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Abstract
In this thesis, a series of novel methods for the identification of the optimal geometry
of atomic structures are introduced. The geometry of a material or molecule, that
is, the arrangement of its atoms in space, determines all its properties. Thus, the
determination of the geometry of an atomic system is the first step in any computational
study and the development of computationally efficient methods is important in order
to accelerate research in materials science.

Even thoughmethods for the identification of the structures with minimum energy (both
locally and globally) and transition states are abundant in literature, these methods
often rely on quantum chemistry methods, such as density functional theory (DFT),
which can be computationally very expensive. The methods presented in this thesis
address this issue by using machine learning methods to model the potential energy
surface. The machine learning model can then be used to guide the search of the
optimal geometry and, thus, reduce the computational time.

An important subfield of geometry optimization of atomic structures is the identification
of a local minimum of the potential energy surface, that is, a structure with no internal
forces on the atoms. For this problem, we introduce two new minimization methods,
which consistently achieve a reduction of the number of DFT calculations. For one of
these methods, we show that this reduction can be of up to a factor two for adsorption
systems. We further show that the reuse of the trajectories from former local optimiza­
tions and transition state search methods can further speed up the calculations.

For many applications, however, it is not enough to use a local optimization method,
since the approximate structure of the system studied is not known. In this thesis we
present two different methods to tackle this problem. We have proposed a method
that uses a message­passing neural network to determine the optimal prototype for a
material. This can be used in the context of computational screening. Furthermore, we
have extended the Gaussian process regression formalism used in local optimization
so that it can be used for the global optimization problem. In this way, we have created
a novel global optimization method that can identify the global minimum in a fraction
of the DFT evaluations needed by other methods, and used it to identify the optimal
structure of Ta6O15 clusters and the oxidized structure of ZrN.
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Resumé
I denne afhandling introduceres en række af nye metoder til identificering af den opti­
male geometri for atomare strukturer. En materiales eller et molekyles geometri, dvs.
konfigurationen af atomerne i rummet, bestemmer alle dets egenskaber. Det første
skridt i ethvert numerisk studie er således at finde den geometriske struktur for det
atomare system og udviklingen af beregningsmæssigt effektive metoder er vigtigt for
at accelerere forskning i materialevidenskab.

Selvom der i litteraturen findes et væld af metoder til at finde strukturer med minimal
energi (både lokalt og globalt), så afhænger disse ofte af kvantekemiske metoder, så­
som Density Functional Theory (DFT), som kan være beregningsmæssigt meget dyre.
Metoderne som præsenteres i denne afhandling omgår denne forhindring ved at bruge
maskinlæringsmetoder til at modellere den potentielle energi. Modellen kan derefter
bruges til, at vejlede søgningen efter den optimale geometri og derved reducere bereg­
ningstiden.

Et vigtigt underfelt i optimisering af atomare strukturer er idenficeringen af et lokalt min­
imum i den potentielle energi, det vil sige, en struktur uden interne kræfter på nogle
af atomerne. Til dette problem introducerer vi to nye minimeringsmetoder, som kon­
sekvent opnår en reduktion i antallet af DFT­udregninger. For den ene af dissemetoder
viser vi, at denne reduktion kan være op til en faktor 2 for adsorptionssystemer. Vi
finder derudover at genbrug af data fra tidligere lokale optimeringer og metoder til at
finde overgangstilstande kan reducere beregningstiden yderligere.

Til mange anvendelser er det dog ikke nok at bruge lokale optimeringsmetoder, da
ingen god tilnærmelse til den fysiske struktur er kendt. I denne afhandling præsenterer
vi to forskellige metoder til at håndtere dette problem. Vi har brugt etmessage­passing
neuralt netværk til at bestemme den optimale strukturprototype for et givent 3D system.
Dette kan bruges i screening studier af materialer. Derudover har vi udvidet Gaussisk
process formalismen brugt i lokalt optimering, således at den kan bruges til global
optimering. På denne måde har vi lavet en ny global optimeringsmetode som kan
identificere det globale minimum med en brøkdel af de DFT evalueringer som andre
metoder har brug for, og vi har brugt denne metode til at identificere den optimale
struktur for Ta6O15 klynger og den oxiderede variant af ZrN.
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Caminante, son tus huellas
el camino y nada más;
caminante, no hay camino,
se hace camino al andar.
Al andar se hace camino,
y al volver la vista atrás
se ve la senda que nunca
se ha de volver a pisar.
Caminante no hay camino
sino estelas en la mar.

Antonio Machado, Campos de Castilla (1912).

Translation:

Wanderer, your footsteps are
the road and nothing else;
wanderer, there is no road,
the road is made as one walks.
As one walks the road is made,
and upon taking a glance back
it is seen the path that never
shall be trod again.
Wanderer, there is no road
but wakes on the sea.

Antonio Machado, Fields of Castile (1912).
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1 Introduction
Matter is made up of atoms. Every object we see, every material and every molecule
is built with the same building blocks, the 108 atomic species of the periodic table.
And yet, the knowledge of the building blocks of something, i.e., its chemical composi­
tions, does not necessarily predict its properties. In order to characterize a material or
molecule, both the chemical composition and the arrangement of its atoms in space
(i.e., the geometry of its atomic structure) are needed [1].

Take diamond as an example. Diamond is a crystal made of carbon atoms: each car­
bon atom is bonded covalently to four other carbon atoms forming a tetrahedron. This
kind of bonds are very stable, making diamond one of the strongest materials known.
In addition, since all electrons in diamond are “invested” on forming the covalent bonds,
they are not available for conduction. As a result, diamond is an insulator to current
and transparent (i.e. it has a large band gap).

Contrary to the popular commercial, diamonds do not last for ever. Diamonds are
formed under exceptional pressures and temperatures at great depths under the Earth’s
crust, but once they emerge to the surface, they slowly start turning into graphite in a
process that takes billions of years [2]. Graphite is the stable form of carbon at room
temperature, and its properties could not be more different from those of diamond. It
is one of the softest materials in nature, it is exfoliated very easily, making it a per­
fect component for pencils. It has an intense gray metallic colour and it is, indeed,
conducting.

The difference between the properties of graphite and diamond originates from the
difference between the geometry of the atomic structure. Instead of the tetrahedrally
bonded crystal, graphite is made up of layers of carbon atoms whose bonds form
hexagons. The carbon atoms are bonded to other atoms in the same layer by covalent
bonds and the layers are kept together by much weaker van der Waals forces. This

(a) Diamond (b) Graphite

Figure 1.1: Atomic structures of diamond (the bonds of each atom point towards the
corner of a tetrahedron) and graphite (the bonds form layers of hexagons).
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explains why it makes such good pencils: the van der Waals bonds are easy to break,
transferring the atoms in the outermost layers form the pencil to the paper [2].

Diamond and graphite are not the only examples for which the atomic structure deter­
mines the properties of the substance. Carbon has other allotropes with very surprising
properties [3–5]. Since they all have the exact same composition, it is their structure
that determines their properties.

The behaviour of matter at the atomic scale, including the geometry of atomic systems,
is determined by the laws of quantum mechanics. Over the last decades, new com­
putational methods have been developed that allow to simulate matter at quantum
scale both efficiently and accurately. These methods have enabled researchers ex­
pand their understanding of matter. The recent increase in computational power has
led to the revolution of high throughput computational materials and drugs design: it
is now possible to simulate thousands of new materials in order to find those whose
properties are relevant for technological applications [6, 7], opening new pathways for
materials research.

The first step in such computational studies is, as explained above, to determine the
geometry of the atomic structure, since all the other properties will follow from that.
This can be achieved by moving the atoms around until the energy of the atomic con­
figuration is minimized. The energy and the forces of an atomic system can be read­
ily computed using quantum chemistry methods such as DFT [8, 9], and be used to
guide the search. Due to the complexity of the quantum description of matter, how­
ever, each quantum chemistry calculation may be computationally expensive. In this
way, the number of energy and force calculations required to determine the geometry
of an atomic system often becomes a computational bottleneck that limits the scope
of high­throughput studies.

In this thesis, we show how reusing the data from previous calculations along the way
can help to guide the search for optimal atomic structures. We achieve this by using
machine learning methods, that is, statistical models that use the energy and force
of all the known structures to predict the energy and forces of those yet unknown.
These models are then used as surrogate potentials, in the sense that they can be
used instead of the original quantum mechanical potential for structure search. We
show it is possible to build models on the fly, as the geometry optimization progresses,
that increase their accuracy as more model configurations are added. In this way, we
show how the identification of optimal geometries can be achieved with fewer energy
calculations as compared with traditional methods, reducing the computational costs
of the computational simulation of materials and molecules.

Figure 1.2 sketches how the algorithms presented in this thesis work. The quantum
mechanical potential is depicted with a solid back line and shows a minimum at about
z ∼ 1.5 Å. This is the target of the method and the current atomic configuration is
marked by a blue dot. The information of all the configurations explored (marked with
black dots) is used to build a machine learning model (blue line) that matches the ener­
gies and forces of all the known configurations. The resulting machine learning model
will have a minimum, which may have a predicted an energy that is lower than any of

2 Machine learning methods for geometry optimization of atomic structures



0

1

2

3

4

En
er

gy
 (e

V)

1
    

2
    

1.0 1.5 2.0 2.5 3.0 3.5
z (Å)

0

1

2

3

4

En
er

gy
 (e

V)

3

1.0 1.5 2.0 2.5 3.0 3.5
z (Å)

4

V(z) model data new configuration

Figure 1.2: Example of the use of a data­driven surrogate model to identify a minimum
configuration. The optimization begins with a single configuration, which is used to
build a model (blue) of the potential V (z) (black) that has the right energy and force,
as illustrated in panel 1. The minimization of the model potential provides a new con­
figuration that is lower in energy (panel 2), and can be used to improve the accuracy
of the model. The process can be then repeated (panels 3 and 4) until the minimum
of the potential V (z) is found. The system studied is a gold atom constrained in 1
dimension, to vary its distance z to a fcc (100) gold surface. The potential V (z) of the
system is described with effective medium theory [10].

the energies in the training set. The methods in this thesis then proceed to find the
minimum of the machine learning model and to compute its energy and force. It might
be that the new configuration is not a good estimate of the minimum, but the informa­
tion about its energy and force will certainly improve the machine learning model. The
new machine learning model will have a new minimum, that can be sampled again
and whose energies and forces will in turn further improve the model. This procedure
eventually converges to the optimal configuration, as the machine learning model con­
verges towards the underlying quantum mechanical potential.

1.1 Outline
This thesis is organized as follows. In Chapter 2, the physics of the atomic structure
problem is described, from the perspective of quantum mechanics. The concept of

Machine learning methods for geometry optimization of atomic structures 3



potential energy surface, which will be the target of all the models presented, is intro­
duced, and its numerical computation is discussed. In Chapter 3, the machine learning
techniques that have been used to create computationally efficient models of the po­
tential energy surface are introduced. After a general discussion, the two machine
learning methods that are used in the papers contained in this thesis, neural networks
and Gaussian process regression, are described. This chapter also contains a discus­
sion about the use of descriptors of atomic structures as inputs to machine learning
algorithms.

Chapter 4 discusses the numerical techniques that are most commonly used in the
optimization of potential energy surfaces. After a description of the most common
methods for finding local minima, global optimization and transition state search tech­
niques are briefly reviewed. The technical details and choices of the Gaussian process
regression models that have been used in this thesis are discussed in Chapter 5. The
benefits of including force information in the description of the PES are examined, be­
fore discussing the different choices of kernels and priors. The chapter finishes with a
discussion on the optimization of the hyperparameters and the computational cost.

The results of the research presented in this thesis are given in Chapter 6, in the form
of a summary of the papers. An interested reader may find the papers in an appendix
at the end of this thesis. Chapter 7 contains the conclusions.

4 Machine learning methods for geometry optimization of atomic structures



2 The description of matter at
atomic level

In order to study the geometry of the atomic structure of a material or molecule and
the properties associated with it, it is necessary to describe the system with quantum
mechanics. In this chapter, the basic theory governing the dynamics of atoms and
electrons is reviewed. The concept of potential energy surface (PES), which is central
to this thesis, and its relationship with the geometry of the atomic structures are dis­
cussed. The chapter finishes with a review of density functional theory (DFT) as a way
to compute potential energy surfaces.

2.1 The structure of matter
At a fundamental level, matter is made up of atoms and can be described at a quantum
level by the interaction of its constituents: the nuclei and the electrons. These are
charged bodies, and interact with each other via the electrostatic repulsion of electron
pairs:

V̂ee(r) =
Ne∑
i=1
j>1

1

∥ri − rj∥
, (2.1)

electrostatic repulsion of atomic nuclei pairs:

V̂aa(R) =
N∑
i=1
j>1

ZiZj

∥Ri − Rj∥
(2.2)

and the electrostatic attraction between electrons and nuclei:

V̂ea(R, r) = −
N,Ne∑
i,j=1

Zi

∥Ri − rj∥
. (2.3)

Here, N is the number of atoms and Ne the number of electrons, Zi and Ri the atomic
number and the position of the i−th atomic nuclei,respectively, and ri the position of
the i−th electron. The symbols R and r denote the set of the positions of all the nuclei
R = (R1,R2, . . . , RN ) and the electrons, r = (r1, r2, . . . , rNe). These expressions,
as well as the remaining in this chapter, are given in atomic units.

The state of the system is described by its wave functionΨ, which is give by the solution
to the time­independent Schrodinger equation:

Ĥ(R, r)Ψ(R, r) = EΨ(R, r) (2.4)

Machine learning methods for geometry optimization of atomic structures 5



where Ĥ is the Hamiltonian operator of the system and E its energy. For atomic sys­
tems, the Hamiltonian,

Ĥ = T̂a + T̂e + V̂ee + V̂ae + V̂aa, (2.5)

is given by the sum of the potential energy operators of the electrostatic interaction
V̂ee, V̂ae and V̂aa, and the kinetic energy operator of the nuclei:

T̂a = −
N∑
i

1

2Mi
∇2

Ri
(2.6)

and the electrons:

T̂i = −
Ne∑
i=1

1

2
∇2

ri . (2.7)

Mi stands for the mass of the i−th nuclei.

The partial differential equation (2.4) is computationally challenging to solve numeri­
cally even for systems with few nuclei and electrons. In order to be able to simulate
systems of interest, such as materials, molecules or surface problems, one usually
makes some well­established approximations.

2.1.1 The Born­Oppenheimer approximation
The nuclei of the atoms involved in the problem are several orders of magnitude heav­
ier than the electrons: the mass of the lightest possible nuclei, the proton, is roughly
2000 times heavier than an electron. Thus, the motion of the nuclei is much slower
than the motion of the electrons. As a consequence to this difference in time scales,
one can approximate the solution of the problem as if the electrons moved in a po­
tential caused by stationary nuclei, adapting immediately to the changes of position of
the nuclei, and the nuclei moved in a potential caused by a cloud of electrons. This is
called the Born­Oppenheimer approximation.

Under this approximation, we factorize the wave function Ψ as:

Ψ(R, r) = Θ(R)Φ(r|R), (2.8)

where Θ(R) is the wave function of the nuclei which depends solely on the position of
the nuclei R and Φ(r|R) is the wave function of the electrons subject to a fixed nuclei.
Under these conditions, equation (2.4) can be decoupled into two partial differential
equations, one that describes the motion of the electrons under fixed nuclei:

Ĥe(r|R)Φ(r|R) =
[
T̂e + V̂ee + V̂ea

]
Φ(r|R) = ε(R) Φ(r|R) (2.9)

and another one for the motion of the nuclei:[
T̂a + V̂aa + ε(R)

]
Θ(R) = E Θ(R). (2.10)

6 Machine learning methods for geometry optimization of atomic structures



2.2 The atoms: The Potential Energy Surface
The Born­Oppenheimer approximation allows the description of the geometry of the
atoms in materials and molecules provided the solutions to the electronic structure
problem are known. The Hamiltonian operator for the atomic motion in equation (2.10)
can be rewritten to introduce the concept of potential energy surface (PES) of the
system, by realizing that the function of the atomic positions E(R):

E(R) = V̂aa + ϵ(R), (2.11)

describes the effective potential in which the atoms move.

The notion of potential energy surface provides with a framework for working with
molecular geometries, by defining a 3N dimensional manifold whose critical (i.e. zero
gradient) points mark some of the atomic configurations of interest for applications
in chemistry and materials science [11, 12]. A visualization of the potential energy
surface and its critical points can be found in Figure 2.1.

Probably, the most interesting point of the PES is its global minimum: the configura­
tion with the lowest potential energy will be the one in which the atoms would be in
equilibrium at 0K temperature (neglecting ground state vibrations). For systems with
many atoms, this configuration is usually difficult to find, which is the reason why many
applications find a local minimum instead [13].

A local minimum of the potential energy is a configuration whose energy is lower or
equal to the energies of neighboring configurations. Note the global minimum is a local
minimum as well, and consequently, research studies often try to identify the global
minimum by determining several local minima and comparing their energies [14]. At
temperatures other than 0, it might be possible to find the system in different local
minima depending on the conditions of the experiment: for example, the reactants, in­
termediates and products of a chemical reaction each correspond to a minimum of the
potential energy surface. In addition, even when the geometry of the system is approx­
imately known from experiment, it is still interesting to find the closest local minimum of
the potential energy surface, since it has zero force on the atoms (see Section 2.2.1)
and consequently makes the best estimation of the equilibrium configuration within
that level of theory. A longer discussion on this regard can be found in Chapter 4.

Saddle points are also of interest. The reaction path between two minima is the path
connecting themwith the minimum energy among all possible paths, and it is called the
minimum energy path. The maximum along this path is the geometry corresponding
to the transition state of the reaction and it is necessarily a first order saddle point (this
is, its Hessian matrix has one and only one negative eigenvalue).

2.2.1 Hellmann­Feynman Theorem
The force on the i−th atom fi:

fi = −∇Ri
E(R) (2.12)

can be readily obtained from the electronic structure calculation by virtue of the Hellmann­
Feynman theorem:

∇Rε(R) = ⟨Φ(R)|
(
∇R Ĥe(R)

)
|Φ(R)⟩ (2.13)
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Figure 2: Example model used to describe the behaviour of the machine learning
workflow. (a) Top and side views of the sphere model. Al(100) surface atoms in blue, Au
and Al adatoms in yellow and brown respectively. (b) Magnification of the spheres model
highlighting the area in which the diffusion energy of a Cu adatom is probed. (c) Potential
energy surface resulting from varying the x and y coordinates (surface plane) and relaxing
the z coordinate (normal to the surface) of the Au adatom. The white circles mark the
positions of six connected minima whilst the dashed lines represents the connecting path
between them.

22

Figure 2.1: Geometry and potential energy surface of a moving gold on a aluminum
(100) surface covered by other aluminum and god adatoms. Panel (a) shows the
atomic structure of the slab represented in the other panels, with the aluminum atoms
of the slab represented in blue and the gold and aluminum adatoms in yellow and
brown, respectively. Panel (b) shows a closer look to the unit cell of the system, where
the moving gold atom has been removed for better visualization and the critical points
and their basins are marked in white. Panel (c) shows the 2­D projection of the poten­
tial energy surface as a function of the position of the moving gold atom. The colors in
the contour plot show the potential energy surface of the system when the gold atom is
constrained to that (x, y) position and it is relaxed on the z axis. The points S1 and S2
are local minima of the potential energy surface and the dashed line connecting them
is the minimum energy path. The white dot along this path marks the saddle point
representing the transition state. Source: Paper III: An artificial intelligence­driven
approach for the1exploration of potential energy surfaces.

where the wave functionsΦ represent the eigenvalues of the electronic structure Hamil­
tonian Ĥe.

Note that the differential operator in∇R Ĥe(R) affects only to the Hamiltonian operator,
and not the the wave function Φ. This means that once the electronic wave function Φ
and the potential energy surfaceE(R) have been obtained from the electronic structure
calculation, the forces can be obtained with little computational effort. For this reason,
the usual practice in the determination of critical points of the potential energy surface
is to use gradient­based methods.

It is easy to see that a similar expression does not hold for higher derivatives. Even
though the knowledge of the Hessian of the potential energy surface would be an
advantage for many problems, its computation usually involves a finite differences
approach, which can become very computationally expensive for systems with many
atoms in the unit cell and many degrees of freedom. .
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2.3 The electronic structure problem
We now turn to the problem of the electronic structure in equation (2.9). There are
a number of approximations and methods in literature to solve this problem [15]. In
the work presented in this thesis, the electronic structure problem has been solved
using density functional theory (DFT) as implemented implemented in ASE [16, 17]
and GPAW [18] , with the exception of paper III, where the Vienna Ab­initio Simulation
Package (VASP) [19, 20] has been used.

It is worth noting that the methods introduced in the rest of this work depend only
loosely on the choice of the approach to the solution of the electronic structure problem.
As long as the Hellmann­Feynman theorem (2.13) provides a computationally cheap
way of obtaining the forces on the atoms, any electronic structure method could be
used.

In the rest of this chapter, the fundamentals of density functional theory are sketched
and some numerical challenges are discussed. It does not intend to be a thorough
discussion of the topic, but rather an introduction to the properties and challenges that
will be discussed later on in this thesis. For further details, the reader is suggested to
consult any of the many and excellent books and articles on the subject, as for example
[15].

In order to facilitate the reading, the dependence on the degrees of freedom of the
motion of nuclei R has been dropped from the notation in this section.

2.3.1 Density Functional Theory
The solution to the electronic structure problem in equation (2.9) is expressed in terms
of the many body (anti­symmetric) wave function of all electrons Φ(r1, r2, . . . , rNe

); an
object that becomes increasingly challenging from the point of view of computations
as the number of electrons in the system Ne increases. In their foundational paper
from 1964, Hohenberg and Kohn [8] showed that the solution to the electronic struc­
ture problem can be fully characterized by the ground­state electronic density ne(r) (a
function of three variables) and proved that a variational principle exists for the ground
state energy in terms of trial densities.

Based on this, Kohn and Sham proposed a practical way to efficiently solve the elec­
tronic structure problem in 1965 [9]. One can introduce an auxiliary system of non­
interactig electrons under an external single particle potential vs(r) that needs to be
determined so that the solution to non­iteracting problem (i.e. its ground state den­
sity ne(r) and energy ε) matches the solution of the original problem. The differential
equation for the non­interacting system can then be decoupled into a system of single
particle differential equations, called Kohn­Sham equations:/

[
−1

2
∇2 + vs(r)

]
φi(r) = ϵi φi(r), (2.14)

where φi are the single particle wave functions (or Kohn­Sham orbitals) and ϵi are the
single particle energies (or Kohn­Sham energies).
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It is easy to show that the single­electron reference potential vs(r) introduced in equa­
tion (2.14) can be written as:

vs(r) = vext(r) +
∫

ne(r′)
∥r− r′∥dr

′ +
δExc [ne]

δne(r)
, (2.15)

where vext is the single­electron external potential each electron feels (i.e. the potential
created by the nuclei in equation (2.3)), the second term is the potential caused by
the average electronic distribution represented by the density ne(r), and Exc(r) is the
exchange­correlation functional, which is discussed in Section 2.3.2.

Thus, given an expression for the exchange­correlation functionalExc, the Kohn­Sham
equations (2.14) can be solved numerically to find the total energy ε and the density
ne of the interacting system, as functions of the Kohn­Sham energies:

ε =

Ne∑
i=1

ϵi, (2.16)

and orbitals

ne(r) =
Ne∑
i=1

|φi(r)|2. (2.17)

These equations provide a framework for computing the total energy of the electronic
structure problem for a particular configuration of the nucleiR that can then be used, as
it has been mentioned before, to obtain the potential energy surface and its derivatives,
the main object of interest in this thesis.

The quality of the description of the potential energy surface provided by the DFT
depends on two crucial factors: the level of approximation in the exchange­correlation
potential and the details of the numerical implementation of the solution to the Kohn­
Sham equations. In the following, these two factors are briefly discussed, highlighting
the main choices for the PES models presented in the rest of this thesis along with the
arising potential challenges.

2.3.2 Exchange­correlation
Despite of the fact that the density functional theory framework shows that a universal
exchange­correlation functional exists so that the density solution to the Kohn­Sham
matches exactly the density of the electronic structure problem (equation (2.9)), the ex­
act exchange­correlation potential is not known. Practical calculations of the electronic
structure of atomic systems use approximations to model the exchange correlation
functional in order to approximate the value of physical quantities.

There is a vast number of approximations or exchange correlation functionals in litera­
ture (see, for example, the review presented [15], chapter 5), and it is still an ongoing
research topic. Different approximations require different amounts of computational
resources and are known to estimate different physical quantities at different levels of
accuracy.
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The simplest level of approximation is the local density approximation (or LDA) func­
tional, introduced by Kohn and Sham in their original paper [9]:

Exc [ne] =

∫
ne(r)ϵxc[ne(r)] dr, (2.18)

where the exchange­correlation energy density ϵxc[ne] is obtained from the homoge­
neous electron gas.

The accuracy of LDA functional can be improved by including the gradient of the den­
sity in the exchange­correlation expression, leading to a family of functionals known
as the generalized gradient approximation, or GGA.

The GGA functionals are known to improve the description of binding energies and
bond distances, as compared to the LDA. Thus, in this thesis, the LDA has been
used for method development and different GGA flavors have been used to improve
the description of the physical quantities when necessary. We have used the PBE
(Perdew­Burke­Ehorenhoff) functional [21], probably the best­stablished GGA func­
tional, together with two revised versions: PBEsol [22] for the description of solids and
RPBE [23] for the description of molecules on surfaces.

2.3.3 Numerical solution to the Kohn­Sham equations
The differential equation for the Kohn­Sham orbitals and energies (2.14) is a non­ linear
differential equation: it depends on the reference potential vs which in turn depends
on the density through expression (2.15) and the density itself depends on the Kohn­
Sham orbitals, as shown in equation (2.17).

This means that the Kohn­Sham equations need to be solved numerically. Even when
an already existing implementation of a numerical method is used, there are usually a
number of choices that are left to the user, who in turn needs to make a compromise
between the accuracy of the result and its computational cost when making the choice.
In this section, the numerical methods that have been used in this thesis are sketched,
with a particular focus on those aspects that have presented a challenge in the course
of finding the critical points of the potential energy surface.

These equations usually are solved in a self consistent way. A diagram illustrating
the self consistent field (SCF) iteration can be found in Figure 2.2. Starting with an
initial estimate for the Kohn­Sham orbitals, these determine an estimate of the effective
potential vs. Disregarding the dependence of the effective potential on the orbitals, the
Kohn­Sham energies and orbitals can then be found by solving the linear eigenvalue
problem in equation (2.14). The new estimate of the orbitals result in a new potential,
closing the loop. The iteration continues until the estimates of the change between
two steps of the quantities of physical interest, such as the total electronic energy ε,
the forces on the atoms f and the electronic density ne, falls under a given threshold.

The first step in solving the linear eigenvalue problem is discretization: this is, in order
to solve the differential equation, solutions must be represented in some way. As an
example, the work presented in this thesis, plane wave basis and linear combination of
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No
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Figure 2.2: Diagram illustrating the self consistent field iteration, the procedure used
to solve the Kohn­Sham equations. The method takes an initial estimate of the Kohn­
Sham orbitals as an input and returns the electronic energy ε, the forces on the atoms
f and the electronic density ne as an output.

orbitals [24] have been used. The discretization of the wave function into a basis set in­
volves an approximation, and for this reason, it must be treated carefully to ensure the
results of the electronic structure calculation are converged enough to represent the
target property with enough accuracy. This can be achieved by tuning the parameters
most basis sets involve to reach a good compromise between accuracy and compu­
tational speed. An example of a potential source of error is the egg­box effect [25], in
which the fact that the wave functions are represented by a fixed grid can lead to the
break of the translation symmetry when the nuclei are translated with respect to the
grid.

Since the Kohn­Sham orbitals need to be orthogonal functions to each other, the wave
functions in the core regions, i.e., close to the nuclei, are usually highly oscillatory, and
thus, difficult to discretize (their representation would involve large basis sets).

A common way to deal with this problem is known as the projector augmented­wave
method (PAW) [18, 26], where the implementation avoids working with core electrons
and work only with a modified representation of the valence wave functions that is is
smooth everywhere. The modified wave functions only differ from original ones in an
augmentation sphere around each nuclei but match exactly outside of the spheres.
This method allows one to solve the Kohn­Sham problem with smaller basis set sizes,
improving both accuracy and computational speed. For algorithms navigating PES
it is important to take into consideration that the PAW method breaks if the spheres
overlap too much, therefore, it should be avoided placing the atoms too close. Some
implementations, like GPAW, raise an error message in these situations.

Solving the linear eigenvalue problem for the single particle Hamiltonian in the Kohn­
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Sham equation (also called diagonalization of the Hamiltonian) is typically the most
computationally expensive part of any density functional theory code. Even though
some methods with lower scalings exist in literature [27, 28], density functional the­
ory codes typically exhibit cubic scaling of the computational time with the number of
orbitals to be computed O(N3

e ) [13], which comes as a consequence of the code nu­
merically enforcing the orthogonality of the Kohn­Sham orbitals. Since the number of
orbitals required in a problem is usually proportional to the number of atoms, the com­
putation time in density functional theory usually scales with the cube of the number
of atoms in the unit cell.

Numerical artifacts stemming from the self consistent field iteration or the choice of
the basis set may produce spurious non­physical behaviour in the potential energy
surface. It is important to choose the parameters in an electronic structure calculation
in such a way these artifacts are minimized when they are important to the property
that is being modelled.

2.4 Afterword
The approximations and methods introduced in this chapter have enabled researchers
to successfully model, understand and make predictions for a plethora of problems
involving atomic level interactions over the past decades. Despite of this success,
the computational resources necessary to describe many of the systems of interest
remain vast. For instance, the description of the adsorption of a molecule on a surface
typically involves dozens of atoms, and even with a good insight, finding the closest
minimum might require dozens of potential energy calculations involving tens of self
consistent field steps each and hundreds of electrons.

Hence, such calculations are usually run at super­computing facilities and even then
researchers often have to impose limitations to the number of atoms considered, the
number of configurations explored or the level of accuracy used in the exchange cor­
relation description. In the following chapters of this thesis, we discuss and introduce
ways of further reducing the computational cost of the description of atomic systems.
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3 Machine Learning for materials,
molecules and surfaces

The computational tools presented in the previous chapter, combined with the rapid
growth of computer power over the last decades, has allowed the computation of
the properties of millions of materials and molecules worldwide. These calculations
are gathered in large databases, such as OQMD [29, 30], AFLOWLIB [31], Materials
project [32], NOMAD [33] or CMR [34] and C2DB [35, 36]. Often, these calculations are
part of large scale computational screening studies, where the properties of thousands
of materials are computed in order to find candidates for their use in specific applica­
tions. As a result, new materials are discovered every year, and they are added to
open materials repositories.

Since the number of possible materials has been estimated to be around 2 trillion
(a couple of orders of magnitude give or take) [1] and speculating that the number
of possible molecules could yield a similar count, it is clear that new strategies for
materials and molecules discovery would be desirable. The combinatorial nature of
the structure determination (or potential energy optimization) for systems with a large
number of atoms in the unit cell poses a problem of similar nature.

The availability of large scale data together with the current level of computational re­
sources present new opportunities in the field of materials and drug design [37]. Nowa­
days, we are seeing an increase in effort to utilise computers to recognize statistical
patterns in materials databases, that may increase our understanding or allow as to
make faster predictions. In this line, in recent years, many successful examples of ma­
chine learning for materials, molecules and surfaces have been published (see next
section for some examples of references).

In this chapter, the theory behind the machine learning methods in this thesis is dis­
cussed. First, a general discussion of machine learning and supervised learning in par­
ticular as a set of methods is introduced. This is a very broad topic, and the interested
reader is referred to classical books like by Bishop (2006) [38] or Hastie, Tibshirani
and Friedman (2009) [39]. The structure of the section has been inspired by the pre­
sentation in Goodfellow et al., chapter 5 [40]. Then, the two machine learning methods
used in this thesis: neural networks and kernel methods; are reviewed. Finally, the
representation of materials and molecules as an input to the machine learning method
is introduced and its importance is discussed.

3.1 Machine Learning
One of the most widely spread definitions of machine learning was given Thomas
Mitchell in 1997: “A computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P , if its performance at tasks in
T , as measured by P , improves with experience E.” [41]
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The task T is typically any task for which there is no clear way to solve it by a de­
tailed program written by a human, or there is an advantage in not doing so, and can
benefit from the amount and type of existing data. Recently published tasks in the
field of data­driven discovery of materials and molecules include the prediction of the
electronic density n(r) given the structure of a molecule [42], predicting the heat of for­
mation of molecules and materials [43–45] given the positions of their atoms and their
stoichiometries, the development of new exchange­correlation functionals [46–49], the
screening of materials and molecules of solar cell applications given their stoichiome­
tries [50, 51], the generation of computationally fast force­fields to speed up molecular
dynamics simulations [52, 53], among others.

The experience E in the context of materials design is the set of materials whose prop­
erties are already available, also referred to as the training set. This dataset could com­
prise a subset of the materials in some experimental [54] or computational databases
(as mentioned above) [29–36] or could be generated on­the­fly, as the task progresses,
by the requirements of the algorithm itself (known as active learning)).

Depending on the kind of information for each piece of data the computer program is
allowed to use, machine learning algorithms are usually classified into two groups:

unsupervised learning, where each data point is represented by a set of features
and the method’s task is to learn patterns present in the structure of the dataset,
and

supervised learning, where data points are represented by features and targets
and the task of the method is to learn the the mapping from features to targets.

Most methods in this thesis belong to the second type.

The performance measure P depends on the task at hand, but most supervised learn­
ing methods measure the accuracy of the model in some way. Common accuracy
measures of accuracy for supervised methods f mapping n features {xi}ni=1 into n
targets {yi}ni=1 include the mean absolute error (MAE):

MAE =

∑n
i=1 |yi − f(xi)|

n
(3.1)

and the root mean square error (RMSE):

RMSE =

√∑n
i=1(yi − f(xi))2

n
. (3.2)

In real world applications, we are interested on the performance of the program on
unseen data points, as opposed to on the experience presented. In other words, we
are interested on the ability of the model to generalize from experience, and the per­
formance measure P should capture such interest. A common practice is to evaluate
the performance of the method on previously unseen data, known as the test set.

Successful machine learning models will optimize their capacity (that is, their complex­
ity in the sense of the amount of solutions they are able to represent) to obtain good
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Figure 3.1: Illustration of the capacity and the generalization error of machine learning
models for the example of a polynomial fit. The training and test data sets have been
generated assuming the underlying function to be f(x) = (x−1)3+4(x−1/2)2+1+ξ,
with ξ representing white noise with standard deviation 0.05. Low degree polynomials
underfit the data (see the linear model in the left panel) while choosing a high enough
degree of the polynomial overfits the data, resulting in a model that goes through all
the points, but does not generalize correctly (see the 13th degree polynomial in the left
panel). A model whose complexity (the degree) is in between generalizes best from
the data. This is shown in the right panel: As the complexity of the model increases,
the error in the training set falls, but the error in the test set shoes a U shape. Models
with low capacities cannot capture the underlying complexity of the data, so they are
biased. Models with high capacity can represent the noise in the data as well as the
actual trends, resulting in models that do not generalize properly (overfiiting). The
training set and the test set in the right panel have been randomly generated and have
20 and 200 points, respectively.

performances on both the training and the test sets. A general trend in machine learn­
ing is that as the capacity of themodel increases, the error in the training set decreases,
while the error in the test set exhibits a U shape: low capacities cannot represent the
patterns in the data enough to predict the test set (underfitting) while high capacities
learn the noise in the training set together with the underlying patterns, increasing the
error in the test set (overfitting). The goal when training a machine learning model is
to find a balance between underfitting and overfitting. This problem is illustrated over
the problem of fitting a third order polynomial with noisy data in Figure 3.1.

Many models can be dialed to show preference for the certain solutions, only choosing
the least preferred ones if there is strong evidence in the training set favoring them.
This can be used to reduce the test error while still having a good performance in the
training set. This action is called regularization [40]. A common example is L2 norm
regularization, where a penalty is imposed for solutions with large L2 norms of the
parameters. For example, in the case of multi­variable linear regression, this prevents
having large weights, producing models that generalize better.

More generally, many machine learning methods have additional parameters that are
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not determined by the learning procedure themselves (any value of themwill produce a
learning method) but that determine the behaviour of the algorithm. These are termed
hyperparameters and examples include the degree of the polynomial in a polynomial
regression (see Figure 3.1) or the strength of the penalty in L2 regularization. The
hyperparameters of an algorithm can be tuned to obtain better generalization results,
to ensure the model produces better predictions.

Usual practice in the machine learning field proceeds as follows: The parameters of
the machine learning method are optimized to reduce the error in the training set, and
then the machine is tested on yet unseen data. The data set that is not used in the
parameter training but is still used for decision making is termed validation set, and it
is often chosen as a subset of the training set [39].

As the last part of the machine learning definition states, in machine learning applica­
tions the error in the training and the test set should reduce as the training set size
increases. This is usually visualized by representing the error in test set as a function
of the training set size, which is called the learning curve.

For many machine learning problems with noise­free data, the error decays as a power
law of the size of the training set in the limit of large training set sizes [55]. As noted
by Huang and von Lilienfeld [56, 57], such power law becomes a linear relationship in
logarithmic scale:

log (Error) = a− b log(n), (3.3)

where n is the size of the training set. The parameters a and b encode the ability of
the algorithm to extract patterns from data for moderate training set sizes.

The desirable properties of the model include a small off­set and a large negative slope
as well as to continue with the linear trend in a logarithmic scale instead of saturating
to some error as the number of instances in the training set increases. The first prop­
erties, i.e. small a and large b, mean the model will need less instances to achieve the
accuracy necessary for the target application. The smaller the requirement on the size
of the training set the better, since this reduces the computational cost of the training
process, but more importantly it is very often very difficult or impossible to increase the
size of the training set at will (for example, because the training instances are DFT cal­
culations involving many atoms, which can be computationally very expensive). Better
off­sets and slopes can be achieved by incorporating prior information into the model
[56, 58]: enforcing the symmetries instead of having the model learning them [59, 60]
or enforcing a resemblance between the functional form of the model and the target
function: such as using descriptors whose behaviour is similar to the Hamiltonian by
including the appropriate interaction ordering information (that is, explicitly including in­
formation about 2­body, 3­body, etc interactions) [56, 58]. Enforcing symmetries and
target similarity can be achieved by enforcing these properties in the method itself or by
choosing a representation of the elements in the training set that already incorporate
them (see Section 3.4).

Saturating learning curves can become an issue since they may prevent the model
from achieving the required accuracy for the target application. The cause might be
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the presence of noise in the training data: in this case, the error will saturate at the value
comparable to the noise in the training set. However, saturating learning curves can
be found even in noise­free contexts: in this case they are usually due to underfitting:
the model is not flexible enough to fit all the data and it reaches a compromise. A
particularly concerning case is the one of degenerate descriptors (or even models!):
if two physically different inputs are mapped into the same value at any point of the
process, the machine learning method will not be able to distinguish them at all. It is
easy to see this will lead to a saturating learning curve. This issue is further discussed
in Section 3.4.

The concepts introduced in this section are illustrated in the rest of the chapter with
two examples of machine learning methods: neural networks and kernel methods (in
particular, Gaussian processes).

3.2 Neural networks
Neural networks are a class of machine learning algorithms that have been gaining
popularity in recent years. They are very flexible methods, which have proven suc­
cessful in difficult tasks involving the approximation of complex non­linear functions of
complex, multidimensional and often structured inputs [40].

Originally inspired on the way the human brain works, artificial neural networks are
composed of many small and interconnected processing units called neurons or units
[40]. These neurons are often arranged in several layers, allowing for the models to
be very flexible. In most supervised learning applications, the inputs to the network
are regarded as a units to be filled with data and the output of the network is the output
of the last layer of units. The units in the layers in between the input and the output
are called hidden units. As an example of how a typical unit looks, hidden layers in
feed­forward neural networks (a common neural network architecture for supervised
learning) are a parametrized non­linear function of the units in the previous layer of the
form:

hk = g
(
WT

k hk−1 + bk

)
(3.4)

where hk and hk−1 are the outputs of layers the k­th and the k − 1­th layers, W and
b are the weights matrix and the bias vector, and g(·) is a fixed non­linear function (in
the sense that it does not depend on any parameters) non­linear function called the
activation function. Typical examples of activation functions include the rectified linear
unit g(z) = max(0, z) , the sigmoid function or the hyperbolic tangent.

Thus, the representation of complicated non­linear functions is achieved as a convolu­
tion of many layers of linear transformations plus activation functions. The parameters
to the linear transformations Wk and bk are then optimized to fit the data. The neural
network is given some input examples that are then used to produce an estimate of
the loss function (that is, the error). The gradient of the loss function is estimated us­
ing the chain rule over all the convolutions with a method known as back propagation.
The lost function is then minimized with a gradient based optimizer to find the optimal
parameters. It is usual to use a stochastic gradient­based optimizer to increase the
chances of reaching the global optimum of the loss function by using the noise to avoid
getting trapped in a local minimum.
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Figure 3.2: Visualization of a message passing neural network for predicting the heat
of formation of materials. The input to the neural network in this case is a graph, whose
nodes (and possibly edges) are encoded by a vector. The state of the nodes and the
vertices is updated by passing messages from its neighbors a number of times. Finally,
the output of the neural network is given by a non­linear read out function, containing
a hidden fully connected layer.

In recent years, neural networks have proven to be successful machine learning meth­
ods for the modelling of structured data, such as images or time series [40]. In Paper I:
Materials property prediction using symmetry­labeled graphs as atomic­position inde­
pendent descriptors, we have taken advantage of the flexibility of these models to use
graphs as descriptors of the instances in the training set (see Section 3.4 for more infor­
mation on this representation). For this purpose, we have used a graph­convolutional
or message passing neural network, that have proven themselves to be very success­
ful in the prediction of the properties of materials and molecules given their graphs [42,
43, 61–63].

Figure 3.2 illustrates the architecture of these kind of artificial neural networks. Mes­
sage passing neural networks are composed of two distinct parts: The message pass­
ing layers and the read out function. Let us consider an input graph for which the
state of its nodes is represented by vectors h0

v ∈ Rd, and the state of its edges by vec­
tors e0v,w, where v and w run over the nodes of the graph. At each message­passing
layer k a messagemk+1

v is received at every node v from the nodes it is connected to,
w ∈ N(v):

mk+1
v =

∑
w∈N(v)

Mk

(
hk
v ,hk

w,ekvw
)
. (3.5)

This message is computed as the message function Mk(·), which depends on the
current state of the receiving node hk

v , its neighbors hk
w, and the edges connecting

them ekv,w.

Then, the receiving node v updates is state using the state transition function Sk(·),
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which is a non­linear function of its current state and the message received:

hk+1
v = Sk

(
hk
v ,mk+1

v

)
. (3.6)

It is also possible to update the state of the edges accordingly, by using the edge
update function Ek(·) and the states of the edge and the nodes it connects:

ek+1
vw = Ek(hk

v ,hk
w,ekvw). (3.7)

The output of the layer is, thus, a new graph, where the states of the nodes and edges
have been updated. It is usual to concatenate several message passing layers, so that
the state of each node “learns” the properties of its surroundings. Finally, the updated
state of the graph is used to predict the output of the neural network y, modelled as
some read out function R(·) of the stats of all the nodes {hv} in the graph G:

y = R ({hv ∈ G}) . (3.8)

In general, the underlying functionsMk, Sk, Ek and R will be non­linear functions, and
can be parametrized as one or several convoluted units in the form of 3.4. In this way,
message passing neural networks are able to learn a vectorial representation of the in­
formation displayed as a graph that best predicts the target in a flexible “all­in­one” way.

The flexibility of neural network models results in a universal approximation framework:
provided enough hidden layers are used, a neural network is able to approximate any
non­linear function [39, 40]. This flexibility, however, comes at a cost. The complex­
ity of most neural network models makes them difficult to interpret, since inputs are
processed multiple times by different non­linear units. Often, the result of the fit is
some sort of black box, from which good predictions can be extracted but no further
conclusions can be inferred.

This flexibility also means that the size of the training set size that is needed to produce
small generalization errors is large compared to other methods. As a consequence,
neural networks also often turn out to be computationally demanding to train (despite
it being fast to evaluate).

3.3 Kernel methods
The central characteristic of these methods is the use of a function of two points in
the input space called the kernel: x,x′ ∈ Rd, k(x,x′) : Rd × Rd → R. This function
encodes a non­linear transformation of the arguments and an inner product of the result
in the transformed space, even though the functional form of the transformation might
not be explicitly available. This characteristic allows to use complicated non­linear
transformations of the arguments. By regarding the kernel as a similarity measure
between two points in input space, these methods provide a flexible non­linear way of
interpolation.
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Kernel methods can be used to generalize linear regression of non­linearly trans­
formed arguments, in a method called the kernel ridge regression. The basic equation
for kernel ridge regression reads [38]:

f(x) =
n∑

i=1

αik(x,xi). (3.9)

Note that since kernel ridge regression has many parameters αi as points in the train­
ing set xi, it is possible for the prediction f(x) to go through all the points in the absence
of regularization.

The coefficients αi in equation (3.9) can be expressed in matrix form as follows. Let
X = (x1,x2, . . . , xn) denote the design matrix and let us define k(x,X) = (k(x,x1),
k(x,x2), . . . , k(x,xn)) and k(X,x) = (k(x,X))T . Let k(X,X) denote the Gram matrix:

k(X,X) =


k(x1,x1) k(x1,x2) . . . k(x1,xn)
k(x2,x1) k(x2,x2) . . . k(x2,xn)

...
...

. . .
...

k(xn,x1) k(xn,x2) . . . k(xn,xn)

 . (3.10)

Since the kernel function is in fact the result of an inner product in a transformed space,
the Gram matrix is the matrix collecting the inner products of a basis, in this case,
of the points in the training set used as vector basis, hence the name of this matrix.
Consequently, as it follows from the basic properties of inner products, the Grammatrix
k(X,X) must be symmetric and positive (semi­)definite1.

The prediction of the kernel ridge regression method can them be written as:

f(x) = k(x,X) C−1y (3.11)

where y = (y1, y2, . . . , yn), C is the regularized Gram matrix, C = k(X,X) + σ2
nI, σn is

the regularization and I is the identity matrix.

The prediction in equation (3.11) can be obtained from a different point of view: in the
Bayesian framework, this equation can be interpreted as the average prediction of a
Gaussian process regression (GPR).

In Gaussian process regression, the model for the data is a stochastic process with
label x, which assumes that all the variables f(x) are given by a multi­dimensional
Gaussian distribution. Hence, the model is a probability distribution over functions of
x and it is fully specified by a mean function of x and a covariance function of x and x′.

In this Bayesian framework, a prior probability distribution over function space before
any data is presented is assumed. If the prior distribution is assumed to be Gaussian,
it can be fully specified by its mean function, m(x), also called the prior function and
its covariance function, k(x,x′), also called the kernel:

p(f) = N (m(x), k(x,x′)) . (3.12)
1These two characteristics (k(X,X) being symmetric and positive (semi­)definite), become very handy

when debugging the implementation of kernels that include derivatives.
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As for the Bayesian likelihood p(y|f(X)), that is, the probability of the targets y if the
model f is assumed to be true, the usual assumption is taken: observations are inde­
pendent and each observation is distributed as a Gaussian distribution p(yi|f(x)) =
N (f(xi), σ2

n) around the prediction with variance σ2
n, which models the noise in the

data.

The posterior probability p(f |y,X), that is, the probability of the model’s output given
the training data, can be obtained from Bayes theorem:

p(f |y;X) ∝ p(y|f(X))p(f). (3.13)

It is easy to see that the posterior probability will be a Gaussian process itself (i.e. a
set of Gaussian distributed random variables labelled by the continuous variable x),
hence the name of the machine learning method. It can be shown that the mean of
the Gaussian process is the function [38, 64]:

µ(x) = m(x) + k(x,X) C−1 (y−m(X)) (3.14)

and the variance at a given point x is:

σ2(x) = k(x,x)− k(x,X) C−1 k(X,x). (3.15)

Thus, the predictions of the Gaussian process regression are determined exclusively
by the data X and y, the prior expectations of the user on the value m(x) and the
correlation model between points k(x,x′), as well as the noise value σn. An example
of Gaussian process regression can be found in Figure 3.3.

It is interesting to note that the equation for the average prediction of the Gaussian pro­
cess (3.14) recovers the expression for the prediction of kernel ridge regression (3.11)
when m(x) = 0, exposing the connection between the two methods. The Bayesian
framework offers, in addition to the prediction provided by the kernel ridge regression,
a measure of the uncertainty on the prediction, since the variance σ2(x) can be used to
obtain a range of likely values of the prediction. We note that the uncertainty depends
only on the distribution of the data and the prior assumption on the correlation function
between points, being a measure of how correlated the test point x to the training set
according to the kernel function k.

The Bayesian approach in Gaussian process regression also provides a way to build
better models. It is usual to encode the prior assumptions in a flexible way by consid­
ering a family of prior and kernel functions that depend on a set of hyperparameters,
rather than by fixed functions. The hyperparameters of the Gaussian process θ, which
may include the regularization σn in addition to the hyperparameters in the prior and
the kernel, can be determined by maximizing the marginal likelihood [64]:

log p(y|θ;X) = −1

2
(y−m)TC−1(y−m)− 1

2
log det(C)− n

2
log 2π, (3.16)

wherem = m(X). Gaussian process are one of the few machine learning methods for
which not only an analytic closed expression is available for the marginal likelihood, but
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Figure 3.3: Example of Gaussian process regression. The left panel shows the prior
probability distribution before any data is known by themodel and the right panel shows
the posterior distribution, i.e. the fit to the data. The blue line shows the average pre­
diction and the shaded area, the uncertainty. A prior constant function has been used,
together with the squared exponential kernel as a function of Cartesian coordinates
(see Chapter 5 for details). The hyperparameters used to build the probability distribu­
tions in both panels have been obtained by maximizing the marginal likelihood.

also for its partial derivatives with respect to the hyperparameters θ [64], allowing to find
the optimal values of the hyperparameters by optimizing the marginal likelihood with a
gradient­based optimizer (see Chapter 4) instead of falling back to cross­validation.

Furthermore, in the context of Gaussian process regression formaterials andmolecules,
it is usual to use a descriptor or fingerprint for each point (see Section 3.4), which might
be a family of non­linear transformations x = ϱ(z; θfp) of some simpler descriptor z and
some hyperparameters θfp. Since the kernel is a non­linear transformation, one can
regard the kernel as a function in the space of the simpler descriptor k(ϱ(z), ϱ(z′)) and
see the hyperarameters of the fingerprint θfp as hyperparameters of the kernel. In this
way, the Bayesian approach can be used also to determine the hyperparameters of
the fingerprint that describe the target best.

The Bayesian connection and the access to analytical expressions to compute quanti­
ties of interest such as the uncertainty or the optimal hyperparameters make the Gaus­
sian process regression a method that is easily interpretable. The appropriate choice
of a kernel function can be used to enforce the prior knowledge on the data in a clear
and often unbiased way, easing the learning process.

The main drawback of this method is, however, the poor scaling with the size of the
training set. Equations (3.11), (3.14), (3.15) and (3.16) involve the inverse of C. Since
C has n2 entries, the computational cost of solving the linear algebra problem typi­
cally scales cubically with the size of the training set size O(n3) (at least, if the usual
Cholesky factorization is used [65]) and the cost of storing the matrix scales quadrat­
ically wit the size of the training set O(n2) [64]. As a consequence, the cost of these
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methods becomes prohibitively expensive for large data sets.

3.4 Descriptors and fingerprints
So far in this chapter, the methods that have been used to generalize from atomic
structure calculations have been introduced. However, the choice of the shape of the
input into such methods is of similar importance as the choice of the method itself when
machine learning models are built.

However, for most tasks in computational materials science and chemistry, the choice
of the input is not straightforward. As discussed in Section 3.1, a good descriptor can
reduce the number of examples needed for training, while a bad one can prevent the
model from reaching the target accuracy.

One can think of many of the descriptors presented in literature as “foldings” of the
input space (as described, for example, with Cartesian coordinates) that map physi­
cally equivalent regions into each other. This way a large number of regions can be
described with less examples by the subsequent machine learning model, which will
generalize non­locally in the input space.

It is crucial that the mapping into the same region only happens for configurations
that are physically equivalent. The wish list of properties of a good atomic descriptor
includes the following [66–69]:

1. complete: The descriptor should include all the information necessary to model
the targets. Failure to comply with this requirement will result in underfitting.

2. non degenerate: Two physically distinct atomic structures should have differ­
ent descriptors. Otherwise, the machine learning method will interpret the differ­
ences in the target values as noise in the data.

3. unique: Physically equivalent configurations should have the same descriptor:
descriptors should be invariant under rigid translations or rotations of the full
system, under the transformations in the point group of the molecule or the space
group of the material and under the permutation of the indexing of two atoms of
the same species.

4. descriptive: Similar structures should have similar descriptors. In this sense, it
would also be desirable the descriptors were continuous (since discontinuities in
the descriptor may propagate through the machine learning algorithm to produce
discontinuous predictions of physical properties) and compact, that is, introduc­
ing the minimum amount of redundant unnecessary features.

5. computationally efficient: Otherwise, it might be faster and more accurate to run
the electronic structure calculation instead.

6. general: They should be applicable to many different atomic systems instead of
being system specific, making the learning transferable. In addition, being useful
to model more than a single property of the material is a beneficial property of
descriptors.
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The first two properties are fundamental to any representation: if the descriptor is not
complete and non degenerate, the machine learning model may not be able to extract
all the patterns present in the underlying data because of the biased representation.
The relevance of the other properties may depend on the machine learning algorithm
used for the purpose and the target application. For example, the application could use
a machine learning algorithm that is invariant under a certain symmetry transformation
instead of enforcing the symmetry on the fingerprint, or the descriptor of the atomic
structure used may be computationally expensive and not transferable (i.e. general)
in an application for which no deterministic algorithm is known.

There is an increasing amount of descriptors for atomic structures, be it molecules,
materials or both; proposed in literature, along with an also large number of descrip­
tors of other inputs (such as the density of states) relevant for molecular and materials
science. Among the more popular fingerprints one finds the Coulomb matrix [70], the
bag­of­bonds descriptor [71], the Many Body Tensor Representation (MBTR) [67], the
Oganov­Valle fingerprint [72], the Behler­Parrinello Atom­Centered Symmetry Func­
tions (ACSF) [73] or the Smooth Overlap of Atomic Potentials (SOAP) [68]. These
and many other fingerprints have also been benchmarked against each other [69, 74,
75] and compiled into libraries [69].

In the following, the descriptors used in this thesis are discussed. First, the Carte­
sian coordinates, one of the simplest atomic descriptors, is discussed, followed by
the Oganov fingerprint (a vectorial fingerprint) and the quotient graph of a material, of
non­vectorial nature.

3.4.1 Cartesian atomic coordinates as a descriptor
One of the simplest descriptors of the structure of materials and molecules is the po­
sitions of the atoms in Cartesian coordinates. A simple way of obtaining a vectorial
input is to map all the atomic positions into a unit cell and then concatenate them, so
that the descriptor x becomes:

x = (R1,R2, . . . ,RN ) , (3.17)

where Ri is the position in Cartesian coordinates of the i−th atom andN is the number
of atoms in the unit cell.

It is easy to see from the Hamiltonian of the atomic problem (2.10) that the Cartesian
coordinates as a descriptor is already complete, i.e. it contains all the information we
might need, if the system is not periodic or if the lattice vectors are kept fixed. For
periodic systems, it suffices to add the lattice vectors at the end of the array to achieve
completeness. It is also non­degenerate, in the sense that it can distinguish physically
different configurations.

The main drawback of the Cartesian coordinates as descriptor is the absence of invari­
ance under symmetries: the same physical configuration has infinitely many descrip­
tors associated to all the possible translations and rotations of the reference frame.
However, their simplicity, computationally efficiency and general good behaviour make
them a frequent choice in some contexts, specially when describing local neighbor­
hoods of the PES.
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Figure 3.4: The modified Oganov fingerprint for TiO2. The x axis shows the vector
index and the y axis the value of that index in arbitrary units. The labels on the plot
indicate if the index corresponds to the radial or the angular distribution and the atomic
species involved. The values of the parameters are described in paper V. Figure cour­
tesy of Sami Kaappa.

The Cartesian coordinates have been used in Papers II, III and IV in this thesis. As
noted in Paper IV Machine Learning with bond information for local structure optimiza­
tions in surface science, the use of Cartesian coordinates in combination with an in­
variant kernel can still result in a machine learning method that enforces certain sym­
metries, such as the translation invariance.

3.4.2 Modified Oganov fingerprint
In Paper V Global optimization of atomic structures with gradient­enhanced Gaussian
process regressionwe have used an extension to the fingerprint developed by Oganov
and Valle [72] (from here on, it is referred as modified Oganov fingerprint). The finger­
print for a given atomic structure used there can be seen as a concatenation of the
radial fingerprints and angular fingerprints.

The radial part of the modified Oganov fingerprint ρRAB for atomic species A and B is
the vector:

ρRAB(r) =
∑
i∈A
j∈B

e−|r−rij |2/2δ2R

r2ij
fR
c (rij) (3.18)

where i and j run over atoms in the atomic structure of the atomic species A and B,
rij is the distance between atoms i and j, δR is a smearing parameter and fR

c is the
radial cutoff function that goes to zero for some finite value of its argument, ensuring
the sum is finite. r is a “sample” interatomic distance that acts as an indexing for the
vector ρRAB .
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The angular part of the modified Oganov fingerprint ραABC as a function of the indexing
angle θ reads:

ραABC(θ) =
∑
i∈A
j∈B
k∈C

e−|θ−θijk|2/2δ2α fα
c (rij) f

α
c (rjk). (3.19)

Similarly, i, j and k run over the atoms in speciesA,B andC, θijk is the angle between
atoms i, j and k, δα is the the angular smearing parameter and fα

c is the angular cutoff
function.

The two cutoff functions fR
c and fα

c , that avoid introducing into the fingerprint terms
where the interatomic distance rij is large, have been chosen as a piece­wise polyno­
mial:

fc(r) =

1− (1− γ)
(

r
Rc

)γ
+ γ

(
r
Rc

)γ+1

when r ≤ Rc

0 when r > Rc

(3.20)

and depend on two different parameters, the cutoff radius Rc and the degree of the
polynomial γ, that need to be optimized separately in the radial and angular case to
obtain the best representation. We have chosen to use a degree of the polynomial
γ = 2 in the radial part in order to compensate for the r−2 decay in the radial fingerprint
and γ = 0.5 in the angular part to ensure a smooth decay.

Combining all together, for an atomic structure with A,B, . . . ,X atomic species, the
modified Oganov fingerprint ρ reads:

ρ = (ρRAA, ρ
R
AB , . . . , ρ

R
AX , ρRBA, . . . , ρ

R
XX

ραAAA, ρ
α
AAB , . . . , ρ

α
AAX , ραABA, . . . , ρ

α
XXX). (3.21)

An illustration of the modified Oganov fingerprint for TiO2 is shown in Figure 3.4.

Since it only depends on the atomic positions through the interatomic distance and the
angles between them, the modified Oganov fingerprint is invariant under translations
and under rotations and reflections of the frame of reference (group SO(3)).

The modified Oganov fingerprint is also invariant under permutations of the labelling
of the atoms of the same species: the functional form of expressions (3.18) and (3.19)
as weighted sums of Gaussian functions of the interatomic distances results in this
characteristic.

3.4.3 Voronoi tessellation and quotient graphs
It is also possible to use non­vectorial representations of materials and molecules. In
fact, it could be argued that a graph structure where the atoms are represented by the
nodes of the graph and the edges stand for the bonds between atoms may be a more
natural way to encode the topology of an atomic structure. The graph can be used,
then, by a message­passing neural network algorithm to predict the properties of the
material (see Section 3.2), as it has been shown in recent publications [44, 61, 63, 76,
77].

Graph representations have been extensively used asmolecular representations, where
the conversion of the structure into nodes and edges results more natural. However,
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Figure 3.5: Voronoi tessellation of the two dimensional tetragonal lattice with and with­
out noisy inputs. The points are shown in blue and their Voronoi cells are depicted with
lines. The Voronoi cells for the tetragonal lattice have squared shape, as shown in the
left panel. Adding white noise to the positions, as shown in the right panel, introduces
small faces in the resulting Voronoi cells. The original noise­free positions are also
shown in the right panel in lighter bigger circles for visual reference.

the question of whether two atoms should be connected or not by bond turns out to be
more challenging in the context of defining the representation of materials.

A possibility is to use a Voronoi tessellation of the space to define which atoms should
be connected to each other in a systematic way. Given a set of reference points (in
this case, the atomic positions), the Voronoi tessellation is a partitioning of the space
that assigns to each reference point all the points in the space that are closer to it
than to any other reference point. When the Euclidean norm is used in the three di­
mensional space, the Voronoi tessellation defines a polyhedron centered at each atom
whose faces result from the intersection between all the bisector planes to the lines
connecting the central atom to all its neighbors. We note that the tessels that result
from this construction correspond to the Wigner­Seitz cell [78, 79] for structures with
a single atom in the unit cell, since the Wigner­Seitz cell is also a Voronoi tesselation.
The construction of the Voronoi tessellation for the 2d tetragonal lattice is illustrated in
Figure 3.5 and the tessellation for BaSnO3 is illustrated in Figure 3.6(b).

The Voronoi tessellation is then used to define a graph: Each atom is assigned a
node and two nodes are connected by an edge if the Voronoi cells of their parent
atoms share a face. This representation has the advantage of being invariant under
translations and rotations, but however, it has the disadvantage of being very sensitive
to noise in the atomic positions [80].

As illustrated in Figure 3.5, small changes in the position of the atomsmight result in the
creation of small spurious faces. Malins et al. [80] have proposed disregarding those
connections between two atomswhere the two atoms share a face but the line between
them does not intersect them, while Isayev et al. [81] have proposed to consider only
those bonds that are shorter than the sum of the Cordero covalent radii [82] plus a
tolerance to alleviate this problem. Another solution, which we propose in Paper I, is
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(a) Atomic structure

(b) Voronoi tesellation (c) Quotient graph

Figure 3.6: Computation of the symmetry­labelled quotient graph from the atomic struc­
ture of BaSnO3, in the perovskite structure. Given an atomic structure (a), the Voronoi
tessellation using the atomic positions as centers is computed (b). Subfigure (b) shows
a depiction of the resulting polyhedra, where additional spacing between faces has
been introduced to improve visualization. The atomic symbol indicates the species of
the atom in the center of the polyhedron and the colors of the faces indicate the atomic
species of the neighbor the face is shared with. The Voronoi tessellation is used to
obtain the quotient graph (c): each atom in the atomic structure is assigned a node
and the nodes corresponding to two atoms are connected with an edge if they share
a face in the Voronoi tessellation. In panel (c) the edges of the graph have been la­
belled according to the symmetry group of the Voronoi face. Source: Paper I:Materials
property prediction without atomic positions using graph neural networks.

to only consider the connections defined by “large” faces, those for which the solid
angle defined by that face is larger than some threshold. Additionally, we show this is
a robust scheme, since the prediction of the heat of formation of the message­passing
neural network seems to be robust under small changes of this threshold when it is
trained on OQMD [30].
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Since the number of atoms in a crystal is infinite, the procedure described above pro­
duces infinite graphs, that is, graphs that have infinitely many nodes. It is possible to
obtain a finite representation of the graph, known as quotient graph [83], by choosing
as nodes of the quotient graph the atoms in the irreducible unit cell. Likewise, every
connection between a pair of nodes in the infinite graph is then mapped to an edge
between the two nodes of the quotient graph that represent the two unit cell atoms the
original atoms can be mapped into by a lattice translation. It might happen that two
nodes that share an edge in the infinite graph are mapped into the same node in the
same quotient graph. The edge then becomes a loop connecting the atom to itself.
Thus, the quotient graph for gold in the face centered cubic structure results in a gold
node with 12 connections to itself, for example.

The full method for obtaining the quotient graph from the atomic structure followed
in Paper I: Materials property prediction without atomic positions using graph neural
networks, is illustrated in Figure 3.6 for the perovskite structure of BaSnO3.

The advantages of this descriptor, as mentioned above, include the translation and
rotation invariance that are inherent to the Voronoi tessellation. Additionally, when
used in combination with the message­passing neural network, the method is also
invariant under permutations of the atoms of the same species.

More over, this construction is invariant under changes of scale if no additional la­
bels are added. This characteristic makes it possible to use the Voronoi tessellation
quotient graphs to represent abstract atomic structures or prototypes by not including
information about the interatomic distances.

However, the quotient graph representation that only involves the connectivity and the
atomic species has the drawback of being degenerate: physically distinct structures
may have the same decriptor. As a counterexample, it is easy to see that the hexag­
onal close­packed and the face centered structure, both having 12 nearest neighbors
collapse into the same representation when the permutation invariance is enforced by
the machine learning method. Klee [84] provides further examples of sets of different
structures that are described by the same quotient graph and proposes how symme­
try may alleviate this drawback. Consequently, machine learning methods based on
quotient graph connectivity solely will not be able to reduce the training error further
than the energy difference between pairs of structures with the same representation:
i.e. it cannot be expected that the error on gold face centered cubic to be smaller than
half of the energy difference between the fcc and the hcp structures if hcp structures
are also included on the training set.

For the prediction of the heat of formation, the connectivity only quotient graphs are
also not complete representations. Since the potential energy of the atoms includes a
Coulomb repulsion potential, it is easy to see that a change in the scale of the crystal
structure will also change its energy. In this way, the invariance under changes of scale
of the representation becomes a blessing and a curse at the same time: it enables to
make predictions directly on prototypes of structures, but it must be used with caution,
knowing that the machine learning method will never be able to go beyond certain
accuracy.
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4 Optimization of atomic structures
Theminima of the potential energy surface are of great importance tomaterials science
and molecular physics research, as discussed in Chapter 2. Given the complicated
nature of the ab­initio (from electronic structure calculations) potential energy surface,
its optimization usually requires the use of a numerical method.

There are many numerical methods for optimization proposed in literature [12, 85]. It is
important to choose an adequate method for the problem at hand that makes the most
of the information available and is able to solve it fast. In the optimization of potential
energy surfaces, the high computational cost of each energy/force evaluation makes
makes it important to reduce the number of such evaluations to the minimum in order
to reduce the computational cost of the optimization method.

In this chapter, some of the most common approaches for optimization used on poten­
tial energy surfaces are introduced.

4.1 Local optimization
Local optimization methods are numerical methods that do not directly attempt to find
the global minimum, but just aim to find an atomic configuration whose potential energy
surface is lower than the surroundings [86]. Given that, in general, the potential energy
surface is not a convex function of the positions of the atoms1, a local optimization
method will not find the global minimum, but rather a local one.

The most commonly used methods address the problem in a iterative manner: starting
from a initial configuration they take a series of steps aiming to reduce the energy
compared to the previous steps until they reach convergence to a given configuration.
Most implementations of local optimizers on potential energy surfaces, including those
in ASE [16, 17], terminate the iteration when all the forces on the atoms fall below a
predefined threshold. In other words, the stopping criterion for local optimizers is given
by:

h ≤ max
i∈atoms

|fi|, (4.1)

where h is the threshold for convergence and the right hand side of the inequality is
the maximum of the modulus of the force among the atoms in the unit cell.

The size of the step taken by the optimization method at each iteration is one of the
main indicators of its computational cost. Large steps typically may result in a reduction
of the number of iterations needed to reach convergence, reducing the computational
cost by reducing the number of expensive ab­initio calculations. However, too large

1It is said that a function f is convex if its domain is convex and for any two points x and y in the domain
of f , f satisfies:

f(ax+ (1− a)y) ≤ af(x)− (1− a)f(y) for all a ∈ [0, 1].

The domain is said to be convex if the straight line connecting any two points in the set also lies in the set
[86].
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Figure 4.1: Illustration of the direction of the force for potential energy surfaces that
are isotropic (left panel) or anisotropic (right panel) around the minimum (marked with
a cross). The curves show the level sets. When the curvature around the minimum is
similar in all directions, the force points towards the best direction for a local optimiza­
tion step. However, in poorly scaled problems where the curvature is very different in
two directions, the direction of the force might not lead to the minimum.

steps may reduce the robustness of the method, since the algorithm might get con­
fused and not perform well depending on the details of the potential energy surface. In
the following, the strategies to control the computational cost used by the most popular
local optimization algorithms are reviewed.

4.1.1 The gradient
The use of a gradient based optimization method is very advisable for atomic structure
optimization problems. By virtue of the Hellmann­Feynman theorem (2.13), the gradi­
ents of the potential energy surface come at little additional computational overhead
when the energy values are computed. The use of the gradient information in the local
optimization usually reduces the number of steps needed to find the potential energy
minimum, reducing the overall computational cost.

The gradient provides with the direction along which the energy is decreasing the
fastest, and thus it would seem like the most obvious choice for the direction of the
step. However, it is worth noting that under many circumstances, just following the
direction of the forces to find the minimum (known as gradient descent method [86])
leads to many optimization steps.

In some systems, the curvature of the potential energy surface in some direction is
larger than the curvature in a different direction by several orders of magnitude. This
can happen, for example, when in a system presents bonds with very different degrees
of stiffness, such as a molecule loosely bonded to a metallic surface. This situation
is known as a poorly scaled optimization problem, and it can cause difficulties to con­
verge to certain algorithms, such as to gradient descent. In poorly scaled problems,
the forces do not point, in general, towards the minimum: as a consequence, gradient
descent trajectories inefficiently zigzag their way towards the minimum. An illustration
of this phenomenon can be found in figure 4.1.
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The problem of the scaling in atomic structures with different types of bonds is central
to the local optimization of potential energy surfaces. In the following sections, some
of the most common methods addressing this question are presented.

Before moving forward, let us review some properties of the algorithms and the solu­
tions they find.

A point x∗ is said to be a stationary point of the objective function E(x) if it has zero
force f∗ = 0. We note that such points are called stationary points since the algorithm
will stop its iteration and consider that convergence to a solution has been reached. It
is important to note that, even though all local minima of a smooth potential energy sur­
face are stationary points, the converse is not true, since saddle points and maximum
points also fall in this category. Local optimizers usually converge to a local minimum
or saddle point in the same basin as the initial configuration.

A related and important concept is that of global convergence: A local optimization iter­
ative method is said to be globally convergent if it generates a sequence of points that
converges to a stationary point from any given initial point, [86], this is, the sequence
of forces fulfills:

lim
k→∞

∥fk∥ = 0. (4.2)

This is a robustness requirement for any optimization algorithm: if a method is globally
convergent, it will find a solution starting from any initial structure.

However, global convergence is not the only important requirement for a good opti­
mization method, since a method might be guaranteed to find the solution but might
also require a large number of DFT evaluations to find it. For this reason, it is important
to study the reduction of the distance to the minimum or the reduction of the magnitude
of the gradient with each step when the starting point is in the neighborhood of the min­
imum. This property is called convergence rate (also referred to as local convergence).
A usual form to express the convergence rate of an iterative algorithm to a stationary
point x∗ is by showing that the method reduces the error in each step, leading to an
expression in the following form:

∥xk+1 − x∗∥ ≤ L∥xk − x∗∥p, (4.3)

where L is a positive constant and p is the convergence rate. If p = 1, the method is
said to have linear convergence, if it is p = 2, the method has quadratic convergence.

4.1.2 Newton and Quasi Newton Methods
A way to correct for the difference in curvature along different directions is to use infor­
mation about the second order derivatives of the potential energy surface. It is possible
to use the second order Taylor approximation around the current configuration xk :

E(xk + p) ≈ Ek − pT fk +
1

2
pTHkp, (4.4)

to find the step with the optimal direction p within this model:

p = H−1
k fk. (4.5)
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Here, Ek, fk and Hk are the energy, the force and the Hessian matrix at xk. A local
optimizer using a second order model like (4.4) of the potential energy surface to guide
the search for the minimum is called a Newton method, and the direction defined in
expression (4.5) is called the Newton direction.

It is easy to see how the Newton method solves the scaling problem, specially, in
the neighborhood of a minimum. Moreover, Newton methods are often globally con­
vergent (provided that the Hessian matrix is not ill­conditioned) and usually exhibit
quadratic local convergence rate towards the minimum [86]. However, Newton meth­
ods have the drawback that they require the knowledge of the Hessian matrix at every
step. Since the Hessian of a potential energy surface must be computed using finite
difference methods (as explained in Section 2.2.1), the computational cost of Newton
methods makes them unpractical for most atomic systems.

A possibility is to substitute the Hessian matrix Hk in equations (4.5) and (4.4) for an
approximation to it Bk. A common practice is to start with an initial estimation of the
Hessian (by using finite differences [12, 87] or by choosing an initial estimation of the
Hessian matrix that is proportional to the identity, B0 ∝ I) and then to update this initial
estimation along the way with the force and the energy information:

Bk+1 = Bk + f(Bk,∆xk+1,∆fk+1) (4.6)

where f is a function of the previous estimation of the Hessian matrix Bk and the
difference between the atomic coordinates∆xk+1 = xk+1−xk and the forces∆fk+1 =
fk+1 − fk of the previous step. Local optimization methods that proceed in this way
are called quasi­Newton methods, and they have been extensively used in potential
energy surface optimization [12, 13]. Probably, the most used expression of the form
of equation (4.6) is the Broyden, Fletcher, Goldfarb and Shano (BFGS) formula (4.8),
that will be discussed later, but it is noteworthy that several of these expressions have
been proposed in literature [86, 88, 89].

Once one has a local model such as the one presented in equation (4.4), there are
two families of strategies to build an iterative method that leads to the minimum: line
search methods and trust region methods [86].

As noted above, Newton and quasi­Newtonmethods provide with a preferential optimal
direction, (4.5) (if the Hessian is positive definite, as we will discuss below). The line
search method for local optimization then proposes a step along this direction,

xk+1 = xk + αkpk, (4.7)

where αk is known as the step length. Once fixed the direction, the step length αk

has to be determined so that the step results effective: the algorithm minimizes the
function along the line of choice, hence the name.

In order to reduce the number of DFT calculations needed in the line search, meth­
ods often take a new step if the new point xk+1 is suitable instead of aiming for the
exact line minimization [90]. Starting with αk = 1 (which leads to the minimum of the
Taylor expansion), approximate line search methods accept or reject a step size αk
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if the resulting point fulfills two conditions: a sufficient decrease condition, ensuring
that the step was long enough to produce enough decrease of the energy and a cur­
vature condition, that requires sufficient change of the projection of the force along the
direction of search, preventing very small steps [86]. If the point does not satisfy one
of these conditions, a new point is generated until a point fulfilling both conditions is
found. These conditions ensure the global convergence of a Newton or quasi­Newton
algorithm together with a reasonable convergence rate.

The other approach is the one used by trust region methods. The minimization algo­
rithm fixes the maximum step size δk the method is allowed to take and then finds
the point xk+1 that minimizes the model inside a ball of radius δk. The size of the
region where the model can be trusted is then increased or decreased depending on
the predicting performance of the method in the previous step: If the prediction of the
model was very close to the value of the DFT energy, the trust region radius δk can
be increased in the following iteration (since steps that are both “good and large” lead
to a reduction of the DFT steps needed to minimize the function), meanwhile if the
prediction differs too much from the DFT calculation, the point is rejected and the trust
radius shrinked. For an intermediate difference between the prediction of the model
and the DFT calculation (i.e., the value is within a tolerance), the point is accepted and
the trust radius left unchanged [90].

This step size control method is then coupled with a trust region sub­problem solver,
which is then in charge of minimizing the quadratic Newton or quasi­Newton model
within the constrained region. Even though methods for finding sufficiently decreasing
approximations to the solution of the trust region subproblem exist [86, 91], they are
not necessary in the context of potential energy surface optimization, since minimizing
a quadratic function of the form (4.4) is much more computationally efficient than a
taking a single DFT calculation to reevaluate the energy and forces, and will appear
negligible in comparison.

Probably, the most widely used method for local optimization of atomic structures is
BFGS line search. As explained above, the BFGS formula is an expression to compute
updates to the approximation of the Hessian matrix in the context of quasi­Newton
methods:

Bk+1 = Bk −
Bk ∆xk+1∆xTk+1 Bk

∆xTk+1 Bk ∆xk+1
−

∆fk+1 ∆fTk+1

∆fTk+1 ∆xk+1
. (4.8)

The BFGS formula, which is a rank 2 update to the previous estimation of the Hessian
matrix, has the property that if the initial estimate of the Hessian is positive definite
(as, for example, B0 ∝ I), the BFGS update produces a sequence of positive definite
matrices Bk, provided that ∆xk ·∆fk < 0. This inequality is always fulfilled when the
BFGS formula is combined with a line search strategy of the kind described above [86].
This is important, since the direction B−1

k fk is only a descent direction, in general, if
Bk is positive definite. Other Newton and quasi­Newton implementations need spe­
cial corrections to deal with non positive definite Hessians, but the BFGS line search
method solves this problem in a natural way.
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Summarizing, the BFGS line search method proceeds in the following way: Starting
with a step parallel to the initial gradient, at every step it produces a convex quadratic
model and it chooses the direction towards the minimum of the model as the direction
of the next step. The method then evaluates the configuration that minimizes the
quadratic model (αk = 1 in equation (4.7)) and performs a DFT calculation for it. If
the energy of the this configuration shows a sufficient decrease and the change in
the forces is sufficient to fulfill the curvature condition, the step is accepted and the
quadratic model is updated using the BFGS formula (4.8) (which is rank 2, so it updates
“two directions” per step). If the new energy and force do not fulfill these conditions,
as it will happen if the model and the true potential energy surface are very different,
the point is rejected and the step length is changed, resulting in a new DFT calculation
along the same direction as the original one. This process is iterated until the energy
and the force of a new point fulfil the conditions for the line search, and then a new
convex quadratic model is obtained from the information of the last point.

In regions where the potential energy surface does not have a positive definite Hessian,
the convex quadratic model that BFGS line search builds is doomed to fail. Surpris­
ingly, BFGS has been shown both analytically and experimentally to have very good
self­correcting properties [86, 92]: when the approximation of the Hessian Bk differs
substantially from the true Hessian H(xk), the line search needs more evaluations to
converge, but after a few iterations the BFGS approximation to the Hessian tends to
correct itself. As a result, BFGS line search also tends to be robust to numerical noise.

Good global convergence properties have been experimentally observed for methods
of the BFGS line search class, and the global convergence for a general class of non­
convex functions has been mathematically proved for a specific set of line search con­
ditions recently [93, 94]. In addition, BFGS line search also exhibits good local con­
vergence properties, with a superlinear convergence rate in the vicinity of a stationary
point [86].

Storing the approximation to the Hessian can be computationally expensive for sys­
tems with a large number of atoms. An alternative is to use the light memory BFGS
algorithm (L­BFGS). In this method, the list of the last n configurations x and forces f
are used to compute the product B−1

k fk at each step without computing the matrix Bk

explicitly.

4.1.3 Other approaches for local optimization of atomic
geometries

Local optimization literature has abundant examples of optimization methods other
than the Quasi­Newton family. One of the most common methods outside the quasi­
Newton class is the conjugate gradient method [65, 86]. In the conjugate gradient
method, the line search for the minimum takes place along directions that are conju­
gate to each other, in the sense that pT

i Hpj = 0 for i ̸= j. These directions are not
only linearly independent, but can be shown to be the optimal subsequent line search
directions to minimize a quadratic function [86]. Since this method only needs to store
the previous search direction, energy evaluation and force, as opposed to storing an
estimation of the Hessian in the Quasi­Newton methods, makes this method suitable
for larger systems.
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A number of minimization algorithms based on molecular dynamics is also available
[95–97]. The molecular dynamics minimizer proposed by Jónsson et al. [95] per­
forms a molecular dynamics calculation with all atomic masses equal to one and with
“restarts”: whenever the dot product of the force and the velocity is negative, the mini­
mum has been “overshot” and the velocity is set to zero. Bitzek et al. have proposed an
improvement of such method, called fast internal relaxation engine (FIRE) by introduc­
ing a velocity­dependent friction term in the velocity update in the molecular dynamics
step, while maintaining the velocity restarts when the motion turns out to be uphill.
This method has been shown to be faster than conjugate gradient while having a low
computational cost, and its performance is competitive with limited memory BFGS line
search methods[97].

Finally, a way to help with the ill conditioned nature of the optimization of some atomic
geometries is to introduce a preconditioner. A preconditioner of a local optimization
method C is a transformation of the input space of the form xnew = C(xold)xold such
that the eigenvalue distribution of the eigenvalues of the Hessian in the transformed
space is more favorable to the optimization method than the original one [86]. Along
these lines, Packwood et al. introduced in 2016 a preconditioner based on the lapla­
cian matrix of a weighted graph derived from the atomic structure and showed that
it lead to a significant reduction of the number of DFT evaluations needed to find a
minimum when combined with a quasi­Newton line search method [98]. During our
investigations, we have found that this method, as implemented in ASE [16] is not
globally convergent, since the curvature condition is not enforced in the line search
and this allows the method to take very small steps without converging to a minimum
for a small percentage of the systems studied. More recently, Mones et al. [99] have
introduced a preconditioner based on the Hessian of a faster but less accurate inter­
atomic potential and shown that this leads to a further reduction of the DFT evaluations
needed to find the minimum energy configuration.

4.2 Global optimization
Finding a local minimum of the PES, which is in general a non­convex function, often
provides with little information about the global minimum. Except for the cases in which
the search can be guided by physical intuition, in order to find the true global minimum
one needs to use a set of techniques that are very different to those introduced in the
previous section.

A possibility would be to explore all the relevant configuration space in a deterministic
manner. However, it is easy to see that this approach will be limited to systems with
just a few atoms. The curse of dimensionality (the dimensionality of the PES is 3N −6
and the number of possible configurations grows combinatorially with the number of
atoms [100, 101]) together with the computational cost of quantum chemistry methods
often make this approach impractical [102].

In contrast, meta­heuristic approaches to the global optimization problem [90, 103]
have been quite successful at overcoming the dimensionality problem [85]. Some
examples of such methods include random searching [14], evolutionary algorithms
[100, 104–106], swarm particle optimization [107] and basin hopping methods [108],
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which have been shown to be successful methods for global optimization of atomic
structures.

This kind of methods include a random component governed by a deterministic strat­
egy, in an attempt to map the general structure of the PES with as few as possible
energy­force calculations. Thus, they combine an exploration strategy aimed to ex­
plore as many local minima as possible with an elitist or exploitative strategy, aimed
to use the information from the already explored areas to determine which areas are
worth exploring more. Since there is no guarantee that the global minimum has been
found unless the full PES has been mapped, which is often impractical, it is important
to find a balance between exploration and elitism in order to achieve the convergence
of the method within a reasonable computational expense [109].

Recently, the use of machine learning methods in the identification of the global min­
imum has become a more widespread technique [85, 101]. As explained in Chapter
3, it is possible to build machine learning models that accurately reproduce the poten­
tial energy surface and to use them to make predictions at a fraction of the cost of a
quantum chemistry method. The following section introduces Bayesian optimization,
a technique that benefits from a Bayesian model to guide the heuristics of the global
search.

4.2.1 Bayesian optimization
Bayesian optimization is an global optimization method that uses a surrogate proba­
bilistic model to guide the exploration of the target function. It has two main compo­
nents: a Bayesian model of the target function and a policy to decide which point to
sample next, called acquisition function [110, 111].

Bayesian optimization uses Bayesian probabilistic models: the models include a prior
probability distribution over possible functional forms of the target function and the
data that is acquired during the optimization is used to update the posterior probability.
A common choice in the context of potential energy surface optimization is to use
Gaussian process regression (see Section 3.3) as a probability distribution model. The
Gaussian process framework provides with a prediction and an uncertainty measure
in a natural way, since it models the distribution over target functions at every point x
as a Gaussian probability distribution with average µ(x) and variance σ2(x).

The acquisition function is a function of x that estimates the utility of the point to the
global search: it is the feature that balances exploration and exploitation in Bayesian
optimization. The optimization policy usually then proceeds by choosing the configura­
tion x at each stage that optimizes the acquisition function, and adds it to the training
set of the Bayesian model.

For example, in Paper V, we have used the lower confidence bound (LCB) acquisition
function in combination with Gaussian process regression:

αLCB(x) = µ(x)− κσ(x), (4.9)

where κ is the coefficient that dials the explorative character of the method. It is easy
to see that the values of x that minimize αLCB have either low predicted energy (ex­
ploitation) or large uncertainty (exploration), and thus, are the configurations a global
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Figure 4.2: Example of Bayesian optimization for a global optimization problem. The
target function in this problem, represented in orange, is potential energy surface of a
copper atom that slides over the surface created by two static copper atoms. The blue
curve shows the Gaussian process regression model that has been fitted to the train­
ing points, represented in black. The left panel shows the model and the acquisition
function when there is only one point sampled, belonging to the basin of the minimum
A. The acquisition function, represented in green, predicts the global minimum to be
in the basin B, since it has a higher uncertainty. The right panel shows the result of
probing the minimum of the model with the lowest acquisition function, and updating
the model and the acquisition function accordingly. Given the new information, mini­
mum B is identified as a local minimum, and the new acquisition function now suggest
probing the location of the global minimum A. Source: Paper V, Global optimization of
atomic structures with gradient­enhanced Gaussian process regression

optimization algorithm is interested in sampling. Jørgensen et al. have reported that
the value κ = 2 provides a good balance between exploration and exploitation in the
context of global optimization of atomic structures [109].

Figure 4.2 illustrates the development of a global optimization run. Basin B has a
higher true energy than basin A, but with the information provided with the first point, it
also has a larger uncertainty and thus, it minimizes the acquisition function. The global
optimization method then samples one structure at a time, the one that minimizes the
acquisition function. The minimum of basin B is then sampled and its energy and force
are Incorporated to the training set (see Section 5.1 for more details). The probability
model is then updated and the new acquisition function minimum matches the global
minimum of the potential energy surface, solving the global optimization problem.

It is important to carefully chose the prior to the Bayesian probability model in order
to ensure efficient convergence properties. For example, in Figure 4.2 the posterior
probability with just one training point is already able to correctly identify the position
of the basins of the different local minima thanks to a good choice for the kernel (see
Section 5.2 for a discussion on kernel choices). This reduces the amount of structures
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needed to sample to ensure the correct exploration of the PES.

Due to their data efficiency, Bayesian optimization methods have shown successful
results in many fields where the sampling of the target function is expensive [110]. In
particular, there are several examples of successful applications of Bayesian optimiza­
tion to atomic structure problems [112–117].

4.3 Transition state optimization
Identifying transition structures is, in general, more challenging than identifying local
minima. Algorithms for the identification of first order saddle points (see Section 2.2)
must maximize the function in one direction and minimize it in every other direction,
making many of the strategies presented in section 4.1 no longer useful. In this section,
a summary of some of the most relevant methods for this thesis is presented.

Generally speaking, transition structure optimization methods can be divided into two
classes: single ended methods and double ended methods [12]. The former try to
converge to the transition state iteratively, typically starting at the neighborhood of the
product or the reactant of the chemical reaction, while the later require the knowledge
of the product and the reactant atomic structures and try to find the transition structure
by estimating the minimum energy path.

Single ended methods must climb the potential in one direction while they minimize in
all other directions. If the starting structure is in the basin of a minimum (starting from
the reactants or the products), the Hessian matrix of the potential energy surface is
positive definite and the gradient points towards the minimum, so the usual gradient
descent or Newton dynamics would not take the algorithm towards the saddle point.

A common strategy for single ended methods to address this problem is to follow the
smallest eigenvalue of the Hessian. However, the bare computation of the eigenvalues
of the Hessian might be very computationally demanding, since there is no computa­
tionally efficient strategy to compute the Hessian from electronic structure calculations
analogous to the Hellmann­Feynman theorem 2.13.

There is a number of numerical methods to estimate the softest mode without directly
computing the Hessian Matrix [118–121]. In Paper III, we have used the dimer method
[122] to identify transition states. In this method, two atomic configurations, or images,
are considered at each step, hence the name. At each step, the dimer is rotated keep­
ing its center fixed to align the vector between the images with theminimum eigenvalue
of the Hessian, by minimizing the sum of the energies of the two images. The center
of the dimer is then pulled in the uphill direction, by reflecting the resulting force on
the center of the dimer about the axis perpendicular to the dimer, to converge to the
saddle point.

Double ended methods aim to obtain the minimum energy path, by representing it
with a set of discrete images [12]. The problem of the discrete representation of the
path comes from the fact that if all images were allowed to move in the directions of
their forces, they would collapse into each other. Thus, double ended methods need
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to constrain the movement of the images along the direction of the path to ensure its
correct representation.

The nudged elastic band (NEB) [95] solves this problem by adding a spring potential
between the images. The images are moved along the direction perpendicular to the
path using their true forces to update their position and the update uses the spring
constant in the direction parallel to the path. In this way, the method is able to converge
the initial string of images to represent the minimum energy path. A version of this
method, called climbing image nudge elastic band was proposed shortly after the initial
publication to force one of the images, known as climbing image, to converge to the
saddle point while retaining the convergence of the full band to the minimum energy
path. When the regular NEB is close to converging, the image with the highest energy
climbs up along the band while minimizing its energy in the direction perpendicular
to the band [123]. The rest of the images retain the behaviour of the regular NEB,
converging to the minimum energy path.

Recently, a numbermachine learningmethods have been proposed to speed up nudged
elastic band calculations [124–129]. In Paper III (see Section 6.3) we discuss how to
combine these methods with local optimization ones to reduce the computational over­
head of the computation of reaction networks.
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5 Gaussian process models of
potential energy surfaces

In Chapter 3 the notion of Gaussian process regression has been introduced and how
to obtain the hyperparameters has been explained. However, the details on the a priori
choices of the model that lead to a useful model of the potential energy surface has
not been discussed.

In this chapter, the main choices that lead to useful models are discussed. After in­
troducing the formalism to include the information of both the energy and the force of
each point is introduced, the different choices for kernels and priors used in this thesis
are discussed. The discussion also includes several tricks to choose the hyperparam­
eters or to obtain them in an efficient way, as well as the main challenges regarding
numerical stability.

5.1 The forces: Gaussian process regression
including gradient information

It is possible to extend the Gaussian process formalism introduced in Chapter 3 to
include information about the forces. By noting that a linear transformation of a kernel
is also a kernel itself, a method to model a function and its gradients can be modelled
as a multivariate Gaussian process [64, 130].

Let ϱ denote the descriptor used to represent an atomic structure with N atoms, and
let Ri be the position of the i−th atom. Let E be its energy and fi the force on the
i−th atom. Thus, it is possible to write the gradient of the energy with respect to the
Cartesian coordinates x = (R1, ,R2, . . . ,RN ) as the negative concatenation of the
forces over individual atoms −f = −(f1, f2, . . . , fN ).

The prior probability over functions of ϱ becomes now a multivariate distribution for the
joint energies and forces:

(E,−f) ∼ N (m(ϱ),K(ϱ, ϱ′)) , (5.1)

where m(ϱ) becomes now a 3N + 1 dimensional vector field where its first entry mod­
els the prior expectation on the potential energy and the remaining entries stand for
the prior expectation on the forces and K(ϱ, ϱ′) is the prior covariance, which in this
framework becomes a (3N + 1)× (3N + 1) matrix.

It is possible to obtain the kernel matrix function of the multivariate problem K(ϱ, ϱ′)
by extending the correlation model for the energies. Let us denote the energy­energy
correlation by the kernel function k(ϱ, ϱ′):

⟨E(ϱ), E(ϱ′)⟩ = k(ϱ, ϱ′). (5.2)
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Then, the energy­force and the force­force correlations can be obtained by differenti­
ating [64, 130, 131]:

⟨(E(ϱ),−fi(ϱ′)⟩ = ∇R′
i
k(ϱ, ϱ′) (5.3)

and
⟨fi(ϱ), fj(ϱ′)⟩ = ∇Ri

(
∇R′

j
(k(ϱ, ϱ′)

)T
, (5.4)

where∇Ri
represents the differentiation operator with respect to the i−th atomic Carte­

sian coordinate Ri. The full kernel including derivative information can be obtained by
arranging equations (5.2), (5.3) and (5.4) in matrix form [130]:

K(ϱ, ϱ′) =

(
k(ϱ, ϱ′) (∇x′k(ϱ, ϱ

′))
T

∇xk(ϱ, ϱ
′) ∇x (∇x′k(ϱ, ϱ

′))
T

)
. (5.5)

The rest of the procedure is an extension to multivariate distributions of the method
exposed in Section 3.3. Let ρ = (ϱ1, ϱ2, . . . , ϱn) be the design matrix. As usual, let
K(ϱ,ρ) = (K(ϱ, ϱ1),K(ϱ, ϱ2), . . . ,K(ϱ, ϱn)) and letK(ρ,ρ) represent the Grammatrix,
whose elements are given by (K(ρ,ρ))ij = K(ϱi, ϱj). The energies and forces of the
configurations of the training set are also arranged in an extended target vector Y
of the form Y = (E1,−f1, E2,−f2, . . . , En,−fn). In this framework, the regularization
becomes a matrix Σn:

(Σn)ij =


σE
n , if i = j and i mod(3N + 1) = 0

σfn, if i = j and i mod(3N + 1) ̸= 0

0, if i ̸= j,

(5.6)

where σE
n is the regularization on the energies and σfn is the regularization on the

forces.

The equations on the average prediction and the uncertainty at a trial configuration ϱ
look as usual:

(E(ϱ),−f(ϱ)) = m(ϱ) +K(ϱ,ρ) C−1 (Y −m(ρ)) (5.7)

V(ϱ) = K(ϱ, ϱ)−K(ϱ,ρ) C−1K(ρ, ϱ), (5.8)

where m(ρ) = (m(ϱ1),m(ϱ2), . . . ,m(ϱN )), C = K(ρ,ρ) + Σ2
n is the regularized matrix

and V(ϱ) is the variance of the Gaussian process at configuration ϱ. (V11)
1/2 is the

uncertainty on the energy and the square root of the remaining 3N diagonal entries
are the uncertainties on the forces.

An example of the use of derivatives in Gaussian process regression for a one dimen­
sional problem can be found in Figure 5.1. This figure makes evident the advantages
of training also to the derivatives in Gaussian process regression: Not only the re­
sulting model has the right values at the training points, but it is also forced to have
the right derivatives. As a result, with the same amount of training configurations, the
error of interpolation reduces significantly. The uncertainty, interpreted as a lack of
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Figure 5.1: Gaussian process regression with and without gradient information. The
target function is plotted in black, while the model (the average and the uncertainty)
are plotted in blue. The models here use the squared exponential function as a kernel
(see Section 5.2 for details). The hyperparameters of each model have been obtained
by maximizing the marginal likelihood with noise value σn = 10−3.

information in a sampled point that does not belong to the training set, also reduces
significantly around the training points.

In higher dimensions of the input space, the improvements are even more interest­
ing: by training also to the forces, the model trains to “3N + 1 pieces of information”
as compared to a single quantity when it is only trained to the energies, making the
predictions of the model converge to the target manifold faster.

A recent publication by Christensen and von Lilienfeld has confirmed that the afore­
mentioned characteristics result in an increase of the accuracy of Gaussian process
regression models for potential energy surfaces of molecules when the forces are in­
cluded in the training set [132]. As the authors note, the Hellmann­Feynman theorem
(see Section 2.2.1) provides numerical forces at a reduced additional computational
cost for most quantum chemistry codes, and hence this information is already avail­
able in most training sets. For these reasons, Gaussian process regression with forces
has recently become a preferred option for the modelling of potential energy surfaces
[125–127, 131–135]. It is possible to extend the formalism to include higher derivatives,
as Denzel and Kästner have recently shown [129], but the computational overhead of
computing higher derivatives numerically makes this technique only suitable for certain
applications.

Papers II to V in this thesis develop and use different methods for the navigation of po­
tential energy surfaces based on Gaussian process regression models that are trained
both on energies and forces. For this reason, in the following it is assumed that the
forces are included in the training set, unless otherwise stated.
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5.2 The kernel: Correlation models and prior
information

In Chapter 3 the notion of the kernel in a Gaussian process was introduced, but no
examples were presented nor a methodology to pick one was introduced.

The kernel of the Gaussian process represents the a priori correlation between points
of the potential energy surface. For this reason, choosing a good prior model can result
in a better posterior model, which has a reduced error with a given number of points,
or that requires less points (and thus, less computational effort) to achieve the same
accuracy. In the following, some of the common choices of kernel are discussed and
compared.

5.2.1 Stationary kernels
A common choice of the kernel function is to choose a stationary kernel, that is, a kernel
that only depends on the distance between the input configurations. Stationary kernels
have the property of being invariant under translations of the frame of reference of their
input space, since they only depend on the distance between the configurations [136].

There are many possible definitions of distance, but in the following discussion we
will restrict ourselves to consider stationary kernels those that are a function of the
distance in Cartesian coordinates |x − x′|, since it is common to represent and visu­
alize potential energy surfaces in this coordinate set and they are naturally involved
in the computation of the force. Other coordinate sets can be found in the next sec­
tion. Thus, the predictions of the kernels presented in this section are independent of
the origin chosen for the Cartesian coordinates, which is a desirable property to have
when working in this coordinate set.

Probably, one of the most common choices of a correlation model is the squared ex­
ponential kernel, also known as radial basis function (RBF) kernel:

k(x,x′) = k20e
−∥x−x′∥2/2ℓ2 , (5.9)

which depends on two hyperparameters: the prefactor k0 and the scale ℓ. A Gaussian
process with squared exponential kernel is smooth, i.e. all its derivatives exist and are
continuous, in the mean squared sense (see references [64, 136]). As a consequence,
the average prediction from a Gaussian process with squared exponential kernel are
very smooth functions, and this characteristic makes the kernel a popular choice for
the modeling of potential energy surfaces, where it has lead to good results [125, 127,
133]. This is, in fact, the kernel adopted in Papers II, Local Bayesian optimizer for
atomic structures and III, An active­learning approach to combine surrogate machine
learning algorithms for probing potential energy surfaces.

The squared exponential kernel can be regarded as a limit of the Matérn class of ker­
nels, which encode different degrees of smoothness in the prior class of functions. The
Matérn kernel of degree ν is given by the following expression:
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Figure 5.2: Common stationary kernels and the smoothness of the models they pro­
duce. The left panel shows the kernel as a function of the distance between the kernel
inputs, and the right panel shows an example of function such kernel generates. All
curves have been obtained with scale parameter ℓ = 0.4 and prefactor k0 = 0.5

kν(x,x′) = k20
21−ν

Γ(ν)

(√
2ν

∥x− x′∥
ℓ

)ν

Kν

(√
2ν∥x− x′∥/ℓ

)
(5.10)

where Γ()̇ is the gamma function and Kν is the modified Bessel function. The hy­
perparameters k0 and ℓ are again called prefactor and scale. The hyperparameter ν
encodes the differentiability of the sample functions of a Gaussian process using this
kernel [110]: a process with a Matérn kernel of order ν is nu− 1/2 times mean square
differentiable. A particular case of the Matérn family is the Laplacian kernel:

k(x,x′) = k20e
−∥x−x′∥/ℓ (5.11)

which is not differentiable.

The sample functions of the squared exponential and Laplacian kernel, together with
the most common Matérn kernels ν = 3/2, 5/2 are shown in Figure 5.2. From this
figure, it is evident the relationship between parameter ν and the differentiability of the
prediction of the Gaussian process. Stein [136] has used this argument to claim the
squared exponential kernel may be too smooth to represent most physical functions
accurately. Along these lines, some authors have noted that even though the potential
energy surface is often assumed to be of class C∞ on an open set, it does not need to
be so smooth [133], and its surrogate model could benefit for relaxing this constraint
to just being twice differentiable or even only C1. The Matérn kernels with ν = 5/2 and
ν = 3/2 have been tested for geometry optimization [133] and transition state search
[126, 128] resulting in somewhat moderate gains compared to the squared exponen­
tial kernel results reported on the same works.

It is important to note that the potential energy surface is not even a continuous func­
tion of the Cartesian coordinates, since it diverges as the positions of any two atoms
approach each other. A Gaussian process surrogate potential energy surface would
break close to this points. This is illustrated in Figure 5.3, where one of the points in
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Figure 5.3: Gaussian process regression around a discontinuity of the potential energy
surface using the squared exponential kernel (5.9). The dashed line represents the
Lennard Jones potential (in arbitrary units) while the blue one is the average prediction
of the Gaussian process regression fitted to four points. The training set is the same in
both panels except for the left most point. As one of the training points gets closer to
the discontinuity, it becomes more difficult to find a C∞ function that goes through all
the points, producing a “weird” behaviour of the model even in regions far away from
the discontinuity. Parameters: ℓ = 0.4, k0 = 0.5, zero prior, zero regularization.

the training set is moved closer to the origin of a Lennard­Jones potential. As a point
of the training set moves into the discontinuity, the smoothness constraint becomes
more difficult to fulfill. In this example, where the squared exponential kernel with zero
regularization is used, forcing the model to describe every point produces spurious
local minima in other parts of the input space. However, if there are no points in the
training set in the part where the potential energy surface diverges, the same hyperpa­
rameters produce fine results. Consequently, sampling these kind of regions should
be avoided. Some strategies to achieve this are described in Section 5.3.

The kernels presented in this section depend on two hyperparameters: the prefactor
k0 and the characteristic scale ℓ. The prefactor is the uncertainty in points that are far
enough of any other point in the training set, i.e. V2

11(x) ≃ k20 if |x− x′| ≪ ℓ for all x′ in
the training set. It is easy to see that k0 is also themaximum uncertainty that the trained
model can attain at any point. The kernel of a point with itself in equation (5.8) for this
family of kernels is always the prefactor squared, and since C is positive definite, the
uncertainty is the squared prefactor minus a quantity that is equal or greater than zero
K(x,X)C−1 K(X,x).

It is worth noting that the prefactor of the kernel does not play any direct role on the
average prediction. It is possible to define a normalized kernel k̃ = k/k0 and then
rewrite expression (5.7) in terms of the normalized kernel instead. Interestingly, the
resulting expression is identical to the original if the regularization is also normalized
Σ̃n = Σn/k0. Hence, the main role of the prefactor is to tune the uncertainty around
the prediction.

The characteristic scale encodes the characteristic distance at which two points are
correlated. This is illustrated in Figure 5.4 for the squared exponential kernel. In panels
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Figure 5.4: Gaussian process regression with the squared exponential kernel using
different scales. Panel (a) shows an example of a sample prior function for three
scales: ℓ = 0.05, 0.2, 1. Longer scales in the kernel produce more slowly varying
functions than shorter scales. Panels (b), (c) and (d) show the result of the Gaussian
process regression to four training points (black dots) of the same underlying function
(dashed black line). The average prediction function is marked in a darker colour in
each panel, while 15 sample functions of the posterior distribution are shown in the
background. Scale ℓ = 0.02 in panel (b) is clearly varying too fast compared to the
underlying function, while scale ℓ = 1 in panel (d) is too slow. Only a scale of a
similar order of variation as the underlying function (as ℓ = 0.2 in panel (c)) produces
a satisfactory model of the target function. The kernel prefactor k0 in each panel has
been chosen to maximize the marginal likelihood. The zero prior function m(x) = 0
has been used and in panel (d) a regularization σE

n = σfn = 0.01 has been used to
avoid numerical instability.
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Figure 5.5: Comparison between the potential energy surface model of an isotropic
squared exponential kernel of the form (5.9) and an anisotropic one of the form (5.12).
The underlying potential energy surface is produced by a DFT calculation of the po­
tential energy of acrylic acid on a palladium surface. The x axis corresponds to the
dissociation of acrylic acid into carboxyl and vinyl radicals (breaking a single C − C
bond) and the y axis corresponds to the separation of the molecule from the surface.
The C−C bond is stiffer than the softer molecule­surface interaction, which is correctly
captured by the anisotropic kernel but missed by the less flexible isotropic one. Source:
Paper III: Machine Learning with bond information for local structure optimizations in
surface science.

(b), (c) and (d) of this figure, the result of the Gaussian process prediction is shown for
three different scales, ℓ = 0.05, 0.2, 1. Scale ℓ = 0.05 is clearly too short and it leads
to over­fitting of the training points: the variation of the functions generated by this
kernel is too fast compared to the true underlying function and the result is an average
prediction that fits every point individually. On the other side of the spectrum, the scale
ℓ = 1 is too long, leading to under­fitting: too slow varying functions cannot capture
the variation of the underlying function. The scale ℓ = 0.2 in panel (c) shows a good
compromise between the two extremes, producing a reasonable ensemble of fitting
functions.

It is possible to includemore than one scale in stationary kernels tomodel for anisotropy
of the target function in different directions of space. For example, this can be done by
introducing a positive semi­definite matrix M in the distance measure between x and
x′ [64]. In this framework, the squared exponential kernel reads as:

k(x,x′) = k20e
−(x−x′)TM(x−x′)/2. (5.12)

An example of the effect of introducing an anisotropic kernel instead of an isotropic
one with the same training set is shown in Figure 5.5.

There are two interesting observations about this point. First, since M is positive
semidefinite, it can be decomposed as M = ΛTΛ, and thus, one could define a fin­
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gerprint as a linear transformation of the Cartesian coordinates: ϱ = Λx, and then the
kernel becomes the isotropic kernel in the fingerprint space. Second, by introducing a
matrix M with one or more zero eigenvalues, it is possible to have a surrogate model
of the potential energy surface that only varies along some directions, having some
linear combinations of the inputs suppressed from the kernel.

5.2.2 Non stationary kernels
It is also possible to include a model for the covariance function that is not a function of
x− x′. In that case, the scale and magnitude of the variation of the target function are
not assumed to vary uniformly along the unit cell (in Cartesian coordinates). This can
be of an advantage, for example, to represent more accurately the regions of the PES
where the atoms are too close, as shown by Koistinen et al. [126]. In that work, the
authors replace the distance between configurations in Cartesian space in the squared
exponential kernel (5.9) by ameasure of distance involving the difference of the inverse
of the interatomic distances between configurations. In this way, they achieve a better
description of the PES with less points, leading to a faster convergence of the NEB
algorithm they are using.

Another example of the use of non stationary kernels (with respect to Cartesian coordi­
nates) is the use of non trivial fingerprints in a stationary kernel. For example, in Paper
V we have used the modified Oganov fingerprint (Section 3.4.2) ρ as an input to the
squared exponential kernel:

k(ρ(x), ρ(x′)) = k20e
−∥ρ(x)−ρ(x)′∥/2ℓ2 . (5.13)

An example of the kind of models this kernel produces can be found in Figure 4.2.
The use of a fingerprint, as mentioned in Section 3.4, allows to incorporate the sym­
metry information into the prior information of the Bayesian model. This way, all the
predictions of the Gaussian process will be already symmetrical.

The use of non­stationary kernels oftenmeans that the effect of adding new data is non­
local in Cartesian coordinates: in this depiction, a new point changes the full PES and
not only a neighborhood of the point. In this sense, a careful choice of a non­stationary
kernel can lead to a global model of the potential energy surface.

5.2.3 Comparison between kernels with and without fingerprints
In this section, the effect of having a fingerprint as a descriptor is compared to using the
squared exponential kernel with Cartesian coordinates as a descriptor. In particular,
the modified Oganov fingerprint presented in Section 3.4.2 is used in combination with
the squared exponential kernel (as used in paper V) for this illustration.

Figure 5.6 shows a heat map with the entries of the Gram matrix for both kernels
for a 7 atom cluster and three points in the training set. The first thing that calls the
attention is the block structure of the matrix, which arises as a consequence of the use
of energies and forces in both models. Each block represents the correlation between
two configurations as in equation (5.5). The diagonal blocks represent the kernel of a
structure with itself.
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Figure 5.6: Visualization of the Gram matrix of the Gaussian process with two different
kernels for three rattled versions of a randomly generated 7 atom gold cluster. The
left panel shows the Gram matrix using the squared exponential kernel with Cartesian
coordinates. The right panel shows the results for the squared exponential kernel with
the modified Oganov fingerprint. Parameters: ℓ = 0.4 Å for the left panel and ℓ = 0.3
for the left one. Parameters of the modified Oganov fingerprint: δ = 0.4 Å, nbins = 200,
Rc = 8 Å.

In Cartesian coordinates, the correlation of a structure with itself is the diagonal ma­
trix diag(k20, k20/ℓ2, . . . , k20/ℓ2), and as we see, structures that are “close” in Cartesian
space retain the structure where the main entries are still on the diagonal of the matrix.
In contrast, the permutation symmetry of the fingerprint results in a model that includes
correlations between components of the force even within the same structure. In gen­
eral, more entries have values that are larger in absolute value for the kernel with a
fingerprint than for the one with Cartesian models, leading to richer patterns with less
points in the resulting model.

The effect of the correlation between forces can be appreciated in Figure 5.7. The
figure compares the surrogate PES with the two mentioned kernels and 4 structures
in the training set to the true potential as computed with effective medium theory [10].
The system studied is a gold adsorbate on a gold fcc (100) slab. The atoms in the slab
are constrained and the adsorbate has its movement limited to a x − y plane parallel
to the slab.

The symmetry conserving properties of the modified Oganov fingerprint results in a
model of the potential energy surface that retains the four­fold rotational symmetry of
the original potential, even when fitting to just four points that are not symmetrically
distributed. In this way, and also thankfully to the relatively long scale, as compared
to the distance between the configurations in fingerprint space, the surrogate potential
energy surface has the qualitative right structure along all the space.

Conversely, the Cartesian coordinates build a local model of the potential energy sur­
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Figure 5.7: Models of the potential energy surface of a gold atom on a fcc (100) gold
surface as the adsorbed atom moves at fixed distance, parallel to the surface. x and
y represent the coordinates of the adsorbate with respect to the ”on top” position to
one of the gold atoms in the surface. The left panel shows the potential energy sur­
face as obtained with effective medium theory(EMT). The remaining panels show the
prediction of GPR with different kernels fitted to the four points marked in white and
their corresponding EMT energies and forces. The kernels, and their hyperparame­
ters, are: the squared exponential kernel with Cartesian coordinates (ℓ = 0.6 Å), and
the squared exponential kernel with the modified Oganov fingerprint (ℓ = 30, δ = 0.4
Å, nbins = 200, Rc = 8 Å).

face. The description of the potential energy surface is accurate around the configura­
tions in the training set, but it goes back to the prior (which in this case is a constant
with the energy of the configuration in the top left) far away from them. However, the
model does not encode any symmetry, so the four­fold rotation symmetry is lost. Even
though this issue could be addressed by using data augmentation, i.e. by using all the
symmetry transformations of the configurations to enlarge the training set; this is not
advisable in general, since it would increase the computational cost of the Gaussian
process model.

The Cartesian coordinates present an advantage over this particular fingerprint under
some settings, though. Figure 5.8 shows the learning curves for the two kernels for
the same system. The advantages of using the modified Oganov fingerprint for small
training sets are evident: for training sets of about 10 configurations, themean absolute
error over the whole unit cell is about an order of magnitude smaller for the modified
Oganov fingerprint with optimal hyperparameters than for the usual set up in GPMin
(see Paper II).

However, the performance of the model that uses the modified Oganov fingerprint with
the squared exponential kernel saturates when the size of the training set increases,
even when the hyperparameters are optimized (see Paper V for more learning curves
and details over this issue). The Cartesian coordinates perform worse with less data,
as it is evident from Figure 5.7: the error will remain high over the full unit cell until there
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Figure 5.8: Learning curves of two Gaussian process models of the potential energy
surface with the squared exponential kernel with two different fingerprints: the Carte­
sian coordinates and the modified Oganov fingerprint. The atomic system studied is
the same as in Figure 5.7, and the training set has been generated sampling the x and
y coordinates of the adsorbate within the unit cell. The solid line shows the average
over 10 randomly generated training sets of the indicated size and the shaded area
shows the 95% confidence interval around the average as estimated using boostrap­
ping. Parameters: Cartesian coordinates (ℓ = 0.4 Å), and modified Oganov fingerprint
(ℓ optimized , δ = 0.4 Å, nbins = 200, Rc = 8 Å), initial σn = 10−5eV/Å.

is data enough so that the support of the kernel function around the points covers the
unit cell. However, once the full area of the unit cell is covered, the precision of the
model increases as more data points are added.

From these plots we can infer that choosing an adequate kernel for each application
is advisable when using Gaussian process regression to build surrogate models of the
potential energy surface.

5.3 The prior function
The prior function may also play an important role in the resulting potential energy
surface. One of the most usual choices is to choose a constant prior function of the
form:

m(ϱ) = m0 ∀ϱ, (5.14)

which acts as a zero­energy reference.

The Gaussian process regression, thus, learns the distance to this offset when regres­
sion is built. Furthermore, this constant can be optimized by maximizing the marginal
log­likelihood, but it can also be used to enforce some expert knowledge of the poten­
tial energy surface. In particular, during local optimization, if it is used in combination
with a stationary kernel it can be used to dial the exploration/exploitation balance of
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the method by penalizing extrapolation. Keeping this constant high compared to the
energies in the training set forces the method to search for low lying points close to the
already sampled ones, since far away from the sampled points the model will predict
very high energies. This characteristic has been used both by Denzel and Kästner
[133], who set the constantm0 to a value higher than the maximum energy in the train­
ing set, and in Paper II: Local Bayesian optimizer for atomic structures, where m0 is
set to the highest sampled energy.

More sophisticated prior functions can be used to include expert knowledge of the
potential energy surface in the surrogate model [110]. In general, any potential energy
surface model could be used as a prior function, and then the task of the Gaussian
process would be to learn the error between the model potential and the output of the
more sophisticated electronic structure code.

A particularly relevant application to this is the use of a short­range diverging potential
in the vicinity of the point in Cartesian space where two nuclei have the same coor­
dinate, in combination with a constant prior. In the context of global optimization of
atomic systems, Bisbo and Hammer [114] have recently introduced the following ex­
pression for the prior potential energy surface:

m(ϱ) =

N∑
ij

(
0.7

r
(c)
i + r

(c)
j

|Ri − Rj |

)12

, (5.15)

where r
(c)
i is the covalent radius of the i−th atom and Ri its Cartesian coordinate. This

repulsive potential produces very high energies in regions where two atoms are close,
preventing that any minimization algorithm will suggest these regions as potential min­
ima, while maintaining the uninformed constant prior elsewhere. This solves the prob­
lem that many stationary kernels encounter when one of the points in the training set
is close to the divergence, which was exposed in the previous section (see Figure 5.3).
This prior has also been used in Paper V: Global optimization of atomic structures with
gradient­enhanced Gaussian process regression.

5.4 Maximizing the marginal likelihood
The kernels and the priors introduced in this chapter, together with the descriptor of the
atomic system (as discussed in Chapter 3), may depend on some hyperparameters
θ: For example, the squared exponential kernel (5.9) depends on the scale ℓ and the
prefactor k0, and a constant prior has a constant m0 that needs to be determined.

The hyperparameters of the model can be found in the Bayesian framework by opti­
mizing the marginal likelihood p(Y|θ;ρ), that is, by finding the hyperparameters that
maximize the probability to obtain the targets given the inputs. Expression (3.16) can
be rewritten in the notation of the Gaussian process regression with forces for atomic
systems introduced in this chapter as:

log p(Y|θ;ρ) = −1

2
(Y−m(ρ))TC−1(Y−m(ρ))− 1

2
log det(C) +N, (5.16)
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where N is the normalization, which does not depend on the hyperparameters. This
expression depends on the hyperparameters through the expressions for m, C =
K(ρ,ρ) + Σ2

n, and the descriptor ϱ itself.

The marginal likelihood in expression (5.16) has three terms. The first one is the only
term involving the targets Y, and thus, it is a measure of the quality of the fit. The
second term depends only on the inputs, and since C is a positive definite matrix, it
grows as one or more eigenvalues of C approach the regularization (their minimum
possible value). Thus, the second term is a complexity penalty [64], some sort of
Occam’s razor term to favor hyperparameters that lead to “simpler” models: those that
assume points in the training set are very correlated with each other. The last term, as
mentioned above, is just a normalization factor.

Even though it is possible to find closed expressions that maximize marginal likelihood
for some of the hyperparameters, the optimum can be found using a gradient based op­
timizer, since it is posible to find a closed expression for the derivatives of the marginal
likelihood with respect to any hyperparameter θj :

∂

∂θj
log p(Y|θ;ρ) = ∂m(ρ)T

∂θj
C−1(Y−m(ρ))

+
1

2
(Y−m(ρ))TC−1 ∂C

∂θj
C−1(Y−m(ρ))

− 1

2
Tr
(
C−1 ∂C

∂θj

)
, (5.17)

where Tr(·) stands for the trace of the matrix. This expression, in combination with
expression (5.16), results in a computationally affordable way to find optimal hyper­
parameters using a gradient based optimizer, such as the ones described in Chapter
4.

The marginal likelihood is not, in general, a convex function of the hyperparameters
[64]. There might be more than one local minimum, leading to different models that
are locally optimal in their hyperparameters. If there is no expert knowledge on where
the globally optimal basin may lie, the global optimum can be found, for example, by
using a gradient based optimizer with restarts [114].

The following sections discuss the optimal value of some of the most commonly used
hyperparameters and how to find them.

5.4.1 The prefactor of the kernel
The prefactor of the kernel k0 can be determined analytically under some assumptions.
If it is assumed that the ratio between the prefactor and the regularization are kept fixed,
i.e. k0/σ

(E)
n and k0/σ

(f)
n are kept constant, it is possible to factor the prefactor out of

the regularized Gram matrix C. Under these conditions, it can be shown that the value
of the prefactor for which the partial derivative of the marginal likelihood with respect
to the prefactor vanishes is:
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k0 =

√
(Y−m(ρ))

T C−1
1 (Y−m(ρ))

n
, (5.18)

where C1 is the regularized version of the Gram matrix with prefactor equal to 1.

This value optimizes the prefactor given the rest of the hyperparameters. As a conse­
quence, equation (5.18) can be used to reduce the dimensionality of the optimization
problem by one.

5.4.2 The constant of the prior
It is also possible to obtain the value of the constant if the prior function is set to be the
constant prior:

m0 =
UTC−1Y
UTC−1U (5.19)

where U is the constant prior with constant equal to 1:

U =

{
1 if mod(3N + 1) = 0,

0 otherwise.
. (5.20)

Note that the constant of the prior does not depend on the prefactor of the kernel if
the ratio between the prefactor and the regularization is kept fixed (which was also
assumed in the expression for the optimal prefactor), since it can be factored out. Ex­
pression (5.19) can be used to reduce the complexity of the optimization of themarginal
likelihood even further, since the constant of the prior can be determined analytically
and then its value can be used to determine the prefactor of the kernel.

It is straightforward to extend expression (5.19) to find the constant in the prior when
the prior is a sum of a constant with a potential, as has been done in paper V:Global op­
timization of atomic structures with gradient­enhanced Gaussian process regression.

5.4.3 The scale
There is no direct expression for the optimization of the scale, whose optimal value
must be obtained using a numerical method.

It is important to note that good values of the scale can only be obtained by optimizing
the prefactor of the kernel along with it, for example by using expression (5.18). Even
though the prefactor does not influence the prediction directly and its main contribution
comes from the uncertainty, the prefactor should be optimized along with the scale
even when the uncertainty is not used in the application. This is because the marginal
likelihood depends on the scale in a way that cannot be decoupled from the value of
the prefactor. If the prefactor is not updated along with the scale, the optimal scale
becomes a function of the prefactor, and thus it is possible to obtain virtually any scale
by varying the value of the prefactor. This behaviour is illustrated in Figure 5.9.
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Figure 5.9: If the prefactor is fixed, the optimal scale is a function of it. The left panel
shows the logarithm of the marginal likelihood as a function of the prefactor of the
squared exponential kernel k0 and the scale ℓ. The right panel shows the scale that
is numerically found to optimize the marginal likelihood if the prefactor k0 is kept fixed
(all optimizations start at ℓ = 0.7 Å. The color in both panels marks the value of the
logarithm of the marginal likelihood for the current hyperparameters. The training set
for both panes is composed of 10 slightly rattled copies of a nine atom aluminum cluster.
The energies and forces of the aluminum clusters have been computed using the EMT
potential.

5.5 The numerical inversion of the Gram matrix
All the expressions needed to fit a Gaussian process to a potential energy surface pre­
sented in this chapter, that is, the average prediction (5.7), the uncertainty (5.8), the
marginal likelihood (5.16) and its derivative (5.17); depend on the inverse of the regu­
larized Gram matrix C. In this section, how to solve this problem and the challenges
associated to it are discussed.

5.5.1 The regularization
In the absence of regularization, some Gaussian process models may present a Gram
matrix that is ill­conditioned for inversion. If two points in the training set have exactly
the same descriptor ϱ = ϱ′, then the Gram matrix K(ρ,ρ) will have two equal rows,
and thus, not be invertible. Even if the two descriptors are not identical, it might happen
that depending on the choice of the kernel, the hyperparameters and the composition
of the training set, the Gram matrix is ill­conditioned for inversion. This may result on
the numerical routine solving the linear algebra problem producing unstable and noisy
results or even failing all together to invert the matrix.

This issue can be solved by adding a small, non­zero regularization factor. The fitness
of the Grammatrix to be inverted can be quantified by its condition number, which in the
ℓ2­norm is the quotient between the largest and the smallest eigenvalue λmax/λmin . If
the inverse of the condition number is close to the machine precision, numerical round­
off errors may arise, making the surrogate PES noisy (enough to make a gradient
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Figure 5.10: Performance of a local optimization method (BondMin, see Chapter 6)
based on a surrogate Gaussian process model for two atomic structures. The color
and the number on each square represents the number of DFT evaluations (the smaller
the better) needed to minimize the function and NC shows that the optimization did
not converge. All hyperparameters have been kept fixed, with k0 = 1eV, such that
the y axis has eV/Å units. The tolerance on the convergence for the forces of the
SCF iteration has been fixed to 10−4 eV/Å. In the plot it can be appreciated how
the performance of the optimization diminishes as the regularization approaches this
value. Source: Paper IV: Machine Learning with bond information for local structure
optimizations in surface science.

based method fail) [137]. It is easy to show that by adding a regularization σ2
nI to

the matrix, the new condition number becomes (λmax + σ2
n)/(λmin + σ2

n) which is
approximately λmax/σ

2
n if λmin ≪ σ2

n ≪ λmax.. Hence, by choosing a suitable value
of the regularization is crucial for obtaining smooth potential energy surfaces.

As noted above, the prefactor k0 of the kernel can be factored out of some of the
Gaussian process equations. In fact, the prefactor k0 can also be easily factorized
out of the condition number of the Gram matrix K(ρ, ρ), i.e., the condition number
only depends on the distribution of the data and the other hyperparameters of the
kernel. Hence, the effective amount that has to be added to the Gram matrix to ensure
inversion is σ2

n/k
2
0: If k0 is changed to describe the data better, if σn is not changed

accordingly, there is a risk that matrix inversion will fail. For this reason, in the work
presented in this thesis, the ratios σE

n /k0 and σfn/k0 have been kept fixed during the
optimization of the hyperparameters, so that the robustness of the methods that are
presented here is ensured.

In addition, it is worth noting that the potential energy surface as described by the re­
sult of the DFT calculations can be, in fact, noisy. As exposed in Section 2.3.3, the
self­consistent field iteration terminates at a given tolerance, and differences between
energies and forces of different configurations, even if they are close, may be domi­
nated by numerical noise.
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This effect can be observed in Figure 5.10, where the position of the potential energy
surface minimum becomes more difficult to capture for the Gaussian process model
as the regularization becomes comparable in magnitude to the tolerance on the force
of the SCF iteration.

5.5.2 The Cholesky factorization and beyond
Even though in the previous section the terminology “inversion” of the Grammatrix has
been used, solving the algebraic problem Cz = b is known to be more robust against
numerical noise than computing the inverse ofC and then computing the productC−1b.
In this section, a way to solve this problem efficiently is discussed.

The Gram matrix C is real, symmetric, and positive definite, and thus, it can be factor­
ized as:

C = LLT (5.21)
where L is a lower triangular matrix (this is, a matrix whose only non­zero elements
are in the diagonal or below) with positive diagonal [137]. This factorization is called
the Cholesky factorization.

The advantages of factorizing the Cholesky matrix are evident: Once factorized, the
algebraic problem Cz = b can be solved by finding the intermediate solution ẑ first by
solving

Lẑ = b, (5.22)
and then finding the unknown z from

LT z = ẑ. (5.23)

The two subproblems are then trivial to solve, given the structure of the Cholesky factor
L: starting with the first element of the first subproblem (5.22), ẑ1 = b1/l11, the problem
is solved iteratively as:

ẑi =

bi −
i−1∑
j=1

lij ẑj

 /lii. (5.24)

A similar expression can be derived for subproblem 5.23.

This way, the factorization can be computed once for each training set and set of
hyperparameters, with computational cost O(n3N3), and then this factorization can be
used to solve all the algebraic problems involved in prediction of the energy and the
uncertainty for any test point ϱ that is required by the application at a much lesser cost.
The need to store the matrix in order to use the Cholesky implementation in Scipy [138]
produces a memory cost of that scales quadratically with the size of the matrix.

The computational cost of the Cholesky factorization can become comparable to the
DFT one, since both scale cubically with the number of atoms in the unit cell and the
growing prefactor with the number of points in the training set for the potential energy
surface can outgrow the cost of the number of times the Hamiltonian needs to be
diagonalized in the self consistent field iteration. Furthermore, the need of storing the
Gram matrix often becomes the main bottle neck for the modelling of potential energy
surfaces for large systems when the Scipy implementation is used.
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Modern implementations of density functional theory are highly parallelized since the
calculations that use them are usually executed in large supercomputer facilities. Thus,
it is natural to devise methods that can take advantage of these kind of architectures.
Along these lines, there have been recent developments to develop highly paralleliz­
able implementations of Gaussian process regression that would improve the compu­
tational scaling and reduce the overall cost of the exact regression [139, 140].

Machine learning methods for geometry optimization of atomic structures 63



64 Machine learning methods for geometry optimization of atomic structures



6 Summary of the contributions
6.1 Paper I: Materials property prediction using

symmetry­labeled graphs as atomic­position
independent descriptors

In this paper, we introduce a descriptor of the atomic structure that does not depend on
the interatomic distances, but rather only on the connectivity of the atoms and the local
symmetry of each atomic environment. These descriptors are no longer good descrip­
tors of individual atomic structures, since they are degenerate for atomic with similar
configurations, becoming a representation for prototypes: a materials “templates” that
do not depend on the scale of the material and admit small distortions used in materi­
als science to classify materials with similar structures. By using such representations,
we show that it is possible to build a machine learning method to identify the prototype
with the minimum formation energy, providing with a way to identify global minimum
basins.

To this end, we have used the quotient graph of the material, using the Voronoi tes­
sellation to define the connectivity between atoms, as described in Section 3.4.3. The
nodes of the graph represent the atoms of the atomic structure and the edges repre­
sent the connectivity. Each node has a vector assigned that represents its state, that
is, the atom type. In the paper, we introduce a novel encoding of the symmetry of the
atomic environment of each atom, by labelling each edge with the point group of the
face of the Voronoi tessellation it traverses.

We have used a message passing neural network, whose details are introduced and
discussed in Section 3.2, to predict the formation energy of bulk materials. Even
though the absence of interatomic distance information is clearly a challenge for the
prediction (since the descriptors are degenerate and not complete), we obtain mean
absolute prediction error as low as 22 meV per atom for OQMD [29, 30], and 43 meV
per atom in Materials project [32].

These results are shown in Figure 6.1, where the novel descriptor (labelled as Sym) is
compared with the same descriptor without the symmetry information (No sym), and
the quotient graph with distance information as presented in a previous publication
(Distance) [43]. As a base line, we have also compared the out results with a ran­
dom forest method trained on a descriptor based on the Voronoi tessellation of the
material introduced in reference [76]. The MAE for each set has been computed using
5­fold cross validation. From this plot, it is easy to see that the larger the amount of
information incorporated to the descriptor, the lower the prediction energy for all sub­
sets. Another trend along all subsets is that the method has a larger prediction error
in unary systems than in binary or ternary systems. This trend could be explained by
the relatively smaller number of unary entries in any of the training sets, as compared
to ternaries, and the high relative proportion of unstable structures.

Machine learning methods for geometry optimization of atomic structures 65



OQ
M

D 
al

l

OQ
M

D 
un

ar
y

OQ
M

D 
bi

na
ry

OQ
M

D 
te

rn
ar

y

IC
SD

 a
ll

IC
SD

 u
na

ry

IC
SD

 b
in

ar
y

IC
SD

 te
rn

ar
y

M
at

pr
oj

 a
ll

M
at

pr
oj

 u
na

ry

M
at

pr
oj

 b
in

ar
y

M
at

pr
oj

 te
rn

ar
y

0

25

50

75

100

125

150

175

M
AE

 [m
eV

]

Distance
Sym
No sym
V-RF

Figure 6.1: Mean absolute error of the message passing neural network model
with different levels of information: interatomic distances, symmetry and connectiv­
ity and connectivity only; and the Voronoi random forest as presented in reference
[76]. Source: Paper I: Materials property prediction using symmetry­labeled graphs
as atomic­position independent descriptors.

For similar reasons, the errors are smaller on the full OQMD (systematic + experimen­
tal structures) than in the ICSD [54] part of OQMD (experimental structures). Because
of the way the systematic part of OQMD is built, some symmetry groups, for example
those in cubic prototypes, are more common in this subgroup than they are among
experimental structures. Conversely, some experimental structures might be the only
representative of their prototype in OQMD. The more examples of a certain prototype
there are in the training set, the more precise the prediction of the energy is for struc­
tures in the test set in the same prototype. As a consequence, the mean absolute error
is lower for the systematic subset of OQMD than for the experimental subset.

We have demonstrated the utility of this method on screening studies: that is, materials
science research in which many materials are simulated with the hope of identifying
candidate materials for a target application. A common problem of these studies is that
many of the materials studied are not even stable, resulting in a waste of computational
resources. In this paper, we have demonstrated how the expensive DFT calculations
can be substituted by our machine learning method in the context of determining the
stability different prototypes of the same material.

Figure 6.2 shows the learning curve of the method on a data set of 5976 ternary se­
lenides (ABSe3 with A and B transition metals). These materials have been generated
by choosing the six most common ABSe3 prototypes in ICSD [54] and generating all
the atomic substitutions of A and B transition metals and then relaxing the structure,
in a procedure similar to the one exposed in reference [141]. We note that only six
ABSe3 out of the 5976 materials are present in OQMD as well, so this test takes place
mostly on unseen data.

Figure 6.2 explores two different strategies: to train on the ternary selenides solely, and
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Figure 6.2: Learning curve of the message passing neural network method on the
symmetry­labelled position independent graph descriptors with different training strate­
gies on a dataset made up of ABSe3 structures with little overlap with OQMD. The blue
and yellow curves show the learning curves for the method trained only on the ternary
selenides data set with T=1 and T=3 message passing layers, respectively. The green
and red curves show the learning curve of the method on the selenides when it has
been previously trained on the OQMD, the green curve for the initial prototypes and the
red curve for the relaxed structures. The dashed black like represents a baseline ker­
nel ridge regression method, used for comparison. Source: Paper I: Materials property
prediction using symmetry­labeled graphs as atomic­position independent descriptors.

to pretrain on OQMD and then add the ternary selenides to the training set. We find
that pretraining on OQMD and then adding a small percentage of selenides presents a
significant advantage with respect to just training on OQMD: The MAE drops from 176
meV per atom for the model trained on OQMD only to 95 meV per atom for a model
trained on OQMD plus 100 selenides (out of 6 thousand), which is already comparable
to the accuracy of DFT. Furthermore, by adding more structures to the training set,
which could be gathered as the screening progresses, for example; the accuracy of the
model improves. The figure also shows that the learning curves obtained by training
on the graph of the initial and the relaxed structure run parallel, showing that using the
initial graphs for screening is possible with only a small accuracy loss.
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6.2 Paper II: Local Bayesian optimizer for atomic
structures

In this work, we introduce GPMin, a newmethod to find the local minima of the potential
energy surface based on Gaussian process regression. The method is based on an
active learning strategy: a surrogate model of the potential energy surface is built.
Then, the surrogate model is used to find a local minimum neighboring the starting
point, since optimizing the model is computationally cheaper than minimizing the DFT
potential itself. Then, the energy and forces of the minimum of the Gaussian process
model are computed using density functional theory, and the structure is included in
the training set. These steps are repeated until a structure fulfilling the convergence
criterion (described in Section 4.1) is met. We note that the accuracy of the method is
equivalent to the one of any other local optimization method, since the convergence
criterion is applied to the result of a DFT calculation meaning that the result of the
method is an atomic structure whose forces are below a threshold as described by
DFT, and not a machine learning prediction.

The surrogate model is built as a Gaussian process regression with energy and force
information. We have used the squared exponential kernel with Cartesian coordinates
and a constant prior. The prior constant has been kept fixed to the maximum energy
sampled of the training set. This choice, combined with the choice of always starting
the surrogate minimization from the point with the lowest energy benefits the conver­
gence of the method: at each optimization step, all the points that are very far away
(as compared to the length of the kernel) from the points that are in the training set will
have high energies. Thus, the algorithm always suggests points that are close to the
points in the same basin, preventing extrapolation. The high prior naturally creates
some sort of trust region, with the scale being the parameter that controls the trust
radius.

Figure 6.3 compares the results of the optimization of one thousand 10 atom gold clus­
ters with GPMin to other usual optimization method for atomic structures introduced in
sections 4.1.2 and 4.1.3. Here, the clusters are described with effective medium theory
(EMT) [10]: there is no noise in the PES derived from the SCF iteration and the PES
is probably smother than the one obtained with DFT, but it serves as an illustration of
the possibilities of the method.

For the version of GPMin with fixed hyperparameters, the figure shows an optimal
value of the scale of the kernel of about 0.5 Å. For this scale, both the average number
of EMT evaluations and its dispersion are lower than the traditional optimizers we have
compared it with. However, we note that if the scale is far from the optimal one, the
efficiency of the method is reduced.

GPMin is able to find a suitable scale by optimizing the hyper parameters: in spite of
having an initial scale that is too short or too long, the method is able to self­correct
along the way and find the minimum faster. The value of the optimal scale for the
updated version of GPMin is almost identical to the version without updates, 0.5 Å,
and for scales smaller than this value, the ability of the method to self correct yields
results that are very similar to those of the optimal version. In contrast, we note that
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Figure 6.3: Distribution of the number of EMT evaluations necessary to optimize 1000
randomly generated ten atom gold clusters with different optimization methods. The
performance of GPMin is shown both with fixed parameters and with updated scale
and prefactor, for different values of the (initial) scale. The line in the center of the
violins represents the average of the distribution. Source: Paper II: Local Bayesian
optimizer for atomic structures.

the method with longer initial scales also needs more EMT evaluations.

We have used these findings and the knowledge about the optimal regularization ex­
posed in Section 5.5.1 to find a good set of default hyperparameters for the versions
with and without hyperparameter updates for the optimization of DFT systems. To this
aim, we have used two different systems and found a set of parameters that minimize
the number of DFT calculations needed to relax them.

We have further validated the results of GPMin on a set atomic structures of differ­
ent nature (including clusters, molecules, surfaces, bulk systems and molecules on
surfaces), showing a consistent speed up in the relaxation of those of about a 20%
with respect to the fastest methods. We attribute this characteristic to the ability of the
Gaussian process regression to describe accurately landscapes where the curvature
of the potential energy does not have a well defined sign, in contrast with the compet­
ing BFGS strategy, which can only yield convex models. Thus, we have demonstrated
the potential of Gaussian process regression models to speed up the optimization of
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Figure 6.4: AID framework: illustration of the different components of the framework.
The package consists on a Gaussian process calculator (b) that can be queried by the
active learning optimization algorithms (minimization, nudged elastic band and transi­
tion state search). The calculator produces a surrogate model of the potential energy
surface (c) that is used to guide the searches. In addition, the active learning optimiza­
tion algorithms can suggest useful training points, for which a first principle calculator
is executed (a). The energies and the forces obtained by the first principles calcula­
tor are then supplied to the Gaussian process calculator, which uses this information
to produce more accurate models. Source: Paper III: An artificial intelligence­driven
approach for the exploration of potential energy surfaces.

atomic systems.

6.3 Paper III: An artificial intelligence­driven approach
for the exploration of potential energy surfaces

Following the successful reduction of DFT evaluations in local optimization of the GP­
Min method and the Gaussian process accelerated nudged elastic band presented in
reference [127], we have presented a unified artificial intelligence­driven (AID) frame­
work for Gaussian process assisted local optimization, transition state search and min­
imum energy pathway discovery.

A scheme of the framework is presented in Figure 6.4. The central characteristic of the
framework is the Gaussian process calculator, which stores the energies and forces
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of all the previously visited configurations. This feature can be then used by any of the
algorithms, facilitating anymethod to take advantage of previous DFT calculations. For
example, a local optimization run aiming to determine the energy of an intermediate
structure in a reaction can benefit of the energies and forces of the structures explored
by a former NEB calculation of a neighboring minimum energy path to produce a more
accurate intermediate surrogate model and, thus, speed up convergence.

In order to keep the memory consumption of the Gaussian process regression, we
have devised a limited memory scheme by training only to a subset of all the points.
The full discussion of the limited memory scheme can be found in Section 6.4.1.

The Gaussian process calculator can then be queried by any of the active learning
algorithms (the local optimization, the NEB or the dimer method) in order to obtain a
prediction or an uncertainty for a test configuration, or be updated so that it includes
new configurations with DFT information in the training set.

We show that sharing the data between the different active learning algorithms can
lead to reduction of the number of DFT calculations more than an order of magnitude
when the problem involves the exploration of a large portion of the potential energy
surface. This is illustrated in Figure 6.5. The problem addressed here is to determine
the reaction network of a two dimensional system involving three final states, labelled
S1, S2 and S3, which have been previously relaxed.

The data from the relaxations of S1 and S2 helps to speed­up the determination of the
minimum energy path between S1 and S2, and images from the NEB, in turn, speed
up the determination of the geometry of the intermediate state I1. The benefits of this
approach become even more evident when the NEB calculation to study the S1­S3
minimum energy path is run. The path connecting the two states also runs through
intermediate state I1, which has already being converged in the previous calculation.
This way, the computational effort can be concentrated in the area around intermediate
state I3, instead of evenly distributing the computational cost throughout the space.

The full reaction network in this example has been determined with 142 energy­force
evaluations, as compared to 1687 energy­force evaluations needed by MDMin [95],
the most efficient amongst the traditional methods we have compared it to.

We further demonstrate the power of the AID framework by addressing the dissociation
of the absorbed CH radical on a copper surface with a step (fcc (211)), as described
with DFT. Our investigations have revealed that there are 5 different configurations
where CH is bound and 21 where the carbon and the hydrogen atoms are adsorbed to
different sites, out of 159 initial candidate structures. We have then computed the mini­
mum energy pathways between every bound and dissociated configurations, needing
105 NEB calculations. We were able to determine this network with less than 9000
DFT evaluations, where only running the local optimization part with the traditional
optimizers we tested required over 10 000 DFT evaluations.
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Figure 6.5: Example of data reuse between different active learning algorithms in the
AID framework for the determination of a reaction network. The top panels show sur­
rogate potential energy surface, obtained from the information gathered with the min­
imizations of the three structures (S1­S3) and the new data gathered with the new
active learning methods at each stage of the calculation. Image adapted from Paper
III: An artificial intelligence­driven approach for the exploration of potential energy sur­
faces.
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6.4 Paper IV: Machine Learning with bond
information for local structure optimizations in
surface science

In this work, we address the problem of capturing the anisotropy of the potential energy
surface in the context of local optimization with Gaussian process guidance. In addi­
tion, we explore the consequences of the limited memory Gaussian process calculator
introduced in Paper III. As a result, we propose two novel local optimization methods
based on the new Gaussian process surrogate model. We have termed BondMin to
the new method with improved anisotropy description and LBondMin to the limited
memory version of the former.

The summary of Paper IV is structured in two subsections: we first discuss the limited
memory approach in connection with paper IV and then we explore how the inclusion
of bond information in the model can result in the faster optimization of adsorbates on
surfaces, as compared with the results presented in Paper II.

6.4.1 Limited memory Gaussian processes for local optimization
The computational time needed to perform a Gaussian process regression with gradi­
ent information scales cubically with the number of points in the training set and the
number of force components, which is 3 times the number of atoms in the unit cell,
O(n3(3N)3). The memory scales quadratically with the same quantity. As a conse­
quence, the relaxation of systems with many atoms in the unit cell poses a challenge
for methods like GPMin.

In Paper III, we suggest two actions to reduce the computational cost:

1. A reduction the number of force components used in the training. In many sys­
tems, the optimization does not involve all the atoms in the unit cell, but only
those that are not constrained.

2. Training only on the nmax closest structures to the structure whose energy we
want to predict. These structures will be the most correlated ones and, hence,
be responsible for themajor part of the prediction for stationary kernels that decay
with the distance.

The combination of these reduces the scaling in memory to O(n3
maxN

3
dof), where Ndof

is the number of degrees of freedom. This way the memory no longer depends on the
number of steps, but on a predefined nmax factor, which can be adjusted to match the
computational resources available, and the prefactor on the number of force compo­
nents is reduced.

We have tested the performance of these actions in the context of local optimization
on two systems described with density functional theory: a 10 atom sodium cluster
and a CO molecule on a fcc (100) platinum slab (also a system with 10 atoms in the
unit cell).

The results are shown in Figure 6.6. We have found that, if nmax is sufficiently large
(but still small compared to the number of steps), the performance of the optimizer with
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Figure 6.6: Comparison between the full memory and the limited memory approaches
for the local optimization of the atomic structure of two atomic systems, with and with­
out hyperparameter updates of the Gaussian process model along the way. The lines
indicate the average number of steps over 10 runs and the shaded area, the 95% con­
fidence interval of the mean estimated with bootstrapping. Source: Paper IV: Machine
Learning with bond information for local structure optimizations in surface science

fixed hyperparameters is equivalent in the full memory and limited memory versions.

Surprisingly, if the hyperparameters are updated, there is a range of training set sizes
for which the limited memory method is actually faster than the full memory version,
with about 15% less DFT calculations. We think the reason for this speed up might be
that the reduction of the training set size may lead to a higher flexibility of the model, by
being able to have different hyperparameters to describe different regions. As a result,
we believe that the surrogate model may describe the neighborhood of the minimum
more accurately, leading to boost of the performance. We note that a speed up related
to the use of a set of local Gaussian process regressions has also been reported by
Eriksson et al. in the context of global optimization [142].

6.4.2 Including bond information to improve local optimization
We have noticed that the performance of the GPMin optimizer is reduced in those
systems where the potential energy surface is anisotropic, for example, in systems
involving molecules on surfaces. In this kind of systems the variation in the stiffness of
the bonds produces large differences in the curvature of the potential energy surface
around the minimum among different directions.

If the optimization is guided by an model that is a priori isotropic, it will need a larger
training set to reproduce the anisotropy of the underlying potential energy surface. This
observation has motivated us to introduce the following kernel between configurations
ϱ and ϱ′:

k(ϱ, ϱ′) = k20e
−d2(ϱ,ϱ′)/2ℓ2 , (6.1)

where d2(ϱ, ϱ′) is the squared distance between the two configurations, defined as:
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Figure 6.7: Evolution of the scale in the Gaussian process regression surrogate model
as the local optimization progresses. The atomic system studied here is a COmolecule
on a fcc metallic slab (made of gold in panel (a) and platinum in panel (b)). Panel
(a) shows the evolution of the scale of an isotropic kernel. Three initial scales are
considered (0.2, 0.3 and 0.4 Å) and 10 runs are executed for each initial value. Each
line marks the evolution of an individual run. Panel (b) shows the evolution of the scale
for an anisotropic kernel that has one scale for each pair of atomic species. The initial
value of each scale is one fifth of the average of the covalent radii [82]. The solid lines
represent the average scale over 10 runs and the shaded area represents the 95%
confidence interval of the mean estimated with bootstrapping. Adapted from Paper II:
Local Bayesian optimizer for atomic structures and Paper III: Machine Learning with
bond information for local structure optimizations in surface science.

d2(ϱ, ϱ′) =
1

N

N∑
i,j

∥ (Ri − Rj)−
(
R′

i − R′
j

)
∥2

ℓ2XiXj

, (6.2)

where Ri is the coordinate of the i−th atom, Xi is the atomic species of the i−th
atom, and the double sum runs over the number of atoms in the unit cell N . Note
that bij = Ri − Rj is the vector along the bond between atoms i and j, and thus, the
distance measure in equation (6.2) is a weighted distance over atomic bonds. Since
all the atoms are included, the kernel in equation (6.1) is equivalent to the anisotropic
squared exponential kernel (5.12) introduced in Section 5.2, where the matrixM is the
Laplacian matrix of the fully connected graph [143] where the nodes are the atoms in
the unit cell. It is easy to see that kernel (6.1) is invariant under rigid translations of
all the atoms in the unit cell, and that it does not capture any other symmetry of the
system.
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This kernel uses a different scale ℓXiXj
for each pair of atomic species Xi and Xj . It

is well known that certain combinations of atomic species tend to form stiffer bonds
than others. It is possible to incorporate this prior knowledge into the kernel by using
the covalent radii as tabulated by Cordero et al. [82], so that the PES is anisotropic a
priori. These scales can be further updated as the optimization progresses, using the
data in the training set to find the scales that describe the potential energy surface of
the system best.

Figure 6.7 shows the value of the scale of the kernel that optimizes the marginal likeli­
hood (5.16) as the optimization progresses. Both panels show similar systems, a CO
molecule on a fcc transition metal surface. The optimization in subfigure 6.7(a) uses
GPMin as an optimizer, which relies on an isotropic model of the PES, while the op­
timization in subfigure (b) uses BondMin as an optimizer, which uses the equations
(6.1) and (6.2) as a model for the kernel. The BondMin optimizer achieves to opti­
mize the system in less steps (all optimizations have converged within 30 steps), by
diversifying the scale profile for different directions. The scale for the CO bond stays
below 0.2 Å during all the optimization, finishes at an average value of 0.11 Å, while the
metal­metal and metal­molecule bond scales grow to reach about 0.77 Å on average.
The CO scale is much shorter than the average scale for the isotropic GPMin (about
0.3 Å) and the others are significantly longer, allowing BondMin to take longer steps
without perturbing the molecule too much. As a result, the BondMin optimizer needs
less steps to optimize structures with very different levels of stiffness across bonds.

This result is farther illustrated in Figure 6.8. We have studied the optimization of 5
different molecules and radicals on different fcc (100) surfaces. For each system, we
have studied three different template initial configurations (on top, hollow and bridge),
which we have used to create 10 slightly different configurations from each template
by adding small Gaussian rattling. All the resulting systems have been relaxed with
BFGS Line Search, as implemented in ASE, GPMin and Bondmin.

We observe that for these systems with anisotropic potential energy surfaces, GPMin
does not show a consistent speed up as compared to BFGS, but BondMin achieves
reductions of the number of DFT calculations of up to a factor 2 as compared to BFGS.
This effect is particularly significant if the hyperparameters are allowed to update. We
also observe that the reduction in the number of steps is larger for for those systems
where the total number of steps needed by BFGS is large. Furthermore, we also ob­
serve that the spread of the number of steps over different runs is smaller for BondMin
than for other optimizers.

From these observations we conclude that the BondMin optimizer is faster and more
robust than themethods we have compared it against for the optimization of adsorption
systems, which represented a challenge to GPMin.
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Figure 6.8: Number of DFT calculations needed to relax some molecules and radicals
on surfaces with different local optimization methods. The light circles indicate the
number of DFT calculations needed to find the minimum structure for ten runs with
slightly different initial structures and the dark marker indicates the average over the
10 runs. The circle indicates that all 10 runs succeeded, while the inverted triangle
marks that at least one of the run failed. Adapted from : Paper III: Machine Learning
with bond information for local structure optimizations in surface science.
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6.5 Paper V: Global optimization of atomic structures
with gradient­enhanced Gaussian process
regression

In this paper we present BEACON, a Bayesian optimization method for the global
optimization of atomic structures. The method is based on the original work by Bisbo
and Hammer [114, 115], but it incorporates the gradient information into the Gaussian
regression model.

In order to identify the different local minima that are connected by a symmetry opera­
tion with as few DFT calculations as possible, it is of great importance to have a ma­
chine learning method that is able to describe the symmetries of the atomic structures.
To this end, we have used the modified Oganov fingerprint which includes an angular
contribution in addition to the original radial fingerprint (for a detailed description, see
Section 3.4.2). We have used the squared exponential kernel with this fingerprint as
input and a repulsive potential to avoid the method to sample configurations where the
two atoms are very close, as described in Section 5.3.

Figure 6.9 illustrates the optimization procedure for a Ta6O15 cluster as described by
DFT. The optimization starts by randomly generating a few atomic structures and ob­
taining their energies and forces. These configurations are then used to obtain a sur­
rogate model of the potential energy surface, with its corresponding uncertainty es­
timation. Then, a set of new candidates is randomly generated and relaxed on the
average prediction. We then use the lower confidence bound acquisition function (4.9)
described in Section 4.2.1 to select the structure with the best balance between ex­
ploitation and exploration. The hyperparameters are optimized along the way, as the
optimization progresses.

The predicted energy, the predicted uncertainty and the DFT energy of the configura­
tions that the optimization method samples are shown in the top panel of Figure 6.9.
The evolution of the optimization can be roughly divided into two phases: a first phase
where the energy is minimized until the global minimum is found and a second phase
where the method explores the PES to be certain no other minimum has been missed.

During the first part of the run, the optimization method finds lower lying structures as
the the optimization progresses, with the exception of some high uncertainty structures.
As more information is collected, the hyperparameters are optimized, improving the
description of the PES. The geometry of the cluster evolves in parallel, identifying
the right coordination of the atoms as more data is collected. The global minimum
is identified at approximately step 40. Since the optimizer is forced to continue after
identifying the global minimum, it keeps sampling structures, first around the global
minimum and then in a different basin. It is interesting to see that between iterations 60
and 80, the Gaussian process regression mistakenly predicts that there are structures
whose energy is lying below the minimum, but by gathering more data, the method is
able to correct its hyperparameters and to predict average energies above the global
minimum again. The optimizer then continues to explore regions with high uncertainty
to make sure a lower lying basin has not been missed.
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Figure 6.9: Evolution of the potential energy during global optimization of a Ta6O15

cluster and of the hyperparameters of the surrogate model. The green curve in the top
model shows the predicted energies and the black curve, the DFT values. The poten­
tial energy of the cluster initially converges towards the global minimum, by learning the
adequate coordination number as the optimization progresses, until the uncertainty on
the prediction is very small and the global minimum is reached (around step 40). In a
second phase, the method explores points with high uncertainty and low energy, in an
attempt to find an structure with a lower energy. Source Paper V: Global optimization
of atomic structures with gradient­enhanced Gaussian process regression.
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We have found that including the forces in the Gaussian process regression model
leads to a reduction of necessary DFT calculation of about a 4­fold as compared to
GOFEE [114], in addition to the order of magnitude reduction that GOFEE presents
with respect to evolutionary strategies [114]. We have illustrated this by applying the
different methods to a copper cluster described with EMT.

We have successfully applied BEACON to find the global minimum of a number of sys­
tems, demonstrating the utility of the method. We have used BEACON on the [Ta2O5]x
clusters with x = 1, 2, 3, as demonstrated in Figure 6.9. We have also used it to deter­
mine the structure of the oxidized ZrN surface, where we find that the global minimum
structure is the one having an oxygen and a nitrogen atoms in the surface (of a 4 by
4 slab) and a nitrogen vacancy below the oxygen atom. This structure, surprisingly,
turns out to be more stable than a the structure that has the oxygen lying on the sur­
face, adsorbed in the hollow position, and no nitrogen vacancy. We believe that this
result demonstrates the utility of the global optimization method we have presented to
guide research in surface science.
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7 Conclusions
In this thesis, we have shown how machine learning models can successfully reduce
the computation time necessary to identify the atomic configurations of interest for a
given system. We have shown how, without loosing the accuracy of quantum chemistry
methods such as density functional theory, it is possible to guide optimization searches
by using data driven models.

The machine learning models presented in this thesis can guide searches for local
and global minima, as well as transition states. The methods presented, rather than
a single­use model for a specific material, constitute a framework that allows to build
good models for systems of different compositions. We have shown that the accuracy
of all the models presented can be improved by adding more configurations to the
training set, thus improving the guidance for the PES exploration.

We have demonstrated that reusing “old” data improves the search. Pre­training on
OQMD [29] improves the prediction of the global minimum prototype in screening stud­
ies involving bulk materials (as we have demonstrated in Paper I) and reusing the tra­
jectories of previous local optimizations and transition state searches speeds up other
local optimizations and transition state searches during the determination of reaction
networks (as we have seen in Paper III).

Another guideline that arises from the results is that the inclusion of more “physical”
intuition into the prior knowledge of the model reduces the amount of data needed to
achieve the desired accuracy. Including the symmetry label in the graph descriptors
(Paper I) or including information about the covalent radii of atoms (Paper IV) improves
the accuracy of the parts of the PES we are interested in. At a more fundamental
level, the results show that the symmetry of a material becomes an important piece of
information in the characterization of the different local minima. Thus, the inclusion of
symmetry information in the description of an atomic system is key for the identification
of the global minimum structure (see Papers I and V).

All the active learning methods based on Gaussian processes presented in this thesis
have been collected in the Python package gpatom [144] in a ready­to­use form. Those
hyperparameters and design choices that lead to the best performance over many
different training examples have been selected as default choices in the package. The
result of these methods is always a structure whose energy and forces have been
obtained by a quantum chemistry method (which is chosen by the user among those
available through ASE [16, 17]). Thus, the package is addressed to an audience of
both experts and non­experts in machine learning, which can benefit of an speed up
in the determination of the geometry of atomic structures.
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Computational materials screening studies require fast calculation of the properties of thousands of materials.
The calculations are often performed with density functional theory (DFT), but the necessary computer time
sets limitations for the investigated material space. Therefore, the development of machine-learning models
for prediction of DFT-calculated properties is currently of interest. A particular challenge for new materials is
that the atomic positions are generally not known. We present a machine-learning model for the prediction of
DFT-calculated formation energies based on Voronoi quotient graphs and local symmetry classification without
the need for detailed information about atomic positions. The model is implemented as a message passing neural
network and tested on the Open Quantum Materials Database (OQMD) and the Materials Project Database. The
test mean absolute error is 22 meV on the OQMD and 43 meV on Materials Project Database. The possibilities
for prediction in a realistic computational screening setting are investigated on a data set of 5976 ABSe3 selenides
with very limited overlap with the OQMD training set. Pretraining on OQMD and subsequent training on 100
selenides result in a mean absolute error below 0.1 eV for the formation energy of the selenides.

DOI: 10.1103/PhysRevB.100.104114

I. INTRODUCTION

Over the last decades, high-throughput computational
screening studies have been employed to identify new ma-
terials within different areas such as (photo)electrochemistry
[1–3], batteries [4,5], catalysis [6,7], and more [8–10]. Such
studies are typically based on density functional theory
[11,12] and because of computational requirements they are
usually limited to some thousands or tens of thousands of
materials. In order to investigate larger parts of the huge space
of possible materials, new methods are needed to perform
faster calculations or to guide the search in the material space
in a more informed way.

One way to circumvent the computationally demanding
DFT calculations is to use machine-learning (ML) techniques
to predict materials properties, and this approach has been ex-
plored intensively the last years. Several descriptors or finger-
prints to characterize the atomic structure of a material have
been suggested including the partial radial distribution func-
tion [13] and the Coulomb matrix [14]. More involved finger-
prints combining many atomic properties and crystal structure
attributes based on Voronoi graphs have also been developed
[15,16], along with graph representations, which are directly
mapped onto convolutional neural networks [17–19].

The use of ML to speed up DFT calculations may have sev-
eral goals in a computational screening setting. If the atomic
structure (i.e., the positions of all the atoms) of a material is
known, ML may in principle provide the same information
about the material as a DFT calculation would: structural
stability, phonon dispersion relations, elastic constants, etc.
It might even in principle provide data of a better quality
than standard (semi)local DFT calculations, comparable to
more advanced DFT calculations with hybrid functionals

or even higher-level methods as recently demonstrated for
molecules [20].

However, the atomic positions of new materials will gen-
erally not be known. If the atomic positions are known from
experiment, the material is not really new (even though many
of its properties might be unknown) and if the positions are
obtained from a DFT calculations there is no need to use a
ML prediction of already calculated properties.

Our focus here will be the prediction of properties of new
materials where the detailed atomic positions are unknown,
and since the most crucial property of a new material is
its stability we shall concentrate on prediction of formation
energies.

The obvious question of course then is, how we can de-
scribe or classify a crystalline material without knowing the
explicit positions of the atoms. The most fundamental prop-
erty of a material is its chemical composition, i.e., for a ternary
material AxByCz, the identity of the elements A, B, and C and
their relative appearance x : y : z. It turns out that based on
this information alone a number of predictions about material
stability can be made. Meredig et al. [21] demonstrated that
it is possible to predict thermodynamic stability of new com-
pounds with reasonable accuracy based on composition alone,
and a number of new compound compositions were predicted
and their structures subsequently determined. However, this
approach of course has its limitations as it cannot distinguish
between materials with the same composition but different
crystal structures.

A rigorous classification of a crystalline material comes
from its symmetry. Any periodic material belongs to one of
the 230 space groups, and this puts restrictions on the possible
atomic positions. In the simplest cases of, say, a unary material
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FIG. 1. Structure of BaSnO3. The unit cell contains one Ba atom
(green), one Sn atom (gray), and three O atoms (red).

with one atom in the unit cell with space group Fm-3m
(an fcc crystal), all atomic positions are determined up to a
scaling of the volume. Similarly, the fractional positions (i.e.,
relative to the unit cell) of the atoms in materials with several
elements can be determined entirely by symmetry as, for
example, shown for BaSnO3 in the cubic perovskite structure
in Fig. 1. More generally, scaled atomic positions may be fully
or partially determined depending on their symmetry, and
the symmetry properties can be expressed using the so-called
Wyckoff sites. This classification was recently used by Jain
and Bligaard [22] to build a machine-learning model based on
only composition and the Wyckoff positions, i.e., without any
detailed information about the atomic positions. They were
able to achieve a mean absolute error of about 0.07 eV/atom
on the prediction of the formation energy on a test data set of
more than 85 000 materials.

Here, we shall develop a machine-learning model, which
does not require knowledge of the detailed atomic positions.
However, unlike the model proposed by Jain and Bligaard, it
will be based on local information about interatomic bonds
and the symmetry of their environments. The bonds will be
identified using Voronoi graphs and the symmetry will be
classified using the Voronoi facets. The resulting model has
a mean absolute error on the heats of formation for the Open
Quantum Materials Database (OQMD) of only 22 meV and
for the ICSD part of OQMD it is 40 meV.

In Sec. II we describe the proposed graph representation
based on quotient graphs and the classification of Voronoi
facet point symmetry and in Sec. III we investigate the re-
lation between quotient graphs and prototypes based on data
from OQMD. This is followed by an introduction of the
machine-learning model and the data sets in Secs. IV and V,
respectively. The numerical results are presented in Sec. VI
and followed by the conclusions in Sec. VII.

II. GRAPH REPRESENTATION

As representation for the machine-learning algorithm, we
use the quotient graph as introduced by [23] and also used

FIG. 2. Voronoi cells of BaSnO3. The cells have been displaced
for the visualization. The color of the facets corresponds to the
atomic species of the neighboring atom (green for Ba, gray for Sn,
and red for O neighbors).

in [19]. The quotient graph is a finite graph representation
of the infinite periodic network of atoms. Every atom in the
unit cell corresponds to a vertex of the quotient graph. We
denote the graph G and the set of N vertices {vi}N

i=1. When
two atoms are connected in the network, we draw an edge
between the atoms in the quotient graph. In this work we use
the Voronoi diagram to decide when two atoms are connected,
specifically a pair of atoms are connected if they share a facet
in the Voronoi diagram. Due to periodic boundary conditions
a pair of atoms may share several facets, and in this case there
will be several edges between the atoms. When interatomic
distances are available, the edges are labeled with the distance
between the atoms.

As an example, we look at BaSnO3 in the perovskite
structure as shown in Fig. 1. This material has five atoms in
the unit cell. After performing Voronoi tessellation we get a
Voronoi cell for each atom in the unit cell as shown in Fig. 2.
The Voronoi diagram defines the edges in the quotient graph
which is illustrated in Fig. 3.

An inherent problem with Voronoi graph construction
method is that small perturbations of the atom positions
may lead to different graphs. Classification of different types
of instabilities has even been used by Lazar et al. [24] to
characterize local structure. As shown by Reem [25], small

FIG. 3. Quotient graph for BaSnO3. The edge labels show the
point groups of the corresponding facets of the Voronoi diagram. For
this particular case, the repeated edges between vertices all have the
same point groups, but in general they could be different.
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FIG. 4. Each shape is the convex hull of the shape in the top left corner after the symmetry operations of each of the point groups have
been applied. The label above each shape denotes the point group and the symmetry measure for that group.

changes in the Voronoi sites lead to only small changes in
the Voronoi cell volume. However, small perturbations can
still lead to appearances of quite small facets. This is, for
example, often the case for structures with high symmetry,
where small displacements of the atoms introduce new facets.
To increase the stability, we remove these small facets and
the corresponding connections in the graph by introducing a
cutoff in the solid angle of the facet �cut. We use �cut = 0.2,
but as we shall see later the results are surprisingly stable
with regard to increasing this value. A more advanced method
for improving the stability of the Voronoi graph has been
proposed by Malins et al. [26].

The graph is annotated with the symmetry group of each of
the Voronoi facets. In the following section, we describe this
symmetry classification in more detail.

A. Symmetry-group classification

To characterize the symmetry of an atomic environment,
we classify the symmetry of each Voronoi facet into
the nine nontrivial two-dimensional point groups
(C2,C3,C4,C6, D1, D2, D3, D4, D6). The classification
method is inspired by the symmetry measure introduced
by Heijmans and Tuzikov [27]. Given the vertices of the
two-dimensional Voronoi facet, we go through the following
procedure:

(1) Compute centroid and center the shape.
(2) Search for mirror axis and align it with the x axis if it

exists.
(3) For each point symmetry group apply all elements of

the group and calculate the area of the convex hull of the
points generated by this procedure.

The symmetry measure is then the ratio between the area
of the original shape and the area defined by the convex hull
of the new vertices. When the symmetry measure for a given
group is close to unity, we label the facet as having this
symmetry. See Fig. 4 for an example shape and its symmetry
measure for each group. The search for mirror axis in step
2 is done by computing the moment of inertia and testing the
two principal axes for mirror symmetry. When the moments of
inertia are the same, for example when the shape is a regular
polygon, the principal axes are arbitrary and we fall back

to testing for mirror symmetry at all axes going through the
centroid and either a vertex or a midpoint of a line segment.
For a regular hexagon, these axes are illustrated in Fig. 5.

III. GRAPH REPRESENTATION AND PROTOTYPES

In many applications, prototypes are used as a descriptor
for the overall structure of a material and as part of a compu-
tational screening procedure some of the atoms of the proto-
types may be swapped with other elements. We want to assess
whether there is a correspondence between the prototypes and
Voronoi graphs, i.e., do two materials with the same prototype
have the same Voronoi graph and do two materials with the
same Voronoi graph have the same prototype? The question
cannot be ultimately answered because prototype naming is
not completely well defined: in some cases, several different
prototypes are used to describe the same material, and many
materials may not have prototypes attached to them. But, we
can show to which extent Voronoi graphs are aligned with the
use of prototypes.

For this analysis we use the OQMD database with the
prototypes assigned in the database. We note that this as-
signment is not generally unique. For example, an elemental
compound in the fcc structure may be labeled with either
“Cu” or “A1_Cu” in the database. In other cases, two clearly
different structures are classified with the same prototype.

We investigate all unary, binary, and ternary compounds
in the database and for each of these sets we study the link
between graphs G and prototypes P, i.e., if we know that a
given structure has a specific prototype, do we then also know
which graph it has and vice versa. One way of measuring this

FIG. 5. Mirror axes of a hexagon.
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TABLE I. Correspondence between Voronoi graphs and prototypes in OQMD with and without symmetry labels. N denotes the number
of entries, |G| the number of unique Voronoi graphs, and |P| the number of different prototypes. H (G) and H (P) are the entropy of the
distribution of graphs and prototypes, respectively, while I (G; P) is the mutual information between the two distributions and U (G|P), U (P|G)
are the normalized mutual information. (a) For graphs without symmetry labels. (b) For graphs with symmetry labels.

(a)
N |G| |P| H (G) H (P) I (G; P) U (G|P) U (P|G)

Unary 1487 85 67 4.4 4.7 3.7 0.84 0.80
Unary ICSD 196 46 49 4.2 4.2 3.8 0.90 0.90
Binary 53528 1318 871 4.3 4.5 3.8 0.90 0.86
Binary ICSD 5862 1219 850 8.2 8.0 7.6 0.92 0.95
Ternary 339960 4006 1754 2.0 1.9 1.8 0.91 0.98
Ternary ICSD 11500 3487 1740 10.0 9.1 8.8 0.88 0.97

(b)
N |G| |P| H (G) H (P) I (G; P) U (G|P) U (P|G)

Unary 1487 222 67 6.1 4.7 4.3 0.70 0.91
Unary ICSD 196 68 49 4.8 4.2 4.0 0.84 0.96
Binary 53528 2040 871 4.7 4.5 4.0 0.84 0.90
Binary ICSD 5862 1742 850 8.8 8.0 7.8 0.89 0.97
Ternary 339960 5703 1754 2.1 1.9 1.8 0.88 0.99
Ternary ICSD 11500 4504 1740 10.5 9.1 9.0 0.85 0.99

is through the mutual information I (G; P) of G and P. The
mutual information is symmetric and can be computed as

I (G; P) = H (G) − H (G|P) (1)

= H (P) − H (P|G), (2)

where H denotes the entropy. The mutual information is
thus the average decrease in entropy we get from knowing
the other variable. We also compute the normalized mutual
information known as the uncertainty coefficient U (X |Y ) =
I (X ;Y )/H (X ) which can be seen as given Y what fraction
of bits of X can we predict. To compute these quantities, we
need the distribution over graphs and we obtain these distri-
butions approximately by comparing graph fingerprints.1 The
quantities for OQMD are shown for the unlabeled graph in
Table I(a) and for the graph labeled with rotation symmetries
in Table I(b).

The uncertainty coefficient is close to 90% in most cases
except for the unary compounds U (P|G). In this case, struc-
tures with different prototypes map to the same graph and we
may be discarding important structural information. Including
symmetry information increases the number of unique graphs
significantly, which implies that the uncertainty coefficient
U (G|P) decreases while U (P|G) increases.

IV. NEURAL MESSAGE PASSING MODEL

In this section we introduce the machine-learning model
which takes the labeled graph as input and outputs an energy

1The graph fingerprints are computed using the neural message
passing model with random weight initialization. We use two in-
stances of neural network weight initialization and six different
atomic embedding instances, thus having 12 models in total. The
fingerprint is then a vector where each entry is the scalar output of
one of these models.

prediction as a scalar. We describe the model as message pass-
ing on a graph following the notational framework introduced
by Gilmer et al. [28]. We follow the message passing notation,
but the model we are going to introduce can be seen as an
extension of the SchNet model [18], which can also be cast
into this framework as we have shown in prior work [29].

Denote the graph G with vertex features xv and edge
features εvw for an edge from vertex v to vertex w. Each vertex
has a hidden state ht

v at “time” (or layer) t and we denote the
edge hidden state et

vw. The hidden states of vertices and edges
are updated in a number of interaction steps T . In each step,
the hidden states of vertices are updated in parallel by receiv-
ing and aggregating messages from neighboring vertices. The
messages are computed by the message function Mt (·) and the
vertex state is updated by a state transition function St (·), i.e.,

mt+1
v =

∑
w∈N (v)

Mt
(
ht

v, ht
w, et

vw

)
, (3)

ht+1
v = St

(
ht

v, mt+1
v

)
, (4)

where N (v) denotes the neighborhood of v, i.e., the vertices
in the graph that has an edge to v. The edge hidden states are
also updated by an edge update function Et (·) that depends on
the previous edge state as well as the vertices that the edge
connects:

et+1
vw = Et

(
ht

v, ht
w, et

vw

)
. (5)

After T interaction steps the vertex hidden state represents
the atom type and its chemical environment. We then apply
a readout function R(·) which maps the set of vertex states to
a single entity

ŷ = R
({

hT
v ∈ G

})
. (6)

The readout function operates on the set of vertices and must
be invariant to the ordering of the set. This is often achieved
simply by summing over the vertices. In some architectures
the final edge states are also included as an argument to the
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readout function. The message function Mt (·), state transition
function St (·), edge update function Et (·), and readout func-
tion R(·) are implemented as neural networks with trainable
weight matrices. To fully define the model, we just need to
define these functions and a number of models can be cast
into this framework. We use different weight matrices for each
time step t , however, in some architectures the weights are
shared between layers to reduce the number of parameters.

In this work we use the model proposed in our prior work
[29]. The model is an extension of the SchNet model [18],
with the addition of an edge update network. The message
function is only a function of the sending vertex and can be
written as

Mt
(
ht

w, et
vw

) = (
W t

1 ht
w

) � g
(
W t

3 g
(
W t

2 et
vw

))
, (7)

where � is element-wise multiplication, the W ’s are weight
matrices, and g(x) is the activation function, more specifically
the shifted soft-plus function g(x) = ln(ex + 1) − ln(2). It can
be seen as a smooth version of the more popular rectified
linear unit. In this description we omit the bias terms to reduce
the notational clutter, but in the implementation a trainable
bias vector is added after each matrix-vector product, i.e.,
there is an appropriately sized bias vector for each of the W ’s.
As an edge update network we use a two-layer neural network
and the input is a concatenation of the sending and receiving
vertex states and the current edge state:

et+1
vw = Et

(
ht

v, ht
w, et

vw

) = g
(
W t

E2g
(
W t

E1

(
ht

v; ht
w; et

vw

)))
,

(8)

where (·; ·) denotes vector concatenation. This choice of edge
update network means that the edge state for each of the
two different directions between a pair of vertices becomes
different after the first update. This network is the only ar-
chitectural difference from the SchNet model [18], i.e., if we
set et+1

vw = et
vw the model we describe here would be identical

with the SchNet model. The state transition function is also a
two-layer neural network. It is applied to the sum of incoming
messages and the result is added to the current hidden state as
in residual networks [30]:

St
(
ht

v, mt+1
v

) = ht
v + W t

5 g
(
W t

4 mt+1
v

)
. (9)

After a number of interaction steps T we apply a readout
function for which we use a two-layer neural network that
maps the vertex hidden representation to a scalar and finally
we average over the contribution from each atom, i.e.,

R
({

hT
v ∈ G

}) = 1

N

∑
hT

v ∈G

W7g
(
W6hT

v

)
. (10)

In other words, an atom and its chemical environment are
mapped to an energy contribution.

A. Initial vertex and edge representation

The initial vertex hidden state h0
v depends on the atomic

number of the corresponding atom. The atomic number is
used to look up a vector representation for that atom. Using
a hidden representation of size 256 the initial hidden state
is thus the result of a lookup function �(x) : N → R256. The
weights in the vector representation are also trained during the
optimization.

We use the model on three different levels of available
information. In the most ignorant scenario, we have no labels
on the edges of the graph and in this case the edge update
function (8) just ignores the edge representation on the first
layer, i.e., e0

vw is a “vector” of length 0 and et
vw, t ∈ 1, . . . , T

are vectors of length 256. The next level of information is to
include the point-group information as described in Sec. II A.
There are nine nontrivial point groups and we encode this
information as an indicator vector of length 9, where 1
means that the corresponding facet belongs to the given point
group. Finally, we also run numerical experiments with the
full spatial information for which the edges of the quotient
graph are labeled with the interatomic distance. The distances
are encoded by expanding them in a series of exponentiated
quadratic functions as also done in [17,18,29]

(
e0
vw

)
k

= exp

(
− [dvw − (−μmin+k�)]2

2�2

)
, k = 0 . . . kmax

(11)

where μmin, �, and kmax are chosen such that the centers of
the functions cover the range of the input features. This can be
seen as a soft 1-hot-encoding of the distances, which makes it
easier for a neural network to learn a function where the input
distance is uncorrelated with the output. In the experiments
we use μmin = 0, � = 0.1, and kmax = 150.

V. DATA SETS

For the numerical experiments we use two publicly avail-
able data sets and one data set we generate.

a. Materials Project [31]. This data set contains geome-
tries and formation energies of 86680 inorganic compounds
with input structures primarily taken from the the Inorganic
Crystal Structure Database (ICSD) [32]. We use the latest
version of the database (version 2018.11). The number of
examples is reduced to 86579 after we exclude all materials
with noble gases (He, Ne, Ar, Kr, Xe) because they occur so
infrequently in the data set that we consider them as outliers.
This brings the number of different elements in the data set
down to 84.

b. Open Quantum Materials Database (OQMD) [33,34].
Is also a database of inorganic structures and we use the cur-
rently latest version (OQMD v1.2) available on the project’s
website. Again, we consider materials with noble gases as
outliers and we also exclude highly unstable materials with
a heat of formation of more than 5 eV/atom. Some entries
in the database are marked as duplicates and we filter them in
the following way: When a set of duplicates is encountered we
use the first entry of the database, but if the standard deviation
of the calculated heat of formation exceeds 0.05 eV/atom, we
discard the whole set of duplicates. This leaves us with a total
of 562134 entries.

For both data sets we split the entries into five parts of
equal size to be used for fivefold cross validation, where the
machine is trained on 4

5 of the data, and the remaining 1
5 is

used for testing. For OQMD we also distribute the entries
of OQMD that originate from ICSD equally between the five
folds.

c. Ternary selenides ABSe3. For further testing, we have
developed a third data set of selenides. The intention behind
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FIG. 6. Map of the most stable prototype for each composition ABSe3. The compositions that do not fulfill the valence rule have not been
studied and, thus, they are not colored.

this set is to test the ability of the model in a realistic
computational screening setting. This data set has only very
limited overlap with OQMD, and predictions are made ex-
clusively based on the symmetry-labeled graphs of the new
materials without any detailed information about the atomic
coordinates.

The data set contains the structures and formation energies
of 5976 ternary selenides with stoichiometries ABSe3, where
A and B are different transition metals in six different proto-
types.

The procedure for generating this data set resembles the
one presented in [3]. We start by looking up the ABSe3 com-
pounds reported in ICSD [32], and selecting the six prototypes
that appear more than once: hexagonal P63/mmc structure of
BaNiO3, orthorhombic Pnma structure of NH4CdCl3/Sn2S3,
monoclinic C2/m FePS3, monoclinic Pc structure of PbPS3,
trigonal R3̄ structure of MnPSe3 and hexagonal P61 structure
of Al2S3.

These structures are then used as templates, and we substi-
tute the transition metal atoms A and B by 49 transition metals.
Here, we avoid for simplicity Cr, Mn, Fe, and Co, which
usually lead to structures with large magnetic moments. We
also limit ourselves to those combinations ABSe3 for which
the valences of cations and anions add up to zero. This leads to
a total of 512 ABSe3 compounds: 484 ternaries, which are then
studied in 12 structures (6 for the ABSe3 and 6 for the BASe3)
and 28 binaries, for which we study 6 different structures. A

map to the compositions and structures studied can be found
in Fig. 6.

The resulting 5976 structures have then been relaxed using
density functional theory (DFT) as implemented in the codes
ASE [35] and GPAW [36]. We perform two different kinds of
electronic structure calculations: a coarse-grained calculation
with the exchange-correlation functional PBESOL [37] for the
steps of the optimization and fined grained at the relaxed
structure with the PBE exchange-correlation functional [38].
The cutoff energy for the plane-wave basis set used to expand
the wave functions is 800 eV in both cases. For the sampling
of the Brillouin zone we use a Monkhorst-Pack mesh [39]
with a density of 5.0/(Å−1) k points in each direction for
the relaxation steps and of 8.0/(Å−1) k points for the refined
calculation at the relaxed structure. All structures have been
relaxed until the forces on the atoms are less than 0.05 eV/Å.

VI. NUMERICAL RESULTS AND DISCUSSION

To assess the loss in accuracy going from full spatial
information to unlabeled quotient graph we train/test the
model in three different settings, as mentioned in Sec. IV A.
In the most ignorant setting, the quotient graph has only
unlabeled edges. On the next level we label the edges with
the symmetry of the corresponding Voronoi facet. With full
spatial information, the edges of the quotient graph are labeled
with the distance between the atoms. The model is trained
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TABLE II. MAE in meV/atom of test set energy predictions
obtained through fivefold cross validation. The ICSD results are for
the model trained on OQMD and tested only on the ICSD part of
OQMD.

Data set Dist. Sym. No sym. V-RF

OQMD all 14 22 26 85
OQMD unary 58 110 128 85
OQMD binary 30 48 60 86
OQMD ternary 14 20 23 80
ICSD all 24 40 45 113
ICSD unary 56 75 119 72
ICSD binary 32 51 58 118
ICSD ternary 22 35 39 109
Matproj all 26 43 43 84
Matproj unary 96 149 179 127
Matproj binary 48 69 73 99
Matproj ternary 27 43 43 87

with the Adam optimizer [40] for up to 10 × 106 steps using
a batch size of 32. The initial learning rate is 1 × 10−4 and
it is decreased exponentially so at step s the learning rate
is 10−4 × 0.96

s
105 . When training on OQMD and materials

project we use 5000 examples from the training data for early
stopping. More specifically, this validation set is evaluated
every 50 000 steps and if the mean absolute error (MAE) has
not improved for 1 × 106 steps, the training is terminated.
When training on the ternary selenides ABSe3 data set the
10% of the training data is used as a validation set and the
validation set is evaluated every training epoch. In some of the
results we use a model that has been pretrained on OQMD. In
that case, the model is trained on four out of five OQMD folds
until the stopping criterion is met and the weights of the model
are then used as initialization for training on the selenides data
set. The implementation of the model as well as the code used
for generating the input graphs are available on GITHUB.2

2https://github.com/peterbjorgensen/msgnet; https://github.com/
peterbjorgensen/vorosym

A. OQMD

The mean absolute errors (MAE) and root-mean-squared
errors (RMSE) of the test set predictions are shown in Table II
and the MAE is further visualized in Fig. 7. As expected, the
lowest prediction errors are obtained with the model where
distance information is provided. If we focus on the OQMD,
the overall MAE is as low as 14 meV with distance informa-
tion. This is lower than the SchNet model [18] by almost a fac-
tor of 2 because of the edge updates as discussed in Ref. [29].
Two versions of the models without distance information are
also shown. In one of them, the symmetry information has not
been used, but in the other one the symmetry classification
of the Voronoi facets has been included as edge information.
These two models do of course have larger errors than the one
benefiting from the distance information, but still the error is
surprisingly small. The MAE is only 22 meV for the model
using symmetry information. For comparison, the results for
the model proposed by Ward et al. [15] are also shown in
the figures (labeled V-RF for Voronoi–random forest). This
model also builds on a Voronoi graph construction, but since
the fractional areas of the Voronoi cells are provided, infor-
mation about the distances is provided. Furthermore, many
other attributes are added as information to the random forest
algorithm applied. When this machine is applied to OQMD
(using the same fivefold splitting of the data as applied to the
other algorithms), the resulting error is considerably larger,
85 meV, for all of OQMD.

To understand more about the behavior of the ML algo-
rithms investigated here, we have considered the test errors on
different subsets of OQMD and also on the material project
database [31]. Let us first note that the OQMD contains
two different types of structure sources. One type, which
gives rise to the largest number of materials, consists of a
number of fixed crystal structures or prototypes decorated
by the different chemical elements. There are 16 elemental
prototypes, 12 binary ones, and 3 ternary ones. For two of
the ternary ones, one of the elements is predefined to be
oxygen. This generates a very large number of materials of
varying composition and stability, but in a fairly small number
of different crystal structures. The other type of structures
comes from materials from the experimental ICSD database.
This group is characterized by a much greater variation in

FIG. 7. The figure shows the data in Table II.
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the crystal structures, but is naturally limited to mostly stable
materials since they have been experimentally synthesized.

We first consider the test error on the subsets of OQMD
consisting of the unary, binary, and ternary systems, and we
shall focus on the model where the symmetry information
is included, but the distances are not. As can be seen from
Table II, the test error is considerably larger on the unary
systems (110 meV) than on the database as a whole. This also
holds for the binary ones, but to a smaller degree (48 meV).
It is not clear to us at the moment exactly why this is so, but
we shall discuss some possible explanations. The unary and
binary systems only constitute a fairly small part of the total
database, and the weight of these systems during the training
is therefore also limited. Another factor may be that a large
fraction of the unary and binary systems belong to the group
of materials where the crystal structures are systematically
generated as mentioned above. This means that many rather
“artificial” and unstable materials are generated, where the
atoms are situated in environments, which do not occur in
reality, and the resulting energies may be far above more
stable structures. This could potentially be difficult for the
machine to learn.

B. ICSD/OQMD

Table II also shows the results for the ICSD subset of the
OQMD database. The results shown are for the model trained
on all of OQMD but tested only on the ICSD subset. The
overall MAE is seen to be roughly a factor of 2 larger than
for all of OQMD. This is probably due to the fact that the
ICSD is a subset with a large variation of structures, and this
makes prediction more difficult on average. We see the same
trend as for all of OQMD, that the error decreases going from
unary to binary to ternary systems. For the unary systems,
the test error is in fact lower for the ICSD subset than for
all of OQMD, which may be due to the fact that physically
artificial high-energy systems appear in OQMD but not in
ICSD. For the binary systems there is a balance: the ICSD
does not contain so many high-energy systems, which could
make predictions better, but on the other hand, the larger
variation of crystal structures is more difficult to predict.

C. Materials project database

The models have also been trained and tested on the Mate-
rials Project data set [31]. The overall error is fairly similar to
the one obtained for the ICSD subset of OQMD as might be
expected since the materials project is also based on mostly
materials from the ICSD. The errors for the unary and binary
subsets are somewhat larger for the materials project database.
This might be due to the fact that the machine trained on
OQMD benefits from the larger number of systematically
generated unary and binary systems in that database.

D. RMSE vs MAE

The root-mean-square errors are shown in Table III. In all
cases, the values are considerably higher than the MAE. This
is an indication that the distribution of the errors have heavier
tails than a Gaussian, and as we shall see in the following
examples that a significant number of outliers exist. The

TABLE III. RMSE in meV/atom of test set energy predictions
obtained through fivefold cross validation. The ICSD results are for
the model trained on OQMD and tested only on the ICSD part of
OQMD.

Data set Dist. Sym. No sym. V-RF

OQMD all 54 74 80 173
OQMD unary 184 269 342 190
OQMD binary 89 113 138 162
OQMD ternary 52 70 71 131
ICSD all 81 107 111 188
ICSD unary 262 227 353 180
ICSD binary 73 116 129 202
ICSD ternary 88 112 102 182
Matproj all 72 121 122 172
Matproj unary 246 341 467 289
Matproj binary 120 190 192 203
Matproj ternary 65 119 111 181

outliers might be due to limitations of the model, but could
also appear because of problematic entries in the database as
also discussed by Ward et al. [15].

E. Solid-angle cutoff of Voronoi facets

The above results are all calculated using a cutoff of the
Voronoi facet solid angle of �cut = 0.2. However, the results
are almost independent of the value as shown in Fig. 8,
where the MAE on all of OQMD is shown for the model
where symmetry but no distance information is included. We
see that the error decreases slightly when small facets are
removed with �cut = 0.2, and increases only slowly when
�cut is further increased. We take this as an indication that the
connectivity of the material is well described even when the
graph is reduced to essentially include only nearest-neighbor
bonds.

F. ABO3 materials in OQMD

We now consider the subset of all oxides in the OQMD
with the composition ABO3. We shall investigate to which
extent the model is able to predict the right ground-state
structure for a given composition. We first show the overall
prediction for the 12 935 materials of this type in OQMD in
Fig. 9. We again use the model with symmetry-labeled graphs

FIG. 8. Prediction error on OQMD test set vs Voronoi facet solid
angle cutoff �cut for the model using symmetry labels. The error
decreases slightly when removing small facets and increases only
slowly when �cut is further increased.
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FIG. 9. Test set predictions on 12 395 ABO3 structures of OQMD
(MAE=36, RMSE = 112 meV/atom) using fivefold cross valida-
tion, i.e., the plot is a collection of predictions from five different
models, each trained on 4

5 of the data and tested on the remaining 1
5 .

without distance information. The MAE is 36 meV, which is
about the same value as the one for the subset of ternaries
in ICSD (35 meV). The RMSE is again significantly higher
(112 meV) because of severe outliers as can be seen in the
plot.

We now ask the following question: given a composition
(A, B) the model predicts a ground-state structure GML. If we
are going to investigate this structure and other low-energy
structures with DFT, how high up in energy (as predicted
by the model) do we have to go before we find the DFT
ground-state structure GDFT? We only include entries for
which there is more than one structure (12 329/12 395) and
the average number of structures per composition is 4.7. The
energy difference �E = EML(GDFT) − EML(GML) of course
varies from system to system, and the distribution is shown
in Fig. 10. The mean absolute difference (MAD) of this

FIG. 10. Predicted energy difference between the DFT ground
state and the ML ground state: �E = EML(GDFT) − EML(GML) for
the ABO3 materials in OQMD. The total number of compositions is
2646. The peak at zero is much higher than shown in the graph. It
corresponds to the 2097 compositions, where the right ground state
is predicted. For the remaining 549 compositions, the mean absolute
difference is 44 meV/atom.

distribution is very small, only 9 meV, and the maximum error
is a clear outlier at 0.92 eV. The reason for the small MAD is
that for 2097 out of the 2646 compositions the correct ground
state is predicted, however, in many cases because only two
structures exist in the database for a given composition.
For comparison, the expected number of correctly predicted
ground-state structures with random guessing is 843. If we
only look at the 549 compositions for which the ML model
predicts the wrong ground state, the MAD is 44 meV/atom.
For comparison, the energy prediction for the ground-state
structures has an MAE of 29 meV/atom. The low MAD value
of 44 meV is promising for applications to computational
screening. It sets an energy scale for how many structures
have to be investigated by DFT to identify the DFT ground
state after the model predictions have been generated.

G. ABSe3 selenides

The last data set we shall consider consists of selenides
with the ABSe3 composition as discussed in the section about
the data sets. This data set is considerably more challenging
for two reasons. First, there is very little overlap between this
data set and the training data set OQMD. Only six materials
are shared between the two data sets, and the test predictions
for these are shown in Fig. 11(a). The MAE is 24 meV, and the
RMSE is also low, only 38 meV. The second challenge is that
we shall now use the model to make predictions based on the
initial graph before relaxations. The six different prototypes
in the data set each have a graph in the original material
giving rise to the naming of the prototype. For example, one of
the types is hexagonal P63/mmc structure of BaNiO3, so for
predictions in this structure we shall use the graph of BaNiO3.
Some of the prototype structures have a fair number of atoms
in the unit cell (up to 20) and a low symmetry (monoclinic),
which means that there are many free atomic coordinates
that are optimized during relaxation. This leads to frequent
modifications of the graph during relaxation.

Figure 11(b) shows the model predictions based on the ini-
tial prototype graphs versus the DFT energies of the resulting
optimized structures. The MAE is 176 meV, which is consid-
erably higher than the value for the oxides. Particularly large
deviations are seen for large and positive heats of formation.
In a computational screening setting this might not be an issue
because the high-energy materials are going to be excluded
anyway. The RMSE is only a factor 236/176 = 1.34 larger
than the MAE, which is due to the small number of outliers
compared to, for example, the oxides (Fig. 9).

The prediction quality can be significantly improved by
additional training on the selenide data set. Even a limited
number of data points have a considerable effect. This is to
be expected since the overlap between the selenide data set
and the OQMD is only six materials as mentioned above.
Figure 11(c) shows the model-DFT comparison if the model
is first trained on the OQMD data set and then subsequently
trained on 100 materials out of the 5976 selenides in the
database. The MAE is reduced from 176 to 95 meV bringing
the error down to a value comparable to the error between
DFT and experiment [34].

The effect of additional training on the selenide data set is
shown as a function of training set size on a logarithmic scale
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(a) (b) (c)

FIG. 11. Predictions on ABSe3 test set with model pretrained on OQMD. (a) Predicted energy for selenides in OQMD (MAE=24
RMSE=38 meV/atom). (b) Predicted energy for selenides (initial structures) using model trained on OQMD (MAE=176 RMSE=236
meV/atom). (c) Predicted energy for selenides (initial structures) using model pretrained on OQMD and then on 100 selenides (MAE=95
RMSE=129 meV/atom.

in Fig. 12. The points on the y axis correspond to the situation
without any additional training. As can be seen, a small
amount of additional training leads to significant reduction
of the prediction error. The solid curve with square markers
corresponds to the situation discussed above where the model
is first trained on OQMD, and then further trained on the
initial graphs (but relaxed energies) for part of the selenides.
For comparison, the solid curve with diamond markers shows
the prediction error, when the training and prediction is based
on the final graph. Using the initial graphs instead of the
final graphs gives rise to only a slightly higher MAE. This
is encouraging for the potential use of the approach in compu-
tational screening studies, where predictions have to be based

FIG. 12. Predictions on ABSe3 structures with increasing number
of ABSe3 training samples. The solid lines correspond to models that
have been pretrained on OQMD and then on the ABSe3 data set. The
unconnected points correspond to the model only trained on OQMD
final structures, i.e., the pretrained model. The parameter T denotes
the number of interaction steps and initial/final structures refer to
whether the model input is the graph derived from the prototype
structure or the DFT-relaxed structure. KRR denotes a kernel ridge
regression baseline model using only composition and prototype as
input.

on the initial prototype structures to avoid the computationally
costly DFT calculations.

As a baseline, we also show the results of the model if it
is trained exclusively on the selenide data set (dashed curve
with cross markers). As expected, the MAE is much larger
than for the pretrained model for small amounts of data. For
larger training sets, the MAE drops gradually and with a data
set size of about 500 materials, the prediction error is com-
parable to the one for the OQMD-pretrained model, which is
trained on an additional 50 selenides. We ascribe the rather
successful performance of the model without pretraining at
large training set sizes to the systematic character of the data
set: only six different crystal structures are represented and
they are systematically decorated with a particular subset of
atoms. The last model (dashed curve with circle markers)
is again only trained on the selenide data set, but now only
one interaction step (T = 1) is performed in the message
passing neural network in contrast to the three iterations used
otherwise. The performance is seen to be rather similar to
the model with T = 3 up to a training data set size of 300.
With only one iteration in the network information about
the identity of neighboring atoms is exchanged, and this is
apparently sufficient to roughly characterize the six crystal
structures. At larger training set sizes, where the prediction
error is smaller, the network with three iterations outperforms
the one with only one iteration.

We also include an even simpler baseline model that uses
only the composition and the prototype as input and is only
trained on the ABSe3 data set. For this baseline the input
vector representation consists of a 1-hot-encoding for the
atom type of the A atom, a 1-hot-encoding for the B atom,
and a 1-hot-encoding for the prototype. We use kernel ridge
regression (KRR) as implemented by SCIKIT-LEARN using the
RBF kernel and using 10-fold cross validation to choose
the hyperparameters α (�2-penalty weight) and γ (kernel
length scale) on the grid α ∈ [1, 0.1, 0.01, 0.001] and γ ∈
[0.01, 0.1, 1.0, 10.0, 100.0]. The prediction error is similar to
the other baseline model that uses only one interaction step.

Figure 13 shows the distribution of the predicted en-
ergy difference between the DFT ground-state structure and
the ML-predicted ground-state structure �E = EML(GDFT) −
EML(GML) for the selenide data set. Only in 104 out of
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FIG. 13. Energy difference between the ML-predicted ground
state and the true ground state �E = EML(GDFT) − EML(GML) for
the selenide data set. The mean absolute difference is 70 meV/atom.

the 512 compositions, the model predicts the DFT ground
state. This is not particularly impressive since random pre-
diction of a structure would give roughly 512/12 ≈ 43 cor-
rect predictions. However, the data set has many low-lying
energy structures, where even full DFT calculations cannot
be expected to necessarily predict the correct ground-state
structure. This was investigated in more detail in a similarly
generated data set of ABS3 sulfides used for computational
screening of water-splitting materials [3]. The mean absolute
difference is only 70 meV/atom with a maximum error of 0.3
eV/atom. The low mean value is clearly promising for future
applications to computational materials screening.

VII. CONCLUSIONS

In summary, we have proposed a ML model for the pre-
diction of the formation energy of crystalline materials based
on Voronoi quotient graphs and a local symmetry description.
It uses a message passing neural network with edge updates.
The model is independent of the detailed atomic positions and
can therefore be used to predict the formation energy of new
materials, where the detailed structure is unknown.

The model test MAE is very small (22 meV) on the OQMD
data set, and a factor of 2 larger (40 meV) on the ICSD subset
of OQMD. To test the model in a realistic materials screening
setting, we created a data set of 6000 selenides with very small
overlap with the OQMD. The model pretrained on OQMD
and applied to the selenides shows an MAE of 176 meV. This
value can be lowered to 95 meV with an additional training on
100 selenides. Further training can lower the MAE to below
50 meV.

Based on the results, we conclude that is possible to
develop ML models with position independent descriptors,

which are useful for realistic materials screening studies.
However, extrapolation from OQMD to other data sets is
challenging. One reason for this may be, as pointed out
before, that the OQMD is composed of materials of two types:
some are generated systematically in rather few predefined
crystal structures while others come from ICSD. (There is
of course a significant overlap between the two types.) The
first type is characterized by a large variation in stability, but
low variation in crystal structures, while the second type is
the opposite: the experimentally observed materials in ICSD
exhibit a large variation in crystal structures, but they are
all (except for some high-pressure entries) stable low-energy
materials. This bias might limit the extrapolation to data sets
which contain structures weakly represented in OQMD and
with element combinations, which are far from stable. One
way forward could be to create data sets with less bias so
that unstable materials are represented in a greater variety of
structures.

We see a number of potential improvements of the pro-
posed model. More symmetry information could be included
using, for example, Wyckoff positions [22] or additional
graph edges describing symmetry relations. Furthermore, it is
possible to label the quotient graphs with crystal translation
information so that the infinite graph can be reconstructed
[41]. This would make the crystal description more unique.

Perhaps the model could also learn the atomic posi-
tions from the graph representation. The latest developments
in generative models have succeeded in generating small
molecules in three-dimensional (3D) space [42]. By combin-
ing this kind of model with the restrictions imposed by the
connectivity and symmetries described by the quotient graph
(see, for example, [43,44]), it might be possible to directly
predict the atomic positions without running DFT relaxations.

Another useful extension would be to model uncertainties
in the prediction. Even though the data sets used here have
a relatively high number of entries, they only contain a tiny
fraction of the chemical space. If the model could learn
what it does not know, it would be very useful in an active
learning setting where DFT calculations could be launched
by the model to explore areas of the chemical space with
high uncertainty. A promising direction for uncertainty mod-
eling is to use ensembles of neural networks where different
techniques can be considered to ensure diversity between
ensemble members [45–48].
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A local optimization method based on Bayesian Gaussian processes is developed and applied to atomic
structures. The method is applied to a variety of systems including molecules, clusters, bulk materials, and
molecules at surfaces. The approach is seen to compare favorably to standard optimization algorithms like
the conjugate gradient or Broyden-Fletcher-Goldfarb-Shanno in all cases. The method relies on prediction
of surrogate potential energy surfaces, which are fast to optimize, and which are gradually improved as the
calculation proceeds. The method includes a few hyperparameters, the optimization of which may lead to further
improvements of the computational speed.

DOI: 10.1103/PhysRevB.100.104103

I. INTRODUCTION

One of the great successes of density functional theory
(DFT) [1,2] is its ability to predict ground-state atomic struc-
tures. By minimizing the total energy, the atomic positions
in solids or molecules at low temperatures can be obtained.
However, the optimization of atomic structures with density
functional theory or higher-level quantum chemistry methods
require substantial computer resources. It is therefore impor-
tant to develop new methods to perform the optimization
efficiently.

It is of key interest here that for a given atomic structure a
DFT calculation provides not only the total electronic energy
but also, at almost no additional computational cost, the forces
on the atoms, i.e., the derivatives of the energy with respect
to the atomic coordinates. This means that for a system with
N atoms in a particular configuration only a single energy
value is obtained while 3N derivatives are also calculated. It
is therefore essential to include the gradient information in an
efficient optimization.

A number of well-known function optimizers exploring
gradient information exist [3] and several are implemented in
standard libraries like the SciPy library [4] for use in Python.
Two much-used examples are the conjugate gradient (CG)
method and the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm. Both of these rely on line minimizations and per-
form particularly well for a nearly harmonic potential energy
surface (PES). In the CG method, a series of conjugated
search directions are calculated, while the BFGS method
gradually builds up information about the Hessian, i.e., the
second derivatives of the energy, to find appropriate search
directions.

The Gaussian process (GP) method that we are going
to present has the benefit that it produces smooth surrogate
potential energy surfaces (SPESs) even in regions of space
where the potential is nonharmonic. This leads to a generally
improved convergence. The number of algebraic operations
that has to be carried out in order to move from one atomic
structure to the next is much higher for the GP method than for
the CG or BFGS methods; however, this is not of concern for

optimizing atomic structures with DFT, because the electronic
structure calculations themselves are so time consuming. For
more general optimization problems where the function eval-
uations are fast, the situation may be different.

Machine learning for PES modeling has recently attracted
the attention of the materials modeling community [5–18].
In particular, several methods have focused on fitting the
energies of electronic structure calculations to expressions of
the form

E (ρ) =
n∑

i=1

αi k(ρ (i), ρ). (1)

Here, {ρ (i)}n
i=1 are some descriptors of the n atomic config-

urations sampled, k(ρ (i), ρ) is known as a kernel function,
and {αi}n

i=1 are the coefficients to be determined in the fit.
Since there are n coefficients and n free parameters, the
SPES determined by this expression has the values of the
calculations at the configurations on the training set.

Here we note that expression (1) can easily be extended to

E (ρ) =
n∑

i=1

αi k(ρ (i), ρ) +
n∑

i=1

3N∑
j=1

βi j
∂k(ρ (i), ρ)

∂r (i)
j

, (2)

where {r (i)
j }3N

j=1 represent the coordinates of the N atoms in
the ith configuration. The new set of parameters βi j together
with αi can be adjusted so that not only the right energy of a
given configuration ρ (i) is predicted, but also the right forces.
This approach has two advantages with respect to the previous
one: (i) the information included in the model scales with the
dimensionality; (ii) the new model is smooth and has the right
gradients.

In the case of systems with many identical atoms or
similar local atomic structures it becomes advantageous to
construct SPESs based on descriptors or fingerprints char-
acterizing the local environment [5–11]. The descriptors can
then be constructed to obey basic principles as rotational and
translational symmetries and invariance under exchange of
identical atoms. Here we shall develop an approach based
on Gaussian processes which works directly with the atomic

2469-9950/2019/100(10)/104103(9) 104103-1 ©2019 American Physical Society
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coordinates and effectively produces a surrogate PES of the
type Eq. (2) aimed at relaxing atomic structures. We note
that Gaussian processes with derivatives for PES modeling
are a field that is developing fast, with recent applications in
local optimization [19] and path determination in elastic band
calculations [13,20,21].

II. GAUSSIAN PROCESS REGRESSION

We use Gaussian process regression with derivative in-
formation to produce a combined model for the energy E
and the forces f of a configuration with atomic positions
x = (r1, r2, . . . , rN ):

U(x) = (E (x),−f (x)) ∼ GP (Up(x), K (x, x′)), (3)

where Up(x) = (Ep(x),∇Ep(x)) is a vector-valued function
which constitutes the prior model for the PES and K (x, x′)
is a matrix-valued kernel function that models the correlation
between pairs of energy and force values as a function of the
configuration space.

In this work, we choose the constant function Up(x) =
(Ep, 0) as the prior function. For the kernel, we use the
squared-exponential covariance function to model the corre-
lation between the energy of different configurations:

k(x, x′) = σ 2
f e−‖x−x′‖2/2l2

, (4)

where l is a typical scale of the problem and σ f is a parameter
describing the prior variance at any configuration x. The full
kernel K can be obtained by noting that [22,23]

cov(E (x), E (x′)) = k(x, x′), (5)

cov

(
E (x),

∂E (x′)
∂x′

i

)
= ∂k(x, x′)

∂x′
i

≡ Ji(x, x′), (6)

cov

(
∂E (x)

∂xi
,
∂E (x′)

∂x′
j

)
= ∂2k(x, x′)

∂xi∂x′
j

≡ Hi j (x, x′), (7)

and assembling these covariance functions in a matrix form:

K (x, x′) =
(

k(x, x′) J(x, x′)
J(x′, x)T H (x, x′)

)
. (8)

The expressions for the mean and the variance for the pos-
terior distribution follow the usual definitions incorporating
the additional matrix structure. Let X = {x(i)}n

i=1 denote the
matrix containing n training inputs and let Y = {y(i)}n

i=1 =
{(E (x(i) ),−f (x(i) ))}n

i=1 be the matrix containing the corre-
sponding training targets. By defining

K (x, X ) = (K (x, x(1) ), K (x, x(2) ), . . . , K (x, x(n) )) (9)

and

(K (X, X ))i j = K (x(i), x( j) ), (10)

we get the following expressions for the mean,

Ū(x) = (Ē (x),−f̄ (x))

= Up(x) + K (x, X )K−1
X (Y − Up(X )), (11)

and the variance,

σ2(x) = K (x, x) − K (x, X )K−1
X K (X, x), (12)

of the prediction, where KX = K (X, X ) + �2
n . Here, we have

assumed an additive Gaussian noise term with covariance
matrix �n [22]. This term corrects only for the self-covariance
of the points in the training set, and thus, it is a diagonal matrix
that models the self-correlation of forces with a hyperparam-
eter σ 2

n and the self-correlation of energies with σ 2
n × l2. We

note that even for computational frameworks where the energy
and forces can be computed with very limited numerical
noise, small nonzero values of σn are advantageous since they
prevent the inversion of the covariance matrix K (X, X ) from
being numerically ill conditioned [13].

In the following, we will refer to Ē (x) as defined in
Eq. (11) as the surrogate potential energy surface (SPES) and
distinguish it from the first-principles PES, E (x).

III. GAUSSIAN PROCESS MINIMIZER: GPMin

The GP framework can be used to build an optimization
algorithm. In this section, we introduce the main ideas behind
the proposed Gaussian process minimizer (denoted GPMin
from hereon). A more detailed description of the algorithm
can be found in the Appendix in the form of a pseudocode.

The GP regression provides a SPES that can be minimized
using a gradient-based local optimizer. For this purpose, we
have used the L-BFGS-B algorithm as implemented in SciPy
[24]. The prior value for the energy is initially set as the
energy of the initial configuration and then the expression
(11) is used to produce a SPES from that data point alone.
This model is then minimized, and the evaluation at the new
local minimum generates new data that is then fed into the
model to produce a new SPES that will have a different local
minimum. Before generating each new SPES the prior value
for the energy is updated to the maximum value of the energies
previously sampled. This step is important because it makes
the algorithm more stable. If a high-energy configuration is
sampled, the forces may be very large leading to a too large
new step. The increase of the prior value tends to dampen this
by effectively reducing the step size. The whole process is
then iterated until convergence is reached.

It is illustrative to consider in more detail the first step of
the algorithm. It is straightforward to show using Eqs. (4)–
(11) that if only a single data point x(1) is known the SPES is
given by

Ē (x) = E (1) − f (1) · (x − x(1) )e−‖x−x(1)‖2/2l2
, (13)

where E (1) and f (1) are the energy and forces of the SPES at
the point x(1), respectively. We have here used that the prior
energy is set to the energy of the first configuration E (1). One
can confirm that this is the prior energy by noting that points
far away from x(1), where no information is available, take on
this value for the energy. It is seen that the initial force f (1)

gives rise to a Gaussian depletion of the SPES. The first step
of the GPMin algorithm minimizes the SPES leading to a new
configuration,

x = x(1) + l
f (1)

‖f (1)‖ . (14)

The first step is thus in the direction of the force with a step
length of l . Considering the information available this is a very
natural choice.
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GPMin depends on a number of parameters: the length
scale l , the prior value of the energy Ep, the energy width σ f ,
and the noise or regularization parameter σn. It can be seen
from expressions (4) and (11) that the prediction of the SPES
depends only on the ratio of σ f and σn and not their individual
values.

The prior energy Ep is, as explained above, taken initially
as the energy of the first configuration and then updated if
larger energies are encountered. It is important that the prior
value is not too low to avoid large steps, since the prior energy
is the value of the SPES for all configurations far away (on the
scale of l) from previously investigated structures.

The scale l is very important as it sets the distance over
which the SPES relaxes back to the prior value Ep when mov-
ing away from the region of already explored configurations.
It therefore also effectively determines a step length in the
algorithm.

One interesting advantage of the Bayesian approach is
that it allows for update of parameters (usually termed hy-
perparameters) based on existing data. We investigate this
option by allowing the value of the length scale l to change.
Since the update procedure also depends on the width param-
eter σ f , we update this as well. The updated hyperparame-
ters, θ = (l, σ f ), are determined by maximizing the marginal
likelihood:

θ = arg max
ϑ

P(Y |X,ϑ). (15)

The optimization may fail, for example if there is not
enough evidence and the marginal likelihood is very flat,
and if that happens, the previous scale is kept. The update
procedure allows the algorithm to find its own scale as it
collects more information, producing a model that self-adapts
to the problem at hand. In Sec. VI we shall consider in
more depth the adequate choices for the values of the hy-
perparameters and the different strategies for the update of
hyperparameters when the optimizers are applied to DFT
calculations.

IV. COMPUTATIONAL DETAILS

We illustrate and test the method on a variety of different
systems using two different calculation methods: An inter-
atomic effective medium theory potential (EMT) [25,26] as
implemented in ASE [27,28] and DFT. The DFT tests have
been performed using GPAW [29] with the local density
approximation (LDA) exchange-correlation functional and a
plane wave basis set with an energy cutoff at 340 eV. The
Brillouin zone has been sampled using the Monkhorst-Pack

scheme with a k-point density of 2.0/(Å
−1

) in all three direc-
tions. The PAW setup with one valence electron has been used
for the sodium cluster for simplicity. In addition to the default
convergence criteria for GPAW, we specify that the maximum
change in magnitude of the difference in force for each atom

should be smaller than 10−4 eV Å
−1

for the self-consistent
field iteration to terminate. This improves the convergence of
the forces. All systems have been relaxed until the maximum

force of the atoms was below 0.01 eV Å
−1

.

FIG. 1. Statistics of the number of energy evaluations for 1000
relaxations of a 10-atom gold cluster. The initial conditions have
been randomly generated. The left-hand side of the plot shows the
distribution of the number of energy evaluations for GPMin in its
two variants for scales ranging from 0.3 to 0.8 Å: keeping the scale
fixed or allowing it to be updated. The right-hand side shows the
performance of other widely used optimizers, which have been sorted
according to the average number of function evaluations.

V. EXAMPLE: GOLD CLUSTERS DESCRIBED IN
EFFECTIVE MEDIUM THEORY

In the first example GPMin is used to find the structure
of 10-atom gold clusters as described by the EMT potential,
and the efficiency is compared with other common optimizers.
For this purpose, we generate 1000 random configurations of
a 10-atom gold cluster. The configurations are constructed by
sequentially applying three uniform displacements for each
atom in a cubic box with side length 4.8 Å and only keeping
those that lie farther than 1.7 times the atomic radius of gold
away from any of the other atoms already present in the
cluster. Each configuration is then optimized with different
choices of parameters for GPMin, and, for comparison, the
same structures are optimized with the ASE implementations
of FIRE [30] and BFGS Line Search, and the SciPy imple-
mentations of BFGS and the CG.

For the gold clusters, we have investigated the effect of
updating σ f and l for six different initial scales between 0.3
and 0.8 Å and initial σ f = 1.0 eV. Since the EMT potential
has very small numerical noise, we choose a small value

of σn/σ f = 5 × 10−4 eV Å
−1

for the regularization. In the
update version of the optimizer, we update the scale every fifth
iteration.

The statistics of the number of energy evaluations are
shown in Fig. 1. The GP optimizers are seen to be the
fastest on average, with the appropriate choice of the hy-
perparameters. For the initial scale of 0.5 Å, for example,
the updated version of GPMin had relaxed the clusters after
42.1 ± 0.3 energy evaluations and the nonupdated one after
42.5 ± 0.3, as compared to 48.8 ± 0.3 and 56.2 ± 0.5 for the
BFGS implementations in SciPy and ASE, respectively. CG
exhibits an average number of steps of 79.7 ± 0.7, and FIRE,
122.9 ± 1.0.
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Figure 1 shows the trend in the performance as the scale
is varied. For this system, l = 0.5 Å has the lowest average
and variance for GPMin. The performance depends rather
sensitively on the scale parameter: reducing the scale results in
a more conservative algorithm where more but smaller steps
are needed. Increasing the scale leads to a more explorative
algorithm with longer steps that may fail to reduce the energy.
In the algorithm with updates, the scale is automatically
modified to compensate for a nonoptimal initial scale. The
update is particularly efficient for small scales where the
local environment is sufficiently explored. For larger scales
the sampling is less informative and it takes longer for the
algorithm to reduce the scale.

We note that under the appropriate choice of scale, both
GPMin with and without update are among the fastest for the
best-case scenario, with 18 evaluations for the regular GPMin
optimizer and 19 for the updated version with scale l = 0.5 Å,
compared to 19 for ASE BFGS, 27 and 34 for the SciPy
implementations of BFGS and CG, respectively, and 70 for
FIRE. We further note that the updated version has by far the
best worst-case performance.

Of the total of 18 000 relaxations, only 17 failed to find a
local minimum. These 17 relaxations were all run with the
GPMin optimizer with l = 0.8 Å without the updates. An
optimizer with a too long scale fails to build a successful
SPES: the minimum of the SPES often has a higher energy
than the previously evaluated point. Thus, we consider that the
optimization has failed if after 30 such catastrophic attempts,
the optimizer has still not been able to identify a point that
reduces the energy or if SciPy’s BFGS cannot successfully
optimize the predicted SPES.

VI. DETERMINATION OF THE HYPERPARAMETERS

We now continue by considering the use of the GP opti-
mizers more generally for systems with PESs described by
DFT. Default values of the hyperparameters should be chosen
such that the algorithm performs well for a variety of atomic
systems. For this purpose, we have chosen a training set
consisting of two different structures: (i) a 10-atom sodium
cluster with random atomic positions and (ii) a carbon dioxide
molecule on a (111) surface with two layers of gold and a
2 × 2 unit cell. We have generated 10 slightly different initial
configurations for each of the training systems by adding
random numbers generated from a Gaussian distribution with
standard deviation 0.1 Å. The training configurations are then
relaxed using DFT energies and forces.

For each pair of the hyperparameters (l, σn/σ f ), we relax
the training systems and average over the number of DFT
evaluations the optimizer needs to find a local minimum. The
results are shown in Fig. 2. The plot shows that the metallic
cluster benefits from relatively large scales, while the CO on
gold system with a tight CO bond requires a shorter scale.
A too long scale might even imply that the optimizer does
not converge. The set of hyperparameters l = 0.4 Å, σn =
1 meV Å

−1
, and σ f = 1 eV seems to be a good compromise

between the two cases and these are the default values we shall
use in the following.

A similar procedure has been used to determine the default
values of the hyperparameters and their initial values in the

FIG. 2. Average number of potential energy evaluations needed
to relax 10 atomic structures as a function of the two hyperparam-
eters: the length scale l , and the regularization parameter σn. The
label NC (not converged) indicates that at least one of the relaxations
did not converge. The default choices for the hyperparameters are
indicated by circles.

updated versions of GPMin. Here, the hyperparameter σn/σ f

is kept fixed during the optimization, whereas l and σ f are
determined using expression (15). The value of σn/σ f and the
initial values of the other hyperparameters are then determined
from the analysis of the performance of the optimizer on the
two systems in the training set. The evolution of the hyper-
parameters depends on the details of the optimization of the
marginal likelihood together with the frequency at which the
hyperparameters are optimized. Here, we explore three differ-
ent strategies: Unconstrained maximization of the marginal
log-likelihood every 5 energy evaluations (“GPMin-5”), and
two constrained optimization strategies, where the outcome
of the optimization is constrained to vary in the range ±10%
and ±20% of the value of the hyperparameter in the previous
step (“GPMin-10%” and “GPMin-20%,” respectively). In the
latter two cases we let the optimization take place whenever
new information is added to the sample. The algorithm used
to maximize the marginal log-likelihood is L-BFGS-B [24]
for all strategies.

We have relaxed the same 10 slightly different copies of the
two training set systems described before using these three
strategies for three different initial values of the scale (0.2,
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FIG. 3. Average number of energy evaluations needed to relax the two training set systems as a function of the hyperparameter σn/σ f or
of the initial value of σ f , while the other one is kept fixed. The results are shown for the three different updating strategies and compared with
the result of running GPMin without update with the same choice of hyperparameters. The rectangles show the values of the hyperparameter
that have been chosen as default values. The value of σ f chosen in the right panels has been used in the relaxations shown in the left panels,
and similarly, the value of σn/σ f that has been found optimal in the left panel is the one that has been used in the relaxations in the right panel.

0.3, and 0.4 Å), eight different initial values of σ f , and seven
different values of the regularization parameter σn/σ f . An
overview of the full results can be found in the Supplemental
Material [31].

The average numbers of energy evaluations needed to relax
the training set for the different strategies and hyperparam-
eters are shown in Fig. 3. The initial value of the scale is
chosen as 0.3 Å. The plot shows the variation of the average
number of energy evaluations with σn/σ f when the initial
value of σ f = 1.8 eV and the variation with σ f when the

value of σn/σ f = 2 × 10−3 Å
−1

. The performance of the
optimizers is seen to depend rather weakly on the parameter
values in particular for the sodium cluster. We shall therefore
in the following use the values σ f = 1.8 eV and σn/σ f =
2 × 10−3 Å

−1
.

From the figure it can also be seen that the versions of
the optimizer with updates perform considerably better than
GPMin without updates for the sodium cluster, while for
the CO molecule on gold, the version without update works
slightly better than the three optimizers with updates.

To understand this behavior further we consider in Fig. 4
the evolution of the length scale l as it is being up-
dated. The scale is initially set at three different values l =
0.2, 0.3, 0.4 Å. For the sodium cluster the update procedure
quickly leads to a much longer length scale around 1.5 Å.

For GPMin-5 the length scale is raised dramatically already
at the first update after five energy evaluations, while for
GPMin-10% and GPMin-20% the length scale increases grad-
ually because of the constraint built into the methods. The
advantage of a longer length scale is in agreement with the
results above for the gold cluster described with the EMT
interatomic interactions, where a long length scale also led to
faster convergence. The situation is different for the CO/Au
system, where the update leads first to a significant decrease in
the scale and later to an increase saturating at a value around
0.3 Å. This result was to be expected from the one shown
in Fig. 2 for the performance of GPMin without the hyper-
parameter update. We interpret the variation of the scale for
the CO/Au system as being due to the different length scales
present in the system, where the CO bond is short and strong
while the metallic bonds are much longer. In the first part of
the optimization the CO configuration is modified requiring a
short scale, while the later stages involve the CO-metal and
metal-metal distances. Overall the update of the scale does
not provide an advantage over the GPMin without updates
where the scale is kept fixed at l = 0.4 Å. It can be seen
that the final scales obtained, for example in the case of the
sodium cluster optimized with GPMin-10%, vary by about
30%, where the variation depends on the particular system
being optimized and not on the initial value for the length
scale.
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FIG. 4. Evolution of the length scale l with iteration for the three optimizers with update GPMin-5, GPMin-10%, and GPMin-20%. The
upper panel in each case shows the results for the sodium cluster, while the lower panel shows the evolution for the CO/Au system. In all cases
three different values l = 0.2, 0.3, 0.4 Å for the initial scale have been considered. For the sodium cluster the length scale is seen to increase
significantly, while in the case of the CO/Au system, the length scale first decreases and then subsequently increases. The final length scale
varies by about 30% dependent on the particular initial structure of the systems.

In the following we shall use l = 0.3 Å as the initial scale
for the optimizers with updates. As shown in Figs. S1, S2,
and S3 in the Supplemental Material [31], the results do not
depend very much on the initial scale in the range 0.2–0.4 Å.
Furthermore, the results for the EMT gold cluster indicate
that long length scales should be avoided: it is easier for the
algorithm to increase the length scale than to decrease it.

To summarize, we select the following default (initial)
values of the hyperparameters for the updated versions of

GPMin: l = 0.3 Å, σ f = 2.0 eV, and σn = 0.004 eV Å
−1

(σn/σ f = 0.002 Å
−1

). These values are used in the rest of this
paper.

VII. RESULTS

To test the Bayesian optimizers we have investigated their
performance for seven different systems with DFT: a CO
molecule on a Ag(111) surface, a C adsorbate on a Cu(100)
surface, a distorted Cu(111) surface, bulk copper with random
displacements of the atoms with Gaussian distribution and
width 0.1 Å, an aluminum cluster with 13 atoms in a configu-
ration close to fcc, the H2 molecule, and the pentane molecule.
All surfaces are represented by two-layer slabs with a 2 × 2
unit cell and periodic boundary conditions along the slab.
The bulk structure is represented by a 2 × 2 × 2 supercell
with periodic boundary conditions along the three unit cell
vectors. For each of the systems we have generated ten slightly
different initial configurations by rattling the atoms by 0.1
Å. The resulting configurations are then relaxed using the
ASE and SciPy optimizers, together with the different GPMin
optimizers.

It should be noted that in a few cases an optimizer fails to
find a local minimum: an atomic configuration is suggested
for which GPAW raises an error when it attempts to compute
the energy, because two atoms are too close. This happens for

SciPy’s BFGS for one of the CO/Ag configurations and for
SciPy’s conjugate gradient method for one of the hydrogen
molecule configurations.

The results are collected in Fig. 5. For the sake of clarity,
ASE FIRE has been excluded from the plot, since it takes
about a factor of three more steps than the fastest optimizer
for all systems. The average number of DFT evaluations for
the relaxation of the systems in the test set with the implemen-
tation of FIRE in ASE is 122 ± 4 for CO/Ag, 91 ± 5 for the
pentane molecule, 58 ± 4 for C/Cu, 85 ± 3 for the aluminum
cluster, 62 ± 2 for the Cu slab, 53 ± 1 for Cu bulk, and 30 ± 3
for the H2 molecule.

The GP optimizers are seen to compare favorably or on
par with the best one of the other optimizers in all cases.
GPMin without update is on average faster than the other
optimizers for 6 of the 7 systems. For the bulk Cu system,
it is only slightly slower than the ASE-BFGS algorithm. The
updated GP optimizers perform even better with one excep-
tion: GPMin-5 is clearly worse than the other GP optimizers
and ASE BFGS for the copper bulk system. Since the atomic
displacements from the perfect crystal structure are quite
small (∼0.1 Å), this system is probably within the harmonic
regime and requires only a few (∼10) iterations to converge.
The ASE BFGS can therefore be expected to perform well,
which is also what is observed in Fig. 5. GPMin-5 does not
update the scale for the first 5 iterations, and when it does
so, the new scale does not lead to immediate convergence.
The plain GPMin and the two other optimizers with updates
perform on par with ASE BFGS.

Generally, the updated optimizers perform better than GP-
Min without updates, and both GPMin-10% and GPMin-20%
with constrained update perform consistently very well. The
updated optimizers are clearly better than the plain GPMin for
the Al cluster, similarly to the behavior for the Na cluster used
in the determination of hyperparameters. For the other training
system, the CO/Au system, GPMin was seen to perform
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FIG. 5. Number of DFT evaluations required to optimize a given structure. For each structure 10 different initial configurations are
generated and optimized. The vertical line represents the average number of steps of GPMin without parameter updates. The error bar represents
the error on the average. A different color has been used to highlight the optimizers of the GPMin family.

better than all the updated optimizers. However, in Fig. 3 the
scale was chosen to be l = 0.3 Å, which is superior for that
particular system. This behavior does not appear for any of the
test systems including the CO/Ag system, which otherwise
could be expected to be somewhat similar.

VIII. DISCUSSION

We ascribe the overall good performance of the GP op-
timizers to their ability to predict smooth potential energy
surfaces covering both harmonic and anharmonic regions of
the energy landscape. Since the Gaussian functions applied in
the construction of the SPES all have the scale l , the SPES
will be harmonic at scales much smaller than this around the
minimum configuration. If the initial configuration is in this
regime the performance of the optimizer can be expected to
be comparable to BFGS, which is optimal for a harmonic
PES, and this is what is for example observed for the Cu bulk
system. We believe that the relatively worse performance of
the SciPy implementation of BFGS can be attributed to an
initial guess of the Hessian that is too far from the correct
one.

Given the performance on both the training and test sets,
GPMin-10% seems to be a good choice. It should be noted
that updating the hyperparameters require iteration over the
marginal log-likelihood leading to an increased computational
cost. However, this is not a problem at least for systems
comparable in size to the ones considered here.

The current version of the algorithm still has room for
improvement. For example, different strategies for the update
of hyperparameters may be introduced. Another, maybe even
more interesting, possibility is to use more advanced prior
models of the PES than just a constant. The prior model to the
PES could for example be obtained from fast lower-quality
methods. Somewhat along these lines there have been recent
attempts to use previously known semiempirical potentials

for preconditioning more traditional gradient-based optimiz-
ers [32,33]. This approach might be combined with the GP
framework suggested here.

We also note that the choice of the Gaussian kernel,
even though encouraged by the characteristics of the result-
ing potential [22] and its previously reported success for
similar problems [13], is to some extent arbitrary. It would
be worthwhile to test its performance against other kernel
functions, for example the Matérn kernel, which has been
reported to achieve better performance in different contexts
[19,34,35]. The kernels used in the work here are also limited
to considering only one length scale. More flexible kernels
allowing for different length scales for different types of bonds
would be interesting to explore.

The probabilistic aspect, including the uncertainty as ex-
pressed in Eq. (12), is presently used only in the update of
the hyperparameters. It could potentially lead to a further
reduction of the number of function evaluations [13]. The
uncertainty provides a measure of how much a region of
configuration space has been explored and can thereby guide
the search also in global optimization problems [16,34,36].

Finally, a note on the limitations of the present version
of the optimizer. The construction of the SPES involves the
inversion of a matrix [Eq. (11)] which is a square matrix,
where the number of columns is equal to n = Nc(3N + 1),
where N is the number of atoms in the system and Nc the
number of previously visited configurations. This is not a
problem for moderately sized systems, but for large systems,
where the optimization also requires many steps, the matrix
inversion can be very computationally time consuming, and
the current version of the method will only be efficient if this
time is still short compared to the time to perform the DFT
calculations. In addition, this can also result in a memory issue
for large systems where the relaxation takes many steps. These
issues may be addressed by considering only a subset of the
data points or other sparsification techniques. Recently, Wang
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et al. [37] showed that by using the black-box matrix-matrix
multiplication algorithm it is possible to reduce the cost of
training from O(n3) to O(n2) and then by using distributed
memory and 8 GPUs they were able to train a Gaussian
process of n ∼ 4 × 104 (this would correspond to about 100
steps for 150 atoms with no constraints) in 50 seconds. This
time is negligible compared to the time for DFT calculations
of systems of this size.

The GPMin optimizers are implemented in Python and
available in ASE [27].
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APPENDIX

The optimization algorithm can be represented in
pseudocode as follows:

Input:
Initial structure: x(0) = (r1, r2, . . . , rN )
Hyperparameters: l , σn,
Tolerance: fmax

E (0), f (0) ← CALCULATOR(x(0) )
Ep ← E (0)

while maxi |f (0)
i | > fmaxdo

X,Y ← UPDATE(x(0), E (0), f (0) )
Ep ← max YE

x(1) ← L-BFGS-B(GP(X,Y ), start_from = x(0))
E (1), f (1) ←CALCULATOR(x(1))
while E (1) > E (0)do

X,Y ← UPDATE(x(1), E (1), f (1))
Ep ← max YE

x(1) ← L-BFGS-B(GP(X,Y ), start_from = x(0))
E (1), f (1) ←CALCULATOR(x(1))
if maxi |f (1)

i | > fmaxthen break
end if

end while
x(0), E (0), f (0) ← x(1), E (1), f (1)

end while
Output: x(0), E (0)
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ABSTRACT15

Despite the continuing advances in software and hardware, simulating high accuracy atomic-scale phenomena is still challenging
since they usually require performing expensive first principles calculations. Studying chemical reactions of even small molecules
involves initializing optimizations with several atomic configurations to find minima and transition states of the energy function,
and each optimization usually requires tens to hundreds first-principles function evaluations. Typically, optimization algorithms
perform their task without communicating to each other and end up inefficiently exploring the same configuration space.
Here, we demonstrate that the use of artificial intelligence can serve to advance the efficiency of screening atomic-related
hypersurfaces by coupling optimization algorithms through an active learning framework. Our workflow combines different
machine learning algorithms that can collectively operate in an active-learning manner to reduce computational effort of
atomic-related optimizations. Using these principles we are able to reduce the number of costly function queries by more than
one order of magnitude with respect to the workhorse methods for optimizing atomic structures.

16

Introduction17

In the field of computational chemistry, simulations are used to improve success rates and reduce development time and18

cost of experiments. Exploring the chemical space using ab initio simulations is crucial to study atomic-scale mechanisms19

of chemical reactions1–4. One of the major drawbacks of simulating atomic-related phenomena from first-principles is the20

high computational cost of solving quantum-mechanical equations. Typical atomic-scale simulations ultimately rely on the21

construction of potential energy surfaces (PES). These surfaces describe the potential energy of the system for a given nuclear22

configuration (e.g. atom positions, charge or magnetic ordering). However, predicting the morphology of PES is non-trivial,23

especially when dealing with multi-element systems involving a large number of atoms, due to the increasing combinatorial24

explosion of particle interactions. A computationally efficient manner of navigating these hypersurfaces is to perform geometry25

optimizations of atomic structures, searching for particular atomic arrangements representing equilibrium geometries and26

transition states. These stationary points on potential energy surfaces are especially important since they dictate the stability of27

atomic structures and activation barriers of reactions involved in chemical and physical processes.28

A large variety of optimization algorithms are available to determine stationary points of potential energy surfaces, searching29

for energy minima (such as gradient descent5, quasi-Newton6 and molecular dynamics-based7 methods), transition states (such30

as the Dimer8 and the Lanczos9 methods) or minimum energy pathways (such as the Nudged Elastic Band10, 11 and string31

methods12, 13). One of the shortfalls of the aforementioned methods is that their decisions are strictly limited by the information32

of the observations acquired by evaluating expensive functions, for instance energies and forces. No statistical theory is used to33

assess the probability of success in their future decisions or guide their choices. Information obtained about the potential energy34

surface is either discarded or reused only to a very limited extent.35

Machine learning has partially addressed the expensive computational cost of optimizing energy landscapes of atomic36



structures by introducing surrogate models14–22. Statistical models of the potential energy surfaces can be built upon a few37

first-principles observations, and then, the structures can be optimized on the cheaper predicted potential. Neural networks14, 23
38

and Gaussian processes16, 17, 20, 21 regression have been used to build predictive models of potential energy surfaces using39

first-principles observations. These methods have served to construct supervised learning algorithms that can be exploited to40

accelerate minima searches locally20 and globally18 along with minimum energy pathways16, 21 and transition states17.41

Despite the number of methods available, one important aspect, which is key to increase the computational efficiency, has42

been overlooked: allowing communication between different algorithms can be used to substantially reduce the number of43

expensive function evaluations. Several initial geometries are typically optimized in order to increase the probability of finding44

the global minimum of complex potential energy surfaces. A similar scenario is found when searching for reaction barriers, i.e.45

different geometries must be optimized to obtain minimum energy pathways. When optimizing complex hypersurfaces a large46

number of optimization are required and many of them end up exploring locations of the PES that have already been visited47

during previous optimizations. Revisiting regions of the PES ends up being extremely inefficient since expensive calculations48

are performed redundantly.49

Our goal is to accelerate the search of multiple atomic structure optimizations by implementing regression routines that50

inherently hold information of previously explored potential energy regions. We propose a framework that combines ideas from51

previous gradient-based8, 11 and machine learning algorithms16, 17, 20, 21 to create surrogate models of the PES. The framework52

relies on using probabilistic estimates from machine learning models as a surrogate of the PES to efficiently guide classical53

optimization algorithms towards finding minima, transition states and minimum energy pathways with strictly the same accuracy54

as the traditional methods. The communication between the different algorithms is achieved via a shared training set, such55

that the machine learning estimates can provide a holistic view of the explored configuration space. This comprehensive view56

allows the algorithms to concentrate their efforts on performing expensive calculations in the regions of interest (e.g. local57

minima and saddle points). In this work, we include examples of optimizations on the effective medium theory (EMT) and58

density functional theory (DFT) to highlight the importance of moving towards a new generation of AI-driven algorithms. We59

show that our AI-driven (AID) framework can accelerate the search of minima and transition states by an order of magnitude60

with respect to the workhorse methods for optimizing atomic structures.61

Results62

Active learning architecture.63

Our framework interconnects different algorithms and allows us to create machine learning surrogate models. These surrogates64

ultimately dictate the geometries to compute next, following an active learning approach (Fig. 1). The workflow starts by65

performing first-principles calculations of the initial guesses if no previous data is available. The observations are then gathered66

in a training set and stored in the machine learning calculator object. This calculator object is the core component of our67

framework since it is in charge of building the machine learning model, training with first-principles observations and then68

offering predictions of the potential energy surface. In this framework, we train the machine learning model for atomic positions,69

energies and forces (see Methods for details of the models). Once the model calculator is trained, we can make queries to it,70

asking for the predicted energies and forces of any unseen configuration along with the corresponding uncertainty estimates.71

Training the model and querying for predictions of a large number of configurations is substantially cheaper than evaluating the72

energy and forces of a single structure using first principles. Therefore, we implemented gradient-based optimization methods73

in our framework to optimize structures in the predicted potential (these serve as surrogates for our optimizations). Within74

these methods, we included surrogate models based on quasi-Newton theory for energy minimization and transition state75

search along with a surrogate model that uses Nudged Elastic Band (NEB) theory to find minimum energy pathways (details76

about the implementation of these algorithms are included in Methods). The outcome of the optimizations performed in the77

predicted machine learning potential serve as the inputs for the next generation of first-principles calculations (observations).78

Finally, these observations are fed into the machine learning calculator, improving the predictions of the model and closing the79

feedback loop in the active learning cycle. This routine is stopped when the suggested structures are evaluated by first-principles80

calculations and they satisfy the optimization convergence criteria (e.g. forces of the atoms below a certain user-defined81

threshold). Therefore, we can certify that the accuracy of the results is not compromised when using our workflow.82

Visualizing the workflow of the active learning framework through a toy model.83

We built a toy model to explain the different steps composing our active learning framework on a test case that involves the84

optimization of atomic structures. Here we focus on applying our method to probe a simple reaction network using the Effective85

Medium Theory (EMT) to describe interatomic interactions. In particular, we study the diffusion of an Au adatom on a highly86

disordered Al/Au surface, such as the one represented in Fig. 2. This toy model contains a small number of degrees of freedom87

to allow for a simple visual representation of the targeted potential, but it is challenging enough to require optimization methods88

to search for the stationary points (e.g. minima and transition states) of the reaction network. The surface that we used for89
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this study is illustrated in Fig. 2b. The relationship between the position of the Au adatom adsorbed on this surface and the90

energy of the system can be depicted by the contour plot in Fig. 2c. This potential energy surface is constructed by calculating91

the energies resulting from optimizing the distance between the surface atoms and the Au adatom at different constrained (x,92

y) positions and serves to provide a general overview of the stability of the Au adatom upon adsorption at different positions93

of the surface. Note that scanning hypersurfaces with many degrees of freedom is not a common practice since it cannot be94

done with a reasonable amount of computer power, so the intention of scanning this PES with a grid is only to produce a visual95

representation of the target potential (Fig. 2c).96

The goal of this test case is to obtain the energy profile of the reaction network connecting three non-degenerate initial97

configurations (S1, S2, S3), which correspond to three different adsorption sites of the Au adatom on the Al/Au surface (marked98

by the white dashed circles in Fig. 2b-c). The challenge is to reduce the number of queries to the analytical potential to probe99

reaction networks connecting these configurations.100

We start the active learning workflow by optimizing three initial guesses around the S1−S3 positions using our machine101

learning surrogate model for structure energy minimization (details of the models are included in Methods). The predicted102

potential after performing the optimizations towards finding the S1 (blue circles), S2 (green squares) and S3 (red diamonds)103

structures along with their corresponding energy profiles are shown in Fig. 3a and Fig. 3b, respectively. After that, the optimized104

structures are used to initialize NEB calculations to find minimum energy pathways connecting the S1, S2 and S3 configurations.105

The resulting predicted potential after converging the NEB calculations are shown in Fig. 3c. The potential energy profiles for106

each transition are represented in Fig. 3d. During the optimization of the NEBs, we unraveled the location of three minima107

(I1−I3) and six transitions-states (TS1−TS6). Due to the limitations of the climbing-image NEB method, we can only ensure108

that the saddle point with higher energy is accurately converged for each NEB. However, the other structures composing the set109

of NEB images (including other minima and transition states) might not be converged with the same accuracy. Therefore, a last110

set of optimizations is required to refine the location of the minima and saddle points involved in the aforementioned reaction111

pathways. We used our surrogate machine learning algorithms based on quasi-Newton algorithms to perform optimizations112

of the minima and saddle points to converge the structures to the same level of accuracy (details included in Methods). The113

predicted potential after training with the observations collected by the different surrogate machine learning algorithms is114

shown in Fig. 3e.115

The surrogate models in our workflow update the model when a new observation to the “exact” potential energy function is116

made and, hence, the overall description of the predicted potential energy becomes more accurate at each step. The improvement117

of the predictions with increasing data becomes visually evident by the evolution of the predicted potential energy after each118

optimization (see Figs. 3a,c,e). The improvement of the model with each observation allows to explore the regions of interest119

(near the stationary-points) in a very efficient manner. For instance, the collected energy and forces during the optimizations120

of the S1, S2 and S3 structures serve to accelerate the convergence of the NEB calculations by including information of the121

regions surrounding the initial and final end-points of the elastic band. Another situation, in which this workflow accelerates the122

convergence of the optimizations, is found when different NEB calculations end up connecting reactants and products through123

similar potential energy regions. In that case, the machine learning algorithm decides (using the uncertainty estimates of the124

model) that no further evaluations are required at these locations. For example, the data collected during the optimization of125

the S1→S2 NEB speeds up the convergence of the S1→S3 optimization, since both reaction pathways contain regions with126

similar structures, e.g. the transition state TS1 and intermediate I1 (see Fig. 3e). In this case, the second NEB optimization is127

accelerated by avoiding the evaluation of structures in previously explored regions of the PES. The last example of acceleration128

is observed when combining different algorithms that work in synergy to converge minima and saddle points. For instance,129

refining the geometries of the new minima (I1−I3) and transition states (TS1−TS6) using the energy minimization and130

transition state search machine learning algorithms requires only a few extra calculations since the model already contains data131

in the surroundings of these stationary points, which was collected during previous NEB calculations.132

The exploration of multiple pathways is crucial to estimate reaction barriers and thermodynamic relations of chemical and133

physical phenomena. In our example, we observe that the Au adatom can migrate from an initial state S1 to a final state S3134

through two different pathways (the energy profiles for these transitions are represented in Fig. 3f). The first route contains135

two intermediates (I1 and S2) and three transition states connecting these minima (TS1, TS2 and TS6) whilst the second one136

involves a transition through three intermediates (I1, I2 and I3) and four transition states (TS1, TS3, TS4 and TS5). The limiting137

reaction step for the diffusion of the Au along the first route is limited by TS6 and is energetically less favourable than the one138

for the second Au diffusion pathway (limited by TS3). Noticeably, it was essential to explore a longer route (containing a larger139

number of intermediate states) to find an energetically more favourable process for the migration of the Au adatom (see Fig. 3f).140

In order to quantify the acceleration of our workflow, we perform energy minimization, NEB and transition state search141

calculations using methods that do not rely on machine learning surrogate models and are the workhorse of atomic-related142

optimizations. In particular we used the BFGS24, FIRE7, and MDMin25 algorithms implemented in the Atomic Simulation143

Environment (ASE)25. To make a fair comparison between the methods, we tried to keep the parameters of these algorithms144
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consistent with the ones implemented in our workflow and we use the same initial configurations for all methods. In Fig.145

3g, we compare the number of function evaluations required for each method to complete the set of optimizations required146

to converge the minima and saddle points connecting the S1, S2 and S3 states. In this example, we show that our artificial147

intelligence-driven workflow (AID) reduces the number of function evaluations of each individual optimization method, but148

even more significantly, the combination of active learning surrogate models serves to accelerate the overall set of optimizations149

by more than an order of magnitude with respect to the methods that are not assisted by machine learning models (see Fig. 3g).150

Active learning to explore reaction networks of density functional theory potential energy surfaces.151

We use our active learning surrogate models to probe a reaction network for the dissociation of a CH∗ molecule on a stepped152

copper (211) surface. The simulation model is illustrated in Fig. 4a. We start our workflow by enumerating the symmetrically153

non-equivalent adsorption sites for CH∗ along with the configurations describing its dissociative adsorption (C· · ·H). A total154

of 159 starting configurations were used to initialize the DFT optimizations (details of the enumeration and simulations are155

included in Methods). The optimizations end up converging into only 5 geometrically different CH∗ configurations (bonded156

to the surface through the C atom) and 21 dissociated configurations (C and H adsorbed on different adsorption sites). We157

label these configurations as A−E (for adsorbed CH∗) and 0−20 (dissociated C· · ·H), “A” and “0” being the most stable158

configurations for each group. The atoms’ positions in the unit cell for these optimized structures are marked by the black159

(carbon positions) and white circles (hydrogen positions) in Fig. 4b.160

We compare the performance of the aforementioned optimizations when using our surrogate machine learning approach161

and when we carry out the same optimizations using a quasi-Newton (BFGS) energy minimization method. The hexbin plot in162

Fig. 4b is built by counting and binning the carbon (blue heatmaps) and hydrogen (red heatmaps) positions where DFT force163

evaluations were performed during the optimizations. The darker the color the larger the number of DFT calculations that were164

performed in a given region. The three algorithms tested in this work (BFGS, FIRE and MDMin) required over 10,000 DFT165

function queries to perform the energy minimizations. For a large number of bins the quasi-Newton method already requires an166

order of magnitude more DFT forces queries than our active learning algorithm (note the logarithmic color scale in Fig. 4b).167

The stability of the different molecular CH∗ (adsorbed) and C· · ·H (dissociated) optimized configurations is shown in168

Fig. 4c. Using the geometries of the optimized structures we built a reaction network connecting the CH∗ with the C· · ·H169

configurations (see Fig. 4c). Building this network requires performing 105 different NEB calculations. Again, we compare170

our active learning approach with the other methods using the same optimization parameters and initial guesses. We stopped171

the calculations after exceeding 12,000 DFT evaluations to avoid unnecessarily expending computer resources. The BFGS,172

FIRE and MDMin algorithms were not able to converge the first reaction pathway of this network (A→0) before exceeding this173

threshold. Remarkably, using the active learning surrogates we were able to exhaustively probe the reaction network with 8,758174

DFT calculations (including the DFT calculations performed during the 159 energy minimizations and 105 NEB optimizations).175

The activation energy barriers for the CH dissociation obtained after optimizing the NEBs are shown in Fig. 4d. The colors176

of each box represent the activation energy values for the dissociation of CH using different combinations of CH∗ and C· · ·H177

configurations. The boxes with dark red color imply that the energy required to overcome the activation barrier for dissociating178

CH∗ into C· · ·H is large. In contrast, dark blue colors represent low activation barriers. Interestingly, the dissociation reaction179

through the most stable adsorption configurations, i.e. configurations “A” and “0”, do not reveal the lowest energy reaction180

pathway. Instead, we found that the NEB calculation that is initialized using the “D” and “3” configurations offers a lower181

energy pathway. The structures of the initial, final and transition states for the A→0 and D→3 paths are included in Fig. 4e.182

The energy barriers for these transitions differ by more than 0.4 eV and consider the dissociation of C−H through geometrically183

different pathways, i.e. dissociating the molecule on the step−edge (A→0) or on the Cu terrace (D→3).184

Note that in Fig. 4d we include only the energies required to dissociate CH∗ into C and H, however, the optimized NEBs185

can go through pathways that include other processes, such as diffusion of molecular CH∗ or the diffusion of the C and H186

atoms after dissociation. For instance, the NEB path from “D” to “3” starts with the diffusion of CH∗ from “D” to the most187

stable “A” configuration without breaking the CH∗ bond. After that, the path follows the dissociation process from “A” to “3”188

represented in Fig. 4e (before dissociation snapshot). The energy for D→3 represented in Fig. 4d contains only the barrier189

for CH∗ dissociation. However, we have to include in our calculation set different starting positions for C and H in order to190

consider the possibility that the reaction undergoes through a concerted mechanism. For instance, the reaction involving a191

simultaneous migration of C and H atoms to different adsorption sites when breaking the C−H bond. Here, we note that it is192

essential to consider multiple candidates for obtaining meaningful minimum energy pathways. Again, our framework takes193

advantage of storing and reusing the information of previous calculations to significantly accelerate the convergence rate of194

these optimizations.195

4/11



Conclusions196

To conclude, we have presented an AI workflow that combines multiple surrogate machine learning models to reduce the197

number of first principles calculations required to explore potential energy surfaces (PES). This framework uses an active198

learning approach to improve the predictive capabilities of the surrogate models. The first-principles calculations data is stored199

at each optimization step so the surrogate models can simultaneously access the training sets for constructing the machine200

learning models. The surrogate models become more accurate with increasing data size and the model utilizes the predictive201

estimates to prioritize the atomic structures that need to be calculated using first-principles. The fact that the different ML202

surrogates can simultaneously access the stored data helps to avoid performing calculations of atomic structures in regions of203

the PES that have been already explored.204

Selecting relevant reaction pathways to explore becomes a real challenge when exploring high−dimensional PESs, since205

guessing the energetic profile and geometries involved in reaction pathways is non-trivial. Computationally expensive206

optimizations are typically required to unravel reaction mechanisms when using first-principles, which results in a necessity207

to reduce the number of pathways explored. However, initializing multiple optimizations from different initial guesses is208

crucial to maximize the probability of sampling parts of the PES that might be relevant to understand the reaction mechanism.209

Unfortunately, the optimization of many initial guesses end up exploring multiple common structures. For instance, in this210

work, the dissociation mechanism of CH∗ on Cu(2×1×1) was studied using 159 initial guesses and these optimizations ended211

up converging into only 26 geometrically non-equivalent structures. We also found that multiple converged NEBs contain212

regions of the minimum energy pathway (MEP) that had been previously calculated, such as the migration of CH∗ from one213

adsorption site to another before dissociation.214

Here, we stress the need for implementing data driven approaches, for an optimal exploration of PESs since there is a high215

probability of performing redundant calculations when optimizing high−dimensional hypersurfaces. The use of the active216

learning algorithms implemented in our workflow allows us to reduce the number of first-principles function evaluations by217

more than an order of magnitude with respect to the workhorse methods for optimizing atomic structures. In particular, we have218

probed a reaction network for the dissociate adsorption of C−H on Cu(211), which required optimization of 159 structures and219

the performance of 105 NEB calculations. The active learning framework requires less than 9,000 DFT force evaluations to220

perform these optimizations. Remarkably, none of the other algorithms were able to optimize the 159 initial atomic structures221

with the same amount of DFT calculations, and typically, the NEB calculations are orders of magnitude more expensive than222

the geometry optimization of atomic structures.223

Currently, our framework relies on the construction of machine learning models using Gaussian Processes Regression224

(GPR). GPR is a non-parametric method and provides accurate predictions of the local environment of the training data225

and intrinsically offers uncertainty estimates of the model, which has served us to build efficient surrogate models for local226

optimizations. However, the field of artificial intelligence is advancing very rapidly, and other approaches may quick become227

relevant. By design, the machine−learning model calculator in our framework is detached from the algorithms that are in228

charge of building the surrogates. Therefore, varying the fingerprint or updating the framework with new models can be done229

without affecting the structure of the framework. For instance, the models could potentially include features with molecular230

symmetry information or extra atomic properties (such as magnetic ordering). Furthermore, our modular framework eases the231

implementation of other types of optimization algorithms that have not been introduced in this work, for instance, methods for232

global optimization. We believe that our work provides a generalizable method to facilitate machine learning model building to233

advance computational experiments beyond user’s chemical intuition to increase autonomy and efficiency for exploration of234

chemical space.235

Methods236

Machine learning models and parameters237

Our algorithms use Gaussian Process Regression (GPR) to build predictive potential energy surface models using energy and
force observations of the targeted potential following the same implementation than in Ref.20. We use the squared exponential
kernel to model the correlation between the energy of the different structures:

k = σ f e−||x−x’||2/2`2
, (1)

where ||x−x’||2 defines the squared Euclidean distance between two configurations (x) and a constant function to model the238

prior mean of the process. The length-scale of the kernel (`) is kept fixed to 0.4 Å. The prior variance (σ f ) and the constant239

of the prior mean are updated each time a new observation is made to maximize the marginal likelihood of the process. We240

include first derivative observations in the covariance following the same mathematical procedure as in Ref.26.241

The core of this framework is the active learning calculator, which serves to interconnect the algorithms building machine242

learning models using a common training set. In our framework, the surrogate models are trained each time a data point is243
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added to the training list improving their predictive capabilities. We used the BFGS, NEB and Dimer methods (as implemented244

in ASE25) to guide different optimizations towards finding local minima (AIDMin), minimum energy pathways (AIDNEB) and245

performing transition state searches (AIDTSS).246

The computational cost of training and predicting a GPR model including first-derivative observations scales O(n3d3) with247

increasing training data size (n) and the dimensionality of the manifold (d), i.e. the number of relevant components of the forces.248

Our framework stores the information of all the calculated structures, however, to reduce the computational overhead, we only249

train the models with the information that is close to the initial guesses for each optimization step. For instance, the AIDMin250

algorithm takes only the 5 nearest training points to build a predictive model and the initial guess is iteratively optimized in251

the predicted potential using a quasi-Newton method. We add the 5 nearest training points in each cycle, until the surrogate252

positions do not change more than 0.001 Å. Then, we consider that the surrogate cycle has converged and the geometry of253

the surrogate is calculated using first-principles. The AIDNEB follows a similar approach than the algorithms in Ref.21, and254

utilizes NEB theory as a surrogate model. In this case, the AIDNEB algorithm always considers the 25 nearest structures to255

each image along the NEB for building the predicted potentials. The NEB is optimized in the predicted potential and the image256

with the maximum uncertainty is evaluated using first-principles, until the uncertainty of all the images lie below 0.025 eV.257

After that, a climbing-image is optimized and evaluated using first-principles. If the forces of the relaxed atoms are below the258

convergence criteria (e.g. 0.05 eV/Å) the calculation is stopped, otherwise, the active learning cycle continues until satisfying259

the NEB uncertainty and forces criteria.260

Density functional theory calculations.261

DFT calculations were performed using the Vienna Ab initio Simulation Package (VASP)27, 28 and the revised Perdew−Burke−Ernzerhof262

functional (RPBE)29, with a mesh of (4×4×1) k−points, a 400 eV energy cutoff and the default pseudopotentials included263

in the VASP version 5.4. The convergence criterion for the electronic self-consistent cycle was fixed at 10−5 eV whilst the264

structures were optimized until the forces of the relaxed atoms were below 0.03 eV/Å.265

The Cu(211)−(3×3) periodic slabs are composed of 4 layers with the atoms fixed to their bulk positions. We include 20
Åof vacuum to separate the periodic images along the z coordinate. The enumeration of the different initial structures was
performed using graph theory as implemented in the Catalysis Kit (CatKit)30 and the NEB initial guesses were generated
using the Image Dependent Pair Potential (IDPP) interpolation31. The number of moving images along the path is chosen by
measuring the distance between the geometries of the initial and final end−points, including a moving image every 0.5 Å along
the path. The NEB spring constants are calculated as:

k =
2
√

N−1
dA−B

, (2)

where N is the number of NEB images and dA−B is the Euclidean distance between the initial and final structures.266

Code implementation and availability267

The surrogate machine learning models along with the framework are implemented in the Atomic Simulation Environment268

(ASE). The code containing the active learning routines are hosted in the "AID_framework" branch at the repository https:269

//gitlab.com/ase.270
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Figures348

Figure 1. Workflow of the artificial intelligence-driven (AID) framework. The screening process of the potential energy
surface (PES) is initialized by (a) performing first-principles calculations of the atomic structure. The observations are added to
(b) a machine learning calculator which is in charge of building a (c) predictive model of the PES and (d) optimizing the atomic
structures in the predictive potential to suggest the configurations that should be calculated next. The model is updated in each
iteration with new observations, improving the predictions of the PES until the user-defined convergence criteria is satisfied.
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Figure 2. Example model used to describe the behaviour of the machine learning workflow. (a) Top and side views of
the sphere model. Al(100) surface atoms in blue, Au and Al adatoms in yellow and brown respectively. (b) Magnification of the
spheres model highlighting the area in which the diffusion energy of a Cu adatom is probed. (c) Potential energy surface
resulting from varying the x and y coordinates (surface plane) and relaxing the z coordinate (normal to the surface) of the Au
adatom. The white circles mark the positions of six connected minima whilst the dashed lines represents the connecting path
between them.
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Figure 3. Exploration of the toy model potential energy surface. (a) Machine learning model potential after optimizing
the S1, S2 and S3 structures along with (b) the corresponding energy profiles for each optimization. (c) Evolution of the
predicted potential when including the observations collected after optimizing the NEBs connecting S1→S2, S1→S3 and
S2→S3 consecutively and (d) the minimum energy pathways for each reaction. (e) Predicted potential after refining the
intermediate and transition states found during the NEB optimizations. “S” and “I” labels refer the starting and intermediate
configurations (minima) whilst the “TS” labels refer the transition states (saddle points). (f) Energy profile for two different
pathways connecting the S1 and S3 configurations. (g) Number of function evaluations required for the each method to probe
the reaction pathways showed in (f).
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Figure 4. Dissociative adsorption of C−H on a stepped copper (211) surface. (a) Atomic model representing the
adsorption of CH∗ on a Cu(211) surface. Dashed lines mark off the periodic boundaries of the simulation cell. (b) Visualization
of the DFT force evaluations (carbon and hydrogen counts in blue and red color scales, respectively) required by the active
learning and quasi−Newton approaches to optimize a total of 159 symmetrically non-equivalent molecular CH∗ and
dissociated C· · ·H configurations. Optimized positions for the CH∗ adsorption (A−E) and when dissociated into C and H
(0−20) are highlighted by the black (carbon) and white circles (hydrogen), respectively. (c) Energy profile for the
aforementioned (A−E and 0−20) configurations. (d) Visualization of the dissociation energies for the reaction network
between the CH∗ and dissociated C· · ·H configurations represented in (b). (e) Geometries of the stationary-points involved in
the A→0 (upper panels) and D→E (lower panels) dissociation pathways.
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ABSTRACT
Local optimization of adsorption systems inherently involves different scales: within the substrate, within the molecule, and between the
molecule and the substrate. In this work, we show how the explicit modeling of different characteristics of the bonds in these systems improves
the performance of machine learning methods for optimization. We introduce an anisotropic kernel in the Gaussian process regression
framework that guides the search for the local minimum, and we show its overall good performance across different types of atomic systems.
The method shows a speed-up of up to a factor of two compared with the fastest standard optimization methods on adsorption systems.
Additionally, we show that a limited memory approach is not only beneficial in terms of overall computational resources but can also result
in a further reduction of energy and force calculations.
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I. INTRODUCTION

One of the most common tasks in computational heteroge-
neous catalysis is finding local minima in a potential energy surface
(PES). Such equilibrium atomic configurations are of great inter-
est since they are often the first step from which more compli-
cated studies of reaction rates are carried out. A number of well-
established methods exist for this task,1–4 which rely on iteratively
computing energy-force pairs for a set of atomic configurations.
A common and successful choice for the computation of energies
and forces is density functional theory (DFT).5,6 Even though this
approach carries a good trade-off between computational cost and
accuracy, the structure determination can be very computationally

demanding if the optimization method requires many energy-force
evaluations.

Recently, the field of efficient local optimization of atomic
structures has attracted considerable attention. An interesting
approach is that of preconditioning:7–9 in atomic systems where
bonds of very different stiffness are present, changes of certain
atomic positions produce much more rapid changes in energy than
others, and this can result in a slowdown of traditional methods. If
the differences in stiffness are very large, the forces may not point
in the direction toward the minimum, which is known as a poorly
scaled optimization problem.1 Preconditioning then consists in find-
ing a linear transformation of the problem that will lead to a Hessian
with a better condition number, which corrects for the difference in
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stiffness in the PES landscape and results in better guidance for the
search. For atomic systems, preconditioners based on the adjacency
matrix of atoms and their interatomic distances7 or on the Hessian
of semi-empirical potentials8 have shown a significant reduction in
the number of steps necessary to relax atomic structures, as well as
to guide transition state searches.9

The use of machine learning techniques to build surrogate
models of the PES that are then used to guide the search of criti-
cal points has also recently attracted increasing attention. Successful
examples of methods that have achieved a significant reduction in
the number of electronic structure evaluations are abundant for local
optimization,10–15 as well as transition state search16–21 and global
optimization of atomic structures.22–28

In particular, Gaussian process regression (GPR)29 has proved
itself a particularly successful technique to build the surrogate PES
that guides the critical point search since it has the ability to gener-
alize, given just a few training points.

The computation of forces comes with little additional compu-
tational overhead to the energy computation in DFT, and training
on both energies and forces has become a well-established technique
in the field.10,12,13,17–19,21 Along these lines, there has been a recent
attempt to also incorporate higher derivatives.20 A recent study by
Christensen and von Lilienfeld30 has confirmed that the inclusion
of forces along with energies of the configurations as targets in the
training set results in a significant increase in the precision of the
surrogate model of the PES of a single atomic system.

A less well-established choice is that of the correlation model
between two atomic structures or the kernel in the case of GPR.
After the initial success in the use of stationary covariance functions
of Cartesian coordinates (squared exponential and Matérn covari-
ance functions),10,12,17,19,21 there have been some studies attempt-
ing to extend these covariance functions in order to further reduce
the number of DFT calculations needed to find the critical point.
Koistinen et al.18 proposed a non-stationary kernel based on the
difference between the inverse of interatomic distances in each
configuration for each pair of atoms. Meyer and Hauser13 instead
proposed the use of the squared exponential and Matérn ker-
nels in internal coordinates, instead of Cartesian. Both approaches
have led to a further reduction in the number of steps. We note
that outside the subfield of gradient-based GPR modeling for
PES critical point identification, both internal coordinates11,28,31

and fingerprints26,30,32–37 have been used to incorporate knowl-
edge of the PES topology into the covariance function of kernel
methods.

In this paper, we introduce a preconditioning scheme of the
usual squared exponential kernel in Cartesian coordinates. The
resulting expression for the kernel we propose can be reinterpreted
in terms of chemical bonds and covalent radii, making it easy for
the method to account for differences in the stiffness of each inter-
action and easy for the user to interpret the results. In this way, the
method relies on a model of bond stiffness that can be provided by
the user, but we prove that an educated guess can work even better
if the method is allowed to self-update and find the bond constants
itself. In addition, the structure of the kernel naturally incorporates
the translation invariance of the PES.

We have incorporated the new surrogate model into a machine
learning optimization method that we have named BondMin, and
we have tested its performance in local relaxation problems with

DFT. For this method, we have obtained speed-ups of up to a factor
of 2 for problems that involve molecules on surfaces as compared to
the quasi-Newton method BFGSLineSearch while retaining the good
performance of the not preconditioned squared exponential kernel
on general atomic systems.

II. METHODS
A. Gaussian process regression

Let ri stand for the position vector of the ith atom. For each
atomic configuration x = (r1, r2, . . . , rNatoms), we describe the surro-
gate potential energy surface (sPES) E(x) and the associated force
field f(x) using Gaussian process regression (GPR),29

(E(x),−f(x)) ∼N (m(x),K(x, x′)), (1)

where m(x) is the prior mean for each variable and K(x, x′) is the
prior covariance matrix. This matrix can be written in terms of the
kernel function k(x, x′) as38

K(x, x′) =
⎛
⎝

k(x, x′) (∇x′k(x, x′))T

∇xk(x, x′) ∇x(∇x′k(x, x′))T
⎞
⎠

. (2)

The GPR is trained on density functional theory (DFT) ener-
gies {E(i)}Ni=1 and forces {f(i)}Ni=1 corresponding to a set of N atomic
configurations {x(i)}Ni=1. We arrange the inputs into the 3Natoms × N
design matrix X and the targets {(E(i),−f(i))}Ni=1 into the (3Natoms
+ 1) × N matrix Y. By denoting the Gram matrix as K(X, X), which
is given by the block matrices (K(X,X))ij = K(x(i), x(j)), and defining
the matrix K(x, X) = (K(x, x(1)), . . ., K(x, x(N ))), the prediction can
be written as

(E(x),−f(x)) = m(x) + K(x,X) C−1
X (Y −m(X)), (3)

where CX = K(X, X) + Σ is the regularized Gram matrix and the
diagonal matrix Σ is the regularization.

The GPR framework also includes an analytical expression for
the marginal likelihood p(Y|X).

log p(Y ∣X) = −1
2
(Y −m(X))TC−1

X (Y −m(X))

− 1
2

log ∣CX ∣ + N, (4)

which depends on a number of hyperparameters θ that parametrize
the regularized kernel CX(X; θ) and the prior m(X; θ). The logarithm
of the marginal likelihood can be maximized using a gradient-based
optimizer to find the most likely hyperparameters, given the inputs
and the targets. N stands for the normalization factor, which does
not depend on X, Y, or θ.

In this work, we introduce a new kernel that uses the difference
between the positions between every pair of atoms in the system to
define a distance measure d(x, x′) between configurations,
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d2(x, x′) = 1
Natoms

Natoms

∑
i,j

∥(ri − rj) − (r′i − r′j)∥2

ℓ2
XiXj

, (5)

where Xi stands for the atomic symbol of the ith atom and ri stands
for its position. The scales ℓXiXj for each pair of atoms here have
length dimensions and have the role of re-scaling the weight of each
interatomic distance according to the atomic type.

We note that Eq. (5) can be rewritten into the matrix form as
follows:

d2(x, x′) = 1
Natoms

(x − x′)TG(x − x′). (6)

It is easy to show that the metric matrix is given by G
= PTdiag(g, g, g)P, where P is the permutation matrix mapping
Px = (r(x)1 , r(x)2 , . . . , r(x)N , r(y)1 , . . . , r(z)N ) and diag(g, g, g) is the
diagonal block matrix composed by three copies of

gij = {∑k≠i ℓ
−2
XiXk

if i = j
−ℓ−2

XiXj
if i ≠ j. (7)

We note that matrix g is the Laplacian matrix of a fully con-
nected undirected graph where the nodes are the atoms in the unit
cell and the weights on the edges depend on the chemical species
of the atoms that they connect as 1/ℓ2

XiXj . A distance measure in the
form of a Laplacian matrix has also been used by Packwood et al.7

This distance measure has then been incorporated into the
usual squared exponential kernel, replacing the Euclidean distance
between Cartesian coordinates,

k(x, x′) = k2
0 exp(−d2(x, x′)/2ℓ2), (8)

where k0 and ℓ are hyperparameters: the prefactor of the kernel and
the dimensionless global scale.

One could define the vector bij = ri − rj in Eq. (5) as the bond
vector defining the distance and the orientation of the bond between
atoms i and j. In this picture, the distance between two configura-
tions is then the weighted sum of Euclidean distances between all
bonds, with ℓXiXj being the weight. However, note that in this con-
ception, every atom is bonded to every other atom in the atomic
structure so that the distance measure is not biased toward the ini-
tial structure. We note that the inclusion of the interatomic distance
of every pair of atoms in the structure is frequently used in fin-
gerprints (such as the Coulomb matrix35 and other Coulomb-based
definitions34,39 or the bag of bonds36) and kernels18,31 by the machine
learning for materials and molecules community. We illustrate this
concept in Fig. 1.

Equations (6) and (8) [and noting from Eq. (5) that the matrixG
is positive semi-definite for any value of the bond scales ℓXiXj ] reveal
that the kernel in terms of bonds is nothing but an anisotropic ver-
sion of the stationary squared exponential kernel.29 G has three and
only three zero eigenvalues, corresponding to translation along the
three axis, making the method translationally invariant. Along the
ideas in the work by Packwood et al.,7 we note that G can be fac-
torized as G = QTQ and that by defining the fingerprint u(x) = Qx,
one can regard G as a preconditioner since the energy becomes

FIG. 1. (a) Top view of the atomic structure of CO on a 2 × 2 × 2 fcc (100) platinum
slab. Only the atoms in the unit cell are shown. (b) Representation of the weighted
fully connected graph corresponding to the CO molecule and the platinum atoms
in the top layer of the structure displayed in (a).

less anisotropic and hence a better conditioned function in the
fingerprint space than in coordinate space.

For the particular case of a unary material, there is only one
bond scale, ℓXX . It can be shown that matrix g as defined in Eq. (7)
has all eigenvalues equal to Natoms, except for the one associated
with translation symmetry (for example, by realizing, g becomes a
circulant matrix for unaries). Then, if x and x′ do not differ in a
translation, the distance in Eq. (6) becomes d2(x, x′) = ∥x − x′∥/ℓ2

XX
and the kernel in (8) becomes the isotropic squared exponential
kernel k(x, x′) = k2

0 exp ∥x − x′∥2/2ℓ2ℓ2
XX . Consequently, if the sam-

pling method used to generate the training set does not generate
global translations of the atomic structure (i.e., the optimizer does
not translate the system), an active learning method using it would
behave as its isomorphic squared exponential kernel counterpart
with scale ℓℓXX . We then note that in this case, the splitting provides
a natural way of systematically providing different scales for differ-
ent systems, by, for example, making ℓXiXj a function of the covalent
radii. Additionally, we note other active learning methods using the
squared exponential kernel to guide PES exploration10,12,17,21,40 that
could benefit of using kernel (8) with all ℓXiXj = 1 with no additional
retraining since they would obtain similar performance and enforce
translation symmetry.

As in previous work,12,40 we have used the constant function
m(x) = m0 as the prior function. We choose to call the diagonal
terms in the matrix Σ for σ corresponding to the regularization in
the forces, and we use σℓ as the regularization of the energies.

B. Optimization method
We use the energies and forces from the prediction of the Gaus-

sian process in Eq. (3) to guide the searches for the DFT local mini-
mum of the PES. The optimization method we follow is the one used
by GPMin12 with some variations.

Starting with the initial atomic configuration, the method com-
putes its DFT energy and forces. This information is used to deter-
mine the prior constant m0 and to build a tentative surrogate model
of the PES. The method then finds a local minimum of the surrogate
PES, computes its DFT energy and forces, and includes that point
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in the training set. The surrogate model is then updated with the
new information, leading to a new location of the minimum, which
is subsequently sampled. The iteration terminates when the DFT
maximum force on any of the atoms in the system is smaller than
a user-defined tolerance, as is usual for local optimizers in the ASE
package.41 The optimization of the surrogate model always takes the
structure with the lowest energy in the training set as the starting
point and then uses the L-BFGS-B optimizer42 as implemented in
SciPy43 to find a neighboring local minimum.

In each iteration, the update of the model may include the
update of some of its hyperparameters. In Sec. II A, we have intro-
duced the hyperparameters m0, k0, σ, ℓ, and ℓXiXj for every pair
of atomic species Xi and Xj in the atomic structure, but not all
of them may play an independent role in the prediction of the
Gaussian process model (3), and thus, not all of them may be
updated.12

The global scale ℓ and the bond scales ℓXiXj are not indepen-
dent of each other, but ℓ is rather a global dimensionless prefactor
to the bond scales. For this reason, the optimizer regards ℓ as a fixed
quantity during the optimization of the other hyperparameters.

k0 and σ only enter Eq. (3) in the form of the quotient σ/k0,
being effectively the same hyperparameter as far as prediction is
concerned [note that this does not hold for Eq. (4)]. In addition,
we note that the quotient σ/k0 is the effective regularization of the
Gram matrix K(X, X), and even in the absence of numerical noise
in the electronic structure model, it needs to be fixed to a small but
non-zero value to enable the inversion of the sometimes numerically
ill-conditioned Gram matrix, which increases the robustness of the
method. In Sec. II C, we determine a value of σ/k0, which is appro-
priate for all systems, and the parameter is not updated any further
during the optimizations.

Interestingly, the marginal likelihood (4) depends on both k0
and σ/k0 in a non-trivial way, making it necessary to optimize k0
along with the other hyperparameters to obtain sensible results. In
fact, the maximization of the marginal log likelihood (4) provides
with an analytical expression for the prefactor k0

k0 =

¿
ÁÁÀ(Y −m(X))TC−1

X,k0=1(Y −m(X))
N

(9)

if the quotient σ/k0 and the scales are kept fixed. A similar expression
can be obtained for the prior constant m0,

m0 =
UTC−1

X Y
UTC−1

X U
, (10)

where U is the prior matrix m(X) with prior constant m0 = 1.
In this work, we present various flavors of the optimization

method and we compare their performances. The plain version
without updates (termed “BondMin” in the following) only differs
with default GPMin in the choice of the kernel. It chooses the prior
constant to be the maximum of the energies included in the training
set and does not update any other hyperparameter.

We also introduce a method capable of optimizing its own
hyperparameters (“BondMin update”). At each step, k0 and m0 are

updated using expressions (9) and (10). The bond scales, together
with k0, are then further updated by numerically maximizing the
marginal log likelihood with optimalm0. Here, we follow the strategy
used by GPMin in the sense that the values of the hyperparameters
are found using SciPy’s L-BFGS-B with the constraints of not letting
any hyperparameter vary more than 10% at each step.

A frequently mentioned limitation of Gaussian process regres-
sion is the poor scaling of the computational time and memory
requirements with the number of points in the training set.29 In par-
ticular, the use of Cholesky factorization to solve Eqs. (3) and (4)
results in O(n2) scaling for the memory and O(n3) for the compu-
tational time [where the scaling factor n is defined as n = N(3Natoms
+ 1)] in atomic systems training on energies and forces.12,17 Here, we
have followed the ideas presented by Garrido Torres et al.40 as a way
to leverage the computational requirements for systems with large
numbers of atoms in the unit cell:

1. We note that for most molecule-on-surface systems (and more
generally, in most systems with a large number of atoms), a
significant number of atoms have their positions fixed. Thus,
there is no need to train on the forces of the constrained atoms,
which can also be masked in the kernel, leading to a scaling
factor of n = N(3Ndyn_atoms + 1), where Ndyn_atoms is the number
of dynamical atoms.

2. The problem of predicting the PES for a minimum and its
basin with a kernel in the form of Eq. (8) mainly depends on
the points close to the minimum. In fact, not including dis-
tant points may not dramatically decrease accuracy, while it
may increase the robustness of the method.40,44 This obser-
vation allows us to include only the N0 closest points to the
current atomic configuration in Euclidean space in the training
set. After the relaxation on the surrogate model has been com-
pleted, the method checks if there are points that have not been
included in the training that are closer than the N0 points used,
adds them to the training set, and relaxes the new resulting
surrogate model.

Altogether, the two strategies give a new scaling with
n = N0(3Ndyn_atoms + 1). This still yields a quadratic scaling for the
memory and a cubic one for the computational time, but it is a
big improvement in the scaling of the method. Since N0 is now a
user-defined fixed number, the computational requirements remain
constant instead of growing as the optimization progresses. Addi-
tionally, the computational cost remains cubic in time, as for the
DFT, but on a smaller variable.

We have named the method presented in this paper as Bond-
Min when all the sampled points are included in the training set and
LBondMin (light memory BondMin) to the version with the two
memory restrictions aforementioned.

C. Computational details
We have described the PES using Density Functional Theory

(DFT) as implemented in ASE41,45 and GPAW.46 All the calculations
presented in this work use RPBE47 as the exchange-correlation func-
tional, a plane wave basis-set, and an energy cutoff of 600 eV, unless
otherwise stated. The Brillouin zone has been sampled with a den-
sity of 2.0 k-points per inverse Å in each direction. We have used
the projector augmented wave (PAW) formalism,48 using the setup
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with one valence electron for sodium and the default one in GPAW
otherwise. We impose the convergence criterium that the maximum
change in the magnitude of the force over each atom should fall
below 10−4 eV/Å to exit the self-consistent field iteration in addi-
tion to the default thresholds on the energy, the density, and the
Kohn–Sham eigenstates.

Throughout this paper, we consider a structure relaxed when
the maximum force on any atom is below 0.01 eV/Å.

D. Datasets
The determination of the parameters to the optimizer and the

testing of its performance have been done on different sets of atomic
structures. The hyperparameters of the method have been deter-
mined by training on and validating systems inspired by the train-
ing and the test set used to train GPMin, where the elements of
group 11 of the periodic table have been substituted by their coun-
terparts in group 10 for the surfaces with adsorbed CO, since CO
does not bind to the original Ag and Au surfaces (see the supple-
mentary material for more details on this matter). The inclusion of
clusters, molecules, bulk structures, and surfaces both with and with-
out adsorbates ensures a good overall performance of the method
for a large class of systems, preventing overfitting. The method has
been tested on two sets of atomic structures containing molecules
adsorbed on surfaces.

All the systems considered in this work have been studied in 10
slightly different initial configurations. The 9 rattled copies of each
system are generated by adding white noise to the atomic positions
of the initial one. The value of the standard deviation of the white
noise is specified in the description of each dataset.

1. Hyperparameter training set
The hyperparameter training set consists of two different

atomic systems: a randomly generated sodium cluster and a CO
molecule on a fcc (100) platinum slab. The two original systems have
been perturbed with a noise following a Gaussian distribution with
a standard deviation of 0.1 Å.

2. ASE/GPAW test set
The ASE/GPAW test set is the same as the test set presented

in Ref. 12 and that available in the GPAW webpage,49 with the
exception that silver has been substituted by palladium in the CO
on a surface test. The set consists of two molecules, hydrogen
molecule and pentane molecule; the bulk structure of copper fcc in a
2 × 2 × 2 supercell, shaken; a two-layer distorted copper fcc (111)
slab; a 13 atom aluminum cluster; and two adsorbates, a carbon atom
on a 2 × 2 × 2 fcc (100) copper slab and the aforementioned CO
molecule on a 2 × 2 × 2 fcc (111) palladium slab.

3. MS5: Small molecules on surfaces dataset
This dataset is made up of five adsorbates with up to 5 atoms

at three different adsorption locations. It consists of two molecules,
water and nitrogen dioxide on palladium fcc (100) surfaces and
hydroxyl, hydroxymethyl, and methyl radicals on copper fcc (100)
surfaces. We have used 2 × 2 × 2 slabs to represent the surfaces
and constrained the movement of the atoms in the bottom layer. For

each system, we have studied three initial highly symmetric bonding
sites of the molecule or radical, those termed “on top,” “hollow,” and
“bridge,” as implemented in ASE. The G2 set has been used to obtain
the initial structures of the molecules.50 Each of the original systems
has been perturbed with a noise following a Gaussian distribution
with a standard deviation of 0.07 Å.

4. C3–4S: 3 and 4 carbon organic molecules
on surfaces dataset

The C3–4S set contains two different molecules: acrylic acid51

(CH2==CHCOOH) molecule on a fcc (111) 4 × 3 palladium surface
in the “on top” position and butanethiolate52 radical (C4H9S∗) on
a fcc (111) 3 × 3 gold surface in the “hollow” position. Both sur-
faces are modeled by a 3 layer slab, with the atoms in the bottom
layer being kept fixed during the relaxation. Thus, the acrylic acid
system has 33 dynamical atoms (45 in total) and the butanethio-
late one has 32 dynamical atoms (41 in total). We have solved the
electronic structure problem with increased convergence for these
two systems: in addition to raising the plane wave energy cutoff to
800 eV, we have added the additional threshold for the termina-
tion to the self-consistent field iteration such that the change in the
energy in the last 3 iterations should be less than 10−6 eV per valence
electron.

Each of the original systems has been perturbed with a noise
following a Gaussian distribution with a standard deviation of
0.07 Å.

E. Selection of the hyperparameters
In this section, we present the values of those hyperparam-

eters that should remain fixed during the optimization as well as
the initial values of the remaining ones. The selection of these val-
ues has been done in a two step process: First, we investigate the
performance of the relaxation method on the hyperparameter train-
ing set with different sets of hyperparameters. In a second step,
we have chosen the values of the hyperparameters whose perfor-
mance is more consistent across the more diverse ASE/GPAW test
set among those that performed the best on the hyperparameter
training set. Thus, the ASE/GPAW test set acts as a validation set
here, preventing overfitting and ensuring increased robustness of the
method.

For the method with fixed hyperparameters, we have modeled
the bond scales as the average of the covalent radius rc as tabulated
by Cordero et al.53 of the species,

ℓXiXj =
rcXi

+ rcXj

2
, (11)

but the method allows for a user-defined model. In particular, we
have further tested the product of covalent radii ℓXiXj =

√
rcXi

rcXj
,

which, under the appropriate choice of the rest of the hyperparam-
eters, did not produce a qualitative improvement when it was tested
on the validation set.

The values of the other hyperparameters σ/k0 and ℓ have been
chosen such that they minimize the average number of DFT calcula-
tions necessary to relax the structures in the training set. The results
are shown in Fig. 2.
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FIG. 2. Average number of DFT calculations required to relax the structures in the
training set for the method with fixed bond scales as a function of the effective
regularization σ/k0 and the global dimensionless scale ℓ. The label “NC” stands
for at least one relaxation failed with those sets of hyperparameters. The circle
marks the values of the hyperparameters that have been used in the subsequent
calculations in this paper with fixed bond scales. Both the colors and the figure in
the heat map show the average number of steps.

Even with the anisotropy introduced with the inclusion of a
model for the bonds in the Gaussian process regression, Fig. 2 shows
that the metallic cluster still prefers a longer value of the global
scale, ℓ, while for the molecule on the surface, it is more favorable
to choose a shorter value. Both systems prefer a value for the reg-
ularization σ/k0 ∼ 10−3 Å−1. Expecting a value for the prefactor of
the order k0 ∼ 1 eV, this leads to σ ∼ 10−3 eV/Å. This is a reasonable
value since an order of magnitude higher would conflict with the
convergence threshold of the optimizer (0.01 eV/Å) and the forces
are converged with precision 10−4 eV/Å. We have chosen the values
ℓ = 0.4, σ = 2.5 ⋅ 10−3 eV/Å, and k0 = 1 eV.

We have also used the average of the covalent radii in Eq. (11)
as the initial value for the bond scales when the model is set to
update them (and tested that the square root of the product does not

produce a significant improvement on the validation set when the
other hyperparameters are trained accordingly). For the initial value
of the prefactor of the kernel, we have chosen the value that was
found for GPMin during training, k0 = 2 eV.

As for the version of the method with updated bond scales, the
values of ℓ and σ/k0, which remain fixed, have been determined by
analyzing the performance of the method over the training set, as
shown in Fig. 3.

Figure 3 shows that it is easier to find the optimal performance
by maximizing the marginal log-likelihood if the initial scales in
the GPR underestimate their value, as compared to overestimates,
which had already been observed in previous work.12 This results
in an almost flat number of steps as a function of ℓ for the sodium
cluster, which prefers overall long scales, but a sharp minimum
for the CO on platinum. Our investigations show that the values

FIG. 3. Average number of DFT calculations required to relax the structures in the
training set for the method with updated bond scales as a function of the effective
regularization σ/k0 and the global dimensionless scale ℓ. The label “NC” stands
for at least one relaxation failed with those sets of hyperparameters. The circle
marks the values of the hyperparameters that have been used in the subsequent
calculations in this paper with updated bond scales. Both the colors and the figure
in the heat map show the average number of steps.
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FIG. 4. Number of steps needed to relax the systems in the validation set for different optimizers. Lighter markers represent individual runs, while the darker ones mark the
average number of runs and its error bar.

σ = 2.5 ⋅ 10−3 eV/Å and ℓ = 0.2 result in a good overall performance
in both the training and the validation sets.

We conclude Sec. II E by commenting on the performance
of the method with and without hyperparameter updates on the
ASE/GPAW test set. The performance of each method, along with
BFGS with line search as implemented in ASE, and both the default
version of GPMin and GPMin with hyperparameter updates are
shown in Fig. 4. We compare with BFGS with line search because
in a previous study this was clearly the best ASE or SciPy optimizer
on this test set.12

From Fig. 4, we observe that the performance of the BondMin
method, especially with parameter updates, is in general similar to
that of GPMin for this class of systems. As noted in Sec. II A, Bond-
Min reduces to GPMin with a different set of hyperparameters for
unary systems. We believe this to be the cause for the bad perfor-
mance on the H2 system: a scale of 0.12 Å for the method without
updates and an initial scale of 0.6 Å for the method with updates
force the method to take (at least, initially) very short steps in the
configuration space, which makes it difficult to compete with 4 steps
in average GPMin. However, we attribute the increased performance
in the aluminum cluster to the same effect, where we believe that the
new corrected global scale is initially close to optimal.

In contrast, we note the worsening of the performance for the
pentane molecule, but we also note that it is improved when hyper-
parameters are allowed to update. In addition, it seems that the new
kernel improves the results of molecules on surfaces the most, espe-
cially CO on palladium, which seems to be a difficult problem for
GPMin.

We see that the performance of the updated BondMin is rather
similar to that of the updated GPmin. In the cases with only one
type of interatomic bonds, the two methods should behave simi-
larly. However, in the case of CO/Pd, where metallic, molecular, and
molecule–metal bonds are present, BondMin seems to be superior.

III. RESULTS
In the tests on the validation set above, the BondMin optimizer

shows an improved performance on a particular subclass of systems:

molecules on surfaces. To illustrate this further, we have studied the
performance of BondMin with and without bond scale updates as
compared to other optimizers for datasets MS5 and C3–4S involving
molecules and radicals on surfaces.

The results of MS5 are shown in Fig. 5.
We note that the optimizers of the GPMin family do not show

a consistent improvement on this test set as compared to BFGS.
In particular, GPmin shows a relatively poor performance on the
structures in the bridge initial positions and the NO2 molecule for
all initial positions. In fact, in three of the runs for GPMin with
hyperparameter updates on NO2@Pd with the starting bridge posi-
tion, the relaxation was terminated and marked as failed after more
than 210 steps had been taken without finding the minimum. An
additional NO2@Pd relaxation has failed with the GPMin optimizer
and hollow initial position in this case because the model was not
able to predict a low energy configuration in 30 consecutive steps.
These failed optimizations are marked with inverted triangles in
Fig. 5.

In contrast, the BondMin family of optimizers seems to per-
form well in this test set. The BondMin version without hyperpa-
rameter updates consistently shows a similar or lower number of
steps than BFGS, and it is also competitive compared to GPMin with
hyperparameter updates on the number of steps but with a smaller
computational cost.

The BondMin with hyperparameter update optimizer exhibits
the lowest number of steps needed to relax all the systems in this
test set. As compared with BFGS, it shows an average reduction of
over 40% in the number of steps necessary to relax a molecule on
a surface. The relative reduction in the number of steps seems to
be more pronounced on those systems where the number of steps
required by BFGS is large, reaching a factor of 2 reduction for H2O
and HOCH2 on the hollow initial and OH radical in the on-top posi-
tion and a factor of 2.15 reduction for the CH3 radical in the “hollow”
position.

Furthermore, the BondMin optimizers also show a reduction
in the spread in the number of steps among the 10 slightly rat-
tled initial conditions as compared to the other methods. Bond-
Min with hyperparameter updates also shows an average reduction
in the standard deviation of the number of steps of over 40% as
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FIG. 5. Number of steps needed to relax different molecules and radicals on fcc (100) slabs for different optimizers. Lighter markers represent individual runs, while the darker
ones mark the average number of runs and its error bar. All ten runs converged for systems marked with circles, while the averages for systems where at least one relaxation
failed are marked with inverted triangles.

compared with BFGS. Even though the standard deviation is com-
parable with the one of BFGS for the water molecule, we note that
for some of the systems, it can reach up to a factor of 5 reduction,
with standard deviations of only 2 or 3 steps in a large fraction of the
tests.

We now turn to the results of the limited memory approach
(LBondMin). The performance of LBondMin has been studied on
the hyperparameter training set systems (where the optimal hyper-
parameters are known) as a function of the training set size and
further tested on two large systems as illustrations.

The results for the hyperparameter training set (a sodium clus-
ter and the CO on Pt) are shown in Fig. 6. The training set size for the
PES is now limited to the last N0 configurations in the light memory
version, and the figure shows the number of required minimization
steps for different values of N0. The full memory version is included
for comparison.

In the relaxations without hyperparameter updates, the per-
formance seems to saturate to the value of the full memory
method relatively fast. In particular, the performance for the sodium

cluster is qualitatively indistinguishable between the full memory
and low memory versions for the range of training set sizes stud-
ied. We note that the performance of the full memory method could
have been achieved with a fourth of the training images for the
sodium cluster and with half as many training images for the CO
on Pt.

Including the update of the hyperparameters, a different pic-
ture emerges: the reduction in the number of points in the train-
ing set can lead to a reduction in the number of steps needed to
relax the structure in the systems studied. This is particularly sig-
nificant for the sodium cluster, where the average number of steps
is reduced by 10%–17% with respect to the full memory method
in all of the investigated range of training set sizes. Again, for
both systems, one could have used about half of the number of
points in the training set, with a modest boost in performance as an
effect.

We illustrate the application of the light memory approach on
the two systems of larger size in the C3–4S dataset. The results of the
optimization can be found in Fig. 7.
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FIG. 6. Average number of steps of the light memory BondMin optimizer as a
function of the size of the training set for the two training systems. The shaded
areas indicate 95% confidence interval of the mean estimated with bootstrapping.
The dashed line shows the results of BondMin with no memory restrictions for the
same systems.

For these systems, we have limited the size of the training set to
20 points. The results obtained are consistent with those shown in
Figs. 5 and 6: The BondMin optimizer results in a significant reduc-
tion in the number of steps needed to relax the system as compared
to BFGS even by reducing the number of points in the training set
by a factor of 5 (in the case of the butanethiolate radical). Thus, it
shows that the reduction in the training set size results in a reduction
in computational cost while retaining the performance.

FIG. 7. Number of steps needed for different optimizers to relax the molecules on
surfaces in dataset C3–4S. Lighter markers represent individual runs, while the
darker ones mark the average number of runs and its error bar.

IV. DISCUSSION
The BondMin optimizer, especially with hyperparameter

updates, shows superior performance to the GPMin and BFGS line
search optimizers for molecules on surfaces and at the same time
comparable performance on a broader range of atomic systems. In
particular, it shows speed-ups of up to more than a factor of two
on the moderate size adsorbates as compared with BFGS. More-
over, the speed-up seems to increase in those systems where the
performance of BFGS is poor and shows robust behavior with small
differences in performance for different initial configurations. Thus,
the performance of the BondMin method over different systems
and initial conditions is not only superior but also more consistent
and reliable, as compared with the other methods presented in this
article.

We ascribe these improvements to two factors. First, we believe
that the ability of the Gaussian process regression to capture both
harmonic and anharmonic regimes improves the description of the
PES in regions where the PES is not convex (for example, in the
vicinity of saddle points), reducing the number of sample points
needed to get out of them. This characteristic is shared with other
GPR methods such as GPMin, as a contrast to the convex quadratic
model in BFGS.

Second, BondMin is able to adapt to anisotropic potential
energy surface landscapes with fewer points, as compared with
isotropic kernels, which would need a large number of points to
describe an anisotropic landscape. We believe that this capacity is
the key to success for problems involving molecules on surfaces
since they typically involve a combination of stiff and soft bonds
that are difficult to capture for GPMin. We also suggest that the
reduced number of parameters needed to model the anisotropy
as compared to BFGS (i.e., a few bond scales vs the full Hessian)
may contribute to the improved performance of BondMin as com-
pared with BFGS line search. We further illustrate this point in
Figs. 8 and 9.

The initial bond scales obtained from the covalent radii of
the atoms in the system provide a reasonable preconditioning for
the different scales involved in the problem, as illustrated in Fig. 5
for the BondMin optimizer without updates of the hyperparam-
eters. However, the ability to update the hyperparameters results

J. Chem. Phys. 153, 234116 (2020); doi: 10.1063/5.0033778 153, 234116-9

Published under license by AIP Publishing



The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 8. CO on platinum during the optimization. (a) Evolution of the bond scales as
a function of the optimization step. The hyperparameters used are those chosen
in Fig. 3. The solid line represents the average over 10 runs, and the shaded area
represents the 95% confidence interval of the mean estimated with bootstrapping.
(b) Atomic structures of the initial and final atomic configurations. Only the atoms
in the unit cell are shown.

in a better model of the potential energy surface. Figure 8(a)
shows the evolution of the scales ℓ ⋅ ℓXiXJ for the different bonds
in CO on platinum, with the hyperparameters found during train-
ing. The scales start at 0.2 times the average of the covalent
radii of the two species and evolve a maximum of a 10% every
step to maximize the log marginal likelihood. As evidenced in
Fig. 8(b), the main task of the optimizer is to rigidly rotate the CO
molecule from being parallel to perpendicular to the surface of the
slab.

The carbon–oxygen scale starts at 0.14 Å and ends at 0.11 Å,
on average. These are low values compared to the other bonds in
Fig. 8(a). The CO scale also presents a comparably low variation
between the initial and final scales and low spread, compared to

FIG. 9. Surrogate models of the potential energy surface of acrylic acid on pal-
ladium around the minimum for two different kernels. The x axis represents the
dissociation of the molecule into the carboxyl and vinyl radicals, while the y axis
accounts for the variation of the adsorption distance between the molecule and the
surface. The anisotropic kernel in the top panel corresponds to the one used by
BondMin, while the isotropic kernel is the one used by GPMin.

the other bonds. We attribute this to the fact that there is only
one CO bond in the atomic structure and to the stiffness of the
CO bond. We conclude from this that the machine learning algo-
rithm is able to correctly learn to separate the stiff covalent bonds
in molecules (i.e., those exhibiting relatively fast variations in energy
as the bond distance is changed) from softer molecule–surface and
metallic bonds.

The other bonds, O–Pt, C–Pt, and Pt–Pt, start at 0.20 Å, 0.22 Å,
and 0.27 Å, respectively. These seem to be underestimates since by
the end of the run, the average value over 10 runs ends up being
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around 0.77 Å for these three bond scales. Initially, the Pt–Pt bond
scale grows faster than the O–Pt and C–Pt scales, reaching the final
value earlier. We attribute this behavior to the fact that the Pt slab
is initially very close to the relaxed configuration and it can thus
relax to it very fast, while the rotation of the molecule provides
an increasingly diverse training set as the optimizer gathers more
data. It can be noted that these scales are shorter than those found
by GPMin on the sodium cluster, which were always longer than
1 Å, which might have to do with the relatively soft bonds in the
cluster.

The optimized molecule-Pt scales show a larger variation across
the 10 different relaxations than the Pt–Pt ones by the end of the run.
We attribute this to the ability of the method to adapt itself to fit the
minimization trajectory the best: differences in the configurations
sampled by the optimizer might lead to differences in the relevance
of different “bonds” in different training structures, thus leading to
slightly different models.

The introduction of different scales associated with the differ-
ent bonds leads to models that can capture anisotropy better with
fewer data points, as illustrated in Fig. 9 for acrylic acid on palla-
dium (dataset C3–4S). The figure shows the level sets of the models
of the PES underlying BondMin and GPMin, respectively, around
the minimum. Both regressions have been trained on the data from
the trajectory of one of the LBondMin energy minimizations for this
system, and the hyperparameters have been fully optimized. The plot
shows the variation in the potential energy when breaking the single
C–C bond that splits the molecule into the carboxyl and vinyl radi-
cals and translating the whole molecule along the z direction, away
or toward the surface.

The scales for the bonds between the C, O, and H atoms and
palladium saturate at between 3.6 Å and 3.8 Å, in contrast with the
0.14 Å of the C–C bond. This produces weights in Eq. (5) between
600 and 700 times smaller for the translation of the molecule with
respect to the surface as compared with its dissociation, resulting in a
more anisotropic PES, as illustrated in the top panel of Fig. 9. In con-
trast, the optimization of the scale in GPMin over these same train-
ing points yields a value of 0.6 Å, which is a compromise between
the long scales and short scales found by BondMin. The GPMin
model for the potential energy surface does not capture the dif-
ferent nature of the two bonds with this amount of information,
even when the training set contains the minimum and neighboring
points. The Gaussian process model underlying GPMin is less reli-
able at extrapolating, and as a result, the GPMin optimizer would
in general need more points to describe the surface and find its
minimum.

The surrogate model of the potential energy surface presented
in this work is invariant under rigid translations of the whole sys-
tem, which turns out to be both a blessing and a curse. Even though
the underlying physics is translationally invariant, we note that the
numerical solution to the Kohn–Sham equations does not need
to fully obey this. For instance, if the grid in real space is too
coarse, this might lead to an egg-box effect,54 resulting in a small
translation-dependent spurious potential.

As a result, combining a DFT method whose parameters are not
finely tuned together with a very tight threshold for the optimization
step can result in the optimizer failing to converge. To our experi-
ence, this feature becomes particularly relevant for systems where
some of the atoms are constrained to stay fixed: the local minimum

might be in a direction that would represent a translation, and the
surrogate model would never be able to capture that.

We suggest that, in most cases, the solution to this situation is to
reconsider the accuracy that is needed for the particular application
and either increase the convergence of the DFT method or relax the
tolerance for the convergence of the optimization method. Notwith-
standing, we have considered some possible alternative solutions
when the above is not possible.

One possibility would be to explicitly break the translational
invariance of the model, by adding a soft-mode for rigid translations.
This can be done by defining a new matrix G̃,

G̃ = G + ℓ−2
T (txtTx + tytTy + tztTz ), (12)

where ℓT is the scale for the translation mode and tx, ty, and tz are
the unitary vectors generating the translations of the system along
the three axis.

Another possibility is to redefine convergence: by defining the
corrected forces on the atoms to be the DFT forces minus the average
force over all atoms such that the sum of all forces is zero, one can
redefine the convergence criterium of the optimizer as having the
maximum corrected force among the atoms to fall under a certain
threshold. This approach results in an approximate best structure
given the circumstances, which could then be finely tuned with a
more precise DFT method. We note that when using this approach,
the Gaussian process still needs to be trained on the uncorrected
forces (those not being translationally invariant) since training on
corrected forces would introduce an energy-force noise term in the
model.

We now turn to a discussion of the approach where the num-
ber of training points is limited to a constant number. As far as
we know, there is no easy rule of thumb to determine the num-
ber of neighboring points one should include in the training in
order to obtain the optimal speed-up. The sodium cluster and
the CO molecule on platinum in Fig. 6 have the same number
of atoms in the system and show different optimal numbers of
points in the training set. Moreover, the potential gain (if any) com-
pared to using the full dataset also seems to vary from system to
system.

Considering the poor scaling of the full memory approach with
the number of atoms in the system, we consider that the better scal-
ing of the light memory approach at no significant reduction in
performance for a wide range of values of the training set size makes
it the method of choice for large systems. In such cases, the number
of points to include in the training set should be chosen by the user
under a consideration of the computational resources available for
the problem at hand.

Let us finally note that all the molecules on surfaces discussed
in this article bind to the surfaces using RPBE for the exchange–
correlation energy. We have chosen not to show systems that do
not bind since, for such a system, the PES does not have a clear
and well-defined minimum. This makes step-counts as a measure
of performance difficult to interpret. We have included some tests
on non-bonding systems in the supplementary material, where we
show that BondMin still performs well in finding the minimum for
such systems.
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V. CONCLUSION
We have presented three versions of a local optimization

method based on a model composed of preconditioned radial func-
tions: a full memory version with hyperparameter updates, the
same method without updates, and a light version with less mem-
ory requirement. We have shown that the full memory version
with hyperparameter updates reduces the average number of steps
needed to relax molecules on surfaces in a robust manner, with
potential speed-ups of up to a factor of 2 compared to BFGS, depend-
ing on the system. The light memory version works with a reduced
training set, which might be necessary for large systems in the
present implementation. Surprisingly, the limitation of the train-
ing set might in some cases lead to superior performance. A reim-
plementation of the method using parallelization and distributed
techniques55,56 would make the method benefit from the kind of
speed-ups most DFT implementations are already taking advantage
of when executed at large supercomputing facilities.

The method presented obtains comparable improvements over
standard optimizers to those presented in other works using Gaus-
sian processes10,13 on other classes of materials while retaining a
good overall performance on a wide class of systems. In several ref-
erences, the boost in performance has been attributed to the use of
non-stationary kernels13,18 as a way to include relevant information
relative to chemical bonding. In contrast, we show that the precondi-
tioning of an isotropic stationary kernel can in fact include a crucial
fraction of the bond information in an unbiased way. This is par-
ticularly useful for adsorption systems, where the bonds inside the
molecule, inside the substrate, and between the two might involve
different length scales. As proposed by Meyer and Hauser,13 the
combination of preconditioning with non-stationary kernels might
bring a further reduction in the computational time needed in local
explorations of the potential energy surface.

As discussed by Garrido Torres et al.,40 a further gain com-
pared to traditional methods can be achieved by using the method
for several calculations on the same system, for example, when relax-
ing the same molecule on different sites. The first relaxation would
exhibit a speed-up comparable to the one discussed in this paper,
and the subsequent ones would benefit of better initial estimates
of the hyperparameters as well as of the energies and forces from
previous relaxations.

Finally, we note that the choice of the initial precondition-
ing as the average of the covalent radii is physically reasonable but
also somewhat arbitrary. We have shown that this choice improves
the performance in systems where the PES is anisotropic and the
number of steps is large, but we have also reported that it severely
underestimates the ratio between molecular bond scales and the
scales of molecule-surface bonds. Along this line, we note that the
implementation of the method is flexible enough to allow for other
user-defined choices of the initial scales, for example, van der Waals
radii,57 results from previous similar calculations, or parameters
extracted from semi-empirical models.58

SUPPLEMENTARY MATERIAL

See the supplementary material for the binding energies and
number of steps in the relaxations with different optimizers for
additional systems.
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Determination of atomic structures is a key challenge in the fields of computational physics and
materials science, as a large variety of mechanical, chemical, electronic, and optical properties de-
pend sensitively on structure. Here, we present a global optimization scheme where energy and force
information from density functional theory (DFT) calculations is transferred to a probabilistic sur-
rogate model to estimate both the potential energy surface (PES) and the associated uncertainties.
The local minima in the surrogate PES are then used to guide the search for the global minimum
in the DFT potential. We find that adding the gradients in most cases improves the efficiency of
the search significantly. The method is applied to global optimization of [Ta2O5]x clusters with
x = 1, 2, 3, and the surface structure of oxidized ZrN.

I. INTRODUCTION

Global optimization in high-dimensional space is a
long-standing challenge in numerical analysis, and also
in physics, chemistry, and material science. The struc-
ture of an atomic system is at low temperature given by
the global minimum point of the potential energy sur-
face (PES), which is a function, E(x), of all atomic co-
ordinates x. For atomic systems with more than a few
atoms, the dimensionality therefore constitutes a chal-
lenge. Furthermore, the PES is usually determined by a
quantum mechanical calculation with for example den-
sity functional theory (DFT), and these calculations are
computationally demanding so the optimization should
therefore be performed with as few function evaluations
as possible.

Numerous algorithms for finding the structural ground
state of a system are implemented for material science
problems [1], such as basin hopping [2], evolutionary al-
gorithms, [3–5], particle swarm optimization [6], and ran-
dom searches [7], but the issue with these methods re-
mains the large number of DFT evaluations required by
the algorithms.

Recently, machine-learned surrogate models have been
considered in order to overcome the problem of spending
excessive amounts of computer resources on DFT calcu-
lations. A surrogate model for the PES is constructed
based on a dataset typically obtained with DFT, and it
allows for subsequent much faster evaluation of atomic
energies and forces. Surrogate models have been used
in local optimization [8], global optimization [4, 9–15],
nudged-elastic band calculations [16, 17], searches for
transition states [18], adsorption studies [19], and the
design of force fields [20–22].

Many of the surrogate models are based on Bayesian
inference, or Gaussian processes (GP) [23, 24], where the
resulting PES is a sum of joint kernel functions, cen-
tered at the training points. In its most traditional form,
the GP is only trained with the target values, i.e. the
electronic ground-state energies in the context of com-
putational chemistry. However, since forces are readily

available after a ground state DFT calculation, we train
the model also with the gradients of the target value, i.e.
with the forces on each atom. The inclusion of gradients
is crucial in local structure optimization based on sur-
rogate models [8] and has also been shown to generally
improve model predictions [25].

The construction of the PES based on a GP usually in-
volves the introduction of a distance measure or similar-
ity of two different atomic configurations. If two config-
urations are close, it is assumed that energies and forces
will be close as well. To this end it may be advantageous
to describe the atomic configurations using a structural
fingerprint (alias descriptor), which in the simplest case
that we shall consider here, is simply a mapping from
the atomic Cartesian coordinates to a (typically high-
dimensional) vector. The similarity of two atomic con-
figurations can then be estimated based on the difference
between the two fingerprint vectors.

The introduction of a fingerprint vector may have sev-
eral advantages. For example, a fingerprint can be con-
structed to reflect the translational, rotational, and per-
mutational invariances of the atomic configuration, i.e. if
two configurations differ by only a permutation of identi-
cal atoms, the fingerprint will be unchanged. This has the
consequence that the predicted PES will exhibit the same
symmetries. Furthermore, a good descriptor is able to
catch the relevant information of the configuration for the
underlying problem. A simple example of an atomic fin-
gerprint is the Coulomb matrix [26], which represents the
atomic configuration using inverse distances, but more
elaborate fingerprints have been developed during the
latest years, such as SOAP [27], ACSF [28], many-body
tensor representation [29], and FCHL [30]. Most of the
common fingerprints are ready-to-use in DScribe package
[31], although currently the gradients of the descriptions
are not available, that are highly relevant in optimization
problems.

In this work, we use Bayesian optimization [32] in order
to find global minimum structures for various systems.
The work follows the pioneering approach for efficient
global optimization of atomic structures by Bisbo and
Hammer [13, 33] with the essential difference that we
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train our GP regression model with both energies and
forces. We also note that the implementation of the ap-
proach involves many choices and parameters, where we
might differ from Bisbo and Hammer. For example, we
use a similar global fingerprint, but introduce an addi-
tional smooth cutoff function to obtain a smoother rep-
resentation of the gradients. In general, the gradients are
seen to improve the efficiency of the global optimization,
and we illustrate this through applications to a 15-atom
Cu cluster, bulk SiO2, Ti4O8 cluster, bulk TiO2 and bulk
silicon.

This article is organized as follows. In section II, we de-
scribe the surrogate model that we use to predict energies
and forces of atomic structures during a global search. In
section III, we illustrate the predictive power of the model
by generating learning curves for a Cu15 cluster and bulk
SiO2. In section IV, we describe the global optimization
approach, and then in section V we demonstrate its per-
formance on a Cu15 cluster, bulk SiO2, [Ta2O5]x clusters,
a ZrN-O surface, a Ti4O8 cluster, bulk TiO2, and bulk
silicon. In section VI, we discuss computational perfor-
mance issues before we finally conclude.

II. SURROGATE MODEL

A. Gaussian process with gradients

To model the potential energy surface of an atomic
structure, we use a Gaussian process that learns energies
and forces (i.e. negative gradients) from existing data. A
Gaussian process uses Bayesian inference and is based on
the assumption that the prior distribution for the data is
given by a multi-dimensional normal distribution. The
result is that the predicted energy and forces, µ(x) =
(E(x),−F(x)), at a given atomic configuration x with
fingerprint ρ(x) can be described [23, 34] as

µ(x) = µp(x) +K(ρ(x), P )C(P, P )−1(y − µp(X)), (1)

where X is a list with the atomic configurations of the
training data and P = ρ(X) a list with the correspond-
ing fingerprints. y is a vector that contains energies and
negative forces of the training data, µp denotes the prior
energy and negative forces (µp(x) for the given configura-
tion and µp(X) for the training data points), K denotes
the covariance matrix, and C is the regularized K-matrix
of covariances between training data points. The forces
are inserted as their negatives because the mathematical
expression of a Gaussian process works with the gradi-
ents and not with the forces. The resulting vector µ(x)
contains the predicted total energy and the negative pre-
dicted forces for each atom (in Cartesian coordinates).
For the sake of readability, we will denote ρ = ρ(x) for
the fingerprint for the rest of this section.

The covariance matrix K is built as follows. A co-
variance matrix K̃ between two atomic configurations is

written as [34]

K̃(ρ1, ρ2) =

(
k(ρ1, ρ2) (∇2k(ρ1, ρ2))

T

∇1k(ρ1, ρ2) ∇1 (∇2k(ρ1, ρ2))
T

)
(2)

with kernel (or covariance) function k(ρ1, ρ2). Here, ∇i
operates on the Cartesian coordinates of the atomic con-
figuration xi, represented by the fingerprint ρi. The com-
ponents in the matrix on the right-hand side of Eq. 2
can be interpreted as the covariances between energies
(k), covariances between energies and forces (∇ik) and
covariances between different force components (∇i∇jk).

Using the formulation of K̃, we store the covariances
between a single fingerprint ρ and all the training point
fingerprints in P in the matrix K(ρ, P ) as

Kj(ρ, P ) = K̃(ρ, Pj) (3)

where j runs over the number of training points. Fi-
nally, the matrix C contains the covariance between all
the training points and a diagonal regularization that de-
scribes the estimated noise, or uncertainty, of the training
data. Its elements are thus given by

Cij(P, P ) = K̃(Pi, Pj) + diag
(
σ2
n,E , σ

2
n,f

)
δij (4)

where diag(σ2
n,E , σ

2
n,f ) represents the diagonal matrix

with σ2
n,E in the first entry and σ2

n,f in the remaining
ones. In this way, we have introduced separate regular-
izations σ2

n,E and σ2
n,f for energy and force covariances,

respectively. Throughout this work, the regularization is
set so that the ratios between the regularization parame-
ters and the kernel prefactor σ (defined below in equation
9) are σn,E/σ = 0.0005 for energies and σn,f/σ = 0.001
for forces.

The power of using Bayesian inference in searching
the global minimum comes from the estimated uncer-
tainties of the predictions that are easily attainable. For
the Gaussian process, the estimated standard deviation
is given by [23]

Σ(x) =
[
K̃(ρ, ρ)−K(ρ, P )C(P, P )−1K(P, ρ)

]1/2
(5)

The uncertainties are used for the global optimization
through the acquisition function as described below in
section IV.

B. The model

We describe the atomic structure by a fingerprint
which has two terms: a radial distribution and an angular
distribution. Using such global distributions ensure the
rotational, translational, and permutational symmetries
for a system. The radial distribution is motivated by
the radial distribution function described by Valle and
Oganov [35]. However, to remove discontinuity at the



3

cutoff distance, we use a smooth weighting factor. The
radial part of the fingerprint for element pair AB is cal-
culated as

ρRAB(r;x) =
∑
i∈A
j∈B

1

r2ij
fc(rij ;R

R
c ) e−|r−rij |

2/2δ2R (6)

where rij is distance between atoms i and j in the set of
coordinates x, and δR is a smearing factor with a fixed
value δR = 0.4 Å. A and B indicate different elements in
the system, and the i-sum goes only over atoms that are
of element A and the j-sum goes only over atoms that are
of element B. r denotes the discrete variable with 200
values, ranging from 0 to the cutoff distance RRc . The
smooth function fc has the form

fc(r;Rc) =

1− (1 + γ)
(
r
Rc

)γ
+ γ

(
r
Rc

)1+γ
if r ≤ Rc

0 if r > Rc
(7)

with a cutoff distance Rc and γ = 2. This form for fc(r)
has zero value and zero derivative at r = Rc. Due to the
factor 1/r2, the form of equation 6 has the property of
giving more weight on small distances below RRc . The
angular part of the fingerprint is given by

ραABC(θ;x) =
∑
i∈A
j∈B
k∈C

fc(rij ;R
α
c )fc(rjk;Rαc ) e−|θ−θijk|

2/2δ2α

(8)
where θ is a discrete variable with 100 values that range
from 0 to π, θijk is the angle between atoms i, j and
k, and δα is a smearing factor with a fixed value δα =
0.4 rad. The chosen values for δR and δα were determined
by trying a few different values. The ones chosen were
observed to work well for all the systems studied in this
work. In the smooth function fc we use the value of
γ = 0.5 that again ensures a smooth behavior of the
fingerprint at cutoff Rc = Rαc . The different γ value to
that of the radial part comes from our observation that
the predicted potential energy surfaces were not smooth
enough at the angular cutoff radius when using the value
of γ = 2 in the angular part. In our work, the cutoff
radius RRc has values between 4.0 and 8.0 Å, and Rαc has
values between 3.6 and 4.0 Å, comparable to the radii
studied in, e.g., [22]. The fingerprint is very similar to
the one used by Bisbo and Hammer [33] but with the
additional cut-off function for the radial part.

The total fingerprint for an atomic configuration x
is obtained by concatenating all vectors ρRAB(r;x) and
ραABC(θ;x) with elements A, B and C of the system, re-
sulting in a single vector that we denote as ρ. To clarify,
for a single-element system such as a Cu cluster, the ra-
dial part is just ρR = ρRCu,Cu(r;x), and for a two-element
system, like SiO2, the radial fingerprint consists of vec-
tors ρRSi,Si(r;x), ρRSi,O(r;x), ρRO,Si(r;x), and ρRO,O(r;x). A
similar procedure is used for the angular parts of the fin-
gerprint.

We calculate the covariance between data points using
a squared-exponential kernel

k(ρ1, ρ2) = σ2 exp

(
−D(ρ1, ρ2)2

2l2

)
(9)

with the distance function D(ρ1, ρ2) and two descrip-
tive hyperparameters, the prefactor σ and length scale
l. (Note, that we use the term prefactor for σ and not
σ2.) It is good to note that, although the dimensionality
of the fingerprint can be thousands, the kernel function
only includes distances between the fingerprint vectors.
Therefore, the efficiency of a Gaussian process does not
suffer from the high dimensionality of the fingerprint.

The distance function we take as simply the Euclidean
distance between the fingerprint vectors as

D(ρ1, ρ2) =

[∑
i

(ρ1i − ρ2i)2
]1/2

. (10)

Since the gradients of the kernel function in Eq. 9 are
required by a Gaussian process that is trained on forces
(in accordance to Eq. 2), the full formulas to calculate
the gradients with this specific distance function in fin-
gerprint space are given in the Supplemental information
[36]. The forces can be predicted also for the model that
is trained on energies only, as we also show in the Sup-
plemental information [36].

We note that Bisbo and Hammer [33] use a kernel func-
tion, which is a sum of two squared-exponential kernels
with two different length scales. We tried this, but did
not see any systematic improvement by adding an extra
length scale.

We determine the hyperparameters σ and l, by maxi-
mizing the logarithmic marginal likelihood, which is writ-
ten as [23]

logP =− 1

2
log(detC(P, P ))

− 1

2
(y − µp(X))TC(P, P )−1(y − µp(X))

− N(3Natoms + 1)

2
log 2π (11)

where N is the number of training points and Natoms is
the number of atoms in a single training data point. The
prefactor, σ, can be determined analytically for fixed val-
ues of σn,E/σ and σn,f/σ, so the numerical optimization
problem is only one-dimensional.

The Gaussian process allows for the specification of
a prior function, Ep(x), for the energy landscape. In
equation (1), the prior energy landscape is inserted as
µp(x) = (Ep(x),∇Ep(x)). Here, we apply the prior func-
tion suggested by Bisbo and Hammer [13], which is a
repulsive potential of the form

Ep(x) = Ec+Er(x) = Ec+
∑
ij

(
0.7

Ri +Rj
rij(x)

)12

, (12)
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where Ec is a constant, Ri and Rj are the covalent radii
of atoms with indices i and j, and rij(x) is the distance
between the atoms in the set of atomic coordinates x.
The prior energy function expresses the expectation that
the energy rises steeply if two atoms come very close. As
we shall see later, this helps avoiding very high energy
structures in the training data.

The constant value Ec is determined by maximizing
the marginal likelihood, and is given by the analytic for-
mula

Ec =
UTC(P, P )−1(y − Er(X))

UTC(P, P )−1U
(13)

where Er(X) is a vector that consists of repulsive pri-
ors of the training data, that is obtained using the sec-
ond term in equation (12), and U is a vector of length
N(3Natoms + 1) with elements

Ui =

{
1, if imod(3Natoms + 1) = 0

0, otherwise
(14)

where indexing of i starts from 0. Therefore, Ui = 1 if
yi is an energy value, and Ui = 0 if yi is a force.

III. MODEL VALIDATION

A. Learning curves and cross validation

To validate the model, we examine two different sys-
tems: A Cu15 cluster using an effective-medium theory
(EMT) potential as implemented in the ASE package
[37–39] and bulk SiO2 using DFT with the PBE func-
tional [40], implemented in GPAW [41]. The unit cell for
SiO2 consists of 12 atoms and has the lowest energy in the
cristobalite structure, comprising tetrahedral SiO4 units.
For both training and validation sets, random structures
are generated and relaxed loosely so that the maximum
force criterion is 10 eV/Å. (The random structures are
generated in the same way as in the global optimization
runs, which is discussed in detail below, in section IV.)
Different sizes of training sets are then used to generate
learning curves for models with a variety of length scales
in the squared-exponential kernel. We limit the training
set size to 100 because with larger sizes there is a risk
of memory problems when gradients are trained. The
validation set size is kept as 100.

The reason for showing the learning curves for different
length scales is that the length scale has, as we shall see,
a dominant effect on the predictive power of the model,
and we also observe that the optimal length scales do not
necessarily follow the traditional expectations for a Gaus-
sian process. The constant term in the prior function
(Equation (12)) is set to the mean energy of the train-
ing set and the kernel prefactor is kept constant since it
does not affect the mean of the predictions, as deduced
from equation (1). In addition to fixed length scales, the

learning curves are computed for models where the length
scale, the prior constant and the kernel prefactor are ob-
tained by maximizing the marginal likelihood separately
for each training set size.

(a)

(b)

FIG. 1. Cu15 learning curves obtained by (a) training on both
energies and forces and (b) training on energies alone. The
inset graphs show the values of the fit length scales for each
training set size.

The learning curves for Cu15 are shown in Fig. 1
both with and without training the gradients. For the
gradient-trained curves, we observe that the root-mean-
square error (RMSE) saturates to approximately 0.12
eV/cluster with length scales greater than 30 when the
training set size is increased up to 100 data points. The
curves with scale 3.1 and 10 do not seem to saturate to
the same degree but they end up at the same RMSE at
100 training points as the other models. The standard de-
viation of the test set energies is 1.5 eV/cluster, meaning
that our model can decrease the RMSE to about 7% of
what random sampling of energies would produce. Amaz-
ingly, a RMSE of 0.25 eV/cluster is achieved by having
only one data point in the training set. This might be
due to the ability of the fingerprint to catch the relatively
simple radial dependence of the EMT potential, together
with the smooth squared-exponential kernel.
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Despite the good start with few training points, the
curves develop quite slowly with increasing number of
training data. The observed saturation is in contrast with
the power law behavior that the learning curves should
optimally follow with linear learning curves on the log-log
scale [42, 43]. One reason for the saturation could be the
difficulty to resolve differences between some configura-
tions as compared to others [44]. We have observed that
small perturbations of the atomic structure that lead to
similar variations in the energy may differ in several or-
ders of magnitude in the variation of the fingerprint. This
may indicate that the potential energy surface is highly
anisotropic in fingerprint space. We note that the high
dimensionality of the fingerprint also makes correcting
for the anisotropy with different scales in each direction
impractical.

Another explanation for the shape of the learning
curves could be that the distribution functions used in
the fingerprint have a finite range. Deringer and Csányi
have shown in the case of amorphous carbon [45] that a
finite cutoff may lead to substantial residual forces for a
per-atom fingerprint. We have a global fingerprint, but
still the finite range may limit the quality of the model
prediction.

In practice, it seems that the gradient-trained model
learns everything it can after training of the order of only
30 data points. On the other hand, an accuracy of 0.12
eV/cluster is clearly sufficient to be of relevance for the
determination of the basins with low energy configura-
tions.

The effect of training the gradients is apparent in Fig.
1: the prediction error is clearly lower up to training
set sizes of the order of 10. At 30 training data points
and above, the energy-trained model seems to do as well
as the gradient-trained one. With the largest training
set sizes, the energy-trained model becomes even slightly
better than the one including the gradients. The differ-
ence is small, though, with the RMSE difference being
only 0.012 eV/cluster at training set size of 100 between
the models with the best length scales. However, given
the saturation of the gradient-trained curves, it is natural
to expect that the energy-trained model reaches the per-
formance of the gradient-model at some point in general,
and for this particular system that happens after around
30 training points.

The models with scales 10 and above saturate to sim-
ilar performance when the training set size of 100 is
reached. All of these scales are comparable to or longer
than the distances between the data points in the data
set with 100 points. For this data set, the distances vary
between 0.1 and 2.3 in fingerprint space. The model with
scale 3.1 is seen to perform less well for small data sets,
but is not saturated when 100 data points is reached.
The limited distances in fingerprint space has to do with
the character of the fingerprint. If the atoms in a given
configuration are displaced, the Cartesian distance cor-
responding to the displacement can grow indefinitely. In
fingerprint space the distances are calculated based on

differences in distribution functions, and these will satu-
rate at some point.

The length scales obtained by maximizing the log-
likelihood are always above 15 when gradients are in-
cluded in the training, and above 6.8 while training on
the energies alone (see Fig. 1). These scales are also
surprisingly long considering the distances in the train-
ing set. There is a clear increasing trend of the optimal
length scale in the energy-trained models when the train-
ing set size is increasing, but no trend is observed within
the gradient-trained models. Nevertheless, maximizing
the log likelihood gives roughly the best model as evalu-
ated with cross validation.

(a)

(b)

FIG. 2. SiO2 learning curves (a) training energies and forces
and (b) training only energies. The inset graphs show the
values of the length scales obtained by maximizing the log-
likelihood for each training set size.

For bulk SiO2 (figure 2), the picture is different in that
the power law decay of the learning curves is roughly
maintained with most models with different length scales
up to 100 training points. But, the prediction power is
not too impressive with the best RMSE of 1.27 eV/cell
at 100 training points although it is lower than the stan-
dard deviation of the validation set, which is 3.6 eV/cell.
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The energy-trained model reaches towards the gradient-
trained one again, but at 100 training points the gradient-
trained model predicts still slightly better than the model
based on energies alone. No clear saturation is observed
within this data range with neither of the approaches.

Compared to the EMT cluster, the learning ability
with a single training point is reduced. This is expected
when moving to a more complex potential energy sur-
face: the quantum effects of a more realistic potential
are difficult to track with a relatively simple fingerprint
in contrast to the simple radial dependency of EMT.

From the SiO2 learning curves we can also see that
the length scales above 100 are clearly favored over the
smaller ones. Again, this is remarkable for a Gaussian
process with a single squared-exponential kernel as co-
variance function, since the distances between the test
data points vary between 1.6 and 21.3, that is one or
two orders of magnitude smaller than the most optimal
length scales. According to Fig. 2, the most optimal
length scale is as much as 1000 while training only on en-
ergies, even further from the deviation of the data point
distances compared to the gradient-trained model.

The fitted length scales, obtained by maximizing the
log-likelihood and shown in the insets in Fig. 2, have a
clear decreasing trend for the models trained using gra-
dients. For the models trained on only energies the vari-
ation is dominated by a large jump between 10 and 30
training points. This behaviour indicates a high sensitiv-
ity of the model to the addition of more data, since we
are dealing with a small numbers of training data points.
Another reason might be that there are multiple local
maxima in the marginal likelihood, and different maxi-
mization runs end up at different local maxima.

Finally, it should be noted that for both Cu15 and
SiO2, fitting the length scale by maximizing the marginal
likelihood gives roughly the best model in the cross val-
idation. This is a desired behavior since maximizing the
marginal likelihood is an easy and computationally rel-
atively cheap procedure to carry out, and it can there-
fore be done repeatedly during a global search where the
training set is updated often.

B. Local relaxations in the surrogate model

Since our global optimization method relies on local
relaxations rather than single-point calculations in the
surrogate PES, it is relevant to examine how well the
model performs local relaxations. We create a training
data set of 40 data points of the Cu15 cluster, relaxed
with EMT so that the maximum force residual is less
than 1.0 eV/Å. After this, the model is trained on the
data both with and without gradients. Then, 80 random
structures are created independently and relaxed locally
in the surrogate model. We note that the minimizations
on the surrogate surface are always performed using the
predicted forces. This can be done even if the model is
trained on energies only, as we note in section II B.

(a) (b)

FIG. 3. Predicted versus true energies of the final structures
of relaxations with surrogate models. 80 local relaxations of
Cu15 are run with surrogate models with (a) training on the
gradients and (b) training only on energies. The training set
of 40 data points is the same for both models. The total en-
ergies of the training data points have distribution with mean
of 6.0 eV and standard deviation of 1.14 eV. The reference
point 0.0 eV is set to the global minimum energy. Statistics
of the energies of the final structures, as well as the statistical
prediction errors, are shown in the text boxes. The dashed
line shows the ideal 1-to-1 mapping of the predictions.

A comparison between the EMT energies and the en-
ergies of the models is shown in Fig. 3. The EMT total
energies of the obtained structures range from 0.38 to 4.8
eV with the gradient-trained model, and from 2.0 to 6.9
eV with training only on energies. Actually, the lowest
energy structure (of 0.38 eV) corresponds to a structure
that is very close to the true global minimum structure.
The prediction errors range from -1.0 to 0.0 eV/cluster
with gradients and -3.6 to -1.2 eV/cluster without gra-
dients. The data demonstrates that the gradient model
is able to reach both lower energies and higher accuracy
than the model including only energies, although we work
at a training set size of 40 where the learning curves show
similar performance to each other. The model trained on
gradients exhibits some systematic errors in particular for
small energies, which is most probably due to these struc-
tures being relatively far from the training data, making
the prediction of their energies more difficult. However,
the ordering of the energies seems to be well reproduced.
The errors are much larger for the model trained on en-
ergies alone, but again the ordering of the states is re-
produced fairly well.

IV. GLOBAL OPTIMIZATION ALGORITHM

The algorithm for the global optimization is relatively
simple: in each iterative step, multiple local relaxations
are carried out on the surrogate surface, and the energy
and forces for the most promising structure are evalu-
ated using the true potential (EMT or DFT). To select
the most promising configuration of all the relaxed struc-
tures, we make use of the estimated uncertainties by cal-
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culating the acquisition function

f(x) = µ(x)− κΣ(x) (15)

for each structure, where we set the parameter κ = 2.
This form of the acquisition function for minimization
problems is called lower confidence bound in the litera-
ture, and the choice of κ = 2 provides a good balance
between exploitation (low energy) and exploration (large
uncertainty) [13, 33, 46]. The structure with the lowest
acquisition function is selected for evaluation with the
true potential. This structure is then added to the train-
ing set for the Gaussian process and another set of surro-
gate relaxations are performed with the updated model,
as illustrated in Fig. 4. The effect of using the finger-
print is visualized in Fig. 4 as well: after just a single
training point, the predicted PES exhibits several impor-
tant features like the existence of the two local minima.
This would not be the case if using Cartesian coordinates
as the descriptor due to the missing permutational, rota-
tional and translational symmetries. The gradients also
play an important role for quick learning of the features
of the PES. Moreover, adding the second training point
in one of the basins makes the prediction in the second
basin more accurate.

The initial training set consists of randomly generated
structures with energies and forces evaluated. In this
work, the optimization routine is always started with 2
initial training points. The starting structures for sur-
rogate relaxations comprise three different types: 1) Al-
ready visited structures with the lowest energies, 2) al-
ready visited structures with random displacement (also
called rattling), and 3) randomly generated structures.
The total number of surrogate relaxations per step in
this work varies between 20 and 40, depending on the
system but kept constant during a run. About 25% of
the relaxations start from structures of type 1, 25% of
type 2 and 50% of type 3. Before accepting the structure
given by a surrogate relaxation, it is checked that none
of the bond lengths in the system are less than 0.7 times
the covalent distance of the atoms. If no valid structures
are acquired in an iterative step, a random structure is
generated, evaluated and added to the training set, to
achieve a model that will fail with smaller probability in
the next iteration.

For clusters, the random structures are generated as
follows. First, one of the atoms is placed at the origin.
After this, the position of the next atom is always given
by r1 = rrand + (r, θ, φ) in spherical coordinates where
rrand is the position of one of the previously set atoms,
randomly selected, and (r, θ, φ) are randomly generated
spherical coordinates. Here the sample distribution of r
is selected manually and system-specifically, but it was
observed that selecting the upper bound of r slightly
smaller than the standard covalent distance of the two
atoms works best in general. After generating a new
position, we make sure that adding an atom in the ac-
quired coordinates does not violate our restriction of the
short bond lengths with each atom added to the cluster

x(a)

B

A

Initial training data

B
A

x

Updated training data

(b)

FIG. 4. One-dimensional demonstration of surrogate surface.
In the figures, the true potential surface, evaluated with EMT,
is shown for a system where one Cu atom is moved on top of
two other Cu atoms. The two basins of the potential en-
ergy surface are labelled as A and B, where the bottom of A
has lower energy than B. In (a), a data point is evaluated at
x = 0.96, and a Gaussian process is trained with that single
training point. The resulting predicted surface, uncertainty
(green area) and acquisition function are shown. The acqui-
sition function is minimized in basin B, at x = −0.74, and
in (b), we show the predictions after evaluating and adding
this point to the training set. Now, the acquisition function
is minimized in A, the global minimum basin of the true po-
tential energy surface.

already, as described above. For TaO clusters, we set an-
other restriction to add some chemical intuition: when O
is being added to the system, we enforce that rrand is the
coordinate of a Ta atom and not another O atom. This
way we avoid introducing chains and clusters of oxygen
in the randomly generated structures.

For bulk systems, the atoms are simply put at random
coordinates inside the unit cell, and then relaxed in a
repulsive potential of the form of

Vrep(x) =
∑
ij

(
0.4

Ri +Rj
rij(x)

)12

(16)
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with similar notation to that of the prior in equation 12.
For surfaces, the atoms are put inside a manually-defined
box inside the true unit cell, where the atoms are placed
in a similar fashion to that of the bulk systems and then
relaxed in the repulsive potential, given by eq. (16).

The hyperparameters Ec, σ, ` are updated during the
global optimization assuming fixed values of the noise
parameters relative to the prefactor as explained above.
The prior constant Ec and the prefactor σ are obtained
analytically and are updated at every step of the global
optimization. The update of the length scale has to be
done numerically and is performed every five steps with
an initial value of 20 times the distance in fingerprint
space between the two initial structures. It is our ex-
perience that the length scale obtained from maximiz-
ing the log-likelihood may be too short leading to a too
rapidly varying surrogate PES with more local minima
than the true PES. This affects the search so that it be-
comes too local. This is unfortunate, especially in the
beginning of the search, where large parts of the configu-
ration space has to be explored. We therefore introduce
a lower bound on the value of the length scale during
update. The lower bound is set to the mean value of
all distances between the training data points in finger-
print space. Using this value ensures that a large number
of training data are used in each energy/force prediction
and too local searches are avoided. We also note that the
investigations of the learning curves above indicate that
a length scale considerably longer than the one obtained
from maximizing the log-likelihood still results in a rea-
sonable model. In some cases the prediction error is in
fact reduced by increasing the length scale.

The algorithm is implemented so that the user can
choose whether to train using the gradients or not. In
both cases, the energy and force predictions can be ob-
tained analytically from the surrogate potential energy
surface. The approach where the gradients are not in-
cluded in the training has a reduced memory usage and
the time to train the model is also significantly reduced.
However, as we have seen in the investigations of the
learning curves the models without training on gradients
are less accurate. In the GOFEE method [13], train-
ing is only performed on the energies, but another train-
ing point, adjacent to the one selected by the acquisition
function, is always evaluated with the true potential and
added to the training set. The second training point is
obtained by moving the atoms a small distance along
the direction of the forces. Adding the neighboring data
point allows the GP model to have the information about
the amplitude of the gradient in the PES in one direction,
presumably leading to more accurate predictions.

In this paper, we refer to our approach with training
on both energies an forces as BEACON (from Bayesian
Exploration of Atomic Configurations for OptimizatioN)
and the approach where the training is only on ener-
gies as L-BEACON, where L stands for “light”. Al-
though the forces are not trained in L-BEACON, we can
still predict the forces in the system (as noted in sec-

tion II B) to be used in the relaxations. We also show
results of L-BEACON-exact where a neighboring data
point is evaluated and added to the training set similarly
to GOFEE, and L-BEACON-FD, where, for each DFT-
evaluated data point, we add a neighboring data point
where the energy is obtained by a finite difference esti-
mation based on the DFT forces. The step length in the
finite difference method is discussed in section V. We will
see that for the systems we investigate here, adding ex-
tra displaced training points does not lead to significant
improvement even if gradients are not trained. Further-
more, we find that training only the energies of single
points (L-BEACON) makes a surrogate potential energy
surface that has similar or almost similar performance in
global optimization, compared to L-BEACON-FD and
L-BEACON-exact.

As usual in global optimization, Bayesian optimization
gives no information whether the true global minimum
is achieved, unless the full search space of interest is ex-
plored. In BEACON, the search is continued until a given
number of DFT calculations is performed, or if time or
memory resources are run out. Therefore, the best in-
dication of whether the true global minimum is found
is that several separate BEACON runs end up with the
same lowest-energy structure.

We also note that the algorithm of BEACON does not
include any geometry relaxations on the true PES, but
all the relaxations are done on the surrogate PES. In this
work, DFT relaxations are only performed if explicitly
stated.

V. RESULTS AND DISCUSSION

A. Cu15

In Fig. 5, we show the success curves of different
types of global optimization runs for the Cu15 cluster
in the EMT potential. We perform 40 separate runs
with BEACON, L-BEACON, L-BEACON-FD and L-
BEACON-exact with different lengths of displacements,
where neighboring training points are included, and 16
separate runs with GOFEE [13]. In the figure, the cu-
mulative curves increase by a step each time a single run
finds the global minimum with an energy threshold of
0.01 eV/cluster. The threshold value means that we de-
clare a run successful once it hits a true energy that is
at maximum 0.01 eV higher than the lowest energy that
was found during the runs. The reference energy here
corresponds to the geometry of a centered icosahedron of
13 atoms and two adsorbed atoms in neighboring hollow
sites of the icosahedron surface, as shown in the inset
of Fig. 5. The second lowest-lying local minimum was
found at 0.15 eV/cluster above the global minimum, pos-
sessing a centered, gyroelongated hexagonal bipyramid.
This observation illustrates the ability of the global op-
timization approach to distinguish between local minima
that are close in energy.
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Let us first discuss the three most optimal success
curves: BEACON, L-BEACON, and L-BEACON-FD
with step length dx=0.001 Å. The ability of the gradient-
trained model to simulate the potential energy surface
of EMT is manifested again as 50 % of the BEACON
runs found the true global minimum after only 7 EMT
evaluations. The convergence of 7 evaluations would be
appealing even for local optimization with the 45 degrees
of freedom in the system, although we remind ourselves
that convergence here is defined via energy whereas in
the context of local relaxation convergence is determined
through stricter requirements on the forces in the sys-
tem. For L-BEACON-FD, the respective number of 50
% success is 16 evaluations and for L-BEACON where no
force information is used, 50 % success is acquired after
20 evaluations. Our runs with GOFEE [13] show that 46
evaluations are required for 50 % success. It is worth not-
ing that despite the fast success, the program does not
know that it has reached the optimal configuration but
keeps searching even after the (known) global minimum
is found.

Let us compare our results with random searches, that
are shown to be surprisingly efficient when certain chem-
ical intuition is considered [7]. We run 480 relaxations
with the true calculator, EMT, starting from similarly
generated random structures as those for the global op-
timization. The result is that 60, or 12.5 %, out of all
relaxations end up in the global minimum energy struc-
ture. If we perform one such EMT relaxation per step,
this would statistically result in 61 % success at step 7,
since

∑7
i=1(1 − 1/8)i−1 × 1/8 = 0.61. The important

difference is that a single relaxation takes 20-200 EMT
calculations, whereas all of our relaxations are performed
within the surrogate model and not with the true poten-
tial. From this perspective, we conclude again that the
model and the global optimization approach of BEACON
are together very efficient in the search for the global min-
imum. Running EMT relaxations is in fact computation-
ally faster than running the relaxations in the surrogate
surface within the global search algorithm, as we will dis-
cuss further in section VI, but when using the algorithm
with DFT this situation is of course completely different.

BEACON is seen to be the fastest method up to 80
% success rate. Most of the L-BEACON-FD (with step
length dx=0.001 Å) runs find the minimum with between
10 and 20 EMT calculations. L-BEACON lags only a
little behind, and finally all the three approaches end up
with a somewhat similar performance, although the full
success of BEACON curve takes slightly more steps with
one run finding the correct local minimum after 48 EMT
evaluations.

Let us now take a closer look to the different ap-
proaches of L-BEACON where the neighboring data
points are included into the model, i.e. L-BEACON-FD
and L-BEACON-exact. First of all, the success curves
with the EMT evaluated neighboring points, that is the
L-BEACON-exact curves, are always behind the curve
for L-BEACON where no neighboring points are included

(a)

(b)

FIG. 5. Cu15 success curves with success threshold of 0.01
eV/cluster. The colored areas denote the standard deviation
of bootstrap simulations with 1000 samples of each curve. (a)
Success curves as function of number of EMT calculations. (b)
Success curves as function of step index. Here, step means an
iteration of the train-search-select-evaluate cycle. FD refers
to adding a neighboring point per each EMT-evaluated data
point, where the energy of the second point is estimated with
finite-difference method with step length dx (Å), based on the
energy and forces of the EMT point. The notation ”exact”
refers to evaluating the energy of the second point using EMT.

in the model. With arbitrary increase of step length in
L-BEACON-exact, we expect the success curves to reach
the performance of L-BEACON at best, since in that case
all the data points are more or less individual and the
neighboring points do not represent simulating the forces
anymore. Also, the step length of dx=0.001 Å leads to
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slightly slower performance than that of dx=0.01 Å, indi-
cating that the step length of the size 0.001 Å is too small
to have the desired effect on the model; due to the noise
term in the model, the two neighboring points cannot be
distinguished properly when they are too close to each
other. However, comparing the red and pink curves in
Fig. 5b, the smaller step length seems to work similarly
between L-BEACON-exact and L-BEACON-FD despite
the approximation. This indicates that the linear approx-
imation is accurate enough to produce a reasonable sur-
rogate PES. On the other hand, the step length 0.01 Å is
clearly too large for a stable model in L-BEACON-FD al-
though it results in better performance with L-BEACON-
exact. The value of dx=0.001 Å shows the fastest global
optimization of all the double-point approaches in num-
bers of EMT calculations, but the performance is not
much better than with L-BEACON. Also, the problem
of selecting a suitable step length might be difficult for
other systems and more complex potentials. Thus, we do
not find inclusion of neighboring points in general ben-
eficial. We will return to this topic later in the case of
bulk SiO2.

Comparing our curves with GOFEE, we see that the
number of EMT calculations is two-fold or more for
GOFEE. As mentioned above, the essential point of inter-
est in the methods is the way in which the energy of the
neighboring data point is evaluated. In this respect, L-
BEACON-exact is similar to GOFEE. It is observed that
L-BEACON-exact is faster in finding the true global min-
imum, which we attribute to the slight differences in the
details of the fingerprint, the kernel function and fitting
the hyperparameters along the way. Comparing BEA-
CON and GOFEE, there is about a factor of 6 difference
between the number of required energy evaluations.

Finally, let us connect the result with BEACON to
the examination of local relaxations above (section III B).
There, the training set size was 40, and even with 80
relaxations the global minimum was not found. In the
global search we find the minimum after only 7 training
points. This indicates that updating the model along the
run is an important feature of the global optimization
algorithm.

B. SiO2

Figure 6 shows the success curves for bulk SiO2 in
the low-cristobalite phase with DFT/PBE. In this case,
training the gradients is clearly favourable in the search
for the global minimum structure. BEACON finds the
correct structure after less than 34 DFT evaluations for
all runs. L-BEACON and L-BEACON-FD are slower
than BEACON and eventually fail in 2/20 runs to find
the true global minimum using 80 DFT calls.

We saw that for the Cu15 cluster the search identified
the global minimum based on very few EMT energy and
force evaluations compared to what could be expected
based on the learning curves. This feature is even more

pronounced for the SiO2 system. The learning curves in-
dicate a rather poor accuracy with errors of more than
1 eV/cell (for the 12 atom system) in the range all the
way up to 100 training points, but still the global mini-
mum is found within 0.05 eV/cell using only of the order
25 DFT calculations. The explanation for this behavior
must have to do with the fact that, in the global search,
states around local minima of the PES are of preferential
interest and included in the training set. The model is
thus exclusively trained to predict a special part of the
PES. In the cross validation studies above, the model is
trained on a wider range of points and also evaluated
broadly in configuration space.

This idea is to some extent illustrated with the sim-
ple one-dimensional potential energy surface of the Cu3

cluster discussed above in Fig. 4. The evaluation of the
model at the minimum point of the well B considerably
improves the prediction at the other minimum A, because
some of the local bonding characteristics are the same.

Interestingly, the energy-trained models, L-BEACON
and L-BEACON-FD, have rather similar performance in
the global optimization although the training set of L-
BEACON-FD includes twice the number of data points.
The difference to the Cu15 is the more complex true
potential energy surface, introducing more error in the
finite-difference method. For the case of SiO2, we assert
that a step length of 0.001 Å is too small for the energies
of the neighboring points to be distinguishable by the
Gaussian process, resulting in failure of simulating the
slopes of the PES. Increasing the step length increases
the risk of running into problems with an unstable Gaus-
sian process, as observed with Cu15. We thus conclude,
somewhat at variance with Bisbo and Hammer [33], that
adding neighboring data points, as done in L-BEACON-
FD, L-BEACON-exact, or GOFEE, is not beneficial in
general for the Bayesian approach to global optimization.

Let us now investigate how the success curves depend
on the threshold value for the energy. In Fig. 6 an en-
ergy threshold of 0.05 eV/cell is used for SiO2, and we
show the success curves with energy thresholds of 0.2
eV/cell and 0.01 eV/cell in the Supplemental material
[36]. We see that BEACON is more efficient than the L-
BEACON methods, which are quite similar to each other,
and therefore the overall analysis is not too sensitive to
the choice of the threshold value. However, the choice
of an appropriate threshold may depend on the system
being investigated. For example, an energy threshold of
0.2 eV/cell for the Cu15 cluster has the consequence that
finding the second lowest local minimum is also counted
as a successful run. For SiO2, we did not determine the
second most stable structure explicitly, but no other sta-
ble structure was found within the highest threshold of
0.2 eV/cell. On the other hand, small thresholds like
that of 0.01 eV/cell might fall below the accuracy of the
DFT implementation, parameters in use (such as k-point
density), convergence criteria of the self-consistent cycle
etc., making the judgment whether the global minimum
was found or not. The threshold of 0.05 eV/cell seems to
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FIG. 6. SiO2 success curves with success threshold of 0.05
eV/cell. The unit cell includes 12 atoms. The global mini-
mum structure is shown in the inset, where 5 extra O atoms
are added to the unit cell to illustrate the tetrahedral coor-
dination of Si. For L-BEACON-FD, the step length is 0.001
Å in the finite difference method.

be a good compromise for global optimization of systems
with 10-20 atoms using DFT calculators like GPAW with
default settings. In this work, we use the threshold value
of 0.05 eV/cell for all systems studied with DFT.

The length scale is updated every 5 steps by maximiz-
ing the marginal log-likelihood as discussed above in the
section IV. Furthermore, as also discussed above, the
length scale is bounded from below by the mean value
of all distances between the training data points in fin-
gerprint space. In Fig. 7, we show the evolution of the
fitted length scale in the global optimization runs of SiO2

when constraining the fitted length scales from below and
when not. For both cases, we observe that after the first
fitting at 5 DFT calculations there is a huge variance
in the optimal length scales over the different runs: the
values range from 30 to 3000. As the searches proceed,
this range gets narrower, and after 20 DFT calculations
the updated scales vary only between 25 and 100 when
constraints are turned on. The corresponding figure for
L-BEACON runs is shown in Supplemental material [36].
For L-BEACON, most of the values lie below 100, but
the updating also converges to higher values along the
search. This does not seem to be a problem though, as
global minima are also found with the large scales.

For BEACON, the length scales where the correct
global minimum structure is found are gradually decreas-
ing as the search proceeds. Furthermore, it can be seen
that if the length scale is below 100, the global minimum
is never found in fewer than 15 steps. Apparently, the
length scales obtained by maximizing the marginal log-

(a)

(b)

FIG. 7. Evolution of the updated length scales of the Gaus-
sian process kernel during the runs of SiO2 in (a) BEA-
CON and (b) BEACON without lower bound for the updated
length scales.

likelihood are not necessarily optimal in the early part of
the global search, where exploration is particularly im-
portant. The large variation in the length scales in the
beginning of the search is hardly surprising in light of
the small number of training points. In this perspective,
it seems reasonable to limit the acceptable length scales
from below to prevent strong overfitting in the beginning
of the search. It appears from the data in Fig. 7 that the
lower bound could be set even higher in the beginning of
the runs.

Without the lower bound on the length scale, three
of the runs fail to find the global minimum in 50 DFT
calculations as shown in Fig. 7b. It is clear that the
failing runs after 20 steps have very short length scales
and even though the length scale is increased after 25
steps they fall back to a less exploratory mode, where
the global minimum is not identified.
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C. [Ta2O5]x

Ta2O5 is an optically interesting material, whose crys-
tal structure is still under debate [47–49]. Furthermore,
clusters of the material might be of interest in photo-
catalysis [50, 51].

To test our approach, we investigate small clusters with
the composition [Ta2O5]x with x = 1, 2, 3 corresponding
to the stoichiometry of the bulk material. The structures
that we find to minimize the potential energy are shown
in Fig. 8. All the globally optimal structures for clusters
are such that O is sticking out of the TaO core, making it
impossible to use these units as building blocks for a bulk
system while preserving the correct stoichiometry Ta2O5.
Nevertheless, it is interesting that in all the structures
every Ta atom has a similar bonding environment to four
O atoms, one of which is pointing outwards from the
cluster. Interpreting this as a double bond makes the
oxidation number of each Ta atom to be +5.

In any case, the global optimization of the clusters pro-
vides a good demonstration of our method. Of course
there is no rigorous proof that the obtained structures
are in fact the global minimum energy structures, but
some indications of this are obtained by just repeating
the searches and noting the variety of structures visited
during the search. The shown structures were found
in 4/4 runs for Ta2O5, 5/6 runs for [Ta2O5]2, and 4/8
runs for [Ta2O5]3. The second lowest local minimum for
Ta2O5 was observed at 0.16 eV/cluster higher than the
lowest one, and this was visited in all runs. This again
indicates that the model and the acquisition function are
able to identify small energy differences between different
structures.

The average number of required single-point DFT cal-
culations before hitting the global minimum structure
(with threshold of 0.05 eV/cluster) was 42 for Ta2O5, 40
for [Ta2O5]2, and 35 for [Ta2O5]3, calculated among the
successful runs. The small number of steps required is a
highly desired result, because it means that one can limit
the length of the BEACON runs. This does not only have
the advantage that the total number of DFT calculations
is small, but long runs of BEACON with many steps lead
to surrogate models with many data points, which require
more memory and computational time. It is interesting
that the average number of DFT calculations is small-
est for the largest cluster where the number of degrees
of freedom is the largest. This could be explained by
the fact that whenever we train the model with a larger
cluster, more training data is available since the number
of trained gradients is larger. However, we note that in
general larger systems can be expected to exhibit con-
siderably more local minima to be explored making the
global search more difficult.

We now take a closer look at some of the BEACON
runs in order to get a better understanding of how the
algorithm behaves. We first investigate why some of the
runs fail for the larger clusters by checking how the global
minimum structure is predicted with surrogate models of

FIG. 8. Global minimum structures of Ta2O5 (D3h symme-
try), Ta4O10 (Td) and Ta6O15 (D3h) clusters as found by
BEACON.

the unsuccessful runs. That is, we use the surrogate mod-
els at step number 40 of the global optimization runs
(42 training points), and perform a local relaxation on
this surrogate potential energy surface starting from the
global minimum structure. In every case, the relaxation
does not change the structure significantly, and the ac-
quisition function of the relaxed structure is low enough
so that it would have been selected for DFT evaluation
in the original BEACON run. We thus conclude that for
these runs, the search within the surrogate space is insuf-
ficient whereas the accuracy of the model is good enough
to find the global minimum.

In Fig. 9, we show how a single run of Ta6O15 pro-
ceeds along the search. The search starts with high-
energy structures where the prediction and the true en-
ergy do not match at all, but as the high uncertainties
show, the model knows it might be wrong about the pre-
dictions. As the search continues, different structures are
suggested and evaluated with a good agreement between
the predictions and the true energies, taking the esti-
mated uncertainties into account. The global minimum
structure is found at step 42 in this particular run, and
the exploration continues after that, as indicated by the
higher-energy structures that are visited between step 42
and step 68. As noted in the description of the algorithm,
we remove structures, which have been obtained by local
relaxations in the surrogate model, if a bond distance is
smaller than 0.7 times the sum of the covalent radii of
the atoms in the bond. What happens at step 68 in this
BEACON run is that the model begins to develop lo-
cal minima with O-O bond lengths, which are just above
this threshold. So the new predicted structures contain
unphysically short O-O bonds or even clustering oxygens
linked to the rest of the cluster. The model predicts
their energies to be very low, and they are therefore al-
ways selected by the acquisition function (eq. 15). How-
ever, after step 80 we see that the model has learned
that the unphysical structures have high energies, and
the search continues in a more reasonable way both ex-
ploring new areas and exploiting the known structures,
the global minimum included.

This issue illustrates how additional conditions on the
search might be helpful to avoid unphysical structures,
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FIG. 9. Energy, prediction, and hyperparameter evolution in a single global optimization run for a Ta6O15 cluster. Also,
selected structures are shown that were evaluated with DFT along the run. The global minimum structure is visited at step
number 42, and at various steps after that. The green area shows the estimated uncertainty of the prediction. The prior
constant is shown with respect to the global minimum energy.

but also that the surrogate model might react to these in
unexpected ways.

Let us briefly look at how the hyperparameters evolve
as shown in Fig. 9. To first recapitulate, we have four
hyperparameters: the length scale in the kernel, the ker-
nel prefactor, the prior constant, and the noise parame-
ter. For simplicity, we keep the ratio between the noise
and the prefactor fixed, because the maximization of the
log-likelihood can then be done analytically with respect
to both the prefactor and the prior constant. Only the
length scale has to be obtained numerically and this up-
date is done every 5 steps. We see in Fig. 9 that the
prior constant has some variation in the beginning but
the changes become smoother as more training data is
acquired. The dramatic changes in the model at step
68 also lead to a recalibration of the prior constant. It
should be noted that the prior constant is not only a
weighted mean of the observed energies, because the gra-
dients also play a role in the determination as seen from
Equation (13).

The length scale is significantly reduced during the run,
and we take this as an indication that the model is ini-
tially focusing on getting the large-scale features of the
PES correct with subsequent refinements. This is an ap-
propriate behavior for a global search strategy that we
already examined in the case of SiO2.

The kernel prefactor also gradually decreases during
the global optimization with the most significant changes
every 5 steps when the length scale is updated. The pref-
actor is unimportant for the prediction of energies and
forces as can be seen from Equation (1), but it plays a
major role for the estimated uncertainties. The decaying
value might therefore indicate an increasing confidence
of the model. The reduction of the prefactor can also be
seen as coupled to the change in the length scale. The
uncertainty at a particular point in fingerprint space is
roughly given by the kernel function to neighboring data
points. This estimate involves both the prefactor of the
kernel function and the distances to the neighboring data
points measured in units of the length scale. A reduction
of the length scale thus leads to a less ”stiff” model with
larger variances and this is to some extent compensated
by the reduced prefactor. The regularization follows ex-
actly the variation of the kernel prefactor because the
quotient of these quantities is kept constant throughout
the run.

In the Supplemental material [36], we show another,
similar run to that in Fig. 9. Although the global mini-
mum energy structure is not found, the overall behaviour
of the predictions and hyperparameters is similar with
a good balance between exploration and exploitation.
Even the stage of unphysical structures with short O-O
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bonds is the same after 60 steps, after which the search
becomes stable again at around step 80. Although the
prior constant goes below the global minimum energy in
the beginning, we note that it does not have a negative
effect on the model or the search: in the beginning the
length scale is relatively long, and therefore all the points
in the (reasonable) coordinate space are considered close
to each other compared to the length scale, and conse-
quently the model is not very sensitive to the absolute
value of the prior.

An important feature observed in both runs is that the
estimated uncertainties are reasonable so that when the
error of the prediction is large, the model knows that it
might be wrong. This is an essential property for using
the lower confidence bound as the acquisition function,
Equation 15, to control the balance between exploration
and exploitation in the global search.

D. ZrN-O surface

As the last demonstration, we briefly illustrate the ap-
plicability of the approach to surface structures. Re-
cently, a high catalytic activity of ZrN for oxygen re-
duction was observed [52]. To see whether anything in-
teresting occurs on the ZrN surface, exposed to oxygen,
we investigate the surface structure of ZrN with adsorbed
oxygen using the global optimization method. We use a
surface slab of 4 layers with the 2 bottom layers fixed
during the optimization. The unit cell is orthogonal con-
taining 16 zirconium atoms, 16 nitrogen atoms and 1
oxygen atom corresponding to a coverage of one oxygen
atom per four zirconium atoms in the surface layer. The
electronic exchange-correlation effects are modelled us-
ing RPBE [53]. With this setup, the global optimization
algorithm finds that a structure where the oxygen atom
and also one of the nitrogen atoms occupy the hollow sur-
face sites minimizes the potential energy of the system as
shown in Fig. 10. Consequently, there is a nitrogen va-
cancy in the first layer, below the oxygen atom. The
Zr lattice stays close to the cubic (111) surface form, al-
though the 3 Zr atoms that are neighbors to oxygen tend
to move away from the oxygen atom and lie closer to the
nitrogen on the surface, as compared to the bulk struc-
ture.

To verify the surprising finding that one of the N atoms
in the unit cell prefers a surface site, we relax the ob-
tained global minimum structure with a maximum resid-
ual force of 0.05 eV/Å. In addition, we relax three other
structures that are built manually (see Fig. 10). S1: This
is a structure where only oxygen is on the surface and the
ZrN lattice has its bulk form. S2: In this structure a sin-
gle nitrogen atom is on the surface and oxygen is moved
to the vacancy left behind by the nitrogen. S3: A struc-
ture where a single nitrogen is on the surface and oxygen
is in the second N-layer. Comparing with these struc-
tures, the structure identified by the global search has
the lowest energy with energy differences of 0.25 eV/cell,

Global minimum
0.00 eV

S1
+0.25 eV

S3
+1.8 eV

S2
+1.6 eV

FIG. 10. Investigated structures for ZrN-O surface and their
respective total energies. The structures are shown from
above the surface. See text for details about the structures.
Light blue: Zr, sky blue: N, red: O.

1.6 eV/cell and 1.8 eV/cell to S1, S2, and S3, respectively.
The method thus finds a local minimum structure that
is lower in energy than the most intuitive configurations.

The progress of one of the successful global optimiza-
tion runs is shown in Fig. 11. It illustrates that the
method is visiting a diverse set of structures. For the
first 11 steps, the program produces rather unrealistic
structures with energies above 10 eV/cell higher than the
global minimum. After step 11, the low-energy structures
are exploited more thoroughly, and the global minimum
structure is found at step number 22. The program con-
tinues with a balance between exploring structures at
fairly high energies and identifying competing low en-
ergy structures, for example at steps 36 and 61. It is
also notable that some non-trivial Zr surface structures
are explored, such as those at steps 1 and 29. In general,
we note that a fair share of the structures investigated
are pretty high in energy. This seems to be necessary to
achieve a proper exploration and training of the model.

E. Other systems

One of the main points of this paper is to show how
including gradients in the Gaussian process affects the
performance of Bayesian global optimization in compar-
ison with GOFEE [13] where only energies are used for
training. Our results with both learning curves and suc-
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FIG. 11. A single global optimization run of ZrN-O surface. The global minimum structure was found at step 22; the structure
is shown in the figure.

cess curves indicate that adding the gradient information
into the model improves the performance of the search.
In Fig. 12, we show success curves for three more sys-
tems, to investigate the effect of training on the gradients
as well as the energies. We run several optimizations for
a Ti4O8 cluster, bulk TiO2, and bulk silicon. The bulk
TiO2 system consists of 12 atoms and the unit cell is
fixed as appropriate for the rutile phase. The bulk sili-
con system consists of 16 atoms and the unit cell is fixed
corresponding to the diamond lattice. For the Ti4O8

cluster and bulk silicon the improvement is notable. In
contrast, and a bit surprisingly, training on the gradients
does not have any effect on the overall performance for
bulk TiO2, so the potential gain of including gradients
does depend on the system under study. However, at
this point, we cannot tell how much different properties
like size, symmetry, number of elements, shape of the
true potential etc. matter for the acceleration obtained
by using gradients.

VI. COMPUTATIONAL TIME AND MEMORY
LIMITATIONS

The primary goal for this work is to reduce the num-
ber of expensive DFT calculations necessary to find the
global minimum of a PES. However, it should be noted
that in some cases the processor time needed to run the

relaxations on the surrogate surface may become compa-
rable to the time spent on DFT, especially if the DFT
implementation is parallelized efficiently while the Gaus-
sian process is not. In our current implementation each
surrogate relaxation is always run on a separate, single
processor, but no further parallelization is performed. In
the beginning, most of the time of the surrogate model is
spent on calculating the fingerprints and their gradients
at every step of the local relaxations. Later in a global
optimization run, as the training set size becomes larger,
calculating the Hessians of the kernel function in finger-
print space is the computational bottleneck. (See the
computational times of training and predicting in Sup-
plemental material [36].) In our examples, training the
model with gradients typically takes more than one order
of magnitude more time compared to using the energies
alone. Time consumed in predicting is roughly the same
with few training points, but as the number increases,
ever larger Hessian matrices need to be calculated with
the gradients, leading to an increase in computer time.
Predicting without training the gradients is faster since
the kernel Hessians are not calculated, and the linear
algebra is applied to much smaller matrices. The nu-
merical updating of the length scale involves training
the model at each optimization step, and with a large
number of atoms and training set sizes, this becomes too
heavy in practice with the gradient-trained models unless
the training is parallelized. Eventually, if the DFT cal-
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FIG. 12. (a) Ti4O8 cluster, (b) bulk TiO2 and (c) bulk Si/diamond success curves with success threshold 0.05 eV/cell. For
Ti4O8 cluster, tight-binding DFT was used as true potential [54, 55], whereas DFT was used for the bulk systems with the
same setups as for the SiO2. The unit cells of TiO2 and Si include 12 and 16 atoms, respectively.

culation is fast enough, the energy-trained L-BEACON
might become faster in total processor time than BEA-
CON even if more DFT calculations are required to train
a sufficient model. However, as we observe from the suc-
cess curves, BEACON is more robust in finding the global
minimum and does not get stuck as often as L-BEACON.

The memory usage is limited by inversion of the C-
matrix, as required by equation 1, that scales as O(n2)
memory-wise [8, 16] where n is the order of the square
matrix, i.e. in this context n = N(1 + 3Natoms). If mem-
ory or speed becomes an issue with large systems, one is
forced to use L-BEACON (or switch to L-BEACON on
the fly during the optimization), where we have merely
n = number of training points.

VII. CONCLUSIONS

We think that the use of Bayesian strategies and more
specifically Gaussian processes for global atomic struc-
ture determination is only at its beginning. As demon-
strated by Bisbo and Hammer [13, 33], a surrogate model
based on a global atomic fingerprint in combination with
a Bayesian optimization can outperform earlier global op-
timization methods by orders of magnitude in reduced
computer power. In the present paper we show that in-
cluding gradient information, i.e. the atomic forces, in
the training of the model in most cases leads to a further
reduction in the number of DFT calculations necessary
to identify the global minimum energy structure. The
approach was successfully applied to clusters, surfaces,

and bulk systems.

However, many aspects of the approach are still unex-
plored. The surrogate models are not particularly accu-
rate as shown by the learning curves, but still they work
very well in the optimization process. So far only a single
global fingerprint was investigated, and it is not known if
other fingerprints like SOAP [27], MBTR [29], or FCHL
[30] would perform even better. The way of suggesting
new candidate structures could potentially also be im-
proved, for example in combination with a genetic algo-
rithm, and other acquisition functions may be relevant.
Finally, the approach could be combined with other arti-
ficial intelligence techniques providing additional guiding
of the search.

The code for BEACON is available at https://
gitlab.com/gpatom/ase-gpatom. It is integrated with
the Atomic Simulation Environment (ASE) [38, 39], so
that any energy and force calculator supported by ASE
can be used together with BEACON. In the present im-
plementation the unit cell is kept fixed during the search.
However, it should be possible to update the unit cell
based on the currently applied fingerprint, and we ex-
pect to implement that in the near future.
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[5] M. Jäger, R. Schäfer, and R. L. Johnston, Giga: a ver-
satile genetic algorithm for free and supported clusters
and nanoparticles in the presence of ligands, Nanoscale
11, 9042 (2019).

[6] Z. Chen, W. Jia, X. Jiang, S.-S. Li, and L.-W. Wang,
Sgo: A fast engine for ab initio atomic structure global
optimization by differential evolution, Computer Physics
Communications 219, 35 (2017).

[7] C. J. Pickard and R. J. Needs, Ab initio random struc-
ture searching, Journal of Physics: Condensed Matter
23, 053201 (2011).

[8] E. Garijo del Ŕıo, J. J. Mortensen, and K. W. Jacob-
sen, Local bayesian optimizer for atomic structures, Phys.
Rev. B 100, 104103 (2019).

[9] S. Carr, R. Garnett, and C. Lo, Basc: Applying bayesian
optimization to the search for global minima on poten-
tial energy surfaces, in Proceedings of The 33rd Inter-
national Conference on Machine Learning , Proceedings
of Machine Learning Research, Vol. 48, edited by M. F.
Balcan and K. Q. Weinberger (PMLR, New York, New
York, USA, 2016) pp. 898–907.

[10] T. Yamashita, N. Sato, H. Kino, T. Miyake, K. Tsuda,
and T. Oguchi, Crystal structure prediction accelerated
by bayesian optimization, Phys. Rev. Materials 2, 013803
(2018).

[11] H. L. Mortensen, S. A. Meldgaard, M. K. Bisbo, M.-P. V.
Christiansen, and B. Hammer, Atomistic structure learn-
ing algorithm with surrogate energy model relaxation,
Phys. Rev. B 102, 075427 (2020).
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K. S. Thygesen, T. Vegge, L. Vilhelmsen, M. Walter,
Z. Zeng, and K. W. Jacobsen, The atomic simulation
environment—a python library for working with atoms,
Journal of Physics: Condensed Matter 29, 273002 (2017).

[39] Atomic Simulation Environment (ASE), https://wiki.
fysik.dtu.dk/ase/ (2020).

[40] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized
gradient approximation made simple, Phys. Rev. Lett.
77, 3865 (1996).

[41] J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen,
M. Du lak, L. Ferrighi, J. Gavnholt, C. Glinsvad,
V. Haikola, H. A. Hansen, H. H. Kristoffersen,
M. Kuisma, A. H. Larsen, L. Lehtovaara, M. Ljung-
berg, O. Lopez-Acevedo, P. G. Moses, J. Ojanen,
T. Olsen, V. Petzold, N. A. Romero, J. Stausholm-
Møller, M. Strange, G. A. Tritsaris, M. Vanin, M. Walter,
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