
π

2

)
Uy (−λ) |0〉. For this it it convenient to write the U gates

as:

Uy (−λ) = D̂1 ⊗ |+i〉〈+i|+ D̂†1 ⊗ |−i〉〈−i| (8.13)

Ux

(
i

√
π

2

)
= D̂2 ⊗ |+〉〈+|+ D̂†2 ⊗ |−〉〈−|, (8.14)

where D̂1 = D̂(−λ/
√

2), D̂2 = D̂(i
√
π/(2
√

2)), and |±i〉 = (|0〉 ± i|1〉)/
√

2 and |±〉 = (|0〉 ±
|1〉)/

√
2 are the Pauli-y and Pauli-x eigenstates respectively. Thus |0〉 = (|i〉+ |−i〉)/

√
2.

From the first gate we get:

Uy(−λ)|0〉 =
1√
2

(
D̂1|i〉+ D̂†1|−i〉

)
(8.15)

Transforming the qubit states into the x-basis through |i〉 = eiπ/4(|+〉 − i|−〉)/
√

2 and |−i〉 =
eiπ/4(−i|+〉+ |−〉)/

√
2, we get:

Uy(−λ)|0〉 =
eiπ/4

2

[(
D̂1 − iD̂†1

)
|+〉+

(
−iD̂1 + D̂†1

)
|−〉
]
. (8.16)

Applying the second gate:

Ux

(
i

√
π

2

)
Uy(−λ)|0〉 =

eiπ/4

2

[
D̂2

(
D̂1 − iD̂†1

)
|+〉+ D̂†2

(
−iD̂1 + D̂†1

)
|−〉
]
. (8.17)

After measuring the qubit in state |0〉:

〈0|Ux
(
i

√
π

2

)
Uy(−λ)|0〉 =

eiπ/4

2
√

2

[
D̂2D̂1 − iD̂2D̂

†
1 − iD̂

†
2D̂1 + D̂†2D̂

†
1

]
, (8.18)

thus

|ψ0〉 =
eiπ/4

2
√

2

[
D̂2D̂1 − iD̂2D̂

†
1 − iD̂

†
2D̂1 + D̂†2D̂

†
1

]
|ψ〉. (8.19)

We now calculate p(0|0) by inserting the expression for the approximate GKP 0 state, |0̃〉 (Eq.
(8.1)) and calculating the norm. Here we assume that the circuit do not cause an overlap
between distinct peaks of the GKP state, which is valid for small λ. Fixing s in Eq. (8.1), the
post-measurement norm of a single peak is then:

1

8
|〈vac|Ŝ†∆D̂

(√
π

2
2s

)† [
D̂2D̂1 − iD̂2D̂

†
1 − iD̂

†
2D̂1 + D̂†2D̂

†
1

]†
×
[
D̂2D̂1 − iD̂2D̂

†
1 − iD̂

†
2D̂1 + D̂†2D̂

†
1

]
D̂

(√
π

2
2s

)
Ŝ∆|vac〉|. (8.20)
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This expression consists of 16 terms, which can be evaluated using the relations 〈vac|D̂(α)|vac〉 =

e−|α|
2/2, D̂(β)D̂(α) = eiIm(βα∗)D̂(α + β) and Ŝ†∆D̂(α)Ŝ∆ = D̂ (Re(α)/∆ + iIm(α)∆). The 16

terms are:
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2
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Ŝ∆|vac〉

=〈vac|Ŝ†∆D̂
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Figure 8.3: (a): Approximate GKP state |0̃〉 with 10 dB squeezing. (b): Wigner functions
and quadrature distributions of the post-measurement states of the simple circuit (8.5) upon
measuring the qubit in states |0〉 and |1〉 respectively, given the input state shown in (a). (c):
Post-measurement states for the improved circuit (8.8).

Inserting these into Eq. (8.20) we find that each peak contributes with:

1

2

[
1 + e−

π
4 ∆2

cos(2πs)
(
e−

λ2

∆2 + sin(
√
πλ)
)]
. (8.26)

Since s is an integer, i.e. cos(2πs) = 1, all peaks contribute equally (apart from their initial
weighting from the broad Gaussian envelope), and the measurement error probability for the
GKP 0 state is is thus

p(1|0) = 1− p(0|0) =
1

2

[
1− e−π4 ∆2

(
e−

λ2

∆2 + sin(
√
πλ)
)]
. (8.27)

Similarly, we can calculate the probability p(0|1) by considering the input state |1̃〉 for which the
result can be obtained directly from Eq. (8.26) by changing s→ s+ 1

2 . In this case cos(2πs) = −1
and we get

p(0|1) = p(1|0). (8.28)

Thus in total the measurement error probability is

perr =
1

2
(p(0|1) + p(1|0)) = p(0|1) =

1

2

[
1− e−π4 ∆2

(
e−

λ2

∆2 + sin(
√
πλ)
)]
. (8.29)

8.7 Appendix B: Post-measurement state

Since we don’t directly measure the bosonic mode, one could try to repeat the measurement
circuit to gain more accurate information on the input state. However, the qubit measurement
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also projects the bosonic mode into a post-measurement state, which is not necessarily suitable for
following operations or measurements. In Fig. 8.3 we show the Wigner functions and quadrature
distributions of the post-measurement states for a 10 dB input GKP |0̃〉 state. Fig. 8.3b shows
the post-measurement states for the qubit results |0〉 and |1〉 using the simple circuit in (8.5),
while Fig. 8.3c shows the post-measurement states when using the improved circuit in (8.8). In
both cases, observation of the wrong qubit measurement outcome, i.e. observing |1〉 with input
state |0̃〉 heavily distorts the input GKP state. For this reason, subsequent measurements yield
less reliable results, which limits the effect of multiple measurements on the same state. For
the improved circuit the post-measurement state is even more distorted compared to the simple
circuit. Thus we found that multiple runs of the improved circuit does not further reduce the
measurement error.

The repeated measurement of the simple circuit can also be considered as an instance of the
non-adaptive phase estimation protocol to prepare approximate GKP states presented in [79].
In that work it is shown that some unlikely measurement outcomes can lead to erroneous states,
just like the distorted state in Fig. 8.3b. Furthermore, it was shown that the probability of
obtaining such poor states could be lowered by applying an adaptive measurement sequence. It
might therefore be possible to further lower the error rate by applying an adaptive measurement
strategy through repeated use of the improved circuit, but with settings based on previous qubit
measurements. We leave this an interesting open direction for further research.



Chapter 9

Unconditional preparation of
squeezed vacuum from Rabi
interactions

In this chapter we present the paper “Unconditional preparation of squeezed vacuum from Rabi
interactions” [35], authored by Jacob Hastrup, Kimin Park, Radim Filip and Ulrik L. Andersen.
This work is published in Physical Review Letters.

© 2021 American Physical Society

9.1 Abstract

Squeezed states of harmonic oscillators are a central resource for continuous-variable quantum
sensing, computation and communication. Here we propose a method for the generation of very
good approximations to highly squeezed vacuum states with low excess anti-squeezing using only
a few oscillator-qubit coupling gates through a Rabi-type interaction Hamiltonian. This interac-
tion can be implemented with several different methods, which has previously been demonstrated
in superconducting circuit and trapped-ion platforms. The protocol is compatible with other pro-
tocols manipulating quantum harmonic oscillators, thus facilitating scalable continuous-variable
fault-tolerant quantum computation.

9.2 Introduction

Quantum continuous variables have become an increasingly promising platform for quantum
information processing [152]. In particular, extraordinary experimental progress has been made
over the last few years in trapped-ion and superconducting circuit platforms towards fault-
tolerant quantum computation [48, 65, 82]. One of the most promising routes towards fault-
tolerant continuous-variable quantum computation is the Gottesman-Kitaev-Preskill encoding
[28], which has gained substantial interest over the past few years due to experimental and
theoretical developments [43,48,126]. For this encoding, highly squeezed states are an important
resource for constructing high-quality states [33,43,79]. The current record for squeezed vacuum
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is 15 dB [44] in an optical field using a parametric amplifier. However, non-Gaussian operations
are difficult to realise efficiently in the optical regime, and thus it is challenging with current
technology to further utilize this highly squeezed state for quantum computation.

On the other hand, qubit-coupled oscillators, such as a motional state of a trapped ion or a mi-
crowave cavity field coupled to a superconducting qubit can be manipulated with non-Gaussian
operations via the qubit ancilla. In fact, universal control of the harmonic oscillator is in principle
possible in such systems [137,139], although many protocols, such as squeezed state preparation,
require specialized methods to be efficient. 12.6 dB squeezing has been reported in the motional
state of a trapped ion [46] using a reservoir engineering technique [153]. This technique has
the advantage of achieving squeezing in a steady-state configuration, thus facilitating the ex-
perimental implementation. However, the process utilizes spontaneous relaxation processes, the
rates of which limits the speed at which the state is created and thus ultimately the achievable
squeezing due to dephasing during the protocol. In the microwave regime 10 dB squeezing has
been experimentally demonstrated [148]. This was achieved using a parametric amplifier realised
by a metamaterial consisting of multiple Josephson junctions.

Here we propose a method for the preparation of an approximate squeezed vacuum state in an
oscillator strongly coupled to a qubit using only a few unitary interactions through the Rabi
Hamiltonian [141, 142]. This Hamiltonian has been experimentally demonstrated in trapped-
ions and superconducting circuits [48, 83, 154, 155], and plays a key role in the Gottesman-
Kitaev-Preskill encoding scheme of these platforms [43,48,126]. Thus the protocol facilitates the
generation of highly squeezed states using a method that is compatible with further manipulation
of the oscillator. Our protocol for the generation of squeezed vacuum is radically different from
the common approach based on parametric amplification, and represents a fundamentally new
view on squeezed vacuum generation. The obtainable amount of squeezing depends on the types
and magnitude of noise in the particular system, but can generally be improved through faster
interactions, e.g. through an increased power of the driving fields which control the interaction.
Furthermore, the achievable amount of Fisher information is particularly robust against qubit
errors during the protocol, making the generated states useful for sensing applications [156–162].
In particular, squeezed states can be used to detect displacements in the considered platforms
using either the qubit-coupling [101] or homodyne detection [163]. Finally, squeezed states
serve as a fundamental resource for continuous variable communication [152] which could find
applications facilitating short-range connections in microwave circuits [164].

9.3 Protocol

We consider a quantum harmonic oscillator described by the quadrature operators X̂ and P̂
satisfying [X̂, P̂ ] = i. In the vacuum state the oscillator exhibits equal fluctuations in each
quadrature of magnitude 〈X̂2〉 = 〈P̂ 2〉 = 1

2 . The aim of the protocol is to generate a state

squeezed in the P -quadrature by a relative amount ∆2 < 1 such that 〈P̂ 2〉 = ∆2

2 . The protocol
can straightforwardly be generalized to generate squeezing along an arbitrary quadrature direc-
tion, either by a rotation from the natural evolution of an the squeezed state under a harmonic
potential, or by a suitable change of quadrature operators during the protocol. It is common to
quantify the squeezing in dB relative to the vacuum as ∆dB = −10 log10(∆2). A pure squeezed
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vacuum state, |sqvac〉∆, can be written in the P -, X- and coherent state bases as:

|sqvac〉∆ ∝
∫
dp exp

(
− p2

2∆2

)
|p〉 (9.1a)

∝
∫
dx exp

(
− x2

2∆−2

)
|x〉 (9.1b)

∝
∫
dα exp

(
− α2

∆−2 − 1

)
|α〉, (9.1c)

where the last line is only valid for ∆ < 1 and the integral is over real α. The coherent states with

real α are defined as |α〉 = e−i
√

2αP̂ |vac〉 ∝
∫
dx exp

(
−
(
x−
√

2α
)2
/2
)
|x〉. For our approach, it

is useful to view the squeezed state in the coherent state basis, as our strategy will be to directly
construct a superposition of coherent states which resembles (9.1c). Since the coherent states
form an overcomplete basis with large overlap between close-lying states, we can expect that
equation (9.1c) holds to a good approximation even if we discretize the integral:

|sqvac〉∆ ∝∼
∑
αs∈L

exp

(
− α2

s

∆−2 − 1

)
|αs〉, (9.2)

where L is a lattice on the real line. While the right hand side of Eq. (9.2) is technically a
non-Gaussian state, we find that Eq. (9.2) is a good approximation for a lattice spacing of
up to ∼ 1.5, which is on the order of the width of a coherent state (details are presented in
the Supplementary Material S1, 9.5). It is therefore possible to construct a highly squeezed
state, practically indistinguishable from a Gaussian squeezed state, from a relatively sparse
superposition of coherent states. A probabilistic method based on this approach was proposed
in [165].

We now present a deterministic method to efficiently construct such a superposition of coherent
states using a qubit ancilla. The circuit diagram of the protocol is shown in Fig. 9.1a. We
use two Rabi-type interaction Hamiltonians P̂ σ̂x and X̂σ̂y [141, 142], where σ̂x and σ̂y are the
Pauli x and y operators of the qubit. Such Hamiltonians can be efficiently implemented [45, 48,
166, 167], e.g. using a two-tone drive which has been experimentally demonstrated in trapped-
ions [83, 154] or from a dispersive Jaynes-Cumming Hamiltonian which has been demonstrated
in superconducting circuits [48, 155]. The protocol consists of N pairs of different interactions.
The first type of interaction, Ûk = exp(iukP̂ σ̂x), displaces the oscillator in a direction depending
on the state of the qubit, while the following interaction, V̂k = exp(ivkX̂σ̂y), approximately
disentangles the qubit and the oscillator. The repeated application of these interactions creates
a superposition of 2N coherent states, and leaves the qubit back in the ground state. Note that
the interactions used are conceptually similar to the protocol in Ref. [33] which aims to generate
a grid state starting from squeezed vacuum. However, unlike this previous work, our target state
consists of overlapping coherent states, for which the approximations used in Ref. [33] do not
hold. In this work, we show that this limitation can be overcome surprisingly well by numerically
optimizing the interaction parameters, uk and vk, for each step, which enables the generation
of squeezed states using Rabi interactions. Still, to understand why the protocol works and to
have a good initial guess from which to optimize the interaction parameters, it is instructive to
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Figure 9.1: (a) Circuit diagram for the generation of a P -squeezed vacuum state. The protocol
consists of N steps of interactions through the Hamiltonians P̂ σ̂x and X̂σ̂y. The interaction
parameters uk and vk varies from step to step and are found numerically to optimize the protocol.
The protocol is deterministic, but the performance can be slightly improved by measuring the
qubit and postselecting on the outcome 0. (b) Evolution of the quadrature distributions during
each step of the protocol. Dashed lines correspond to interaction parameters given by Eq. (9.3)
with L = 0.45 and solid lines correspond to numerically optimized interaction parameters. Note
that the negative squeezing value in dB here denotes anti-squeezing.

consider a specific set of interaction parameters given by

uk =

{
2N−1

√
2L, if k = 1,

−2N−k
√

2L if k > 1,
(9.3a)

vk =

{
2−(N−k) π

4
√

2L
, if k < N ,

− π
4
√

2L
if k = N ,

(9.3b)

where L is a free parameter, which determines the spacing of the resulting grid of coherent
states. Each step aims to double the number of coherent states in the superposition. The first
interaction, Û1, displaces the oscillator and entangles it with the qubit:

Û1|vac〉|0〉 =
1√
2

(
|−2N−1L〉|+〉+ |2N−1L〉|−〉

)
. (9.4)

Measuring the qubit in the in the |0〉 = (|+〉+ |−〉) /
√

2 or |1〉 = (|+〉 − |−〉) /
√

2 state leaves the
oscillator in a superposition of two coherent states, known as a Schrödingers cat state, which has
been experimentally demonstrated using exactly this type of interaction [155]. In our protocol,
however, we do not require qubit measurements to disentangle the qubit and the oscillator.
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Instead, we apply a second interaction, V̂1, which approximately disentangles the qubit and the
oscillator,

V̂1Û1|vac〉|0〉 =
1√
2
V̂1

(
|−2N−1L〉|+〉+ |2N−1L〉|−〉

)
=
e−iπ/4

2

([
e−iπ/8|−2N−1L+ i

v1√
2
〉+ ieiπ/8|2N−1L+ i

v1√
2
〉
]
|+i〉

+

[
ieiπ/8|−2N−1L− i v1√

2
〉+ e−iπ/8|2N−1L− i v1√

2
〉
]
|−i〉

)

=
1√
2

(
|2N−1L〉 − |−2N−1L〉

)
|1〉+O(v1), (9.5)

where |±i〉 = (|0〉 ± i|1〉) are the σ̂y eigenstates, which are related to the σ̂x eigenstates as
|+〉 = e−iπ/4(|i〉+ i|−i〉)/

√
2 and |−〉 = e−iπ/4(i|i〉+ |−i〉)/

√
2. In the last line we have used the

relation 〈β|α〉 = ei Im(β∗α)e−|β−α|
2/2 to write |−2N−1L ± iv1/

√
2〉 = e±iπ/8|−2N−1L〉 + O(v1),

where O(v1) denotes terms on the order v1, which can be neglected when the coherent states are
well separated, i.e. when 2NL� 1. Note that due to the complete absence of a measurement, the
method does not rely on neither postselection or active feed-forward. Moreover, we circumvent
accumulated measurement-induced noise such as measurement errors and bosonic noise. Each
subsequent pair of interactions splits each coherent state into two, doubling the total number of
peaks. Thus after all N steps we produce the state:

N∏
k

V̂kÛk|vac〉|0〉 ≈

2N−1∑
s=0

|(2s+ 1− 2N )L〉

 |0〉, (9.6)

i.e. the oscillator ends in a superposition of multiple coherent states, similar to the target state
of Eq. (9.2). However, there are two main issues with Eq. (9.6): First, the result yields an
equal superposition of the coherent states, whereas our target state is convolved with a Gaussian
envelope. Secondly, the approximation of Eq. (9.6) is only valid when the coherent states are
sufficiently well separated, but to obtain a good approximation to a squeezed state, the coherent
states need to be overlapping. It turns out that one can overcome these issues surprisingly well
by tuning the interaction strengths of the protocol. This is illustrated in Fig. 9.1b, showing the
quadrature distributions of the oscillator for each step of the protocol. The solid lines represent
the distributions using numerically optimized parameters while the dashed lines show the result
for the parameters given by Eq. (9.3). Using the parameters of Eq. (9.3), the final P-quadrature
distribution has side-lopes which effectively reduces 〈P̂ 2〉 to that of vacuum. For the numerically
optimized parameters, however, these lopes vanish, thus yielding a highly squeezed state. There
are multiple reasons why the protocol is improved by tuning the interaction parameters. Firstly,
by tuning the strengths of the second interaction, vk, the qubit and the oscillator do not com-
pletely disentangle, so the subsequent controlled displacement, Ûk+1, does not split each peak
equally, but with a preferred direction, resulting in an unequal final distribution. This enables us
to obtain an approximately Gaussian envelope over the resulting superposition as in Eq. (9.2).
Additionally, as the states start to overlap, the disentangling interactions, V̂k, have to be adjusted
to optimize the disentanglement between the oscillator and qubit in the final step. Furthermore,
when the coherent states of unequal amplitude are overlapping their peaks are effectively slightly
shifted, which can be corrected by tuning the displacement interactions, Ûk.

In Fig. 9.1b we have chosen the interaction parameters to optimize only the squeezing in the P
quadrature, yielding ∆p = 8.5 dB for N = 3. The anti-squeezing in the X quadrature is slightly
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Figure 9.2: Resulting squeezing as a function of the number of steps of the protocol. For
each step, the squeezing increases with ∼ 3-4 dB. The dashed curve corresponds to adding the
optional measurement in Fig. 9.1a and post-selecting on the outcome |0〉, which occurs with high
probability.

in excess, ∆x = −9.9 dB, due to the underlying non-Gaussianity of the state, but still quite close
to the transform-limit, showing that the output is a good approximation to a pure squeezed
vacuum state. Still, even lower anti-squeezing is possible without significantly compromising the
squeezing by choosing the interaction parameters differently, e.g. one can obtain ∆p = 8.0 dB
with ∆x = −8.3 dB (see Supplementary Material S2).

The resulting squeezing for the numerically optimized parameters is shown by the circles in Fig.
9.2. Only a few number of steps is required to generate a highly squeezed state, which is expected
as the number of coherent states in the superposition increases exponentially with N . It is pos-
sible to further improve this result by roughly 1 dB by post-selecting states for which the qubit
is measured in the |0〉 state after all interactions. The protocol should leave the qubit in state
|0〉 according to Eq. (9.6), but since this is an approximate result, a projection onto |0〉 helps
improving this approximation. A post-selectable result therefore also occurs with high probabil-
ity. Note that while the produced states are fundamentally non-Gaussian, due to the finite and
discrete number of underlying coherent states, the output is practically indistinguishable from a
Gaussian squeezed stated. We confirm this in the Supplementary Material S1, showing that the
generated states have fidelities of > 0.99 with respect to pure Gaussian squeezed vacuum states.

From Fig. 9.2 we see that increasing the number of interactions monotonically increases the
resulting squeezing. Thus the protocol can fundamentally be scaled to achieve large amounts of
squeezing. However, real physical systems are affected by noise, such as dephasing and loss, which
will accumulate during the protocol. Assuming the time for each interaction is proportional to
the absolute interaction parameter, the total protocol duration roughly doubles each time N is
augmented, as the interaction parameters approximately scale as 2N according to Eqs. (9.3).
The increased squeezing therefore eventually gets counteracted by the accumulated noise. To
study the effects of noise, we simulate the protocol using the Master equation,

dρ

dt
= − i

~
[Ĥ, ρ] + L̂ρL̂† − 1

2

(
L̂†L̂ρ+ ρL̂†L̂

)
, (9.7)

where ρ is the density matrix of the composite boson-qubit system. The Hamiltonian, Ĥ, is
± ~
T P̂ σ̂x or ± ~

T X̂σ̂y during the two types of interactions, where the sign depends on the sign
of the interaction parameter and T is a timescale denoting the time required to implement

exp
(
iP̂ σ̂x

)
or exp

(
iX̂σ̂y

)
. Thus the first interaction takes place in a time Tu1 after which the

interaction Hamiltonian abruptly changes to the next one. L̂ is the Lindblad noise operator,
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Figure 9.3: Obtainable squeezing as a function of noise rate for different noise sources. For
each noise source and noise rate, there exists an optimal number of steps. Post-selecting on the
outcome |0〉 can in some case improve the performance by more than 2 dB.

which determines the type of noise. We consider five types:

• Boson loss: L̂ =
√
γâ

• Boson dephasing: L̂ =
√
γ(ââ† + â†â)

• Boson heating1: L̂1 =
√
γâ, L̂2 =

√
γâ†

• Qubit decay: L̂ =
√
γ(σ̂x + iσ̂y)/2

• Qubit dephasing: L̂ =
√
γσ̂z

where γ is the noise rate and â =
(
X̂ + iP̂

)
/
√

2 is the bosonic annihilation operator. The

results are shown in Fig. 9.3. For each noise source and noise rate we find that there exists
an optimum number of interactions. Bosonic noise is seen to have a bigger impact compared
to qubit noise. Especially boson dephasing can heavily reduce the obtained squeezing, which
is expected as squeezed states are generally sensitive to dephasing. The dashed lines show the
outcomes which are post-selected on measuring the qubit in state |0〉. We observe that the
positive effect of post-selection is now slightly larger compared to Fig. 9.2, especially for qubit-
associated noise. This is because the noise can result in the qubit ending up in the |1〉 state, in
which case the presence of noise can be detected and the event discarded. The post-selection
strategy can therefore effectively reduce the effect of noise.

A key property of squeezed states is their ability to detect displacements [156–158], which is
quantified by the Fisher information [168], IC . While the quadrature squeezing is affected by

1Boson heating is described by two Lindblad operators with strengths dependent on the temperature of the
environment bath, L̂1 =

√
γc(1 + n̄)â and L̂2 =

√
γcn̄â†, where γc is the coupling rate to the bath with mean

occupation number n̄. Here we define the heating rate γcn̄ ≡ γ and assume n̄� 1 such that γc(1 + n̄) ≈ γcn̄ to
isolate the effect of heating rather than thermalization.
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all noise types, the Fisher information turns out to be quite robust against qubit errors, as we
show in the Supplementary Material S3. For example, for N = 4 with a qubit decay rate of
γT = 7× 10−1 we calculate IC = 56, which is equivalent to that of an 11.5 dB squeezed vacuum
state. Thus the generated states can still be useful for sensing applications, even though they
are generated under noisy conditions.

Finally, we benchmark our approach using noise figures from two recent experiments which
implement exactly the types of interactions needed for our protocol in trapped ions [43] and
microwave cavities [48]. For the parameters in [43] we calculate 9.3 dB squeezing and a Fisher
information of IC = 63 (equivalent to a 11.9 dB squeezed state) using N = 4. While this is
slightly lower than the 12.6 dB reported in the trapped ion experiment in Ref. [46], we point
out that in their experiment the quadrature squeezing was not measured directly, but estimated
using only the phonon population distribution. Since the quadrature squeezing is sensitive to
small fluctuations and the coherence of the state, the 12.6 dB is likely overestimating the actual
squeezing of the generated state. For the parameters in [48] we obtain an optimum squeezing of
7.0 dB at N = 3, and an optimum Fisher information at of IC = 86 (equivalent to a 13.3 dB
squeezed state) at N = 5. The high Fisher information relative to the quadrature squeezing is
due to the effect of qubit errors. In particular, these errors translate into non-Gaussian features of
the output state which primarily degrade the quadrature squeezing (see Supplementary Material
S3 for elaborate discussion).

9.4 Conclusion

In conclusion, we have presented a deterministic protocol to produce a squeezed vacuum state via
sequential application of two non-commuting Rabi Hamiltonians of the form P̂ σ̂x and X̂σ̂y. This
interaction can currently be implemented via various methods in trapped-ion and circuit QED
systems, but the protocol is not fundamentally limited to those systems and could be relevant for
other qubit-oscillator platforms. Unlike previous methods, the protocol deterministically builds
the squeezed state through a discrete superposition of coherent states. The protocol does not
inherently require qubit measurements, but the performance can be slightly improved by post-
selecting on the state of the qubit. The possible amount of quadrature squeezing is ultimately
limited by decoherence mechanisms of either the bosonic or qubit modes, while the achievable
Fisher information is mainly limited by bosonic noise, and both can be improved by increasing
the interaction strength and thus the speed of the protocol.

9.5 S1: Discrete coherent state representation of squeezed
vacuum

Here we numerically examine the approximation of Eq. (9.2) of the main text. Specifically, we
consider a superposition of equally spaced coherent states with spacing dα:

|ψ〉 =

∞∑
s=−∞

exp

(
− (dα(s+ 1/2))2

∆−2 − 1

)
|dα(s+ 1/2)〉 (9.8)

Fig. 9.4a shows the squeezing of the state, and the fidelity, |〈ψ|sqvac〉∆|2, to the target squeezed
vacuum state as a function of dα and ∆. For sufficiently small spacing, dα . 1.5, we observe an
excellent agreement between the expected and target squeezing level as well as a high fidelity to
the target state. Note that for high squeezing, the squeezing levels can be significantly smaller
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Figure 9.4: (a) Squeezing in dB and fidelity of the coherent state superposition of Eq. (9.8). For
dα . 1.5 the squeezing level matches that of the target squeezed vacuum state, and the fidelity is
very high, confirming the approximation of Eq. (9.2). (b) Infidelity between the state generated
by our protocol and a pure squeezed vacuum state with squeezing parameter ∆.

than the target, even if the fidelity is very high, e.g. for ∆ = 20 dB at dα = 2. This is because
the squeezing level is very sensitive the the small non-Gaussian features which arise from the
discretization of Eq. (9.8), which is not captured by the fidelity. For this reason we have chosen
the squeezing level as the relevant figure of merit throughout this paper.

In Fig. 9.4b we show the fidelity of the states generated in our protocol with respect to pure
Gaussian squeezed vacuum states. For each N the interaction parameters were chosen to optimize
the quadrature squeezing and not the fidelity. Yet, the produced states have fidelities of F > 0.99,
confirming that the generated states are indeed very close to Gaussian squeezed states.

9.6 S2: Optimizing excess anti-squeezing

In the main text we chose the interaction parameters to optimize the quadrature squeezing,
i.e. by minimizing 〈P̂ 2〉. This results in an anti-squeezing a few dB above the transform limit,
such that 〈P̂ 2〉〈X̂2〉 > 1

4 . However, it is possible to reduce the amount of excess anti-squeezing
by choosing the interaction parameters slightly differently. For example, one can optimize the

function 〈P̂ 2〉1−w
(
〈P̂ 2〉〈X̂2〉

)w
, where w is a weight parameter determining the relative weight

between squeezing and excess anti-squeezing. For w = 0 we recover the result from the main
text. Fig. 9.5 shows the obtainable amount of squeezing and anti-squeezing as a function of w.
In conclusion, one can reduce the anti-squeezing to a level close to the transform limit, while
only slightly decreasing the squeezing.
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Figure 9.5: Obtainable amount of squeezing and anti-squeezing as a function of the weight
parameter w described in the supplementary text 9.6. By appropriately choosing w one can
reduce the excess anti-squeezing without significantly compromising the squeezing.

9.7 S3: Fisher information

Squeezed states are useful for detecting small quadrature displacements with a precision beyond
the standard quantum limit set by the vacuum state. In a practical setting, the capability of
the state to measure a small momentum displacement, d, caused by the displacement operator

D̂(id) = ei
√

2dX̂ is given by the classical Fisher information, IC , with respect to homodyne
detection [168]:

IC = 2

∫
dp

(
∂

∂p
log |ψ(p)|2

)2

|ψ(p)|2, (9.9)

where |ψ(p)|2 = Tr (ρ|p〉〈p|) is the p-quadrature probability density. For a Gaussian state the
Fisher information is directly related to the quadrature variance as

IC = 2/(〈P̂ 2〉 − 〈P̂ 〉2), (Gaussian states) (9.10)

On the other hand, for non-Gaussian states the quadrature variance does not necessarily capture
the sensing properties of non-Gaussian states. The underlying steps of our protocol are non-
Gaussian, and thus the noise accumulated during the protocol can enhance the non-Gaussian
properties of the final state. This non-Gaussianity can heavily reduce the quadrature squeezing,
without impacting the Fisher information much, and thus the quadrature squeezing does not
necessarily capture the quality of the produced states. Fig. 9.6a shows the calculated Fisher
information of the state prepared by a noisy protocol, similar to Fig. 9.3 of the main text.
We observe that qubit errors have a significantly smaller impact on the Fisher information
compared to the squeezing of Fig. 9.3. Bosonic noise, on the other hand, also impacts the Fisher
information, although the Fisher information of the obtained state is generally higher than what
would be expected from a Gaussian state with squeezing given by Fig. 9.3. The difference
between the bosonic and qubit noise can be understood by looking and the resulting quadrature
distribution. Fig. 9.6b shows the resulting distributions from a protocol affected by bosonic loss
(i) and qubit decay (ii) respectively. While both states have a low amount of squeezing in terms
of the variance, the state affected by qubit decay has a much narrower peak, resulting in a higher
Fisher information. Thus for sensing applications, the quality of the prepared states is primarily
limited by bosonic noise and less by qubit noise.
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Figure 9.6: (a) Classical Fisher information, IC , as a function of noise rate for various noise
sources applied during the protocol. The Fisher information can also be expressed in terms
of the amount of squeezing required in a Gaussian state to achieve the same IC , through Eq.
(9.10), which is shown on the right axis. (b) Example momentum quadrature distributions of the
generated states suffering from (i) boson loss and (ii) qubit decay during the preparation protocol,
with γT = 7 × 10−2, as marked in (a). The dotted lines show the quadrature distribution of
vacuum for comparison.



Chapter 10

Universal unitary transfer of
continuous-variable quantum
states into a few qubits

In this chapter we present the paper “Universal unitary transfer of [36] continuous-variable
quantum states into a few qubits”, authored by Jacob Hastrup, Kimin Park, Jonatan B. Brask,
Radim Filip and Ulrik L. Andersen. This work is submitted for publication and is available at
arxiv.org (arXiv:2106.12272).

10.1 Abstract

We present a protocol for transferring arbitrary continuous-variable quantum states into a few
discrete-variable qubits and back. The protocol is deterministic and utilizes only two-mode
Rabi-type interactions which are readily available in trapped-ion and superconducting circuit
platforms. The inevitable errors caused by transferring an infinite-dimensional state into a finite-
dimensional register are suppressed exponentially with the number of qubits. Furthermore, the
encoded states exhibit robustness against noise, such as dephasing and amplitude damping, acting
on the qubits. Our protocol thus provides a powerful and flexible tool for discrete-continuous
hybrid quantum systems.

10.2 Introduction

Quantum information processing (QIP) can be realized using both discrete variables (DV), such
as the energy levels of atoms or superconducting qubits, or continuous variables (CV) [84], such
as the quadratures of an electromagnetic field, spin ensemble or mechanical oscillator. Both
types of systems have various advantages and disadvantages, depending on the particular task,
application and implementation. For example, universal control of noisy many-qubit systems has
become available [14], but truly scalable systems and break-even error correction remains to be
demonstrated. On the other hand, CV QIP is highly scalable, allowing long range interactions
which has been used to demonstrate entanglement of millions of modes [73] and generation of 2D
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cluster-states [74,75] with current technology. Furthermore, the infinite dimensionality of a single
CV mode can be utilized for hardware-efficient single-mode error correction [48, 65, 82, 111] and
high-dimensional operations, such as the quantum Fourier transform, can be implemented with
simple, single-mode operations [84]. However, non-Gaussian operations required for universal
quantum processing and fault tolerance have proven difficult to realize in pure CV systems.

Two of the leading platforms for quantum computing are trapped ions and superconducting
circuits. These systems support both DV QIP through spin or charge qubits, as well as CV
QIP through motional modes or microwave cavity modes. Furthermore, the CV and DV modes
can couple, enabling CV-DV hybrid interactions. In fact, it is common to utilize this hybrid
interaction to enable various operations. For example, for DV QIP, the CV modes can be
used to facilitate multi-mode operations and qubit read-out [47, 169]. Meanwhile, for CV QIP,
the DV modes are used to enable non-Gaussian operations [48,65,82,111] which are required for
universality. Thus CV-DV hybrid interactions have proven valuable in overcoming the challenges
associated with either CV or DV QIP.

Here, we add a new element to the toolbox of CV-DV hybrid operations by showing that arbitrary
quantum states can be coherently and deterministically mapped between a CV mode and a
collection of qubits using accessible two-mode interactions. This mapping has several potential
applications for QIP. For example, our scheme enables qubit-based memories for CV states. Many
types of CV QIP relies on heralded, non-deterministic operations and are therefore dependent
on quantum memories. A qubit-based memory could enable DV error correction protocols to
be carried out on arbitrary CV states. Additionally, if the qubits are coupled to two different
CV modes, e.g. transmon qubits coupled to both a mechanical acoustic mode and a microwave
cavity mode, one CV mode can be encoded to the qubits and then decoded onto the other
CV mode, enabling qubit-mediated transfer of CV information from one CV mode to another.
Furthermore, our scheme can also be used for efficient deterministic generation of arbitrary CV
states, such as non-Gaussian states, by preparing the qubits in an equivalent encoded state and
then applying the inverse mapping to transfer the state to the CV mode. In general, applications
of this protocol will strongly depend on the physical system but promise to aid in solving a wide
range of issues in hybrid QIP platforms.

Unlike previous proposal for transferring CV states onto qubits [170, 171], our protocol makes
efficient use of the available qubit dimensionality, such that only a few qubits are required, while
also using experimentally available interactions.

10.3 Protocol

The system we are considering consists of a single CV mode and N > 1 qubits, as illustrated in
Fig. 10.1a. The protocol is designed to transfer an arbitrary CV state |ψ〉CV into an entangled
state of the qubits, leaving the CV mode in an input-independent state, which we denote |0̃〉CV.
Since the CV mode has an infinite dimensionality while the qubits have a finite dimension, such
a protocol is in principle impossible for arbitrary states. However, in practice we can expect
relevant input CV states to have majority of their support in a finite-dimensional subspace,
thereby allowing a CV-DV mapping to a good approximation. Furthermore, since the dimension
of the qubit subspace scales exponentially, i.e. 2N , with the number of qubits, N , we can expect
the approximation to become very good with only a few qubits. In general, the protocol can be
described by the following unitary operation:

Û
[
|ψ〉CV|0〉DV

]
=
√

(1− ε)|0̃〉CV|Ψ〉DV +
√
ε|Φε〉CV/DV, (10.1)
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Figure 10.1: (a): Circuit of encoding and decoding to transfer a CV state to a collection of
qubits and back. (b): The encoding is achieved by interacting the CV mode sequentially with
each of the qubits. (c): Each interaction unitary is composed of two Rabi interactions as given
by equation (10.3).

where |0〉DV =
⊗N

k=1|0〉k is the product of the ground states of the qubits, |Ψ〉DV is the encoded

DV state and |Φε〉CV/DV is a residual entangled CV-DV state defined to make Û unitary and

such that 〈Φε|0̃〉 = 0. ε is a real parameter, 0 ≤ ε ≤ 1, quantifying the error of the protocol, e.g.
due to the CV-DV dimensionally mismatch. ε thus depends on the input state, and a successful
protocol should aim to minimize ε for a large class of input states.

The input state can be recovered by applying Û†. If the CV mode is completely reset to the
state |0̃〉CV after the application of Û , the fidelity, F , between the input and recovered state is
related to ε by:

(1− ε)2 ≤ F ≤ 1− ε, (10.2)

with the exact value of F depending on the input state (details are given in the Supplementary
Material).

We now show how to decompose Û into experimentally accessible two-mode interactions. A
circuit diagram of the encoding unitary is shown in Fig. 10.1b. It consists of N interaction
terms, each of which are composed of two interactions, V̂k and Ŵk, between the CV mode and
one of the qubits. These interactions are conditional displacements [45,48,83] which are generated
by a Rabi-type Hamiltonian, i.e. a coupling between a quadrature operator of the CV mode and
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a Pauli operator of the qubit:

V̂k = exp
(
i
π

2λ2k
q̂σ̂(k)
y

)
Ŵk =

exp
(
iλ2k

2 p̂σ̂
(k)
x

)
, if k < N

exp
(
−iλ2k

2 p̂σ̂
(k)
x

)
, if k = N

(10.3)

where q̂ and p̂ are the quadrature operators of the CV mode satisfying the commutation relation

[q̂, p̂] = i and σ
(k)
x and σ

(k)
y are the Pauli-x and y operators of the k’th qubit. The interaction

parameter λ is the only free parameter of the protocol. As we show below, it should be optimized
according to the number of qubits and the size of the input state, i.e. the wideness of the support
of the input state in phase space. Importantly, a single value of λ can be used to encode a wide
range of different CV states, meaning that little knowledge of the input CV state is required for
the protocol to work.

In the Supplementary Material we show that the interactions defined in Eqs. (10.3) achieves the
desired unitary operation of equation (10.1) for arbitrary states, with ε decreasing with N . The
qubit state after the interaction is:

|Ψ〉DV
∝∼
∑
s

ψ(qs)|φs〉, (10.4)

where the sum is over 2N terms, |φs〉 form a specific orthonormal basis of the qubit space, ψ
is the q-quadrature wavefunction of the input CV state and qs form an equidistant array of 2N

numbers from −λ(2N−1) to λ(2N−1) with spacing 2λ (see Supplementary Material for details).
Thus the qubit state samples the wave function at 2N discrete points. From this feature we can
intuitively understand how we should tune λ: First, to accurately capture variations in the CV
wavefunction, the distance between the samples should be smaller than any large variation of ψ,
i.e. 2λ should be sufficiently small. Second, to capture the entire wavefunction the sampling axis
should be sufficiently wide, i.e. λ(2N − 1) should be large. Satisfying both of these constraints
becomes easier for larger N , and for fixed N we can expect an optimum λ to exist.

The state |0̃〉CV is given by:

|0̃〉CV =
1√
2λ

∫
dq sinc

(
π
q

2λ

)
|q〉 (10.5)

where sinc(x) = sin(x)/x and |q〉 denotes a q̂ eigenstate, e.g. q̂|q〉 = q|q〉. To decode the CV state
with the inverse unitary, Û†, the CV mode should first be prepared in the state |0̃〉CV. Since
the encoding protocol approximately leaves the CV mode in state |0̃〉CV, this can be done by
applying Û to an arbitrary CV state, e.g. vacuum or a thermal state, along with ancilliary qubits.
In fact, to prepare |0̃〉CV it suffices to use the same qubit for all N interactions, by resetting the
qubit to its ground state after each Ŵ V̂ interaction. Alternatively, |0̃〉CV can be approximated
with fidelity 0.89 by a squeezed vacuum state with squeezing parameter log(1.12/λ) (details in
the Supplementary Material). We note that the exact state |0̃〉CV is in fact unphysical, as it has
infinite energy since 〈0̃|q̂2|0̃〉 =∞ for all λ. However, finite energy states, e.g. the state prepared
by applying Û to vacuum, can approximate |0̃〉CV with high fidelity.

An example of the encoding and recovery of a CV Schrödinger’s cat state is shown in Fig. 10.2.
Fig. 10.2e shows how the input CV wavefunction is directly mapped onto the qubits (with a
suitable qubit basis choice). Meanwhile, Fig. 10.2b shows how the CV mode approximately
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Figure 10.2: Example of encoding and recovery of a CV Schrödinger’s cat state, (e−i
√

2αp̂ +

ei
√

2αp̂)|vac〉 with α = 2, using N = 4 qubits and λ = 0.29. Wigner functions (a,b,c) of the CV
mode and probability distributions (d,e,f) of the qubits before encoding (a,d), after encoding
(b,e), and after decoding (c,f) with the CV mode completely reset to the state |0̃〉CV after the
encoding. The black curve in (e) shows the q quadrature distribution of the input CV state with
the x-axis shown at the top of the figure.

transforms to the state |0̃〉CV. The state shown in Fig. 10.2c is the recovered state after the CV
mode is completely set to |0̃〉CV and the qubits are decoded onto the CV mode, i.e. as shown in
the circuit of Fig. 10.1a. The small differences between Fig. 10.2a and c are due to the non-zero
ε arising from the mapping. However, the key features of the CV state, such as the position of
the coherent peaks and the central interference pattern with negative values are preserved.

We now numerically demonstrate this result for specific input states. We first consider Fock
states, as these represent fundamental quantum basis states, spanning the entire CV mode, with
experimentally relevant quantum states typically having main support on low-photon-number
Fock states. Fig. 10.3a shows how ε depends on λ for N = 4 and N = 10 qubits respectively,
using Fock states as inputs. For each input we find that there exists an optimum λ as expected,
and that as we add more qubits, this optimum shifts to smaller values. We also find that, for any
fixed λ, smaller number Fock states are better encoded than larger number Fock states. Thus
one setting optimized to encode large states can simultaneously be used to encode smaller states
with as good or better performance.

Fig. 10.3b shows how ε depends on the number of qubits for Fock state inputs, choosing the
optimum λ for each point. We observe a clear exponential decrease in ε with increasing number
of qubits. Additionally, fixing ε we find that adding a single qubit allows the storage of approx-
imately twice as large input states, e.g. 4 qubits enable the encoding of |1〉 with ε = 0.1 while
5 qubits allow the encoding of |3〉 with the same error, 6 qubits can encode |7〉 and so on. This
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Figure 10.3: (a): Error, ε, as a function of the interaction parameter λ for N = 4 and 10 qubits
with Fock state inputs. (b): Error as a function of qubit number for Fock state inputs using the
optimal λ for each state. (c): Error as a function of qubit number randomly sampled input states
with different fixed mean photon number n. The shaded areas contains states with ε within one
standard deviation from the mean ε of the sample. The inserts show the Wigner function of an
example input state with n = 7 and the corresponding recovered state using N = 6 qubits.

exponential scaling implies that very large CV states can be encoded using relatively few qubits.

To demonstrate the versatility of the protocol, Fig. 10.3c shows the performance for randomly
sampled input states (see Supplementary Material for details on these states). A typical example
of the Wigner function of a random state with n = 7 photons is shown in the inset of Fig. 10.3c.
For each N and n in Fig. 10.3c we calculate ε for 100 of such random states using a single λ
chosen to approximately optimize the average ε. The shaded area denotes the states within one
standard deviation from the mean ε of the samples. As with the Fock states, we observe an
exponential decrease in ε with N . In addition, we again note that adding a single qubit allows
the encoding of states with approximately twice the mean photon number, keeping ε fixed.

Next, we check the stability of our scheme against errors occurring in the qubit system while the
state is encoded. In particular, we consider the qubit dephasing channel,

Λz(ρ) = K̂(1)
z ρ(K̂(1)

z )† + K̂(2)
z ρ(K̂(2)

z )†, (10.6)

and qubit amplitude damping channel

Λz(ρ) = K̂(1)
γ ρ(K̂(1)

z )† + K̂(2)
γ ρ(K̂(2)

z )†, (10.7)

with Kraus operators:

K̂(1)
z =

√
1− pz Î , K̂(2)

z =
√
pzσ̂z

K̂(1)
γ = |0〉〈0|+

√
1− γ|1〉〈1|, K̂(2)

γ =
√
γ|0〉〈1| (10.8)

where ρ denotes the qubit density matrix, pz denotes the probability of a single-qubit phase-flip
and γ denotes the probability of a single qubit decay event. Fig. 10.4a shows the fidelity of the
recovered state after the CV mode is reset and each qubit have experienced either dephasing
or amplitude damping for an input 5-photon Fock state, |5〉, and a random state with n = 3
average photons, |ψran〉 using N = 6 qubits. As can be expected, the fidelity drops as the qubits
experience more noise. However, a single figure of merit, such as the fidelity, is often insufficient to
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Figure 10.4: (a): Fidelity of recovered states when the qubits undergo dephasing or amplitude
damping for an input 5-photon Fock state, and a random state with n = 3 using λ = 0.07
and N = 6 qubits. (b-d): Wigner functions, quadrature distributions and photon number
distributions for the 5-photon Fock state (left) and the n = 3 photon random state (right). (b):
Input states. (c): Output when each qubit undergoes dephasing with pz = 0.05 (d): Output
when each qubit undergoes amplitude damping with γ = 0.05.

capture the full non-classical aspects of non-Gaussian CV states. Therefore, we also qualitatively
analyze the Wigner functions, quadrature distributions and photon distributions of the two
selected non-Gaussian trial states. Other input states have shown similar behavior. Fig. 10.4c
and d shows the recovered states after each qubit has undergone dephasing or amplitude damping
with an error probability of pz = 0.05 or γ = 0.05. For both channels we observe a smearing of the
q-quadrature distributions while, the p-quadrature distributions remains almost intact compared
to the input for both trial states. More importantly, we find that the negative regions of the
Wigner functions (highlighted in blue), which are strong indicators of non-classicality, remain
non-negligible. Thus even moderate error rates do not have a severe effect on the recovered
states.

10.4 Conclusion

In conclusion we have presented a feasible unitary protocol to map arbitrary CV states into a
few qubits. This can be realized using only conditional displacements generated by Rabi-type
coupling Hamiltonians, which currently are available in trapped-ion systems [83] and supercon-
ducting circuits [48]. The protocol is fully deterministic and requires no measurements or feed-
forward. The error rates caused by the finite dimensionality of the qubit subsystem decrease
exponentially with the number of qubits. Furthermore, small dephasing or amplitude-damping
errors acting on the qubits do not translate into large errors in the protocol. We have focused on
encoding arbitrary CV states into qubits, but similar techniques might be used to map arbitrary
multi-qubit states into a single CV mode. Such mapping could facilitate multi-qubit operations
and hardware-efficient qubit transfers. We leave this as an interesting open direction for future
work.
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10.5 S1: Fidelity of recovered states

Here we derive Eq. 10.2 of the main text. We begin with the definition of the mapping (Eq. 10.1
of the main text):

Û |ψ〉|0〉 =
√

1− ε|0̃〉|Ψ〉+
√
ε|Φε〉. (10.9)

Resetting the CV mode to state |0̃〉 transforms the state into:

|0̃〉〈0̃| ⊗ TrCV

(
Û |ψ〉〈ψ| ⊗ |0〉〈0|Û†

)
= |0̃〉〈0̃| ⊗ [(1− ε)|Ψ〉〈Ψ|+ ερε] (10.10)

where ρε = TrCV(|Φε〉〈Φε|). Applying Û† and calculating the overlap with |ψ〉|0〉 we find:

F = 〈ψ|〈0|Û†
(
|0̃〉〈0̃| ⊗ [(1− ε)|Ψ〉〈Ψ|+ ερε]

)
Û |ψ〉|0〉 (10.11)

=
(√

1− ε〈0̃|〈Ψ|+
√
ε〈Φε|

) (
|0̃〉〈0̃| ⊗ [(1− ε)|Ψ〉〈Ψ|+ ερε]

) (√
1− ε|0̃〉|Ψ〉+

√
ε|Φε〉

)
(10.12)

= (1− ε)〈Ψ| [(1− ε)|Ψ〉〈Ψ|+ ερε] |Ψ〉 (10.13)

= (1− ε)2 + (1− ε)ε〈Ψ|ρε|Ψ〉 (10.14)

where we used 〈0̃|Φε〉 = 0 and 〈0̃|0̃〉 = 1 in the third equality. Since 0 ≤ 〈Ψ|ρε|Ψ〉 ≤ 1 we have

(1− ε)2 ≤ F ≤ (1− ε)2 + (1− ε)ε = 1− ε (10.15)

10.6 S2: Analytical analysis of the protocol

Here we show that the proposed circuit approximately transfers arbitrary CV states onto the
qubits. As stated in the main text, the relevant interaction operators are:

V̂k = exp
(
ivkq̂σ̂

(k)
y

)
, (10.16)

Ŵk =

exp
(
iwkp̂σ̂

(k)
x

)
, for k < N,

exp
(
−iwkp̂σ̂(k)

y

)
, for k = N,

(10.17)

with

vk =
π

2λ2k
, (10.18)

wk =
λ2k

2
. (10.19)

We begin by considering the action of the operators V̂k and Ŵk on the q̂ eigenstates, |q〉. Using
the relations exp (iαq̂) |q〉 = eiαq|q〉 and exp (iαp̂) |q〉 = |q − α〉 we get:

V̂k|q〉|0〉k =
1√
2

(
eivkq|q〉|i〉k + e−ivkq|q〉|−i〉k

)
(10.20)

=
eiπ/4

2

[ (
eivkq − ie−ivkq

)
|q〉|+〉k +

(
−ieivkq + e−ivkq

)
|q〉|−〉k

]
(10.21)

= cos
(π

4
+ vkq

)
|q〉|+〉k + cos

(π
4
− vkq

)
|q〉|−〉k, (10.22)



125 Chapter 10. Transfer of continuous-variable quantum states into a few qubits

where |±i〉k = (|0〉k ± i|1〉k)/
√

2 are the σ̂
(k)
y eigenstates and |±〉 = (|0〉k ± |1〉k)/

√
2 are the σ̂

(k)
x

eigenstates. Applying Ŵk:

ŴkV̂k|q〉|0〉k = cos
(π

4
+ vkq

)
|q − wk〉|+〉k + cos

(π
4
− vkq

)
|q − (−wk)〉|−〉k (10.23)

Iterating Eq. (10.23) we get the output for the sequence of operations. For example, after
interaction with the first two qubits (with N > 2) we get:

Ŵ2V̂2Ŵ1V̂1|q〉|0〉1|0〉2 =

cos
(π

4
+ v1q

)
cos
(π

4
+ v2(q − w1)

)
|q − (w1 + w2)〉|+〉1|+〉2

+ cos
(π

4
− v1q

)
cos
(π

4
+ v2(q − (−w1))

)
|q − (−w1 + w2)〉|−〉1|+〉2

+ cos
(π

4
+ v1q

)
cos
(π

4
− v2(q − w1)

)
|q − (w1 − w2)〉|+〉1|−〉2

+ cos
(π

4
− v1q

)
cos
(π

4
− v2(q − (−w1))

)
|q − (−w1 − w2)〉|−〉1|−〉2 (10.24)

By induction, after interaction with all n qubits we obtain the following expression:

N∏
k=1

ŴkV̂k|q〉|0〉 =
∑
s

N∏
k=1

cos

[
π

4
+ skvk

(
q −

k−1∑
l=1

slwl

)] ∣∣∣q − N−1∑
l=1

slwl + sNwN

〉
|φs〉 (10.25)

where |0〉 = |0〉1|0〉2...|0〉N is the joint qubit ground state and the sum with summation index
s = (s1, s2, ..., sN ) with sk = ±1 is over all 2N combinations of the signs, sk. |φs〉 is a qubit

product state where mode k is in the sk eigenstate of σ̂
(k)
x , e.g., |φ(1,1,−1,−1)〉 = |+〉1|+〉2|−〉3|−〉4

and |φ(1,−1,1,1)〉 = |+〉1|−〉2|+〉3|+〉4. By linearity, we can extend the action of the operators to
an arbitrary pure state, |ψ〉 =

∫
dqψ(q)|q〉:

N∏
k=1

ŴkV̂k|ψ〉|0〉

=
∑
s

∫
dqψ(q)

N∏
k=1

cos

[
π

4
+ skvk

(
q −

k−1∑
l=1

slwl

)] ∣∣∣q − N−1∑
l=1

slwl + sNwN

〉
|φs〉 (10.26)

Translating the integration variable, q → q + (
∑N−1
l=1 slwl − sNwN ) ≡ q + qs:

=
∑
s

∫
dqψ(q + qs)

N∏
k=1

cos

[
π

4
+ skvk

(
q −

k−1∑
l=1

slwl +

N−1∑
l=1

slws − sNwN

)]
|q〉|φs〉

=
∑
s

∫
dqψ(q + qs)

N∏
k=1

cos

[
π

4
+ skvk

(
q +

N−1∑
l=k

slwl − sNwN

)]
|q〉|φs〉

=
∑
s

∫
dqψ(q + qs)

N∏
k=1

cos

[
π

4
sk + vkq +

N−1∑
l=k

slvkwl − sNvkwN

]
|q〉|φs〉 (10.27)
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Figure 10.5: Comparison of functions of the type
∏N
k=1 cos

(
π x

2λ2k

)
for N = 3, N = 6 and

N =∞.

Now consider the sum over l inside the cosine: From our choice of vk and wk (Eqs. (10.18) and
(10.19)) we get vkwl = 2l−kπ/4. Thus when l ≥ k + 3, slvkwl is a multiple of 2π, which can be
ignored inside the cosine. When l = k + 2 we get slvkwl = sk+2vkwk+2 = sk+2π, which takes
cos to − cos, regardless of the sign sk+2. This term thus contributes an overall −1 phase factor
which can be ignored. The remaining relevant terms are thus l = k and l = k + 1:

=
∑
s

∫
dqψ(q + qs)

×
N−2∏
k=1

cos
[π

2
(sk + sk+1) + vkq

]
cos
[π

2
(sN−1 − sN ) + vN−1q

]
cos [vNq] |q〉|φs〉

(10.28)

The π/2 terms either add up to ±π if sk = sk−1 or to 0 if sk = −sk−1. Each ±π inside a cosine
contributes a −1 phase factor, so depending on s the total phase is either +1 or −1:

=
∑
s

∫
dq(−1)γsψ(q + qs)

N∏
k=1

cos (vkq) |q〉|φs〉

=
∑
s

∫
dq(−1)γsψ(q + qs)

N∏
k=1

cos
(
π

q

2λ2k

)
|q〉|φs〉, (10.29)

where γs =
∑N−2
k=1 (sk + sk+1)/2 + (sN−1 − sN )/2. This phase factor due to γs can be absorbed

into |φs〉 as (−1)γs |φs〉 ≡ |φ̄s〉.

For N � 1 the term
∏N
k=1 cos

(
π q

2λ2k

)
is peaked at q around integer multiples of λ2N+1

with a peak width on the order of λ. In particular, for N = ∞ we get
∏∞
k=1 cos

(
π q

2λ2k

)
=

sin(π q
2λ )/(π q

2λ ) ≡ sinc
(
π q

2λ

)
, which approaches λδ(q/2) for λ→ 0 where δ(x) is the Dirac delta

function. Fig. 10.5 shows a comparison of
∏N
k=1 cos

(
π x

2λ2k

)
for N = 3, N = 6 and N =∞.
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With this in mind, we make two approximations: First, we approximate
∏N
k=1 cos

(
π q

2λ2k

)
≈

sinc
(
π q

2λ

)
. This approximation fails above |q| = λ2N+1, so we should ensure that ψ(q+ qs) goes

to 0 before the approximation fails. Since qs ∈ [−λ(2N − 1);λ(2N − 1)], we should ensure that ψ
has vanishing support beyond ψ(|2N+1λ− λ(2N − 1)|) = ψ(|λ(2N − 1)|), which can be satisfied
by choosing sufficiently large N .

For the second approximation we assume
∫
dqψ(q + qs) sinc(π q

2λ ) ≈
∫
dqψ(qs) sinc(π q

2λ ). We
thus approximate ψ(q + qs) with its value at q = 0, as this is where the sinc function is mainly
supported. This approximation requires the variation of ψ to be slower than the variation of the
sinc function, i.e. |dψdq | � 1/λ, which is satisfied by choosing λ sufficiently small.

In total we get:

N∏
k=1

ŴkV̂k|ψ〉|0〉 ≈
∫
dq
∑
s

ψ(qs) sinc
(
π
q

2λ

)
|q〉|φ̄s〉

=

∫
dq

sinc
(
π q

2λ

)
√

2λ
|q〉 ⊗

∑
s

√
2λψ(qs)|φ̄s〉. (10.30)

Thus the wavefunction ψ has been transferred from the bosonic mode to the qubits. The factor√
2λ normalizes the CV mode. We note that our approximations require both large λ2N and

small λ. For finite N , there thus exists an optimum λ which depends on how broadly ψ is
supported in phase-space.

10.7 S3: Overlap between |0̃〉CV and squeezed vacuum

A squeezed vacuum state with squeezing parameter r is given by:

|S(r)〉 =
er/2

π1/4

∫
dq exp

(
(qer)2

2

)
|q〉. (10.31)

The fidelity between |S(r)〉 and |0̃〉CV is:

|〈S(r)|0̃〉|2 =
er

2λ
√
π

[∫
dq sinc

(
π
q

2λ

)
exp

(
(qer)2

2

)]2

(10.32)

=
2√
π
λererf

(
π

2
√

2

1

λer

)2

, (10.33)

where erf(x) = (2/
√
π)
∫ x

0
dz e−z

2

is the error function. This expression is optimized for λer ≈
1.12⇔ r ≈ log (1.12/λ) for which the fidelity takes the value 0.89.

10.8 S4: Random states

The random states used in this paper are generated as follows: First, we generate a large number
(e.g. 200) of complex numbers, {c0, c1...c200}, with uniformly random amplitudes between 0 and
1 and phases between 0 and 2π. From these we construct an unnormalized CV state in the Fock
basis as:

|ψrandom〉 =
∑
m

cm|m〉. (10.34)
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We then apply an exponential filter to dampen high number Fock terms:

→
∑
m

e−κmcm|m〉, (10.35)

where κ is tuned such that the resulting state has the desired mean photon number. Lastly, the
state is normalized.



Chapter 11

Conclusion and outlook

Throughout this thesis we have presented a series of protocols to generate and manipulate
continuous-variable states of various quantum systems. Here, we take a step back to reflect
on the potential of these systems as well as their future challenges.

Optics

In optics, there have been many exiting developments for quantum information processing in
the past few years. One of these is the field of large-scale cluster states which has seen much
progress both theoretically and experimentally [73–78, 106, 172–176]. A key missing component
for universal fault-tolerant quantum computation with optical cluster states are GKP states. The
first demonstration of optical GKP states is thus a central near-future milestone. In principle,
generating optical GKP states of some quality should be possible with current technology [31,
89,106]. However, truly useful GKP states capable of efficient error correction will likely require
at least 10 dB squeezing, if not more. Creating such states is certainly beyond what can be
achieved within state-of-the-art technology. On a promising note there has been much progress
in the development of high-quality photon detectors [177,178] which might eventually provide a
low-loss source of non-Gaussianity. Another promising note is the development of strong light-
atom interactions [64,116,119], which, as we have shown in chapter 5, can also provide a suitable
non-Gaussianity for GKP states [31].

Yet, even if high quality GKP states could be generated, it is worth questioning if that is the most
efficient use of the technology used for their generation. That is, if technology one day becomes
good enough to produce highly squeezed GKP states, that same technology can most likely
also be used to produce even better states of lower complexity, such as two or four-component
cat states, or even just extremely good single-photon states. Thus even though GKP states
appear to be superior for loss-correction [53,55], it is important to explore and develop potential
architectures for other codes, which might be easier to generate in practice. Cat codes are a
particularly interesting case for optics, as they can be generated with only a few non-Gaussian
interactions [29,64]. In chapters 3 and 4 we have shown that state generation and error correction
is possible optically. Important next steps will be to examine whether an all-optical cat-based
computational architecture, perhaps inspired by the coherent-state encoding proposed by Ralph
et al. in Ref. [59], including both gates and error-correction can be designed and made feasible.

129
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Another important application within optics is quantum communication. Recent theoretical
works have analyzed the prospects of using bosonic codes for long-distance quantum communi-
cation [57, 109, 110]. However, all of these results indicate that a very high density of low-loss
repeaters are necessary. Furthermore, for GKP-based communication [109, 110] the required
amount of squeezing is very demanding (> 15 dB). Thus bosonic error correction in its current
form does not stand out as a particularly promising approach for long-distance communication.
Still, the field is quite unexplored and it would be worth it to explore other types of bosonic
codes as well as other types of higher-level multi-mode error-correction schemes. In general,
bosonic codes seem to perform best in low-loss regimes. However, for communication we would
prefer to perform error-correction as infrequently as possible to minimize the required number of
repeaters. This in turn requires protocols which can be robust in the presence of relatively large
amounts of loss, a regime which might not be ideal for bosonic codes.

For GKP states there is also room for further analysis of their performance under loss. While
initial investigations have shown that they should perform well against losses [55], the optimal
physically implementable recovery strategy against loss is unclear. Many theoretical papers
circumvent the issue by converting loss into Gaussian displacements by adding an amplification
channel. However, for experimental implementations this might not be practical. Furthermore, it
seems unlikely that the optimal recovery strategy involves applying an additional noise channel.
Recent work by Fukui et al. [109] has shown that in some cases losses can be corrected without
an amplification channel. This involves balancing losses between the input state to be corrected
and an ancilla used for syndrome detection. For communication, this might be a very sensible
strategy as the loss on the ancilla can be part of the communication link such that no excessive
noise is required. However, for computation the logical state has likely experienced more loss than
the ancillas and, again, it would be unlikely if the optimal recovery strategy involves applying a
lossy channel to the ancilla.

Qubit-coupled systems

Non-optical continuous-variable systems have also seen a tremendous progress in recent years.
In this thesis we have lumped together microwave cavities and trapped ions due to the similar
interactions suitable for GKP state generation available in these systems. In reality, these systems
are of course very different, which will greatly impact how GKP-based research will continue to
develop.

The development of GKP codes for these qubit-coupled systems is currently at a very interesting
place, as some “conventional” Gaussian tools for manipulating GKP states, and in particular
homodyne detection and beamsplitters, are not as straight forward as in optics. Thus basic
operations for handling GKP states are being reinvented, which leaves some open questions.
For example, all currently proposed large-scale architectures for GKP-based quantum computers
rely on homodyne detectors for error correction and measurements [70, 131, 135, 179]. It is thus
relevant to ask whether qubit-based measurement schemes [34, 48, 79, 111, 151] are efficient in
the long run. For microwave modes, homodyne detection might be carried out by releasing the
cavity state to a waveguide, but such waveguide coupling would also introduce coupling losses,
which further increases the demands on the GKP states.

Another important factor in these systems is to ensure that the logical performance of the
GKP states can be made much better than the qubits used to generate and measure them. In
chapters 7 and 9 of this thesis, we saw that the effects of qubit errors could be mitigated by
using the ancilla itself as a flag for qubit errors, which are detected by a final or intermediate
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qubit measurement. Such mitigation strategy might be further improved by considering more
qubits or noise-bias ancillas [146,180]. However, losses during state generation will still limit the
quality of the generated states. It is therefore also relevant to consider if loss detection during
the generation protocol can be implemented. For example, in the measurement-free protocol
presented in chapter 7 the bosonic mode has a well-defined excitation-number parity after each
round of interactions. Thus it might make sense to perform intermediate parity measurements,
e.g. through a dispersive coupling to an ancilla qubit [65], to probe whether excitations have
been lost. The final state can then be post-selected on trials in which the parity measurements
correspond to the theoretically expected parity.

Finally, both systems face a challenge of scalability, and demonstrating multi-qubit interactions
will be an important milestone. In trapped ions, it is possible to scale to multiple modes either
by considering different vibrational modes of a single ion, or—in a more scalable approach—to
add multiple ions each with their own motional mode [43, 181–183]. For microwave modes, it is
also possible to engineer interactions between multiple cavities [184]. However, the high-quality
3D cavities in state-of-the-art experiments [48, 65, 184] are relatively large and bulky which will
quickly limit scalability.



Appendix A

Notes on numerical
implementations

In this Appendix we go through the basic building blocks underlying the numerical methods used
in many of the papers presented in this thesis. These methods were implemented in MATLAB
using custom code written from scratch. Similar tools for Python can be found in the Strawberry
Fields library developed by Xanadu [185].

In particular, we will outline a Fock-basis approach. This approach is useful, as it can be used to
simulate arbitrary bosonic quantum states, including non-Gaussian states. The downside is, that
the required numerical resources can in some case become quite large, especially for multi-mode
states. Thus, for Gaussian states one should instead use a co-variance matrix representation
which is much more efficient [41,84,186]. Furthermore, some classes of non-Gaussian states have
certain structures that allows for more efficient approaches compared to the Fock basis approach
described here [187, 188], although these methods were not required for the results presented in
this thesis.

States

Recall from chapter 2 that any bosonic pure state can be represented as an infinite superposition
of energy eigenstates, |n〉, of the harmonic oscillator:

|ψ〉 =

∞∑
n=0

cn|n〉. (A.1)

In practice, only a finite number of the coefficients are non-zero, or non-vanishing. Thus we can
store this state as a finite vector

[c0, c1, ..., cnmax ], (A.2)

where nmax is numerical a cutoff, which should be chosen large enough to avoid numerical
artifacts in the final simulation results. Typical values of nmax range from 10 to 1000, depending
on the particular simulation. A convenient feature of this Fock-basis approach is that nmax is
the only numerical parameter (apart from the precision used to represent real numbers). Thus,
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if the simulation produces numerical artifacts, we can usually eliminate them by simply running
the simulation again with a larger nmax, at the cost of a longer execution time.

Some commonly encountered states are:

Vacuum states. The vacuum state, |vac〉 is perhaps the most simple state in the Fock
basis, and is represented by

cn =

{
1 if n = 0,

0 otherwise.
(A.3)

Fock states. The Fock state |m〉 is similarly represented by

cn =

{
1 if n = m,

0 otherwise.
(A.4)

Coherent states. Coherent states, |α〉, are given by

cn = e−|α|
2/2 α

n

√
n!
. (A.5)

Note that for coherent states, we can define the coefficients recursively as c0 = e−|α|
2/2 and

cn = α√
n
cn−1, which is typically faster than using Eq. (A.5) directly, albeit the initialization

of coherent states is rarely the bottleneck of simulations.

Squeezed vacuum. Squeezed vacuum, Ŝ(ξ)|vac〉 with ξ = reiθ, are given by:

cn =


1√

cosh(r)
(−eiφ tanh(r))n/2

√
n!

(n/2)!! for even n,

0 for odd n.
(A.6)

Similarly to coherent states, squeezed vacuum can be calculated recursively by c0 =
1√

cosh(r)
, c1 = 0 and cn = −eiφ tanh(r)

√
n−1
n cn−2.

Quadrature eigenstates. Quadrature eigenstates are a bit unusual, in that they cannot
be normalized. Yet, they can still be meaningfully described using the wavefunction of
Fock states, ψn(q) = 〈q|n〉, which should be normalized according to

∫
|ψn(q)|2dq = 1 and

for which |ψn(q)|2 gives the probability density of getting measurement results q with a
homodyne detection of the Fock state |n〉. We can then define an unnormalized vector in
the Fock basis as:

cn =

√
1√
π

2nn!eq
2/2Hn(q), (A.7)

where Hn(q) is the n’th Hermite polynomial. To get an eigenstate in a rotated quadrature
basis each vector element is simply multiplied by einθ, where θ describes the rotation
angle. Note that a quadrature eigenstate is not equal to a squeezed vacuum state in the
limit r →∞, as the squeezed vacuum state is normalized while the quadrature eigenstate
is not.

Mixed states can similarly be represented in the Fock basis as:

ρ =

∞∑
n=0

∞∑
m=0

ρm,n|m〉〈n|, (A.8)
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which are stored numerically as a matrix ρ0,0 . . . ρ0,nmax
...

. . .
...

ρnmax,0 . . . ρnmax,nmax

 . (A.9)

Operators

A quantum operator, Ô, can be represented in the Fock basis by matrices with element 〈n|Ô|m〉
at index (n,m). Their effect on pure states are given by matrix-vector multiplication, i.e. |ψ〉 →
Ô|ψ〉, while their effect on mixed states are given by matrix-matrix multiplication, ρ → ÔρÔ†.
Similarly to states, operators require a numerical cutoff which should match that of the state
which is transformed by the operator.

Here we list the Fock basis representation of some common operators:

Annihilation/creation operators. The annihilation operator, â, and creation operators,
â†, are given by

â =



0 1 0 0

0 0
√

2 0

0 0 0
√

3
0 0 0 0

. . .

0
√
nmax

0 0


, â† =



0 0 0 0
1 0 0 0

0
√

2 0 0

0 0
√

3 0
. . .

0 0√
nmax 0


.

(A.10)
These are sparse matrices and can be stored as such in MATLAB using the built-in sparse()
function to greatly reduce memory cost and increase calculation speeds.

Number operators The number operator, n̂, is a diagonal operator in the Fock basis:

n̂ = diag(0, 1, ..., nmax) (A.11)

Similarly to the annihilation and creation operators, it should be implemented as a sparse
matrix.

Quadrature operators. Given the annihilation and creation operators above, the quadra-
ture operators are simply calculated using the relations

q̂ =
1√
2

(â+ â†), p̂ =
1√
2i

(â− â†). (A.12)

More generally, we can define quadrature operators with arbitrary rotation, θ, as

q̂θ =
1√
2

(e−iθâ+ eiθâ†) (A.13)

Similarly to the operators above, the quadrature operators are sparse and should be im-
plemented as such.
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Figure A.1: Matrix elements 〈n|D̂|m〉 for numerically implemented displacement operators with
α = 4 and nmax = 200 using (a): matrix exponential of αâ†−α∗â, (b): the recursion formula of
Eq. (A.17), and (c): the recursion formula for the Laguerre polynomials, Eq. (A.16).

Rotation operators. Similarly to the number operator, the phase rotation operator,
R̂(θ) = exp(iθn̂), is diagonal in the Fock basis:

R̂ = diag(0, eiθ, ei2θ, ..., einmaxθ), (A.14)

and can be efficiently stored as a sparse matrix.

Displacement operators. The displacement operator, D̂(α) = exp(αâ† − α∗â), is a bit
more tricky to implement. At first glance, one might be tempted to implement it through a
matrix exponential of αâ†−α∗â, using the matrix expression of â and â† from Eq. (A.10).
However, due to the numerical cutoff, this will not produce the correct matrix elements
〈n|D̂|m〉, as shown in Fig. A.1a. Instead, we should use the analytical expressions for the
matrix elements of the displacement operators [189]:

〈n|D̂|m〉 =

√
m!

n!
αn−me−|α|

2/2L(n−m)
m (|α|2), (A.15)

where L
(k)
m (α) is the generalized Laguerre polynomials. Unfortunately, the built-in MAT-

LAB function for the generalized Laguerre polynomials is rather slow, but they can be effi-

ciently calculated from scratch using the recursion formula, L
(k)
0 (α) = 1, L

(k)
1 (α) = 1+k−α

and

L
(k)
m+1(α) =

(2m+ 1 + k − α)L
(k)
m (α)− (m+ k)L

(k)
m−1(α)

m+ 1
. (A.16)

Another, and perhaps slightly simpler method to calculate 〈n|D̂|m〉 is by using the relation
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D̂â†D̂† = â† − α∗ and the fact that D̂†D̂ = Î. With these we can write:

〈n|D̂|m〉 =
1√
m
〈n|D̂â†|m− 1〉

=
1√
m
〈n|D̂â†D̂†D̂|m− 1〉

=
1√
m
〈n|(â† − α∗)D̂|m− 1〉

=

√
n〈n− 1|D̂|m− 1〉 − α∗〈n|D̂|m− 1〉√

m
. (A.17)

Thus we have a recursion relation for the matrix elements, allowing us to calculate all matrix
elements starting from the boundary values 〈n|D̂|0〉 = 〈n|α〉 = e−|α|

2/2 αn√
n!

. However, this

recursion is prone to numerical instabilities given the default 64-bit precision used for
floating-point data in MATLAB, as shown in Fig. A.1b. Such instabilities do not seem
to appear when using the Laguerre polynomial approach, Fig. A.1c, and therefore that
approach has been used for this thesis.

Note that due to the numerical cutoff, n̂max, the displacement operator is not unitary. As
a result, the norm of a state can change when transformed by the numerical displacement
operator. This turns out to be a very useful feature, which can be used to check if the
chosen value of n̂max is sufficiently large. In particular, the if the norm starts to get
significantly reduced, we should rerun the calculation with a larger nmax. Intuitively what
happens is, that the displacement operator tries to displace the state onto energy levels
above nmax, but since these states are assumed to have zero occupation by the simulation,
the norm of the state shrinks. If one were to use the matrix exponential implementation
of the displacement operator, this effect would not happen, and it would thus be harder to
detect if the numerical cutoff is sufficient.

Squeezing operators. The squeezing operator, Ŝ(ξ) = exp
[

1
2

(
ξ∗â2 − ξâ†2

)]
. While

analytical values for the matrix elements 〈n|Ŝ(ξ)|m〉 have been derived [190, 191], these
contain large sums which are prone to numerical errors and are thus less suited for numerical
implementation compared to the case for the displacement operator. Instead, one can
calculate the elements recursively by utilizing the relation ŜâŜ† = â cosh(r)+ â†eiφ sinh(r).
In particular we can write:

〈n− 1|Ŝ|m− 1〉 =
1√
m
〈n− 1|Ŝâ|m〉

=
1√
m
〈n− 1|ŜâŜ†Ŝ|m〉

=
1√
m
〈n− 1|

(
â cosh(r) + â†eiφ sinh(r)

)
Ŝ|m〉

=
1√
m

(√
n cosh(r)〈n|Ŝ|m〉+

√
n− 1eiφ sinh(r)〈n− 2|Ŝ|m〉

)
. (A.18)

Rearranging, we get:

〈n|Ŝ|m〉 =

√
m〈n− 1|Ŝ|m− 1〉 −

√
n− 1eiφ sinh(r)〈n− 2|Ŝ|m〉√

n cosh(r)
(A.19)

Together with the expression for 〈n|Ŝ|0〉 from Eq. (A.6), one can recursively calculate the
Fock-basis matrix elements of Ŝ. However, this approach sometimes leads to numerical
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instabilities using the 64-bit precision of MATLAB, as with the displacement operator,
so care should be taken when implementing the squeezing operator with this approach.
Alternatively, one can apply the matrix exponential to 1

2

(
ξ∗â2 − ξâ†2

)
, although this might

lead to errors if nmax is too small.

Wigner function

To calculate the Wigner function, W (ρ; q, p), of a given state with density matrix ρ, we can use the
fact that the Wigner function is linear with respect to the input state, W (c1ρ

(1) + c2ρ
(2); q, p) =

c1W (ρ(1); q, p) + c2W (ρ(2); q, p). Thus in the Fock basis we get:

W (ρ; q, p) =

∞∑
n=0

∞∑
m=0

ρm,nW (|m〉〈n|; q, p) (A.20)

Finally, we just have to calculate the Wigner functions of |m〉〈n| which are given by [192]:

W (|m〉〈n|, q, p) =
(−1)m

π
〈n|D̂

(√
2(q + ip)

)
|m〉

=
(−1)m

π

√
m!

n!

√
2
n−m

(q + ip)n−me−q
2−p2

L(n−m)
m (2q2 + 2p2). (A.21)
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