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Abstract

X-ray computed tomography (CT) is a popular technique for non-destructive

examination of the interior of an object in medical diagnosis and security applications.

This technique can reconstruct a high-resolution three-dimensional (3D) image of the

object from projection data collected at different angles. The emergence of energy-

discriminating photon counting detectors (PCD) has paved the way to spectral (or

multi-energy) X-ray CT which can simultaneously retrieve the linear attenuation

coefficients (LAC) of materials as function of photon energy with polychromatic

sources. The extraction of LACs at multiple energies can potentially enhance material

separation than the traditional energy-integrating or dual energy detectors. This thesis

presents a new joint reconstruction algorithm and new classification methods which can

classify materials into energy-independent features such as electron density (ρe) and

effective atomic number (Zeff). The methods and the algorithm developed to address

the challenges of spectral CT for security applications are briefly explained below.

First, we propose a material classification method using a dual basis function

decomposition which is based on the fact that the LAC of any material can be

accurately reproduced by a linear combination of material- and energy-dependent

components. The method requires a calibration phase to register the energy-dependent

basis functions of the decomposed LACs by employing a set of reference materials.

Materials are then classified into ρe and Zeff , while these two parameters can completely

identify the materials that may be found in the luggage. The method is explored in

the broad range of 6 ≤ Zeff ≤ 23 that includes the most materials important in

explosive detection. Our method outperforms another state-of-the-art method called

SRZE, providing up to 32 times better time efficiency for the image reconstruction

with similar performance.

Second, we present a new joint reconstruction algorithm called L∞norm-based

vectorial total variation (L∞-VTV), which utilizes the increased information from

spectral LACs. The algorithm is tested for experimental data acquired with the low

signal-to-noise ratios (SNR) and few projections. It is demonstrated that the algorithm

can outperform another state-of-the-art joint reconstruction in terms of reconstruction

quality and classification from such data.

Third, how the correction step for spectral distortions in a PCD influences the

resulting material classification is analyzed. This is because the spectra measured with

PCDs are usually distorted by charge accumulation artifacts, such as pileup of photons
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and charge sharing between detector pixels.

Fourth, we develop another classification method using a basis material

decomposition which is based on the fact that the LAC of any material can be correctly

restored by a linear combination of equivalent thicknesses and LACs of several basis

materials. The method requires a calibration phase in which a set of reference materials

are measured to compute corresponding equivalent thicknesses. Equivalent thicknesses

of the scanned unknown objects are found, and their Zeff values are calculated by

interpolation or extrapolation with respect to the reference materials. This method

shows better accuracy in estimating Zeff than the first classification method mentioned

above, when the number of projections is decreased or the data SNR is decreased.

Both methods do not require a-priori knowledge of the sample.

In the thesis, we address some challenges of spectral CT. First, the division of

photon counts into many energy bins significantly reduces data SNR in each bin.

Second, if the widths of energy bins are lower than detector’s energy resolution,

classification performance may not be improved further. Lastly, reconstructing many

individual energy bins is computationally expensive. Therefore, the experimental data

is rebinned into smaller numbers of energy bins prior to reconstruction, which are

optimized for each developed method in terms of classification performance.
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Introduction 1
In this thesis, with focus on security applications we develop new material classification

methods and image reconstruction algorithms from spectral (or multi-energy) X-

ray Computed Tomography (CT). Spectral CT with a polychromatic source uses

energy-sensitive single photon counting detectors, and extracts the linear attenuation

coefficients of materials as a function of photon energy with a single data collection.

The different data correction techniques and optimization of energy thresholds in the

energy spectrum are implemented to enhance the developed methods. The various

challenges of spectral CT for security applications are addressed. The developed

algorithms and methods are compared with their state-of-the-art competitors using

spectral CT scans.

1.1 About the project

The work introduced in the thesis is performed in the context of a multi-disciplinary

project, MUltiscale, Multimodal and Multidimensional imaging for EngineeRING

(MUMMERING) funded by EU Horizon Marie Sklodowska-Curie Innovative Training

Network (ITN) with the grant number 765604. MUMMERING covers the whole

pipeline of electron beam and X-ray tomography from data collection and image

reconstruction to finite element modelling and material characterization. This project

trained 15 early stage researchers (ESRs) benefiting from the participation in the

different host and secondment institutions. The original title of the thesis was ”2D/3D

multimodal analysis for X-ray security applications”.

1.2 Thesis Overview

Chapter 2 explains background on single, dual and multi-energy CT, and addresses

the objectives of the thesis. Chapter 3 presents data acquisition and data-processing

techniques before performing image reconstructions. Chapter 4 describes new

joint reconstruction algorithms which are implemented for improving classification

performance from few CT projections and increased noise levels. Chapter 5 introduces

1



1. Introduction

new classification methods for spectral CT which are based on the different attenuation

decomposition models. The main results from the appended papers are given in

Chapter 6. Discussion of the results and some suggestions for future work are presented

in Chapter 7. In Chapter 8 we draw a conclusion. Lastly, four papers are added in the

appendix section.

This thesis consists of an extended summary and the following appended papers:

• Paper A:

Doniyor Jumanazarov, Jakeoung Koo, Matteo Busi, Henning. F. Poulsen, Ulrik

L. Olsen and Mihai Iovea. System-independent material classification through X-

ray attenuation decomposition from spectral X-ray CT, NDT and E International

116 (2020) 102336. DOI: 10.1016/j.ndteint.2020.102336.

In this work, we present a system-independent material classification method

through attenuation decomposition (SIMCAD). The method adopts the dual basis

function decomposition model introduced by Alvarez et al. [1] for multi energies, and

estimates electron density and effective atomic number of a material from energy-

resolved attenuation coefficients.

• Paper B:

Doniyor Jumanazarov, Jakeoung Koo, Jan Kehres, Henning. F. Poulsen, Ulrik

L. Olsen and Mihai Iovea. Material classification from sparse spectral X-ray

CT using vectorial total variation based on L infinity norm. Submitted for

publication.

This work presents the joint reconstruction with L∞ norm based vectorial total

variation regularization (L∞-VTV). This is implemented to handle artifacts due to

using few projections and low signal-to-noise ratios in each energy bin. It uses the

correlations between different energy bins and simultaneously reconstructs the multi-

channel images instead of reconstructing each energy bin separately. This is tested

against another state-of-the-art joint, Total Nuclear Variation (TNV) and bin-by-bin

reconstructions using the experimental data.

• Paper C:

Doniyor Jumanazarov, Jakeoung Koo, Henning. F. Poulsen, Ulrik L. Olsen

and Mihai Iovea. The significance of the spectral correction of photon counting

detector response in material classification from spectral x-ray CT, Proc. SPIE

11771, Quantum Optics and Photon Counting 2021, 117710J (18 April 2021);

doi: 10.1117/12.2589290.

This paper explores how the correction of detector’s spectral response is important

in material classification. This is because detector effects such as charge sharing and

2



1.2. Thesis Overview

pulse pile up effects result in the spectral distortions of the spectra measured by photon

counting detectors.

• Paper D:

Doniyor Jumanazarov, Jakeoung Koo, Henning. F. Poulsen, Ulrik L. Olsen

and Mihai Iovea. Method for system-independent material classification through

basis material decomposition from spectral X-ray CT. Submitted for publication.

In this work, we present a classification method based on a basis material

decomposition (BMD). The distorted spectra caused by photon counting detector

artifacts are corrected, and effective atomic number of a material is estimated from

spectral CT.

3



Background 2
2.1 Conventional X-ray computed tomography

The conventional 2D transmission radiography technique is currently used for security

screening in airports. They produce good 2D x-ray images of the luggage. With CT

systems, the classification of illegal objects is performed through shape recognition and

the physical features of materials. However, this technique has the main limitation [2, 3]

that it cannot differentiate between a thin layer of highly attenuating material (high-

Z) and a thick layer of low attenuating material (low-Z). This is called the effect of

superimposition that can mask the presence of potential threats such as explosives and

illicit materials. More specifically, a low attenuating explosive like a plastic explosive

could be hidden behind strong absorber that appears highly dark in the image. As a

result, single energy X-ray computed tomography (CT) scanners were introduced to

resolve this problem. These scanners generate single energy images that approximate

the density values of scanned object.

CT setup is composed of an X-ray source, a detector and a sample holder. 2D cross-

sectional images of the sample are reconstructed from the data collected by irradiating

the sample from various angles, for which we use the term of projection. X-ray beam is

projected through the sample on to the detector surface. A stack of 2D images creates

a 3D image of the sample, giving detailed images of the internal structures. The ability

of CT system to capture information from the third spatial dimension and to estimate

material property solve the problem of occlusion in 2D radiography scanning. This

provides better performance in automatically discovering explosives in the luggage.

CT projections are performed during the synchronous rotation of the X-ray source and

detector around the static sample. The sample itself is sometime rotated while the

source and detector are fixed in laboratory-based setups. Conventional CT has been

widely used as a non-destructive testing and evaluation technique in security, medical

and many industrial applications.

X-rays are generated by an X-ray tube, composed of a cathode and an anode in

vacuum [4]. The cathode is heated up to generate free electrons due to the thermionic

effect. The electrical field created by a high voltage potential between the cathode

4



2.1. Conventional X-ray computed tomography

and anode accelerate electrons that hit a metal target at the anode. The most of

input energy by incoming electrons are converted into heat inside the x-ray tube, and

a very small part of the energy is converted into X-ray photons. The source radiation

spectrum, called the Bremsstrahlung, consists of polychromatic beam with a wide

energy spectrum. The energy interval of the X-ray spectrum is usually controlled

by changing the maximum acceleration voltage that defines the peak energy of the

spectrum and is represented in the unit of kVp. Metal filters can also be mounted in

front of the source to control it. The number of photon counts or the intensity of the

produced spectrum, is regulated by the anode current.

A broad range of X-ray detectors are available, some detectors measure only overall

beam flux or count rate, while others count individual photons [5]. Collimators are

often placed in front of the detectors to decrease the amount of incident scattered

photons.

2.1.1 The principles of X-ray attenuation

CT systems reconstruct a voxelized image of the distribution of the linear attenuation

coefficients (LAC) within an object, denoted by µ. X-ray attenuation occurs when

photons penetrate the object, some photons are scattered, while some are absorbed due

to interaction with the matter particles. Within the photon energy range used in CT

(approximately from 20 keV to 160 keV), the interaction between X-rays and matter

is dominated by photoelectric absorption at low energies and Compton scattering at

high energies. Each interaction is independent, and the total LAC is the sum of the

contributions of these interactions to the attenuation, which change with material and

energy.

Fig. 2.1 illustrates the main mechanisms of X-ray and matter interactions.

Photoelectric absorption is the process in which incident photon kicks out an electron

from a lower shell of an atom to free state. Therefore, the photon is absorbed giving its

energy to the orbital electron. The only condition for the absorption is that the photon

should have more energy than the binding energy of the bound electron. The kinetic

energy of the kicked electron is locally transferred to the lattice in the form of heat.

The position abandoned by the electron is filled by other electrons from outer shells or,

in the event of solids, by electrons from the band. Due to this recombination process,

characteristic X-ray fluorescence lines may appear in the spectrum. If the radiation

energy of the characteristic X-ray fluorescence is sufficient to kick out another electron

in the more far shells from the nucleus, and the new free electron that left the atom

is called an Auger electron. Auger electrons have same kinetic energies. This physical

phenomenon is usually called radiation-free transition or internal conversion.

Compton (incoherent) scattering is the process in which X-ray photon collides

with the weakly bound outer shell electrons (valence or quasi-free electron) or free

electrons, and is deflected from incident beam. As a result, the wavelength of the

scattered photon increases while its energy decreases. The Compton electron removed

5



2. Background

from the atom is called a secondary electron. Both the scattered photon and Compton

electron may have sufficient energy to go through next ionizing interactions.

Coherent or Rayleigh scattering is a phenomenon in which the scattering nucleus

re-emits a beam when it is excited by the incoming radiation, and the emitted beam

points in different direction than the incident beam. This is an elastic scattering

without energy transfer in which the incoming and the scattered beam have the same

wavelength. It occurs when the scattering nucleus is small in relation to the wavelength

of the incoming beam. The Coherent scattering contribution is relatively small within

the CT energy region, and it is often ignored in the total LAC.

Figure 2.1: Schematic illustration of X-ray interactions with matter. a) Some
X-rays do not interact with matter and pass through. b) In photoelectric
absorption mechanism an incident photon deposits its full energy to a binding
electron of an atom, which is kicked out from its shell. The resulting hole is
occupied by an outer shell electron which leads to X-ray emission called X-ray
fluorescence. c) Rayleigh scattering is interaction with electron that occurs
without energy transfer, and only deflects the trajectory of the incident beam.
d) In incoherent Compton scattering an incident photon gives a part of its
energy to an unbound electron that leaves the atom, and is deflected with the
reduced energy.

Fig. 2.2 presents the contributions of different interactions to the total attenuation

between 30 keV and 140 keV, exemplified for water and aluminum. The Compton

component does not almost change with energy, whereas the photoelectric component

varies strongly. Thus, the photoelectric and Compton components dominate the

attenuation mechanism in the energy range related to medical and baggage CT systems.

Bragg and Peirce (1914) [7], Owen (1919) [8] and Richtmyer and Warburton (1923)

6



2.1. Conventional X-ray computed tomography
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Figure 2.2: LAC at different photon energies with the components of
photoelectric absorption, Compton scattering and coherent scattering, for
water and aluminum. The data is obtained from NIST database [6]. Note
the logarithmic scale in the y−axis.

[9] proposed the hypothesis of how photon interactions depend on atomic number (Z)

of matter, which has been applied in many radiation studies [10].

2.1.2 The Beer Lambert law

This scattering and absorption processes are quantified through the LAC. The quantity

of photons transmitted through the matter without interaction depends on the photon

energy, and density, atomic number and thickness of matter. To derive LAC we assume

that X-ray is propagating along the path s from the source to the detector, and after

passing a very small distance ds through a material, the small decrease in photon flux

I(y) is defined as

dI = −µ(s)I(s)ds.

By integrating from initial photon flux I0 to final transmitted photon flux I along the

whole thickness of the material, d, as

∫ I

I0

dI

I(s)
= −

∫ d

0

µ(s)ds,

thus we obtain the Beer Lambert law that defines the transmitted photon flux for

energy E as

I(E) = I0(E) exp

(

−

∫ d

0

µ(s, E)ds

)

. (2.1)

The initial photon flux I0 is defined with the flat-field measurement, i.e. the projection

measured by the detector without a sample, also referred as the source spectrum or

the system’s spectral response.

7



2. Background

2.1.3 The limitations of conventional single energy CT

Conventional CT suffers from three main limitations. First, commercially available CT

scanners are equipped with energy-integrating detectors that capture only the overall

beam flux rather than single photons. Therefore, the transmitted signal is integrated

over all energy range, and they ignore the energy dependence of LAC described in

Eq.2.1. Thus, the energy spectrum information is lost at the detectors during the

signal integration. As a result, conventional CT reconstruction appears with the so-

called beam-hardening artifacts. This is due to the fact that the LAC usually decreases

as the X-ray energy increases, and the low energy photons are more absorbed, and

the beam becomes sharper in high energy photons as it passes through the sample.

Placing a thin sheet of metal (e.g. aluminum or copper) filter in front of the source

can reduce the beam-hardening artifacts by decreasing the energy spectrum width, as

the filter absorbs more low energy photons. However, the filtering reduces the beam

flux, resulting in higher noise levels. The beam-hardening effect affects reconstruction

quality and leads to the appearance of cupping artifacts and a loss of image contrast.

Second, conventional CT reconstructs the averaged LAC of an object at single energy

over a broad energy spectrum. This means that some materials that are different

can have the same averaged LAC for single energy due to overlapping over the wide

energy range, and it results in poor material specificity. Finally and more importantly,

this technique measuring LAC at just single energy cannot determine the chemical

composition of materials. The measured LAC is an energy-dependent feature of a

material, and thereby dependent on the scanner specifics such as the source spectrum

or filters. This makes the technique system-dependent. These limitations result in

higher false alarm rates linked to threat detection, which require additional labor

resources to carefully check the luggage. Therefore, there is a need to decrease the

false alarm rate for these systems in order to decrease the labor expenses.

2.2 Dual-energy CT

To overcome the disadvantages of conventional CT in material separation, many

studies have been done to estimate energy-independent material features, using Dual-

energy CT. Dual-energy CT scanners measure two various spectra used to extract the

material’s LAC at low- and high- mean energies that are overlapping. The data is

acquired as consecutive scans with different source accelerating voltages and filters in

order to have the different energy peak of spectrum, or as a single scan with dual-energy

sandwich detectors [11].

Dual-energy CT is able to quantitatively characterize materials via electron density

ρe, and effective atomic number Zeff of scanned objects, based on the measurement

of the energy dependence of the attenuation. Classification of materials into two

parameters significantly improves detection ability. For example, water and the

explosive ANFO (Ammonium Nitrate and fuel oil) can possess indistinguishable

8



2.2. Dual-energy CT

densities, however, they have very different effective atomic numbers [12]. Therefore,

a dual energy CT scanner can better separate water and ANFO. It has been proved

that dual-energy radiography systems that measure both atomic number and density

can also reach a lower false alarm rate for threat detection compared to systems

that measure only density [13–15]. Therefore, dual-energy CT is currently the state-

of-the-art technique for the material characterization in security applications, and

radiotherapy and medical diagnosis [12, 16–30]. The estimation of ρe and Zeff has

increased the contrast of soft human tissues even though they have overlapping

attenuation properties [23, 31, 32].

2.2.1 Dual basis function decomposition

The LAC can be generally represented as a linear combination of multiple basis

functions (i.e. as multiple dimensions of attenuation vector space) as [33, 34]

µ(Ek) = a1f1(Ek) + a2f2(Ek) + ...+ aNfN(Ek), (2.2)

where ai denote the corresponding material-dependent coefficients, fi(Ek) are energy-

dependent basis functions, and i = 2, 3, ..., N , k = 2, 3, ..., K, with N and K being the

total number of basis functions and energy bins, respectively. The coefficients ai are

evaluated and usually employed as the material properties. The basis functions can

just represent a mathematical formulation without a physical meaning, or represent

physical models, such as the Photoelectric absorption and Compton scattering, or

LACs of multiple basis materials [35]. Alvarez (1982) [33] studied the dimensionality

of the LAC vector space in the above general decomposition model, using the Singular

Value Decomposition (SVD) theorem, a mathematical tool from matrix algebra [36].

For diagnostic applications with dual-energy CT, they found that the decomposition

into two dimensions (i.e. into two basis functions) can be sufficient to accurately

approximate LACs. Moreover, they showed that the LACs of materials with K-

edge absorption such as iodine contrast agent can be properly fitted with three basis

functions. The K-edge is a sudden increase in the LAC taking place at an incident

photon energy larger than the binding energy of the atomic K-shell electron. This

physical effect is used in medical CT to separate contrast agents from body tissues and

other materials [37].

Several alternatives for the basis functions have been proposed however, the dual

basis function decomposition proposed by Alvarez and Macovski [1] that can accurately

represent the LAC was the innovative approach towards the development of dual-energy

CT. Using materials without K-edges within the CT energy range of 30−200 keV, they

accurately decomposed the LAC into a dual set of basis functions, defined by

µ(E) = a1f1(E) + a2f2(E), (2.3)

where a1 and a2 are the material-dependent coefficients, f1(E) and f2(E) are the

energy-dependent basis functions which approximate the photoelectric absorption and

9



2. Background

Compton scattering components, respectively. f1(E) is defined as f1(E) = 1/E3.

f2(E) is also called the Klein-Nishina function, defined by

f2(ε) =
1 + ε

ε2

(

2
1 + ε

1 + 2ε
−

ln(1 + 2ε)

ε

)

+
ln(1 + 2ε)

2ε
−

1 + 3ε

(1 + 2ε)2
, (2.4)

and ε = E/511 keV (ε = E/mec
2) denotes the reduced energy of the incoming photon.

For the materials with the K-edge discontinuity in the LACs, the energy range below

the K-edge should be truncated in order to be able to use the dual basis function

decomposition.

The quantities of a1 and a2 coefficients are defined based on how photons interact

with matter. Alvarez et al. [1] showed empirically that the coefficients, a1 and a2
can be approximately determined through mass density (ρ), atomic number (Z) and

atomic mass (A) of an element as

a1 ≈ K1

ρ

A
Zn, a2 ≈ K2

ρ

A
Z (2.5)

where K1 and K2 are constants, and n is the exponent for photoelectric absorption

component in the attenuation decomposition (per atom). Inserting a1 and a2 from

Eq. 2.5 in Eq. 2.3 we obtain the LAC decomposed into material- and energy-dependent

components as

µ(E) =
Z

A
ρ
(

Zn−1p(E) + c(E)
)

, (2.6)

where

p(E) = K1

1

E3
, c(E) = K2fKN(E). (2.7)

In this work, we define p(E) and c(E) as photoelectric absorption and Compton

scattering basis functions, respectively. The basis functions are empirically found from

experimental fit to data.

2.2.2 Electron density and effective atomic number

X-ray attenuation is proportional to an electron density of a material [38]. The electron

density represents the number of electrons per unit volume (electron−mole/cm3) and

is correlated with mass density (ρ), atomic number (Z) and atomic mass (A) of an

element as follows:

ρe =
Z

A(Z)
ρ, (2.8)
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2.2. Dual-energy CT

For a compound that is composed of N total different elements i each with a number

of atoms, αi, the electron density can be defined as

ρe =

∑N

i=1
αiZi

∑N

i=1
αiAi

ρ, (2.9)

where Ai and Zi denote atomic mass and atomic number for each element, i,

respectively. For compounds, the atomic number is described with effective atomic

number, Zeff , which is correlated with the atomic numbers of the elements in the

compound and with their corresponding proportions. A now classical parameterization

for Zeff was presented by Mayneord (1937) [39] and Spiers (1946) [40] as

Zeff = l

√

√

√

√

N
∑

i=1

riZ l
i , (2.10)

where N is the number of elements that compose a compound, Zi designates the atomic

number for each element, i, and ri is the relative electron fraction of an element, i,

which is computed as

ri =
αiZi

∑N

j=1
αjZj

,

where αi is the number of atoms that possess atomic number Zi.

No single definition of Zeff can accurately describe the variation of Rayleigh

scattering and photoelectric absorption cross sections in the attenuation coefficients

over the set of materials and energy range of medical and baggage CT scanning

(approximately between 10 keV and 150 keV) [10, 40–47]. In this energy range

the Compton interaction occurs with relatively unbound electrons. Consequently,

the Compton scattering cross section is independent of the chemical composition

of materials being scanned, and only related to X-ray energy [41]. Therefore, the

exponent l is optimized based on the material, source spectrum and system features.

In the literature, this parameter, l typically varies between 2.94 and 3.8 depending

on experimental fits for different CT scanners. Even though Eq. 2.10 disregards the

Rayleigh scattering contribution, the Lehnmann parameterization defines Zeff quite

well because the total cross section is mostly dominated by photoelectric absorption

and Compton scattering for the set of our materials and detector’s energy range [44, 47].

Therefore, in the Paper A in the appendix the exponent value of l = 3.8 being from

the original Lehnmann parameterization is used for calculating the reference Zeff values

of materials [48]. However, when the dependence of the classification performance on

exponent l was estimated based on the relative deviations, we found that the optimal

range of l was between 7.2 and 10.5, and l = 8.0 gave the minimum relative deviation

[48]. Nevertheless, in the Paper A we kept the value of l = 3.8 to preserve consistence

with the previously published works. In the Paper B, C and D presented in the

appendix, we employed the value of l = 8.0 being optimal with the set of our materials,

source spectrum and detector response.
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Inserting Eq. 2.9 in Eq. 2.6 we obtain a decomposed LAC for a compound as

µ(E) = ρe
(

Zn−1

eff
p(E) + c(E)

)

. (2.11)

2.2.3 The limitations of dual-energy CT

The dual-energy CT has two main limitations. First, they usually employ dual

sandwiched energy integrating detectors consisting of two layers of scintillator-

photodiode, separated by a metal filter. The low- and high-energy spectrums of X-ray

beam absorbed by the first and second layers, respectively, are overlapping which leads

to poor energy separation. Second, the dual-energy CT extracts only two mean LACs

averaged over wide low- and high-energy spectrums, and this limits its potential for

further improving classification performance. Moreover, material classification with

dual-energy detectors may be system-dependent, i.e. being dependent on the system

components such as source spectrum, materials for filtration, and detector efficiency

[49]. Recently, Azevedo et al. [50] presented the System-Independent ρe/Zeff (SIRZ)

method that estimates (ρe, Zeff) from dual-energy CT, independent of the instrument.

For Zeff values between 6 and 20, and energies up to 200 keV, the SIRZ showed that

the accuracy and precision error were lower than 3% and 2% for estimating ρe and Zeff ,

respectively. Champley et al. [51] have developed the method further (SIRZ-2). These

methods require the calibration of the detector’s spectral response by employing a set

of reference materials. The assumptions in these methods leads to some limitations.

For example, it cannot estimate materials with K-edge discontinuities in the LAC, and

the correction of the beam-hardening effect being dependent on the source spectrum

and detector’s spectral response remains a challenge.

2.3 Spectral CT

The development of cadmium telluride (CdTe) photon-counting detectors (PCD) has

established the foundation for Spectral CT [52, 53]. This technique is also called

as multi-energy X-ray CT in the literature. PCDs can separate the energy of the

incident photons and simultaneously capture a band of energy-dependent material

features by employing certain thresholds to gather and digitize the photon counts.

PCDs have shown a great potential to improve diagnostic and radiation therapy

imaging [54, 55]. Compared to dual-energy CT, spectral CT with single acquisition

can extract energy-discriminated LACs at multiple energy bins and is proved to

significantly enhance material separation [56]. Therefore, spectral CT has attracted

significant interest within the security [57–59] and medical applications [60–65]. X-

ray radiography research in explosive detection showed that PCDs outperform dual-

layer sandwich detectors with relatively poorer energy discrimination in improving

classification performance [66–69].

Busi et al. [70] have implemented the principle of the SIRZ method in Spectral CT

and presented the Spectral ρe/Zeff Estimation (SRZE) method, which measures system-
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2.4. Statement of problem for the thesis

independent material features (ρe, Zeff) directly from the spectral LACs. The SRZE

method reaches the optimal classification performance at 64 energy bins, and relies on

the accurate extraction of spectral LAC curves. The estimation accuracy decreases for

low Zeff materials because of detector response artifacts at lower energies, where the

contrast of these materials is also greatest. Brambilla et al. [58] proposed a method

for material classification from spectral CT based on basis material decomposition,

which defines a material’s LAC as a linear combination of basis materials’ LACs

with corresponding equivalent thicknesses. This method requires a calibration step

to capture the detector’s spectral response for a set of basis materials with different

thicknesses, and only estimates Zeff . The calibration step makes the method system-

dependent because of the dependence on the source spectrum, filtration and detector’s

response. The concepts of basis material decomposition of LACs were presented in

Refs. [44, 71, 72].

2.4 Statement of problem for the thesis

Airport scanners are constructed based on trade-offs between data processing speed,

reconstruction quality and computer cost. They usually use channel-by-channel

iterative reconstruction algorithms with sufficient number of projections. As of today,

modern multi-energy scanners mostly have sources and detectors placed on a rotating

disk denoted by Gantry [73]. Scanners constructed with a fixed detector have the

superiority of being mechanically stable, and can have a longer detector’s exposure

time. Therefore, they can support a larger signal-to-noise ratio (SNR) during capturing

the projections than a scanner with a rotating disk. However, separate sources and

detectors for each projection are usually required for a fixed gantry setup. Using

several photon counting detectors means the relatively high cost than conventional

single or dual-energy detectors. Therefore, employing the lowest possible number of

detectors is highly desired, which means a very limited number of projections for

the image reconstruction. The advanced reconstruction algorithms should be used to

overcome reconstruction artifacts caused by using few projections, and achieve good

material recognition. Moreover, using few numbers of projections gives the reduced

computation time for reconstructions, which increases throughput. Fig. 2.3 illustrates

such a multi-energy scanner with fixed detectors and sources, built in the 3D Imaging

Center at Technical University of Denmark. Detector records are received by an image

reconstruction computer and are converted into slice images that go to a computer

for the image analysis. The luggage bag moves on a conveyor belt of the system that

moves continuously and is synchronized with the ability of the data acquisition. After

the luggage is reconstructed and classified, the luggage is segmented into individual

objects and labelled for potential threats and non-threats, as illustrated in Fig. 2.4.

An alarm situation is automatically triggered if any suspicious regions in the luggage

are found, and then the luggage needs to be reviewed by human operator.

I list the following problems that can be addressed in this thesis. First, for a
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fixed gantry setup there is a need for decreasing the necessary number of projections

in order to reach lower cost of detectors and higher throughput of scanned objects.

This is because a faster boarding time for passengers should be achieved while they

can leave their laptops, electronics and liquids in their luggage.

Second, the state-of-the-art (SRZE) classification method in Spectral CT requires

a large number of energy bins for the optimal classification [70]. Because the required

image reconstruction is time costly, it is a disadvantage if all energy bins from the

detector should be reconstructed separately. To overcome this, we can consider how to

develop a new classification method that can achieve the best performance with reduced

number of energy bins. In spectral CT, we have a possibility of rebinning energy bins

into bi-energy bins which are non-overlapping and can be widely separated. Therefore,

we can investigate the chance of improving classification by optimizing the thresholds

of the bi-energy bins in the energy spectrum.

Third, while photon counting detectors are better than traditional energy

integrating detectors, they require correction of detector’s spectral distortions that

can limit the resulting classification accuracy. Therefore, we should analyze how the

correction algorithm is important in classifications.

Fourth, spectral CT suffers from reduced SNR due to increased number of energy

bins resolved by the energy sensitive detector. We should minimize this inherent issue

of reconstruction artifacts by incorporating additional information consisting of the

correlations between multi energy data, using a new joint reconstruction algorithm.

Fifth, the multi-energy scanners have a disadvantage that they use small detectors

to have good spatial resolution of the image, i.e. the minimum size of features that can

be resolved by the image analysis system. For a given source-to-detector distance and

a given source power, a reduced detector size results in reduced detector SNR and thus

introduces more noise to the signal due to lower photon statistics. A loss in SNR can be

restored by employing a more powerful source. Raising the source current increases the

photon emission rate, and thereby the captured signal, which can in turn compensate

the loss. However, this comes at a cost with the following disadvantages; extra power

expenses of the source, decreased source lifetime, and extra power expenses for cooling

increased heat. Therefore, we should develop a new reconstruction algorithm to address

the last two problems, which can be achieved by capturing additional information in

spectral dimension.

2.5 Thesis objectives

Based on the problems laid out above, the main objectives of the thesis can be

summarized as follows:

• Study how the different steps of the overall data-processing workflow impact the

final material classification and how to improve the classification performance.
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Figure 2.3: Illustration of a multi-energy scanner with fixed detectors and
sources for explosive detection, constructed in the 3D Imaging Center at
Technical University of Denmark.

The examples can be the correction step for spectral distortion in the multi-

energy detector and the reconstruction step.

• Develop a new method(s) for material classification based on spectral CT which

can accurately retrieve material properties without a-prior knowledge on the

complex sample. Explore how to reduce and optimize the number of multiple

energy bins for the best performance.

• Develop an image reconstruction algorithm(s) that can handle reconstruction

artifacts caused by using few CT projections and low SNR in each energy bin,

exploiting additional information in the spectral dimension.

The above strategies have set the scope of this thesis. The thesis is not just a

summary of the results of experiments, but new image reconstruction algorithms and

classification methods based on applied mathematics are introduced and optimized,

and their performances are tested using real experimental datasets.
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(a) (b)

Figure 2.4: 3D image reconstructions of the luggage scanned with the multi-
energy scanner illustrated in Fig. 2.3. The reconstructions are segmented into
individual objects for explosive detection.
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Data acquisition and data

pre-processing step 3
This chapter introduces data acquisition and data pre-processing steps before image

reconstruction. Image reconstruction is performed for energy bins between low- and

high-energy thresholds in the source spectrum, which are set to exclude bins with

photon starvation and spectral distortion existent even after correction of detector

response for spectral distortions.

3.1 Overview of the overall workflow

Fig. 3.1 introduces the overall workflow of the overall chain from data acquisition

to material classification into system-independent material features, developed in this

thesis.

3.2 Experimental setup and materials

All the experiments reported in this research work were conducted in the 3D Imaging

Center at DTU, Denmark. Spectral X-ray acquisitions were performed using the

custom-built experimental setup illustrated in Fig. 3.2. The X-ray beam was generated

by an X-ray tube equipped with a tungsten anode, a micro focused Hamamatsu source,

placed on a vertically translating motor. The operating parameters of the source

like the acceleration tube voltage and the anode filament current were set to 150

kV and 0.5 mA, respectively. The focal spot is 75 µm. The sample rotation stage

and also the detector can move along the three orthogonal directions. The incident

beam was collimated to a fan beam by using a JJ X-Ray IB-C80-AIR slit equipped

with 5-mm-thick tungsten carbide blades, placed in front of the source. The frontal

collimator also has a function in decreasing the background radiation of scattered and

fluorescent photons by keeping the beam size to a minimum and irradiating mainly the

full detector area. The instrumentation also incorporates a tungsten slit placed in front

of the detector to remove the background radiation and environmental noise. A 2-mm-

thick aluminum filter was attached to the collimator to remove photons with energies
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Figure 3.1: Illustration of the overall workflow of the individual data
processing steps. (1) Data acquisition step described in the Section 3.2. (2)
Spectral correction of detector’s spectral response applied to all projections,
for which the correction algorithm is presented in the Section 3.4. The spectral
distortions and photon starvation in X-ray spectra at the lower and higher
energy bins still result in a distortion of the measured LACs, and cannot
be corrected by the correction algorithm. These energy bins are excluded
by setting low- and high-energy thresholds for further data processing, as
described in the Section 3.5. (3) Energy channels rebinning applied to all
projections, which is introduced in the Section 3.6. (4) The projection data
or sinograms, generated for all energy bins. This step is described in the
subsection 4.1.1. (5) Multi-energy image reconstruction step, described in the
Section 4.2. (6) Technique for extraction of the energy-dependent LAC values,
exemplified for water. How the LACs are extracted from the histogram based
on Gaussian curve fits for each energy bin is described in the Section 3.5. (7)
The energy-dependent LACs of the materials in the reconstruction sample.
Note logarithmic scale in the y-axis. (8) Material classification step based on
electron density (ρe) and effective atomic number (Zeff) map, for which the
methods are described in Chapter 5.
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below the detector’s energy region from the source spectrum. A sample is placed on a

holder which can be rotated to angles in the full range of 0−360 degrees, as illustrated

in Fig. 3.2. The samples placed on the rotation stage are scanned between discrete

rotations over a range of 360 degrees at certain increments. The amount of increments

depend on the number of projections required for estimations of image reconstruction

and material classification performances. The source to detector distance was 701 mm

while the source to sample distance was set to 500 mm.

Fig. 3.3 shows picture of the experimental setup. Figures 3.4, 3.5 and 3.6 display

the pictures of three different samples placed on a sample holder. The pictures in

each figure are taken from the different angles by a camera. The pictures also show

MultiX ME-100 v2 detector behind the phantoms, which is used for spectral CT data

acquisitions as described in Section 3.3.

Tab. 3.1 lists all the materials scanned and processed through the reconstruction

algorithms and the classification methods developed in this thesis. The material

dimensions are presented through width×length and diameter for rectangular and

circular samples, respectively. The materials corresponding to the indices 1−7 were

scanned by placing them in groups in two different samples. The reconstructed images

of both samples are shown in Figs. 3.7a and 3.7b. The materials corresponding to the

indices 8−13, all being scanned in groups in one sample, were taken from the authors

of Ref. [70] for estimations in this thesis. The reconstructed image of this sample is

presented in Fig. 3.7c. The materials corresponding to the indices 14−35 were scanned

individually. The reconstructed images of some of these materials such as acetone 2,

water and aluminum are shown in Fig. 3.8, as an example.

Figure 3.2: The illustration of the instrumental setup. SDD and SOD denote
the distance between the X-ray source and the detector, and the X-ray source
and the sample stage, respectively. The figure is adapted from the Paper B in
the appendix section.

19



3. Data acquisition and data pre-processing step

Figure 3.3: Picture of the experimental setup for spectral CT measurements.

Figure 3.4: Pictures of the sample including seven different plastics, taken
from the different angles. The image reconstruction of this sample is shown in
Fig. 3.7b.
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Table 3.1: The list of the materials used for classifications and their respective
reference ρe and Zeff values computed with Eq. 2.9 and Eq. 2.10, respectively.
The size is represented through width×length for rectangular samples or
diameter for circular samples. The unit of electron density is e−mol/cm3.
The mass densities, ρ for the plastics corresponding to the indices 1−7 were
estimated with uncertainties of ± 0.15%. The rest of mass density values are
taken from PubChem database [74].

Index Material
Chemical

Formula

Size

(mm)
ρ (g/cm3) ρe Zeff

1 PC (CO3 C13 H8)n 8.2×53.5 1.18 0.610 6.82
2 PMMA (C5 O2 H8)n 40×42 1.18 0.636 7.02
3 PET (C10 H8 O4)n 9×53.5 1.39 0.721 7.09
4 POM-C (CH2 O)n 9×53.5 1.41 0.753 7.40
5 POM-H (CH2 O)n 15.5×53.3 1.43 0.763 7.40
6 PVDF (C2 H2 F2)n 9×53.5 1.79 0.896 8.40
7 PTFE (C2 F4)n 9×53.3 2.16 1.035 8.70
8 Graphite C 12.7 1.8 0.899 6
9 POM (CH2 O)n 12.7 1.42 0.757 7.40
10 Water 3 H2O 12.7 0.997 0.554 7.78
11 PTFE 2 (C2 F4)n 12.7 2.2 1.056 8.70
12 Magnesium Mg 12.7 1.74 0.859 12
13 Silicon 2 Si 12.7 2.33 1.161 14
14 N,N-Dimethylhydrazine C2H8N2 67 0.791 0.447 6.44
15 Ethylenediamine C2H8N2 67 0.90 0.509 6.44
16 2-Butanone C4H8O 83 0.805 0.447 6.76
17 Acetone C3H6O 20 0.785 0.432 6.90
18 Acetone 2 C3H6O 54 0.785 0.432 6.90
19 Nitrobenzene C6H5NO2 49 1.20 0.624 7.00
20 Methanol CH3OH 20 0.792 0.446 7.29
21 Methanol 2 CH3OH 81 0.792 0.446 7.29
22 Ethanol 96% C2H6O (96%) 67×67 0.798 0.450 7.06
23 Ethanol 40% C2H6O (40%) 67×67 0.947 0.532 7.63
24 Hydrazine solution H4N2 (35%) 54 1.0 0.561 7.43
25 Nitromethane CH3NO2 20 1.14 0.597 7.50
26 Water H2O 20 0.997 0.554 7.78
27 Water 2 H2O 51×51 0.997 0.554 7.78
28 Nitric acid HNO3 (65%) 83 1.39 0.714 7.80
29 Hyd. Peroxide H2O2 (50 %) 20 1.22 0.661 7.83
30 Hyd. Peroxide 2 H2O2 (50%) 73×74 1.22 0.661 7.83
31 Magnesium 2 Mg 18 1.74 0.859 12
32 Aluminum Al 25 2.70 1.3 13
33 Aluminum 2 Al 25 2.70 1.3 13
34 Aluminum 3 Al 20×20 2.70 1.3 13
35 Silicon Si 25 2.33 1.161 14
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Figure 3.5: Pictures of the sample including five different plastics and the
different liquids in two bottles, taken from the different angles.

Figure 3.6: Pictures of the sample including five different plastics, taken
from the different angles. The image reconstruction of this sample is shown in
Fig. 3.7a.

3.3 Photon counting detectors

The development of energy separating, photon counting detectors (PCD) inspired the

emergence of spectral CT. These detectors are usually made of semiconductor materials

with higher dense and atomic number like CZT (CdZnTe), CdTe and GaAs, for which

the photoelectric absorption is higher in photon and matter interactions. This type of

semiconductor based detectors have higher rate of photon absorption than silicon based

detectors for energies up to 160 keV, and therefore have better efficiency. However,

high Z elements in the semiconductor sensor tend to have K-edges within detector’s

energy region, and may result in fluorescence noise signal for K-edge energies. This

may lower the detector’s performance at lower energies, where the contrast in the

attenuation among organics is maximal.

The detector adopted for the experiments in this study is MultiX ME-100 v2

manufactured by Detection Technology S.A.S. in Moirans, France. We employ five
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Figure 3.7: Samples scanned in groups and processed through the
classification methods proposed in this thesis. The polypropylene (PP) material
in the sample (b) is mixed with chemical colorants, which results in a higher
Zeff value compared to the pure PP, and therefore this material is excluded in
classifications. 2D reconstructions were performed with the SIRT [75] from 360
projections at the energy of 61.9 keV. The gray scale bars denote the LACs
with the unit of cm−1.

daisy-chained detector modules. Single module has a 1 × 128 linear array pixels of

size 0.8× 0.8 mm2, and operates with 128 energy bins, each with 1.1 keV width evenly

allocated within 20 and 160 keV. The energy resolution of the detector operating

under X-ray fluxes up to 7 Mphotons/s for single pixel is 6.5% (8 keV at 122 keV)

[53]. The detector is composed of a 3-mm-thick CdTe sensor. A collective cathode

made of a continuous metal film collects incident photons. The each sensor has small

128 pixelated anodes (pixels) placed on readout electronics, with a pitch of 800 µm

between anodes. A single MultiX detector is composed an array of 4 sensor crystals

each with 32 pixels. The detector pixels between crystal edges are linearly interpolated

to avoid the ring artifacts in reconstructions. The detector can work with integration

time per projection from 2 ms to 100 ms (in 10 µs increments). The lower integration
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Figure 3.8: Samples scanned individually and processed through the
classification methods proposed in this thesis, shown for acetone 2, water and
aluminum as an example. 2D reconstructions were performed with the SIRT
from 360 projections at the energy of 61.9 keV. The gray scale bars represent
the LACs with the unit of cm−1.

time, the lower photon counts or the higher noise levels in each energy channel. The

total exposure time of the detector’s radiation per projection is specified in each Paper

in the appendix section, varying between 2 ms and 8 seconds.

Based on Eq. 2.1, we can write the transmitted photon flux for energy bin Ek,

captured by the detector, as follows

I(~x,Ek) = I0(~x,Ek) exp

(

−

∫ d

0

µ(s, Ek)ds

)

, k = 1, 2, 3, ..., K; (3.1)

where ~x represent the 1D linear detector pixel array, K is the total number of energy

bins of the detector, and I0 is the initial photon flux I0 measured without the sample.

3.4 Correction of detector’s spectral response

PCDs suffer from severe distortions of the detector’s spectral response due to

interactions between the photons and CdTe sensor crystal that leads to an error in

energy detection and to activation of the neighboring pixels. Fig. 3.9 illustrates the

spectral distortions in PCDs with the main photon interactions.

These interactions are energy and flux dependent, and lower the detector’s energy

resolution and distort the extracted spectral LACs. X-ray photon absorbed nearby a

pixel boundary produces electron charge cloud which may be divided between adjacent

detector pixels. This leads to that the high-energy photon is incorrectly detected as

two photons with lower energies, and this physical phenomenon is known as charge

sharing.

Detector sensor layers Cd and Te have K-edges at 26.7 keV and 31.8 keV,

respectively. Incident photons with an energy E larger than the K-shell binding

energies can kick out K-electrons of CdTe crystal. The free K-shells are immediately

refilled that causes emission of the fluorescence K-shell photons with energy Efl, and
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3.4. Correction of detector’s spectral response

Figure 3.9: Schematic illustration of detector effects in the semiconductor
sensor layer, which lead to spectral distortions in PCDs. The incoming X-ray
photons absorbed in the sensor layer generate electron-hole pairs. Electrons
move towards the readout electronics due to a strong electric field between
cathode and pixelated anodes. a) All the electrons are ideally collected at single
anode. b) The electrons can be collected at two neighboring anodes, especially
if they travel towards the edge of the anode. This phenomenon is called
charge sharing. c) X-ray fluorescence that is a part of energy of the incoming
photons produces subsequent electrons that are collected in two neighboring
anodes. This phenomenon is called escape peaks. d) The incoming photons
experience a scattering phenomenon and are deflected producing electron-hole
pairs. As a result, the electrons are collected in the neighboring anode. The
incoherent scattering is more severe with the higher probability and energy
loss. e) The detector sometimes cannot discriminate two incident photons that
come very close in space and time. As a result, two photons are detected as
one photon with increased signal strength, leading to a decrease in count rate.
This phenomenon is known as pulse pile-up. Figure motivated by the works of
Ehn [76], Busi [59] and Flohr et al. [77].
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3. Data acquisition and data pre-processing step

sometime re-absorption. Consequently, the incident photons may be recorded at an

energy E−Efl in the adjacent pixel (K-escape), and the consequent peak in the energy

spectrum is therefore named K-escape (fluorescence) peak. Thus, high-energy photons

are again registered at lower energies resulting in a decrease in energy separation and

also spatial resolution.

Charge sharing and K-escape occur nearby the pixel boundary. Increasing pixel

size can decrease the contribution of these phenomena to the total detector response,

and thereby improve energy separation. However, this also increases the photon flux

causing overlapping of signals of two photons and being counted as one photon with

higher energy. This effect is called pulse pile-up, which leads to non-linear counting rate

and thereafter detector saturation [77]. The deposition of this interaction to the overall

detector response can be decreased with designing smaller detector pixels, but, this in

turn may increase charge sharing and K-escape contributions. Therefore, one should

consider a trade-off between the pixel size and the contribution of these interactions

when producing a PCD.

Charge carriers recorded by the collecting pixel can generate a signal in the

neighbouring pixel, and this phenomenon is called weighting potential (WP) cross

talk, which results in growth of the source spectrum at energies below 30 keV [78].

PCDs are also subject to another interactions like electronic noise [79] and Compton

scattering of the incident photons within the crystal layer. They have noticeably lower

contributions to the total signal than other interactions.

Non-uniformly distributed defects or impurities of crystal lattice may trap some of

charge carriers [80], this effect is named incomplete charge collection (ICC). The ICC

gives rise to the spectrum at energies above 60 keV [81]. The electrons and holes flow

at drift velocities ve = µeEe and vh = µhEe into the cathode and pixelated anodes,

respectively. Ee is the external electric field, and µe and µh represent the electron and

hole drift mobilities, respectively. The holes with 80 cm2/V have significantly smaller

drift mobility compared to electrons that have 1000 cm2/V [82]. Therefore, the slow

holes are more severely trapped than electrons. Designing significantly smaller size of

pixelated anodes than the crystal thickness can reduce the hole trapping and thereby

the contribution of hole transport to the overall pulse. Therefore, this can reduce ICC

[83]. Moreover, positive charges are accumulated due to the trapped holes that causes

nonlinear oscillation of the external electric field over time and distortion of the charge

collection rate. This phenomenon is called polarization which may eventually result in

ICC [80, 84]. Polarization can create ring artifacts in image reconstruction at higher

photon fluxes [77], and may rapidly reduce signal pulses above a certain high flux [85].

Charge sharing, WP cross talk, X-ray fluorescence (escape peaks), Compton

scattering and electronic noise are the flux-independent interactions, for which the raw

data is first corrected by the correction algorithm using an inverse detector response

matrix MC of size N ×N , where N is the number of energy bins. The matrix IC for
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3.4. Correction of detector’s spectral response

corrected data is defined per pixel as [78]

IC = MCIR, (3.2)

where matrix IR of size N ×J represent the raw data, and J is the number of detector

pixels. The inverse detector response matrix is separated into the individual detector

response matrices as follows [78]

MC = DWPDEDC, (3.3)

where DWP, DE and DC denote the individual detector response matrices for WP

cross talk, Compton scattering and electronic noise, and charge sharing interactions,

respectively. The distortion at low energies due to WP cross talk is firstly calculated

for correction, while the charge sharing is finally corrected.

A Monte Carlo simulation is used to compute the total detector response matrix

for each pixel’s response to X-ray irradiation, being dependent on the incident photon

energy and location of the energy deposition. This location is related to depth in the

sensor based on the probability distribution function, which is defined by the reference

LACs and taken from NIST database [6]. In the simulation, the escape peaks are firstly

calculated with assumption that the fluorescence photons move in random direction

and are absorbed at definite distance. DWP, DE and DC detector response matrices

are then determined individually based on 2-D histograms of actual and recorded

photon energy. To compute charge sharing contribution, the excited electron cloud

is considered as it is shared between two neighboring pixels based on a 1-D normal

distribution that has the alignment with the detector array. The excited charge cloud

can generate current in the neighboring pixels, and the contribution of WP cross talk

is proportional to the quantity of current. The correction algorithm employs a model

proposed in Ref. [86] to compute WP cross talk, in which the detector is viewed as the

detector surfaces consisting of two infinite aligned sheets. The approach of reflected

dipole layers (i.e. mirror charges) is used in the model using the assumption that WP

cross talk consists of an infinite sum of the WP elementary functions for each reflected

dipole layer which is uniformly placed based on the depth of the crystal layer.

The corrections mentioned above are followed by the correction for flux dependent

interactions such as the pulse pileup and incomplete charge collection. The model

developed by Plagnard [87] is used to rectify the pile-up effect. The pile-up by photon

with energy En on other total energies Ex of the raw data (measured spectrum) IR(E)

contributes to the corresponding pile-up spectrum IP(Enx), which can be described for

all the x values as follows [78, 87]

Enx = En + Ex, (3.4)

IP(Enx) =
IR(En)

IR(E)max

CP IR(Ex), (3.5)

where CP denotes a coefficient determining pile-up probability. The model uses the

assumption that two photons with energies En and Ex in the raw data are captured
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3. Data acquisition and data pre-processing step

as one photon with energy Enx in the pile-up spectrum. Dreier et al. [78] employs

an automatic fitting technique to find CP coefficient through the LACs of aluminum.

The corrected spectrum IC(En) for the energy bin n is obtained by subtraction of the

pile-up spectrum from the raw data, and adding
∑

x IP(Enx) (integrated over the whole

x range) to the result as follows [78]

IC(E) = IR(E)− IP(E), (3.6)

IC(En) = IC(En) +
∑

x

IP(Enx). (3.7)

The same modelling is used for each increment of n from the initial to final values to

retrieve the entire corrected spectrum. To correct these data distortions in the PCD

we employ the correction algorithm developed by Dreier et al. [78], in which more

details on the correction algorithm can be found. Fig. 3.10 presents an example of

water’s source spectrum before (raw) and after (corrected) applying spectral correction

algorithm.
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Figure 3.10: The raw and spectral corrected X-ray source spectra of water
sample. The spectrum is corrected for spectral distortions in the PCD, using
the correction algorithm. The number of counts per second is integrated over
all detector pixels, captured by the MultiX ME100 PCD. The figure is adapted
from the Paper A in the appendix section.

3.5 LAC extraction and setting low- and

high-energy thresholds

Fig. 3.11 shows spectral LACs of water, obtained with the raw and corrected data,

which are compared to the reference LACs. The correction algorithm significantly
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corrects the LAC at the low energies, but cannot completely correct the distortions at

lower and higher energies. This may be because of detector flux variation and photon

starvation, i.e. complete attenuation of the radiation by the material, and pulse pile-

up interaction at low and high energies [78]. Energy bins in which the LACs largely

deviate from the expectation even after applying the correction algorithm are excluded

in the later data processing by setting low- and high-energy thresholds, El and Eh that

remain the same for all experimental samples.
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Figure 3.11: Energy resolved LACs calculated from the raw and corrected
data, exemplified for water sample. The reference LACs are obtained from
NIST database [6]. The vertical dash-dotted lines represent the low- and high-
energy thresholds, El and Eh. The figure is adapted from the Paper D in the
appendix section.

Fig. 3.12 shows how the mean LAC value of a segment in image reconstruction

is extracted from the attenuation value histogram based on the normal distribution

fitting, exemplified for water at the energy of 33.2 keV. A region of interest (ROI) in

the reconstructed sample discretized into a certain number of image cells is manually

segmented. This technique of the mean LAC extraction is used for all materials and

energy bins.

3.6 Energy channels rebinning

After each projection data is corrected for the spectral distortions using the correction

algorithm, the data is rebinned by merging photon counts between low- and high-

energy thresholds. Spectral channelization, i.e. energy channels rebinning in spectral

CT datasets plays an important role in achieving good accuracy in image reconstruction

quality and material classification. The rebinning is performed to reduce the amount of
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Figure 3.12: The LAC histogram of water shown with a Gaussian peak
fit, obtained with the corrected data. The image cell counts indicate the
number of cells within a region of interest (ROI) in the sample reconstruction,
each having the respective LACs presented on the x-axis. The histogram
corresponds to the X-ray energy of 33.2 keV. The reconstruction was performed
with the simultaneous iterative reconstruction technique (SIRT) [75] from 360
projections. The figure is adapted from the Paper A in the appendix.

data and to accelerate the data processing. Hiring more energy bins results in longer

computation time for individual reconstructions and thus for material classification.

Furthermore, energy bins each with shorter width contain less photon counts, and

thereby may increase noise artifacts because of low photon statistics and decrease

the contrast to noise ratio [88]. On the other hand, the higher numbers of energy bins

provide more spectral correlated information that can be useful for joint reconstruction

algorithms, and therefore for classification methods. Spectral CT thus has a trade-off

between using more energy bins and decreasing noise level. Therefore, we optimize the

number of energy bins for a better classification performance in this thesis.

Dual-energy CT captures two various signals in the attenuation spectrum and can

estimate both material features of electron density ρe, and effective atomic number

Zeff . However, the dual-energy detectors as illustrated in Fig. 3.13a possess overlapping

low- and high-energy spectrums, and therefore the dual-energy CT systems have the

limitation of poor energy separation. Dual-energy CT is done by a pair acquisitions

using energy integrating detector, which captures two various source spectra based

on different acceleration voltages or different filters in front of the source. Dual-

energy CT is also performed by a simultaneous acquisition using dual-energy sandwich

detector composed of two layers of scintillator-photodiode, which captures a single

source spectrum. Fig. 3.13b and Fig. 3.13c illustrate the principles of the novel system-
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independent materials classification methods based on spectral CT, which are presented

in this thesis. To differ 2 energy bins from common overlapping dual-energies in dual-

energy CT, we call them bi-energy bins in the remainder of the thesis. Non-overlapping

bi-energy bins separated by a gap are optimized for the best classification performance

in the Paper A in the appendix. This gap is illustrated with u and l boundaries in

Fig. 3.13c. The optimization procedure is done by moving the gap from the lowest to

the highest energy region of the source spectrum. Wang et al. [89, 90] showed that

inserting a gap between low and high energy thresholds in energy discriminating PCDs

improves material separability. Photons within this gap should either be excluded or

counted independently to increase the separability accuracy. Therefore, the energy

region corresponding to this gap was disregarded in the bi-energy bins approach in our

work. In the Paper A, we also estimate classification performance with 6, 15, 30, 45

and 90 energy bins, which are uniformly distributed with same width between low-

and high-energy thresholds.

There are a number of strategies of defining the width of rebinned energy bins.

Based on simulation data acquired by a PCD with several energy bins, Wang et al.

[91] investigated how to set the energy bin widths for obtaining optimal basis material

decomposition. They tested five different strategies of energy bin rebinning to set

energy bin thresholds for each; bins of equal width, bins of equal incoming photon

counts, bins of equal incoming photon intensity, bins of equal photon counts and bins

of equal photon intensity after transmitting through 3 cm of polymethyl methacrylate

(PMMA). They demonstrated that employing energy bins with equal incoming photon

counts gives the best performance in assessing the thickness of the two basis materials

such as aluminum and PMMA.

Fig. 3.14 presents photon counts with respect to the energy values assigned to bi-,

15 and 90 energy bins for flat field spectra. The gap between low- and high-energies of

bi-energy bins in which photon counts are discarded is important to avoid overlapping

and achieve the improved classification performance. We uniformly allocate 15 and 90

energy bins with equal width within the detector’s energy region. Usually, the energy

thresholds can be manually set for most of the PCDs that have a large number of

energy bins. In this work, using MultiX-ME100 PCD we acquire the data with the

largest number of energy bins, and then merge them into fewer bins. Merging counts

for all multiple energy bins approaches is performed by summing the incident photon

counts IEc detected in energy channels Ec as follows

IE
′

k =
C
∑

c=1

IEc , k = 1, 2, ..., K, (3.8)

where C is the total number of energy channels that are rebinned between the two

corresponding neighboring thresholds, K is the number of rebinned energy bins. We

assign energy values to the new energy bins by taking the weighted mean between the
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(a) (b) (c)

Figure 3.13: Illustration of the dual-energy CT, and spectral CT with 15
and bi-energy bins. (a) In dual-energy X-ray CT, the sample attenuation is
extracted at overlapping low- and high energies with two various spectra, which
results in a decrease in the classification performance [67, 69]. (b) In spectral X-
ray CT, the sample attenuation is extracted at multiple energy bins with PCDs
through a simultaneous data acquisition. (c) In the bi-energy bins approach
to spectral X-ray CT, the sample attenuation is extracted at non-overlapping
low- and high-energies with PCDs through a simultaneous acquisition. How the
upper (u) and lower (l) thresholds of low- and high-energies separated by the
gap is set is presented in each Paper in the appendix. The figures are adapted
from the Paper A in the appendix section.

two corresponding neighboring thresholds as

E
′

k =

∑C

c=1
IEc

0
Ec

∑C

c=1
IEc

0

, k = 1, 2, ..., K, (3.9)

where E
′

k is the new assigned energy value, and IEc

0
represents the flat-field

measurement (i.e. the projection data without the sample being placed) corresponding

to the energy value Ec. In our work, we do not employ the energy values in Eq. 3.9

assigned to the new energy bins for estimating classification performance, instead

we use the calibration steps to register the energy-dependent components in the

decomposed LACs. This allows us not to rely on how the energy values are accurately

assigned to the rebinned energy bins, especially in cases of bi-energy bins with relatively

wider energy width.
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Figure 3.14: Photon counts in the flat field spectra for bi-, 15 and 90 energy
bins approaches. The vertical black dash-dotted lines highlight the gap between
low- and high-energies of bi-energy bins. In this work, the energy region falling
into this gap is discarded in bi-energy bins approach for a better classification
performance. u and l denote the upper and lower thresholds of low- and high-
energies of bi-energy bins, respectively. The low and high boundaries of the
gap are specified in each Paper in the appendix section. Note logarithmic scale
on the y-axis. The figure is adapted from the Paper A in the appendix section.
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Joint reconstruction 4
This chapter describes the fundamentals of tomographic reconstruction, and the con-

cepts of channel-by-channel and joint reconstruction algorithms, whose contributions

to improving material classification performance and the robustness to noisy conditions

are tested against each other in this thesis.

4.1 Fundamentals of tomographic reconstruction

4.1.1 Projection data

If we divide both sides of Eq. 2.1, i.e. the Beer Lambert law for multi-energy bins, by

I0 and take the negative logarithm of the quantity, we obtain the projection integral

or line integral of µ(x, y) at projection angle, θ from the measurements as

p(r, θ) = − ln

(

I(r, θ)

I0

)

=

∫ d

0

µ(x, y)ds, (4.1)

where r describes the axis parallel to detector, referred to scanning position, d

is thickness of the sample along the ray at scanning position r. Tomographic

measurement for 2D parallel beam is illustrated in Fig. 4.1. The collection of line

integrals over all projection angles θ is the Radon transform of µ(x, y). The Radon

transform is also called the projection data or sinogram.

Radon transform maps µ to p as the integral of µ along the scanning position

r, which can be defined as r = x cos θ + y sin θ. Here, x and y represent the spatial

coordinates centered at the rotating axis.

In practice the data are collected as a discrete sampling of the continuous model,

for which schematic is shown in Fig. 4.2. The projection data are represented as a vector

p ∈ R
I , where I is the total number of rays for all projection angles, i.e. the number

of detector pixels times the number of projection angles. Consider a cross section of

the sample discretized into J image cells, for which the reconstruction unknowns are

described as a vector µ ∈ R
J . We can model the projection data pi for each ray i as
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4.1. Fundamentals of tomographic reconstruction

Figure 4.1: Schematic of tomographic measurements or the Radon transform
in 2D. An X-ray beam travels in a path defined by scanning position r and
rotation angle θ. The measurement at the detector is described with the line
integral p(r, θ) of µ(x, y) along r, which is referred to the projection data.

the weighted sum of the cell values µj along the ray, which is determined as

pi =
J
∑

j=1

aijµj, (4.2)

where i = 1, 2, . . . I, and j = 1, 2, . . . J , and aij is the weight that describes how jth
cell contributes to the ith measurement. For linear projection model, the weight can

be set as the line segment length of the cell j intersected with the ray i, as illustrated

in Fig. 4.2.

Expressing all projections as column vector

p = (p1, p2, . . . , pI)
T, (4.3)

and also expressing the LACs that are to be reconstructed as a column vector

µ = (µ1, µ2, . . . , µJ)
T, (4.4)

the weightings can thus be written as an I × J matrix

A =











a11 a12 . . . a1J
a21 · a2J
... ·

...

aI1 aIJ











, (4.5)
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such that we can construct the full set of equations for all the ray integrals in a

vectorized form as

p = Aµ, (4.6)

where A ∈ R
I×J represents a system matrix with elements aij, and p is a vector

denoting the projection data. The multiplication Aµ is known as the forward projection

of µ. The aim of tomographic reconstruction is to compute the unknown LACs µ from

the projection data p.

Figure 4.2: Illustration of the 2D discrete linear projection model. µj

denotes LAC corresponding to cell j, and pi represents the measurement data
corresponding to the ith ray. The contribution of µj to pi is described by aijµj ,
where aij can be defined by the line segment length bounded by the intersection
of the ray i and the pixel j (indicated in bold). The ray travels through the
shaded cells where the weights are positive. Thus, the projection for the ith
ray can be calculated by a weighted sum of cell values.

An example of a sinogram and the respective image reconstruction is presented in

Fig. 4.3.

4.1.2 Conventional channel-by-channel reconstructions

One type of reconstruction algorithms rely on inverting the Radon transform Eq. 4.1 to

analytically express µ(x, y), which is called the analytical reconstruction algorithms. A
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Figure 4.3: Sinogram (a) and the corresponding image reconstruction (b).
2D reconstruction was done with the SIRT from 360 projections at the energy
of 61.9 keV. The gray scale bars denote the LACs with the unit of cm−1. The
figure (b) is adapted from the Paper D in the appendix section.

common analytical reconstruction algorithm is filtered backprojection (FBP) [92]. The

advantage of the FBP algorithm is that it is computationally efficient and the fastest

option, because it is only composed of a convolution operation and an integration

operation. Another reason is the simplicity of the reconstruction approach, with fewer

parameters to adjust. However, the analytical algorithms rely on the assumption

that an infinite number of projections is available. When only a limited number

of projections or noisy projections are measured, the reconstructed image will have

different artifacts. Another type of reconstruction algorithm is named algebraic

(or iterative) reconstruction, which relies on inverting the discrete model Eq. 4.6.

Compared to the analytical algorithms, algebraic algorithms tend to handle better

for cases where limited projection data such as few or noisy projections are available.

This is because the algebraic reconstruction problem is discrete in nature being not

based on the assumption of an infinite number of projections available. The unknown

µ is often calculated by iteratively minimizing the data fidelity term D(Aµ,p) that

converges to the desired reconstruction as

µ
∗ = argmin

µ≥0

D(Aµ,p). (4.7)

The data fidelity term equals the square of reprojection error that is l2 norm of the

difference between the acquired p and the reprojected data Aµ

D(Aµ,p) = ‖Aµ− p‖2
2
. (4.8)

Algebraic reconstruction technique (ART) [93] and simultaneous iterative reconstruc-

tion technique (SIRT) [75] can be used to solve the minimization problem of Eq. 4.7.

More details on the fundamentals of conventional analytical and iterative

reconstruction algorithms may be found in the books [94–96].
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4.2 The state-of-the-art joint reconstruction

4.2.1 State-of-the-art literature review

Many investigations were carried out in improving the reconstruction results either

in CT Systems or image processing domain. The total-variation (TV) regularization

presented by Rudin, Osher, and Fatemi [97] has been widely employed to effectively

suppress noise in different image processing tasks. TV appeared to preserve sharp

discontinuities in the edge locations by encouraging sparse gradients of the images.

Different TV regularization methods have been applied to CT reconstructions from

few projections and limited angles [98, 99]. For CT systems, Sidky et al. (2006)

[100] applied a TV algorithm to the reconstruction from few projections and limited

angles, and presented that the TV can perform reconstructions more accurately than

the conventional reconstruction algorithms from such sparse data.

Blomgren and Chan (1998) [101] first proposed vectorial total variation (VTV)

for image processing tasks, which extends the conventional scalar TV to a multi-

dimensional frame. VTV considers dependency both in the spatial (image cell) and

spectral (energy or color) dimensions. The energy or color channel coupling can

be formulated in several forms. For color image denoising problems, Holt (2014)

[102] introduced channel coupling based on Total Nuclear Variation (TNV), which

employs the nuclear norm defined as the sum of singular values of the Jacobian matrix

[103]. Holt presented that TNV results in encouraging the image gradients along

color channels dimension to be parallel at common edge positions, and found that the

restoration of color images with TNV norm is more efficient than other VTV norms.

Thus, TNV takes advantage of multi-channel images that share structural similarity

between different channels. Based on synthesized simulation data in Spectral CT,

Rigie et al. (2015) [104] implemented TNV in restoring tissue density maps, and

found that TNV removes the edge blurring more efficiently than channel-by-channel

TV regularization. They found that TNV is more robust to undesired noise transfer

over energy channels, each with various noise levels.

Using experimental data, Rigie et al. (2017) [105] applied VTV regularizations

such as the nuclear norm and the Frobenius norm, and TV norm to dual-energy

CT. They showed that the TNV norm suppresses noise more efficiently than

the other norms. Zhong et al. [106] joined two different imaging modalities

to obtain improved tomographic reconstruction based on TNV norm, when the

number of tilt angles is limited, and noise levels are high. These modalities

were energy-dispersive X-ray spectroscopy (EDS), and high angle annular dark field

scanning transmission microscopy (HAADF-STEM), which give multiple element-

specific reconstructions and single-channel reconstruction with mixed properties of

chemical elements, respectively. Compared to the SIRT and TV reconstruction, the

TNV exhibited noticeably more enhancement in the element-specific reconstruction

from EDS data by promoting the images to possess similar structure information with
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the HAADF-STEM reconstruction.

Miyata et al. [107] proposed using a L∞ norm for estimating the most differing

color channels along the particular direction such that the maximum gradients are

summed based on l1 norm over all the directions and over all the cell locations for

minimization problem. For color image denoising tasks, they showed that the L∞-

VTV norm can effectively penalize the detected outliers in the sense of gradient

magnitudes, which are likely to be an artifact or a noise. Therefore, L∞ norm can

lead to strong coupling between color channels. For image denoising problems, Duran

et al. [108] investigated the different VTV methods, which extend the conventional TV

to multi-channel images. They applied different collaborative norms to a 3D matrix

of the discrete gradients of the multi-channel images, whose dimensions correspond

to the color channels, the spatial gradients in x and y-directions, and the image cells.

They showed that the regularizations based on L∞-VTV and TNV norms remove color

artifacts more strongly than the other VTV norms, and the effectiveness of particular

norm depends on the experimental data collected from particular imaging modality.

Spectral CT can be considered as CT with multiple ”color” channels, which we refer

to as energy bins. For practical applications, with spectral CT we should consider two

challenges. Firstly, rapid scanning requires few projections that may lead to reduced

reconstruction quality and thereby to reduced classification performance. Secondly,

spectral CT hires many energy bins each with reduced photon counts that decrease

signal to noise ratio (SNR) in each bin. To address these challenges we aim to use the

joint reconstruction algorithms with different VTV regularizations such as L∞norm-

based VTV and TNV. L∞- VTV is implemented and explored in spectral CT for

the first time to our knowledge. To increase SNRs we consider energy bin rebinning

described in the Section3.6.

The joint reconstruction algorithms introduced in this work can be straightfor-

wardly implemented in three-dimensional (3D) spectral CT imaging, which can be

a valuable quantitative instrument for studying complex relations between the mi-

crostructure and features of materials in materials science [109, 110]. Therefore, the

enhancement of material’s (ρe, Zeff) estimation based on better image reconstruction

can be valuable for exploring the complex microstructure of materials. The reconstruc-

tion algorithms developed can be adopted for the different spectral imaging modalities

such as visible light, electron or neutron tomography.

4.2.2 TNV joint reconstruction

Consider a sample discretized into J cells in a 2D volume space. In spectral CT,

we simultaneously measure the projection data for each energy bin, with the total

number of energy bins, denoted N . Thus, the input data consisting of all projection

data (N acquired sinograms) can be expressed as p1,p2, . . . ,pN ∈ R
I , where I is

the total number of rays for all projection angles, i.e. the number of detector pixels

times the number of projection angles. The reconstruction unknowns for the sample,
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i.e. the LACs, reconstructed from N energy-resolved sinograms are expressed as

µ
1,µ2, . . . ,µN ∈ R

J , where J is the number of cells per each image.

The acquired X-ray counts are proportional to the linear projection of the

reconstructed LACs for each image cell in each energy bin measurement. The

projection data pni for each ray i corresponding to each energy bin n can be modelled as

the weighted sum of the cell values µn
j along the ray, by the system of linear equations

as


























p1i =
∑J

j=1
a1ijµ

1

j

p2i =
∑J

j=1
a2ijµ

2

j

...

pNi =
∑J

j=1
aNijµ

N
j

, (4.9)

where i = 1, 2, . . . I, j = 1, 2, . . . J , and n = 1, 2, . . . N , and aij denotes the weight factor

that describes how jth cell contributes to the ith ray integral. For linear integral model,

the weight can be determined by the line segment length of the jth cell intersected

by the ith ray integral, as illustrated in Fig. 4.2. We assume that the weights are

similar for all energy bins because the sample is simultaneously scanned with a single

source spectrum in spectral CT measurement, a1ij = a2ij = ... = aNij . Each detector

pixel location i corresponding to a ray i is defined by the beam location (r) and the

projection angle (θ) of the sample, as illustrated in Fig. 4.1.

The full set of equations for all rays in each energy bin measurement can thus be

written in a vector form as

pn = Aµ
n, (4.10)

where pn = (pn
1
, pn

2
, . . . , pnI )

T and µ
n = (µn

1
, µn

2
, . . . , µn

J)
T are the constructed column

vectors of all projection data and all reconstruction unknowns corresponding to nth

energy bin. The matrix A ∈ R
I×J is referred to a system matrix with elements aij,

which are similar for each energy bin measurement, expressed as an I × J matrix in

Eq. 4.5.

In this thesis we concentrate on iterative reconstruction algorithms for their ability

of applying regularization. The iterative algorithm minimizes the reprojection error

(i.e. the difference between the synthesized and the measured projection data) for

each energy bin to solve the inverse problems, based on the squared l2 norm of the

reprojection error as



























µ
1∗ = argminµ1≥0

1

2
‖Aµ

1 − p1‖2
2

µ
2∗ = argminµ2≥0

1

2
‖Aµ

2 − p2‖2
2

...

µ
N∗ = argminµN≥0

1

2
‖Aµ

N − pN‖2
2

. (4.11)
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4.2. The state-of-the-art joint reconstruction

Here, we impose the non-negativity constraint on µ, as the LACs are expected to be

non-negative.

If the projection data are highly noisy or obtained from a limited number of

projection angles, adding a regularization term to the above data fidelity term can

improve reconstruction results, leading to a new minimization problem. TV-regularized

reconstruction is performed independently for each energy bin n = 1, 2, . . . N , by

solving the following minimization problem


























µ
1∗ = argminµ1≥0

λ
2
‖Aµ

1 − p1‖2
2
+RTV(µ

1)

µ
2∗ = argminµ2≥0

λ
2
‖Aµ

2 − p2‖2
2
+RTV(µ

2)
...

µ
N∗ = argminµN≥0

λ
2
‖Aµ

N − pN‖2
2
+RTV(µ

N)

, (4.12)

where λ is the weighting parameter between the data fidelity term and regularization

term, defining the strength of the regularization. The regularization term, TV(µn)

imposes a prior information on the solution like the smoothness on the reconstruction,

which can be defined as

RTV(µ
n) =

J
∑

j=1

‖∇(µn
j )‖, (4.13)

where

∇(µn
j ) =

(

∂µn
j

∂x
∂µn

j

∂y

)

, (4.14)

which discretely approximates the gradient for the jth cell corresponding to energy bin

n.
∂µn

j

∂x
and

∂µn
j

∂y
are the gradients in the horizontal and vertical directions, respectively,

computing the forward difference between cells. ‖ · ‖ is typically selected as l1-norm

or l2-norm. TV with l1-norm is called an anisotropic variant of TV, which tends

preserve edges in horizontal and vertical directions, however the diagonal edges may

be blurred. In contrast, using l2-norm leads to an isotropic variant of TV, which is

rotationally invariant. In our work we consider l2-norm TV that is better suited for

our experimental dataset. This can be expressed as

RTV(µ
n) =

J
∑

j=1

√

(

∂µn
j

∂x

)2

+

(

∂µn
j

∂y

)2

. (4.15)

Thus, TV regularization does not take advantage of correlations between the images

from different energy bins.

Now, we describe extending the TV to a vectorial TV (VTV), which couples the

image gradients from different energy bins based on certain joint penalized model. The

VTV can provide a more robust regularization. One technique to employ the inter-

bin correlations of the image gradients is Total Nuclear Variation (TNV) [104, 108]
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4. Joint reconstruction

regularization that is common to all energy bins used. TNV couples the images from

the different energy bins based on the sum of nuclear norm of the Jacobian matrix over

all image cells

RTNV(µ
1,µ2, . . . ,µN) =

J
∑

j=1

∥

∥J(µ1,µ2, . . . ,µN)j
∥

∥

∗
, (4.16)

where J(µ1,µ2, . . . ,µN)j denotes the Jacobian matrix at image cell j, which is

composed of the gradient vectors of the different energy bins, defined as

J(µ1,µ2, . . . ,µN)j =















∂µ1

j

∂x

∂µ1

j

∂y
∂µ2

j

∂x

∂µ2

j

∂y
...

∂µN
j

∂x

∂µN
j

∂y















, (4.17)

and the nuclear norm ‖ · ‖∗ of the Jacobian matrix is determined by l1-norm (i.e. the

sum) of its singular values. For an image from single energy bin, the TNV transforms

into the isotropic TV.

The nuclear norm promotes sparsity in the singular values of the Jacobian

matrix [111, 112]. The gradient vectors of the different energy bins at common

(coinciding) edge locations are typically supposed to be parallel or anti-parallel. A

linear dependence between parallel or anti-parallel gradient orientations leads to rank

one of the Jacobian, and therefore to just one non-zero singular value [104]. In contrast,

the gradients with the different orientations result in all singular values being non-

zero. Thus, promoting sparsity in the singular values of the Jacobian is equivalent to

promoting gradient directions at common edges, during image reconstruction. Fig. 4.4

illustrates the concept of TNV for the images from three energy bins at certain image

cell.

To jointly regularize spectral CT reconstructions we thus minimize the data fidelity

terms of each energy bin together with a TNV regularization term as

µ
1∗,µ2∗, . . . ,µN∗ = arg min

µ1,µ2,...,µN≥0

λ

2
‖Aµ

1 − p1‖2
2
+

λ

2
‖Aµ

2 − p2‖2
2

+ · · · +
λ

2
‖Aµ

N − pN‖2
2
+RTNV(µ

1,µ2, . . . ,µN), (4.18)

where λ is the weighting parameter defining the strength of the TNV regularization.

4.2.3 L∞-VTV joint reconstruction

Considering inter channel dependency plays a significant role in obtaining effective

VTV regularization. On the other hand, we can assume that the attenuation values at

all the energy channels are likely to change simultaneously along particular direction at
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4.2. The state-of-the-art joint reconstruction

(a) (b)

Figure 4.4: Illustration of TNV. (a) The gradients of the images from three
energy bins at the particular image cell. (b) During image reconstruction,
TNV promotes the gradients of all the energy bins to share a common
orientation at common edge locations. Figures inspired by the works on TNV
in Refs. [104, 106].

a particular edge location. If this assumption is violated, this distinction likely results

from a noise or an artifact. Based on this assumption, we use L∞ norm to estimate

the maximum of gradients along the energy bins dimension at the same direction. The

L∞-VTV regularization term is defined as the sum (based on l1 norm) of the maximum

of gradients over all directions and all cell locations.

TNV approach forces the gradient vectors of all energy bins to be aligned parallel

to each other. However, in practice some outliers in the gradient magnitudes may

decrease the performance of TNV regularization. To overcome this drawback of TNV,

we propose to employ L∞-VTV joint regularization, which can be defined based on

collaborative norms [108] as

RL∞

VTV
(µ1,µ2, . . . ,µN) = ‖Dµ

1,Dµ
2, . . . ,Dµ

N‖∞,1,1, (4.19)

where D is a linear operator for the discrete gradient of the image such that

Dµ
n ∈ R

N×C×J forms a 3D matrix, with C being the number of spatial gradients.

Usually, C = 2 and it considers the gradients in x- and y-axis. We use the notation

of collaborative norm ‖ · ‖∞,1,1, being applied to the discrete gradient of the multi-

channel images. The collaborative norm consists of applying L∞(infinity) norm along

the energy bins (N) dimension, then l1-norm along the spatial gradients (C) dimension

of the remaining 2D matrix, and, eventually, l1-norm along the spatial cell locations

(J) dimension of the remaining vector [108]. (Dµ
n)n,c,j represents the gradient of the

image µ
n at the pixel j with respect to x- axis when c = 1 or y axis when c = 2,

with corresponding norms being applied along each dimension. Thus, L∞-VTV can be
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4. Joint reconstruction

expressed based on the maximum of gradients along energy bins dimension, which are

summed over image cells dimension as follows

RL∞

VTV
(µ1,µ2, . . . ,µN) =

J
∑

j=1

(

max
1≤n≤N

|
∂µn

j

∂x
|+ max

1≤n≤N
|
∂µn

j

∂y
|

)

. (4.20)

The L∞-VTV norm correlates the image gradients strongly along the energy bins

dimension, while disallowing some outliers in the gradient magnitudes. This property

for each reconstruction algorithm presented above is investigated in the Paper B in the

appendix.

We can thus write the minimization problem for L∞-VTV joint regularization,

consisting of the data fidelity terms of each energy bin and the regularization term, as

follows

µ
1∗,µ2∗, . . . ,µN∗ = arg min

µ1,µ2,...,µN≥0

λ

2
‖Aµ

1 − p1‖2
2
+

λ

2
‖Aµ

2 − p2‖2
2

+ · · · +
λ

2
‖Aµ

N − pN‖2
2
+RL∞

VTV
(µ1,µ2, . . . ,µN). (4.21)

The regularization is always a trade-off between improvement in image visibility and

edge blurring, which may lead to undesirable effects in the reconstruction. Therefore,

the value of weighting parameter λ should be attentively set such that we can have

an accurate reconstruction. A very small value may give an over-regularized image

with blurred edges, whereas a very large value may give poor regularization effects.

Smoothing with the optimal λ suppresses artifacts without significantly blurring a

sharp edge, preserving the details of a border of an area, and has the capability to

sharpen blurred edges caused by the limited number of projections and noise.

Fig. 4.5 illustrates the notion of L∞-VTV for the images from three energy bins

corresponding to a specific image cell.

In the Paper B in the appendix, we show that L∞-VTV outperforms TNV

of another state-of-the-art joint reconstruction, and TV of channel-by-channel

reconstruction for classification performance and noise suppression in spectral CT.

Therefore, we employ L∞-VTV in the Paper C and D in the appendix. Tab. 4.1

compares computation times of the different reconstruction algorithms. TV, TNV

and L∞-VTV algorithms are written in Julia, while FBP and SIRT are based on

MATLABTM R2018b. The image reconstructions have a size of 268×268 detector

pixels, and are performed from 12 projections. The number of energy bins equals 15.

A standard laptop equipped with an Intel i7-6600U quad-core CPUs at 2.60 GHz was

used for the reconstructions. Thus, the novel L∞-VTV algorithm requires 10.6% and

52.3% shorter computation time for image reconstruction than the classical TNV and

TV algorithms, respectively. SIRT and FBP are much faster, but they give significantly

lower reconstruction quality.
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4.2. The state-of-the-art joint reconstruction

(a) (b)

Figure 4.5: Illustration of L∞-VTV. (a) The gradients of the images from
three energy bins at the specific image cell. (b) During image reconstruction,
minimizing L∞-VTV gives preference to maximum of gradients among all the
energy bins at all image cells. This results in restriction of some outliers in the
gradient magnitudes, providing better suppression of reconstruction artifacts.

Table 4.1: Computation times of the different reconstruction algorithms.

Algorithm
Computation

time (seconds)

TV 105.92
TNV 76.92
L∞-VTV 69.54
FBP 0.25
SIRT 20.87
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Methods to material

classification 5
In this chapter, I present the mathematical descriptions of two material classification

methods developed with spectral CT techniques, both being based on a post-

reconstruction data processing. In this thesis, we adopted a channel-by-channel and

joint reconstruction algorithms. The system-independent material properties such as

electron density ρe and effective atomic number Zeff , being estimated are defined in

the subsection 2.2.2. Both methods rely on data pre-corrections which mainly consist

of correcting spectral distortions in the photon counting detector and setting low-

and high-energy thresholds in the measured spectrum (see the Sections 3.4 and 3.5,

respectively). For each method, the classification performance is explored with respect

to the number of energy bins re-sampled in the spectrum, and optimized.

5.1 SIMCAD classification method

This is a system-independent material classification through attenuation decomposition

(SIMCAD) method, which adopts the model of dual basis function decomposition

described in the subsection 2.2.1. It estimates ρe and Zeff using spectral CT

measurements.

5.1.1 Calibration step

Adopting the dual basis function decomposition shown in Eq. 2.11, we can write the

LACs of a reference material m for spectral CT with multiple energies Ek as follows

µm(Ek) = ρe,m
(

Zn−1

eff,mp(Ek) + c(Ek)
)

, (5.1)

where m = 1, 2, ...,M , k = 1, 2, ..., K with M and K being the number of reference

materials and energy bins used, respectively. p(Ek) and c(Ek) are photoelectric

absorption and Compton scattering basis functions, respectively. The basis functions

are the same for all samples being scanned.

We optimize the basis functions as well as the parameter n for improved estimation

of material properties, using a set of the reference materials. The presence of n in
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5.1. SIMCAD classification method

Eq. 5.1 leads to non-linear equations. Imposing positivity constraints on the solution,

we construct the objective function as

min
0≤p1,c1,...,pK ,cK , n

M
∑

m=1

K
∑

k=1

(

µm(Ek)− ρe,m(Z
n−1

eff,mpk + ck)
)2

, (5.2)

where pk = p(Ek) and ck = c(Ek). This problem is solved with a nonlinear least square

solver defined with trust region method [113]. MATLAB®’s lsqnonlin function was

employed for the minimization procedure based on initial constraints that we selected

as p0k = 0.5, c0k = 0.5 and n0 = 3.6 for all energy bins, k. We observed that the

calibration results did not depend on the initial values. n is optimized independently

for each approach using certain number of energy bins for classification.

5.1.2 Calculation of material features

We extract LACs µ(Ek) at all energy bins after scanning a unknown material, and

then compute (ρe, Zeff) through the calibration parameters, p(Ek), c(Ek) and n. For

M - and K- the total number of unknown materials and energy bins, respectively, we

can rewrite Eq. 5.1 in the form of a linear equations as







−→p −→c
. . .

−→p −→c





















z1
ρe,1
...

zM
ρe,M















=







−→µ 1

...
−→µ M






(5.3)

where zm denotes a temporary variable that equals ρe,mZ
n−1

eff
, and −→p =

(p1, ..., pK)
T , −→c = (c1, ..., cK)

T and −→µ m = (µm(E1), ..., µm(EK))
T . The size of the

linear matrix in the latter equation is (M × K)-by-(2 × M), and the number of

unknowns is equal to 2 ×M . Employing a linear least square solver of MATLAB®’s

lsqnonneg function with the positivity constraint on the solution, we obtain the vector

(z1, ρe,1, ..., zM , ρe,M) that minimizes the norm. The effective atomic numbers are then

calculated for all materials by

Zeff,m =

(

zm
ρe,m

) 1

n−1

. (5.4)

We use the percent relative deviation to estimate the method accuracy, determined by

∆Zrel

eff
= 100% ·

Zest

eff
− Zref

eff

Zref

eff

, (5.5)

∆ρrel
e

= 100% ·
ρest
e

− ρref
e

ρref
e

(5.6)

where superscripts est and ref designate the estimated and reference values,

respectively.
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5. Methods to material classification

5.2 BMD classification method

This is a basis material decomposition (BMD) method that estimates a material’s Zeff

value from energy-resolved LACs corrected for spectral distortions.

5.2.1 Basis material decomposition

The basis material decomposition model can alternatively decompose material’s

LACs into a linear combination of basis materials’ LACs with respective equivalent

thicknesses [44, 71, 72, 114]. We adopt this model for spectral CT with multiple

energies as follows

µ(Ek) = h1µ1(Ek) + h2µ2(Ek) + ...+ hNµN(Ek), (5.7)

where µi(Ek) (i = 2, 3, ..., N ; k = 2, 3, ..., K) and hi are LAC at energy bin Ek, and

the equivalent thickness of a basis material i, respectively. K and N denote the total

number of energy bins and basis materials, respectively. The number of energy bins

K should be larger than or equal to the number of basis materials N , otherwise the

latter equation will become under-determined.

Fig. 5.1a presents the LAC decomposition with basis materials based on the

experimental data from spectral CT, exemplified for water. To decompose we first

computed equivalent thicknesses hPE and hPVC (for the basis materials of PE and

PVC) through Eq. 5.10, and then approximated the LACs by linear combination of

PE and PVC using Eq. 5.7. Fig. 5.1b shows the accuracy of this decomposition as

percent relative deviation with regard to the reference (theoretical) LACs.
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Figure 5.1: Energy resolved LAC decomposition, exemplified for water. (a)
Basis material decomposition obtained with 15 energy bins. The reference
LACs of water, PE and PVC are taken from NIST database [6]. Note
logarithmic scale in the y-axis. (b) Percent relative deviations of the
decomposition in regard to the reference LACs at each energy bin. The figure
is adapted from the Paper D in the appendix.
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5.2. BMD classification method

The basis material decomposition model possesses superiority over the dual basis

function decomposition presented in Eq. 2.3, based on the fact that the LAC of a

material with a K-edge discontinuity can be correctly estimated by using a basis

material with a K-edge within the identical energy range [33].

Material classification performance definitely depends on how the LAC is

accurately decomposed, and thereby on the number of basis materials, i.e. the number

of dimensions of attenuation vector space. The required number of basis materials for

accurate decomposition is mostly related to the set of materials and the energy region

used. In the Paper D in the appendix, we estimate the classification performance as a

function of the number of basis materials, and we find that the decomposition with two

basis materials provides the optimal performance for our study. Additionally, the SVD

analysis in the Paper D also shows that the LACs of our materials can be approximated

through two basis functions in the general decomposition model shown in Eq. 2.2.

5.2.2 Curve fitting and calculation of the material feature

Brambilla et al. [58] presented that Zeff value of the estimated material can be related

to quantity of equivalent thickness of PVC basis material that possesses the highest Zeff

among all the basis materials used. Particularly, the measurements showed that Zeff of

estimated materials monotonically increases as the PVC fraction value, fPVC increases.

This relation can thus be fitted by a polynomial interpolation and extrapolation of

degree 3 as follows [58]

Zeff = c0 + c1 · fPVC + c2 · f
2

PVC
+ c3 · f

3

PVC
, (5.8)

where c represents a set of polynomial regression coefficients being determined. The

PVC fraction can be computed by [58]

fPVC =
hPVC

∑N

i=1
hi

, (5.9)

where N is the total number of basis materials, and hi denotes equivalent thickness of

basis material i, and i = 2, 3, ..., N .

Fig. 5.2 demonstrates the relation between Zeff and fPVC fraction, fitted by Eq. 5.8.

The different reference materials with the total number of 33 (listed in the Paper D)

were employed to interpolate or extrapolate missing observations in the plot. The

interpolated or extrapolated points refer to Zeff values of unknown materials. Note

that for estimations with the BMD method presented in the Paper D we employ only

the theoretical LACs from NIST database [6] for all the basis materials.

Brambilla et al. [58] relied on the calibration phase to extract the equivalent

thicknesses using maximum likelihood estimation. In this phase, they captured the

detector’s response for the basis materials, PE and PVC, with the different thicknesses

of layers that are superposed on each other. In contrast to their method, we correct the
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5. Methods to material classification
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Figure 5.2: The dependence of materials’ Zeff values on respective PVC
fraction values, fPVC defined in Eq. 5.9. fPVC values are found from Eq. 5.10
using a set of reference materials, while Zeff values in the missing data points
are interpolated or extrapolated with the polynomial fitting shown in Eq. 5.8.
Zeff values in the missing data points represent unknown materials. This plot
is generated by using two basis materials of PE and PVC, and reconstructing
the samples from 15 energy bins. The figure is adapted from the Paper D in
the appendix section.

spectral distortion with the correction algorithm explained in the Section 3.4, which

will lead to the significant deviations of LACs from the expected values without the

correction. The equivalent thicknesses hi are then retrieved using the following linear

system of equations, which can be expressed by reformulating 5.7 as

(−→µ 1 . . . −→µ N

)







h1

...

hN






=







µ(E1)
...

µ(EK)






(5.10)

where K designates the overall number of energy bins, −→µ i = (µi(E1), ..., µi(EK))
T , and

k = 2, 3, ..., K. µi(Ek) represents the LAC of the basis material i at energy bin Ek, and

µ(Ek) the extracted LACs of the scanned unknown material. The number of unknowns

in the above equation is equal to N , and the size of the linear matrix on the left hand

side is K-by-N . It is also noteworthy that in the Paper D we perform estimations

with at least two basis materials and two energy bins. Employing a linear least square

solver of lsqnonneg function in MATLAB®, we retrieve the vector (h1, ..., hN) that

minimizes the norm. The positivity constraint is imposed on the solution.

The PVC fraction value for the unknown material is calculated using the retrieved

(h1, ..., hN) equivalent thicknesses of the basis materials, and then we estimate its Zeff

feature using Eq. 5.8, as described in Fig. 5.2.

50



Results 6
In this chapter, I briefly introduce all the Papers in the appendix section and present

the main results. I leave the reader to find a more detailed description and more

results in the Papers. As a reminder, we use a real experimental dataset with ”real

life” phantoms, as presented in the Section 3.2.

6.1 Results of the Paper A

6.1.1 A brief introduction

In the Paper A entitled ”System-independent material classification through X-ray

attenuation decomposition from spectral X-ray CT”, we present a method for material

classifications for Spectral CT using photon counting detectors, named system-

independent material classification through attenuation decomposition (SIMCAD).

The method is based on the dual basis function decomposition and estimates ρe
and Zeff . The decomposition model, the calibration step and calculation of material

properties are described in the Section 5.1. The spectral distortions due to the detector

artifacts and and photon starvation at low- and high-energies result in a significant

distortion of the measured LACs, which is described in Section 3.4. Therefore, the

SIMCAD method employs a correction algorithm to correct the measured attenuation

curve. Low- and high-energy bins in which LAC deviations from the expected values

are still present even after correcting the detector response are truncated by setting

low- and high-energy thresholds. LAC extraction technique and setting low- and

high-energy thresholds were explained in the Section 3.5. In this work, the SIMCAD

method is tested against another Spectral CT classification method called the Spectral

ρe/ZeffEstimation (SRZE), proposed by Busi et al. [70]. The SRZE estimates system-

independent (ρe, Zeff) directly from the spectral LACs. The materials in the range of

6 ≤ Zeff ≤ 23 are estimated in this work.

51



6. Results

6.1.2 Main results

Classification performance as a function of the number of energy bins

used

How a source spectrum is sampled for the different number of energy bins is described

in the Section 3.6. Fig. 6.1 demonstrates the percent relative deviations for (ρe, Zeff)

as a function of energy bins employed. For Zeff , the mean deviation does not vary

noticeably being 3.3% at 90 energy bins, with an exception for 6 energy bins where

the deviation is equal to 7.2%. For ρe, the mean deviation goes up as the number of

energy bins used becomes higher reaching 4.2% at 90 energy bins. Using 15, 30, 45 and

90 energy bins does not improve classification performance compared to optimized bi-

energy bins, but rather worsens the performance. One reason may be that energy bin

widths for 15, 30, 45 and 90 energy bins, which are uniformly shared across the source

spectrum are under the detector’s energy resolution (8 keV), with widths of 6.6 keV,

3.3 keV, 2.2 keV and 1.1 keV, respectively; Secondly the detector noise increases as

the number of energy bins is larger. 15 energy bins approach gives better classification

performance relative to 30, 45 and 90 energy bins, and can be used instead of employing

a higher number of bins than 15.

The thresholds of non-overlapping bi-energy bins separated by a gap are optimized

for the best classification performance. In other words, the position of the gap

between non-overlapping bi-energy bins illustrated in Fig. 3.13c is optimized for the

best classification. Note that the threshold optimization is not performed for other

approaches with different energy bins used, which would make it challenging. Thus,

our SIMCAD method optimizes the selection of widths of non-overlapping low- and

high-energies, and appears to have the best classification performance with optimized

bi-energy bins.

Results from optimized bi-energy bins

Fig. 6.2 presents a (ρe, Zeff) chart of estimated and reference values, obtained with

optimized bi-energy bins. The relative deviations for all the estimated materials, for

which the estimated and reference ρe and Zeff values are shown in the map are listed

in Tab. 6.1. The table compares the best accuracy results obtained by the SIMCAD

and the SRZE, which use optimized bi- and 64 energy bins, respectively. The results

on the table are comparable. The SIMCAD method gives up to 32 times reduction in

computation time because of lower number of energy bins required, for which respective

images are reconstructed. Thus, the SIMCAD requires only two information channels

important for security applications where rapid scanning is required.
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Figure 6.1: The percent relative deviations for ρe (left) and Zeff (right) with
respect to the number of energy bins used for classifications. The plots show
that optimized bi-energy bins result in better classification performance. ∗The
mean deviation was calculated from absolute values of relative deviations for
each material used in the Paper A in the appendix section. The figures are
adapted from the Paper A.
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Figure 6.2: Electron density and effective atomic number (ρe, Zeff) map
highlighting estimated and reference values, obtained with optimized bi-energy
bins approach. Note that to avoid the overlap of the material labelled names,
an enlarged version of the lower left region of the left frame is shown in the
right frame. The figures are adapted from the Paper A.
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Table 6.1: The percent relative deviations for (ρe, Zeff) for all the materials
estimated. The SRZE uses 64 energy bins to reach these results taken
from [59, 70], whereas the SIMCAD utilizes just optimized bi-energy bins.
The reference ρe and Zeff values are calculated from Eq. 2.9 and Eq. 2.10,
respectively, and using the exponent value l = 3.8. The unit for ρe is
e−mol/cm3. ∗The mean values are calculated from absolute values of each
column. The table is taken from the Paper A.

Material ρref
e

SIMCAD

∆ρrel
e

(%)
SRZE

∆ρrel
e

(%)
Zref

eff

SIMCAD

∆Zrel

eff
(%)

SRZE

∆Zrel

eff
(%)

PMMA 0.636 −2.0 −2.3 6.60 5.1 −0.3
PTFE 1.039 −2.7 0.1 8.50 4.5 −2.5
PVDF 0.9 −0.8 −0.8 8.01 3.5 −1.4
PC 0.615 −1.6 1.4 6.48 2.0 −1.8
POM-C 0.758 −0.6 −1.4 7.07 3.6 −0.9
PET 0.726 −1.4 −3.1 6.74 1.1 −0.1
POM-H 0.766 −2.0 −2.4 7.07 5.5 −0.4
Acetone 0.432 1.6 −2.3 6.44 −1.0 5.0
H2O2 (50%) 0.661 2.4 −0.2 7.65 4.6 5.4
Methanol 0.446 1.1 1.4 6.86 5.6 −4.7
Water 0.554 0.5 −6.9 7.54 4.4 −2.7
Nitromethane 0.597 2.6 1.7 7.27 −2.3 2.5
Aluminum 1.3 0.9 −3.2 13 −2.5 0.7
Silicon 1.161 3.4 −5.5 14 −1.2 −0.7
Magnesium 0.858 0.03 −5.4 12 −2.4 0.8
Titanium 2.071 −0.3 −0.7 22 0.2 −1.2
∗Mean − 1.5 2.4 − 3.1 1.9

6.2 Results of the Paper B

6.2.1 A brief introduction

In this paper, we present a joint image reconstruction algorithm for Spectral CT. In

security screening material classification is found to benefit from spectrally resolved

attenuation but the performance may decrease due to the poor image reconstruction

quality caused by limited angle and few view projections, and an insufficient number

of photons. We aim to improve Spectral CT reconstruction by employing correlations

between multiple energy bins based on L∞ norm-based vectorial total variation (L∞-

VTV) regularization. To evaluate the joint reconstruction algorithm we use the

SIMCAD classification method as a figure of merit. The mathematical foundations

of the SIMCAD method were presented in the Section 5.1, and the main results of the

method are shown in the previous section 6.1. In this work, we show that our joint

reconstruction algorithm gives noticeably better reconstruction, and thereby better

material classification accuracy than other iterative algorithms. We compare L∞-VTV

against total nuclear variation (TNV) of another state-of-the-art joint reconstruction in
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spectral CT, and against bin-by-bin reconstructions such as the classic total variation

(TV) regularization and the non-regularized SIRT. Mathematical descriptions of the

novel L∞-VTV and TNV algorithm are provided in the Section 4.2.

To test the performance of the reconstruction algorithms we employ the correlation

coefficient r as another figure of merit, which indicates how the reconstructed image

value µ is linearly related to the ground-truth image value v, defined as

r =

∑

i(µi − µ̄)(vi − v̄)
√
∑

i(µi − µ̄)2
∑

i(vi − v̄)2
, (6.1)

where µ̄ and v̄ are the mean attenuation values of image cells, and µi and vi are the

ith cell attenuation values of µ and v, respectively. 2D ground truth images of the

sample at multiple energy bins is synthetically generated by assigning the respective

mean LAC to each energy bin for each material in the sample. The mean LAC for each

energy bin is extracted from the attenuation value histogram of a material’s region of

interest (ROI) based on the normal distribution, described in the Section 3.5. For the

attenuation extraction to generate ground truth images, the sample reconstructions

are performed with SIRT from 360 projections.

6.2.2 Main results

All the results of the Paper B presented below are obtained with the data rebinned

into 15 energy bins. This is because we find in the Paper A that 15 energy bins can

provide better classification performance than 30, 45 and 90 energy bins. We analyze

performance of TV, TNV and L∞-VTV for a set of weighting parameter λ, based

on the following figure-of-merits: correlation coefficient, L-curve, the dataset of which

certain energy bins possess very high noise levels, and the SIMCAD method.

Correlation coefficient when decreasing the number of projections

For each reconstruction algorithm, we performed reconstructions from 7, 12 and

36 projections using different weighting parameters λ and computed the correlation

coefficients with respect to the ground-truth images, which are plotted in Fig. 6.3b.

The sample shown in Fig. 6.3a was used to produce the correlation coefficients by

scanning it and reconstructing the images at 15 energy bins. For 36 projections,

in which the data quality is relatively better, the differences between the maximal

correlation coefficients of each algorithm are clearly smaller than the sparse-view cases

of 7 and 12 projections. For 7 and 12 projections, the maximal correlation coefficient

(at the optimal λ values) for the L∞-VTV is clearly larger than the coefficients for

TNV and TV reconstructions, which are in turn significantly larger compared to the

coefficient for SIRT reconstruction. The maximal correlation coefficient for the joint

TNV reconstruction is in turn larger than the coefficient for channel-by-channel TV

reconstruction. Thus, the L∞-VTV reconstruction outperforms the TNV, TV and
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SIRT algorithms when the number of projections is decreased or the data SNR is

decreased.
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Figure 6.3: Comparing the performances of the reconstruction algorithms
based on the correlation coefficient. (a) The sample including the plastics
indicated by blue arrows, reconstructed with SIRT from 360 projections (at
42 keV) for sample presentation. The gray scale bar represents the LACs
with the unit of cm−1. This sample is scanned with the different numbers of
projections to produce the correlation coefficients shown in the right frame.
(b) The correlation coefficients as a function of weighting parameter λ for 7,
12 and 36 projections, computed with different algorithms. The correlation
coefficients represent the mean values calculated from the coefficients for 15
energy bins. Note the logarithmic scale in the x−axis. The figures are adapted
from the Paper B in the appendix.

Adding high noise levels to specific energy bins

Certain energy bins may be subject to high noise levels during scanning, being local to

certain energy bins. For example, metals in the sample may induce high noise in specific

energy bins resulting in the reduced photon statistics, and thereby in photon starvation.

This in turn causes the appearance of metal artifacts in reconstructed images, which

leads to a significantly low signal-to-noise ratio (SNR) in the metal shadow and mainly

affects the lower energy bins. As a result, metal artifacts can significantly decrease

classification performance. Another example can be that the transmitted spectrum

may have a significantly lower SNR, especially at low- and high-energies, depending

on the density or effective atomic number of materials. This study will also show

how the spectral information is sharing between different energy bins when using joint

reconstruction. To evaluate the robustness of the reconstruction algorithms to such

artifacts, we introduced Gaussian noise to two sinograms at specific energies such as

48.7 keV and 101.6 keV, with a standard deviation (σ) of 0.5, 1.0 and 1.5.

Fig. 6.5 highlights the correlation coefficients depending on photon energy for each

σ value, produced by different algorithms. The correlation coefficients represent the
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mean values calculated from the coefficients for 15 energy bins. We first found the

optimal λ resulting in the highest coefficient for σ = 1.5. For each algorithm, we then

employed this optimal λ value to compute the correlation coefficients for other σ values.

As expected, the TV shows no interactions between different energy bins, while the

correlation coefficients for the unaffected bins of the TNV and L∞-VTV decrease when

increasing the noise level, caused by inter-bin correlations. Compared to TV, they have

noticeably higher coefficients for the affected bins, achieved by efficiently utilizing the

’healthy’ energy bins for which the reconstruction quality is slightly reduced due to

noise transfer. The L∞-VTV in turn shows potential to perform better than TNV in

terms of overcoming such high noise levels, based on using strong inter-bin correlations

more effectively. The superiority of the L∞-VTV with the improved SNR is significant,

especially in the low energy domain. This property of the L∞-VTV can be useful to

reduce metal artifacts that mostly impact low energies, and to overcome the problems

with low SNRs at low energies in the spectrum.

Figure 6.4: The sample including aluminum, magnesium and polyetherether-
ketone (PEEK) indicated by blue arrows, reconstructed with SIRT from 360
projections (at 61.9 keV) for sample presentation. The gray scale bar repre-
sents the LACs with the unit of cm−1. This sample is used to produce the
results shown in Figs. 6.5 and 6.6, for which it is scanned with the integration
time of 100 ms and reconstructed from 12 projections. The figure is adapted
from the Paper B.

L-curve criterion

L-curve is a plot presenting the trade-off between the regularization term and the

corresponding reprojection error that both quantities should be regulated, while the

weighting parameter alters [115]. The reprojection error ‖ Aµλ − p ‖2 represents

the square root of the data fidelity term described in Eq. 4.8 , and summed over

all energy bins. The regularization term RTV(µ) for TV expressed in Eq. 4.15 is

calculated separately for each energy bin, and summed over all energy bins to produce
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Figure 6.5: Correlation coefficients with respect to photon energy when
different high Gaussian noise levels with standard deviation (σ) of 0.5, 1.0 and
1.5 are introduced to specific energies such as 48.7 keV and 101.6 keV. These
results are produced with the sample presented in Fig. 6.4, that is scanned
with the integration time of 100 ms and reconstructed from 12 projections.
The figures are adapted from the Paper B.

L-curve. The regularization terms RTNV(µ) and RL∞−VTV(µ) for TNV and L∞-VTV

are common to all energy bins, and defined in Eq. 4.16 and Eq. 4.20, respectively. If

the L-curve criterion for a reconstruction algorithm yields a good assessment of the

optimal λ, L-curve can be alternatively employed to evaluate suitable range of λ values,

instead of correlation coefficient that requires the ground truth image.

Fig. 6.6 presents the correlation coefficient as a function of λ, and L-curve indicated

by λ values. Due to L-curve criterion, λ value located on the corner of the L-curve can

be ideally considered as the optimal value, and the values on the horizontal and vertical

parts result in the over-regularized and under-regularized reconstruction, respectively,

that can be noted from Eqs. 4.18 and 4.21. A log-log scale representation of L-curve is

more suitable for the Tikhonov regularization [115], while TV reconstruction requires a

linear-linear representation [116]. Similarly, we saw that our reconstruction algorithms

are more accurate with the linear-linear representation. We scanned the sample shown

in Fig. 6.4 with 12 projections, and reconstructed with a set of λ values to plot L-curves

presented. Using experimental data and few projections may cause some limitations

of L-curve whose criterion may ideally be suitable for synthetic data. Hanke [117]

presented based on the Tikhonov regularization that the smoother the reconstruction

is, the lower accuracy the measured λ gives, in the sense of the optimal value.

Fig. 6.6a shows TV reconstruction with some limitation of L-curve consisting of

that λ on the corner of the plot clearly results in over-regularization. This may be

due to that TV gets over-regularized to overcome the problem of few projections. The

TNV tends to produce λ that slightly over-smooths, as shown in Fig. 6.6b. Fig. 6.6c

highlights that the L∞-VTV has the most accurate correspondence between two λ

values found through the maximal correlation coefficient and L-curve criterion. The

L∞-VTV has the sharpest corner on the L-curve, being clearly visible. Thus, the

experiment shows that the L-curve criterion for the L∞-VTV regularization can provide

58



6.2. Results of the Paper B

a robust evaluation of λ.

(a) TV (b) TNV (c) L∞-VTV

Figure 6.6: The correlation coefficient with respect to weighting parameter
λ and L-curve, obtained by different algorithms. The signs in L-curve
plot indicate weighting parameters, for which the corresponding correlation
coefficients are shown in the left frame in each figure. The sample displayed
in Fig. 6.4 was used to reproduce these results, scanned with the integration
time of 100 ms and reconstructed from 12 projections. Note the logarithmic
scale in the x−axis for the correlation coefficient. The figures are adapted from
the Paper B.

Classification performance as a function of λ

Next, we classified the materials with the SIMCAD method estimating (ρe, Zeff), for

which the relative deviations are plotted in Fig. 6.7a. All the samples used in this work

are reconstructed for the set of weighting parameters to examine the impact of this

factor on the classification performance. The results in the figure correspond to sparse-

view 7 projections. The deviations represent the mean values calculated from absolute

values of relative deviations for each material estimated. For the maximal classification

performance (at the optimal λ value), the TV gives the deviations of 3.8% for ρe and

4.2% for Zeff (at λ = 16.0), while the TNV and L∞-VTV have the deviations of 3.4%

and 3.1% (at λ = 150.0), and 3.5% and 2.4% (at λ = 30.0), respectively. Thus, for such

sparse-view projections both joint reconstruction algorithms significantly outperform

TV reconstruction in terms of classification performance. L∞-VTV gives in turn

noticeably more accurate results than TNV.

Fig. 6.7b compares the relative deviations in (ρe, Zeff) for the different materials,

corresponding to the maximal classification performance for each algorithm as

presented in Fig. 6.7a. The L∞-VTV yields the highest classification accuracy for

POM-H plastic, which can imitate a common explosive simulant with almost identical

chemical compositions [67].
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Figure 6.7: Comparison of the performances of different algorithms based
on the SIMCAD classification method. (a) The relative deviations for (ρe,
Zeff) as a function of weighting parameter λ, for which the reconstructions
are performed from sparse-view 7 projections. The deviations represent the
mean values computed from the absolute values of relative deviations for each
material estimated. Note the logarithmic scale in the x−axis. (b) The relative
deviations for (ρe, Zeff) corresponding to the optimal λ values providing the
maximal classification performances, as shown in the left frame. The deviations
for the different materials represent the absolute values. The figures are adapted
from the Paper B.

6.3 Results of the Paper C

6.3.1 A brief introduction

In this paper, for spectral CT measurements we investigate the significance of the

spectral correction of the detector response in material classification. As explained

in the Section 3.4, high flux PCDs tend to suffer from severe spectral distortions of

raw signal caused by detector artifacts such as charge sharing and weighting potential

cross-talk, fluorescence radiation, Compton scattering, pulse pile up and incomplete

charge collection. The spectral distortions lead to strong deviations of the measured

spectral LACs from the actual attenuation curve, and therefore to a significant decrease

in classification performance. PCDs thus require the correction algorithm to reduce the

spectral distortions. In this study, we perform reconstructions from only 12 projections,

because few projections can enable rapid scanning important for security applications.

To improve reconstruction quality in such sparse projection data condition, we use

the joint reconstruction algorithm, L∞ norm based vectorial total variation (L∞-

VTV), for which a mathematical description was given in the Section 4.2. In the

previous section 6.2, we showed that in terms of reconstruction quality and classification

performance L∞-VTV outperforms another joint reconstruction, TNV, and channel-

by-channel reconstructions such as TV and SIRT. In this work, to test classification

performance with and without the correction we employ the SIMCAD method that
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estimates ρe and Zeff . We use the broad range of materials including low contrast

materials and organic compounds. We show that using the correction algorithm

significantly improves classification performance. The paper can be useful for readers

in the fields of energy resolved tomography especially where the accurate separation of

tissues and materials with low contrast is important.

6.3.2 Main results

In the Section 3.1 we described the overall workflow of the main data processing steps

from data acquisition to material classification. The data rebinning is performed after

the data is corrected for the spectral distortions with the correction algorithm. 15

energy bins rebinned are used to produce the results presented in Fig. 6.8, which

plots the classification accuracy as a function of weighting parameter λ for the raw

and corrected data. As explained in the Section 4.2, the weighting parameter is the

factor defining the strength of the L∞-VTV regularization. The corrected data yields

the relative deviations of 3.4% for ρe and 2.7% for Zeff (at λ = 16.0), while the raw

data leads to the deviations of 5.6% and 10.3% (at λ = 4.0), respectively. Thus, the

correction algorithm that requires additional computation time is very important to

have desired classification performance.
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Figure 6.8: The percent relative deviations with respect to weighting
parameter λ for ρe (a) and Zeff (b), obtained with the raw data and the data
corrected using the correction algorithm. The projection data rebinned into 15
energy bins is used to reproduce these results. The deviations represent the
mean values computed from the absolute values of relative deviations for each
material estimated. Note the logarithmic scale in the x−axis. The figures are
adapted from the Paper C.
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6.4 Results of the Paper D

6.4.1 A brief introduction

In this paper, we present another method for material characterization using spectral

CT. The method estimates effective atomic numbers Zeff of materials directly from the

energy-dependent LACs. The method uses the basis material decomposition (BMD)

model that can accurately define the LAC of any material by a linear combination of

multiple basis materials with respective equivalent thicknesses, as introduced in the

Section 5.2. As mentioned in the previous section, the imperfections of the detector’s

spectral response due to a range of detector effects severely distort the measured

spectrum, and thereby the measured LACs. To overcome the spectral distortions,

Brambilla et al. [58] used a calibration step to record the detector’s response to x-ray

irradiation for different combinations of the basis materials with different thicknesses.

After the calibration step, the thicknesses of the basis materials that match the

measured spectra are computed based on a maximum likelihood approach assuming

Poisson-distributed photon counts for each energy bin. The computed equivalent

thicknesses of scanned samples are employed to estimate Zeff values. However, using

the calibration step gives a system-dependent solution due to the dependence on the

source spectrum. In this work, instead of using this calibration phase we propose

the correction algorithm to correct the imperfections of the detector response. The

corrected LACs allow for directly using the formulation of the BMD, defined in Eq. 5.7,

without any calibration of detector response in order to estimate Zeff . The BMD

method offers system-independent solution, independent from the scanner or system

specification like the source spectrum or filtration.

We use just 12 projections to address scanning requirements for high throughput of

scanned objects in the security domain. To reduce the resulting few-views artifacts, we

use the L∞-VTV joint reconstruction taking advantage of strong correlations between

multiple energy bins through the L∞ norm. We estimate the method’s performance

with respect to the set of weighting parameters λ. The materials in the range of

6 ≤ Zeff ≤ 15 are inspected. We find that the BMD can provide better classification

accuracy with 17.4% improvement in estimating Zeff , compared to the SIMCAD

method. However, the BMD has one disadvantage that it can estimate only Zeff ,

as a reminder.

6.4.2 Main results

We perform classifications with the different number of basis materials in the basis

material decomposition, denoted as N in Eq. 5.7, which defines the dimensionality

of attenuation space. Tab. 6.2 gives information about all the basis materials with

chemical formula, reference density and Zeff , which are used for estimating classification

performance as a function of the number of basis materials. Tab. 6.3 presents the basis

materials used for classifications with the different number of basis materials N . The
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LACs of the basis materials are theoretical, and obtained from NIST database [6]. For

all the different numbers of basis materials, we employ PVC with the highest Zeff value

among all the basis materials, whose fPVC fraction is used to estimate Zeff of materials

based on Eq. 5.8.

Table 6.2: The list of all the basis materials used for classifications with
different number of basis materials. The reference Zeff values are calculated
with Eq. 2.10. The mass densities are obtained from in PubChem data [74].

Basis material
Chemical

Formula
ρ (g/cm3) Zeff

Polyethylene (PE) (C2 H4)n 0.93 5.79
Polyacetylene (PAc) (C2 H2)n 0.4 5.89
Polypyrrole (PPy) (C4 H5N)n 0.97 6.22
Polymethyl methacrylate (PMMA) (C5 O2 H8)n 0.94 7.02
Polyoxymethylene (POM) (CH2 O)n 1.42 7.40
Polyvinyl Chloride (PVC) (C2 H3Cl)n 1.406 15.71

Table 6.3: The basis materials used for classifications with the different
number of basis materials N in the basis material decomposition, as defined in
Eq. 5.7.

Number of basis

materials N
Basis materials

2 PE, PVC
3 PE, PPy, PVC
4 PE, PPy, POM, PVC
5 PE, PAc, PPy, POM, PVC
6 PE, PAc, PPy, PMMA, POM, PVC

Classification performance as a function of the number of basis materials

used

We assess the dimensionality of decomposed LAC space, for the set of our materials,

source spectrum, detector’s energy region and system features, based on classification

performance obtained with the different numbers of basis materials N . Fig. 6.9 shows

the relative deviations in Zeff as a function of weighting parameter λ for each N .

The deviation clearly increases as the number of basis materials increases. 2 basis

materials give the optimal performance with the deviation of 2.4% (at λ = 60), while

5 basis materials provide this with the deviation of 4.4% (at λ = 30). This deviation

equals 4.1% (at λ = 30) for 6 basis materials. Moreover, the classification performance

with 2 basis materials appears to be more stable with respect to λ, showing better

robustness against changes of λ. Thus, the BMD is the most accurate with just two

basis materials, for which PE and PVC are used. In the Paper D we also find that the

63



6. Results

Singular Value Decomposition (SVD) [33] analysis, a tool from matrix algebra, shows

the dimensionality of LAC vector space being equal to two.
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Figure 6.9: The percent relative deviations in Zeff with respect to weighting
parameter λ, obtained with the different numbers of basis materials N in the
basis material decomposition. The deviations represent the mean values of the
absolute deviations for each material estimated. Note the logarithmic scale in
the x−axis. The figure is adapted from the Paper D.

Comparing the BMD and SIMCAD

Fig. 6.10 shows the relative deviations in Zeff as a function of weighting parameter λ for

the BMD and SIMCAD. The BMD shows the maximal performance with the deviation

of 2.3% (at λ = 60.0), while the SIMCAD shows 2.7% (at λ = 16.0). For the maximal

classification performance, the SIMCAD gives the deviation of 2.5% in estimating ρe
(at λ = 16.0). The deviations represent the mean values calculated from the absolute

deviations for each material listed in Tab. 6.4. This table reports the deviations for

different estimated materials, corresponding to the maximal classification performance

for both methods. All the absolute relative deviations are below 5.6% and 6.6% for

the BMD and SIMCAD, respectively. Thus, the BMD achieves 17.4% increase in

classification accuracy than the SIMCAD.
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Figure 6.10: The percent relative deviations in Zeff with respect to weighting
parameter λ, obtained with the BMD and SIMCAD. The deviations represent
the mean values of the absolute deviations for each material listed in Tab. 6.4.
Note the logarithmic scale in the x−axis. The figure is adapted from the Paper
D.
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Table 6.4: The percent relative deviations in Zeff and ρe for the BMD and
SIMCAD classification method, corresponding to the maximal classification
performance shown in Fig. 6.10. The reference Zeff and ρe values are calculated
from Eq. 2.10 and Eq. 2.9, respectively. The unit of ρe is e−mol/cm3. ∗The
mean values are calculated from absolute values of each column. As a reminder,
the BMD does not estimate ρe. The table is adapted from the Paper D.

Material Zref

eff

BMD

∆Zrel

eff
(%)

SIMCAD

∆Zrel

eff
(%)

ρref
e

BMD

∆ρrel
e

(%)
SIMCAD

∆ρrel
e

(%)

PMMA 7.02 1.3 −0.4 0.636 1.8
PTFE 8.70 3.0 4.0 1.035 3.2
PVDF 8.40 4.3 3.9 0.896 −3.1
PC 6.82 0.2 −2.0 0.610 −1.9
POM-C 7.40 0.9 0.4 0.753 3.9
PET 7.09 0.1 −1.3 0.721 2.8
POM-H 7.40 1.7 0.3 0.763 2.4
Acetone 6.90 −4.1 −2.6 0.432 0.9
Hyd. Peroxide 7.83 −4.7 −4.9 0.661 2.5
Methanol 7.29 −1.8 −2.6 0.446 1.5
Water 7.78 −4.5 −4.7 0.554 0.5
Nitromethane 7.50 −5.6 −6.6 0.597 1.1
Aluminum 13 −1.8 −2.9 1.3 1.8
Silicon 14 0.7 3.5 1.161 −4.8
Magnesium 12 0.2 −0.1 0.859 −4.8
∗Mean − 2.3 2.7 − − 2.5
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Material identification method

I have shown the SIMCAD method for material classification into system-independent

physical features (ρe, Zeff) with Spectral CT. The method was evaluated for the

materials in the wide range of 6 ≤ Zeff ≤ 23. We observed that the use of a correction

algorithm for spectral distortions suppresses the major detector response artifacts from

the LACs. The low- and high-energy thresholds truncates the spectral LACs where

they have the highest deviations from expected values. SIMCAD uses a calibration

step with a set of reference materials to register photoelectric absorption and Compton

scattering basis functions and n from the decomposed LAC expression as explained in

the subsection 5.1.1. The impact of the number of rebinned energy bins on the method’s

performance has been investigated. Using a low number of energy bins without energy

threshold optimization such as 6 energy bins approach results in a significant decrease

in the performance. It was observed that classification is not improved further by high

number of energy bins with widths below the detector’s energy resolution. Optimized

bi-energy bins that are not overlapping and are thus not affected by system features

like X-ray source or sample parameters can provide the most accurate results. With

optimized bi-energy bins, all the absolute relative deviations for estimated materials

for ρe and Zeff are below 3.4% and 5.6%, with the mean deviations of 1.5% and 3.1%,

respectively. The SRZE method requires 64 energy bins for the best performance [70],

and all the absolute relative deviations with this method are below 6.9% and 5.4% for

ρe and Zeff , with the mean deviations of 2.4% and 1.9%, respectively. Compared to

the SRZE, the SIMCAD uses just optimized bi-energy bins and achieves comparable

results, which results in 32 times reduction in computation time because of a lower

number of image reconstructions required. This makes the method suitable for the

requirements of high speed security scanners. Moreover, our method with a single

scan achieves the classification accuracy comparable to traditional dual-energy CT

techniques, which are usually performed through consecutive scans, and the accuracy

for highly attenuating materials is even higher [50, 51].
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Improving material identification for few projections

We focus on improving the classification performance in case of few projections and

the low signal-to-noise ratios that may hinder the application of the classification

method due to the poor reconstruction quality. The separation of photon counts

into multiple energy bins in spectral CT results in the increased noise levels, which

can be another factor for a decrease in the reconstruction quality. To improve the

reconstruction quality under such conditions, we propose to use correlations between

multiple energy bins with L∞norm-based VTV joint reconstruction. We tested the

L∞-VTV against another joint reconstruction with TNV, and against bin-by-bin TV

and SIRT algorithms. The following figure-of-merits for quantifying the performance

of the reconstruction algorithms are used: the correlation coefficient, the dataset of

which the specific energy bins have significantly high noise levels, the L-curve criterion

and the SIMCAD classification method. The L∞-VTV showed the highest values of the

correlation coefficient as a function of weighting parameter. The results from studying

the robustness of each algorithm for high noise levels in specific energy bins showed

that both joint reconstructions efficiently reduce such noise using spectral information

from ’healthy’ energy bins, and reach better reconstructions for all the energy bins

than the TV. The L∞-VTV appears in turn to compensate more efficiently for excess

noise in certain energy bins. Thus, the L∞-VTV more effectively utilizes the strong

correlations between multiple energy bins, decreasing the effect of outliers in image

gradient magnitudes. Outliers usually violate the attenuation variations over the

different image cells and over the different energy bins. This feature can be significantly

helpful for reducing metal artifacts, which mostly influence the low energies, and not

only worsen the reconstruction quality, but also degrade the classification performance.

The study of the L-curve that helps to find the optimal weighting parameter λ for

reconstruction shows that the L∞-VTV has a clear agreement between two λ values

found as the optimal values by the correlation coefficient and the L-curve criterion. The

TNV shows less efficiency to evaluate the optimal λ based on the L-curve criterion than

the L∞-VTV, whereas the TV presented a clear disagreement between the correlation

coefficient and the L-curve criterion. The classification performance of each algorithm

has been evaluated based on the SIMCAD method, with the materials in the range

of 6 ≤ Zeff ≤ 15. The L∞-VTV reaches explicitly up to 1.29 and 1.75 times better

classification accuracy for estimating Zeff compared to the TNV and TV, respectively.

Thus, improving the reconstruction quality with better preservation of the real features

can consequently improve the classification performance.

The significance of the spectral correction in material identification

We are interested in the significance of the correction algorithm in material

identification, which corrects spectral distortions in PCDs. We use the following figure-

of-merits for quantifying the performance of the correction algorithm: the correlation

coefficient, the L-curve criterion, the raw dataset of which the specific energy bins
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have significantly high noise levels, and the SIMCAD classification method. The raw

data and corrected data are assessed based on the above figure-of-merits. Because few

projections for estimations suitable for fast scanning requirements are used, we aim to

improve the reconstruction results with the L∞-VTV joint reconstruction. Even at 2 ms

that is the lowest integration time of the detector and gives the lowest signal-to-noise

ratios in all the energy bins, the raw and corrected data produce the similar results

from the correlation coefficients and the L-curves. Applying the correction algorithm

to the raw dataset of which the specific energy bins have significantly high noise levels,

we saw that the correction algorithm effectively improves the quality of reconstruction

measured by the correlation coefficient. This also indicates the good robustness of the

algorithm to such noise levels. Finally, the significance of the correction algorithm has

been estimated based on the SIMCAD, with the materials in the range of 6 ≤ Zeff ≤ 15.

As a result, applying the correction algorithm to the raw data appears to play a

significant role in improving the classification performance, resulting in up to 1.65 and

3.81 times better accuracy for estimating ρe and Zeff , respectively.

Another material identification method

I have presented another classification method called the BMD, which estimates

system-independent physical parameter Zeff based on basis material decomposition

model for spectral LACs. I explore the impact of the number of basis materials on the

method’s performance, testing the method on the wide range of different materials.

Consequently, using just two basis materials such as PE and PVC appears to provide

the best results. The BMD is tested against the SIMCAD method for classifying

materials in the range of 6 ≤ Zeff ≤ 15. We find that with the BMD the accuracy

was improved up to 17.4% for Zeff estimation. In addition, the BMD can use a basis

material with a K-edge in LACs and thereby estimate materials presenting K-edges

within detector’s energy range. In comparison, for the SIMCAD the energy bins

below the edge should be truncated making the energy range compatible with this

method, which would decrease the classification performance. However, none of the

materials presented in this thesis have a K-edge within the detector’s energy range.

As a reminder, the SIMCAD possesses the main advantage of characterizing both Zeff

and ρe features, providing a complete way of material characterization.

Outlook

Some suggestions for future work are listed below.

• The Section 3.5 describes how the mean LAC is calculated from the

attenuation histogram based on Gaussian distribution fitting for each energy

bin. The individual materials are segmented manually from the energy-resolved

reconstructions within their corresponding region of interest (ROI) surfaces or

volumes. Multi-energy information provided by spectral CT is not employed
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in the manual segmentation process. Moreover, in the security domain there

is a need for rapid and automatic object segmentation to decrease possible

human involvement and the manual workload. Therefore, I would incorporate

automatic material segmentation to extract the mean LAC for each energy bin

by taking advantage of additional multi-energy information. This could be done

by exploiting the joint distribution of the image cell values (LACs) and their

gradient magnitudes over multiple energy bins.

• Exploring mechanisms on how to automatically set the optimal weighting

parameter λ of the reconstruction algorithms developed, in order to reduce the

computation time valuable in the security screening. For this, based on spectral

CT scans I will analyze and define the correlation between different reconstruction

volume sizes and the respective optimal λ values, and also between different

material sizes and the respective optimal λ values. The optimal λ may be

dependent on reconstruction data amount in terms of different sample sizes and

reconstruction volume sizes. Based on this correlation the optimal λ could be set

depending on the amount of reconstruction data, but this may be the challenge

for security where a-priori knowledge of the sample is not available.

• Elements and compounds with effective atomic number higher than 30 can have

a K-edge absorption within the energy spectrum employed in CT. The BMD

method can approximate the LACs of estimated materials with the K-edge,

which is done by including a K-edge basis material in order to avoid a typical

smooth attenuation function of energy. Therefore, I will test the performance of

this method for the K-edge materials, which would attract interest in medical

applications to differentiate contrast agents from body tissues and other materials

based on spectral CT measurements [37].

• Adapting the developed joint reconstruction algorithms for other multi-energy

imaging modalities such as visible light, electron or neutron tomography, and

testing the performance of the algorithms on other tomographic data that may

consist of a sufficient or limited number of projections.

• Exploring the possibility of classifying materials into three material parameters

such as ρe, Zeff and exponent n in the dual basis function decomposition model

of spectral LACs as defined in Eq. 5.1. This could be done using energy-resolved

LACs at multiple energy bins.
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Conclusion 8
This PhD thesis has explored how all steps of the spectral CT workflow influence

the resulting classification performance that is the main objective, from the data

acquisition to reconstruction and post-processing. I believe that the objectives set

for the thesis as stated in the introduction have been met. In this thesis we propose

several approaches to pave the way for enhanced material classification with spectral

CT that are listed below.

• We propose the SIMCAD method classifying materials into electron density and

effective atomic number, which is based on the dual basis function decomposition

into material- and energy-dependent components. With this method, we can

accurately estimate materials in the range of 6 ≤ Zeff ≤ 23 that include most of

the materials commonly found in a passenger luggage [17], and most of human

organs and tissues [118–121]. We tested the method against another state-of-the-

art competitor that is the SRZE method using spectral CT scans. Our method

has achieved significant reduction in computation time for classifications.

• We focus on improving the performance of the classification method for few

CT projections, taking into account the requirements of high speed security

applications. To realize this, we developed the joint reconstruction algorithm,

L∞-VTV, and tested it based on several figure-of-merits under conditions of few

projections and low signal-to-noise ratios. As a result, we found that novel L∞-

VTV gives the most accurate results in comparison to other algorithms.

• We show the significance of the correction algorithm for detector’s spectral

imperfections in material classification, with respect to the different number of

energy bins rebinned in the source spectrum.

• We present the BMD method classifying materials into just effective atomic

number, which is based on decomposing attenuation coefficients into basis

materials with corresponding equivalent thicknesses. Testing a broad range of
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materials, we show that the BMD can accurately separate materials with better

accuracy than the SIMCAD for estimating Zeff .

• The developed methods and algorithms can be used in other spectral CT based

applications such as low-dose imaging that requires few projections and therefore

suffers from poor photon statistics.

Both the SIMCAD and BMD methods can produce system-independent results,

independent of the scanner or the system features such as source spectrum and

filtration. Both methods are post reconstruction types. In the security domain,

this is justified by the fact that the content in the luggage can change for each

sample during the scans, with a larger range of materials appearing in high clutter.

Pre-reconstruction techniques are more suitable for special applications, where it

is possible to define a-priori knowledge of the samples. The classification results

presented are also comparable with those by conventional dual-energy CT that also

offers system-independent classification, which is usually realized through successive

data acquisitions. However, the performance of these techniques are dependent on

the selection of the pair of spectra employed for dual-energy CT acquisitions, and the

assessment of their corresponding detector spectral responses.

The novel system-independent methods developed in this thesis are compatible

with any multi-energy detector, and aim to help to reduce false alarms in threat

detection, and enhance system reliability. Using the methods, potential threats can be

found by accurately classifying the segmented regions and labeling the objects in the

sample.

Implementations of the presented iterative joint reconstruction algorithms in Julia

are publicly available at https://github.com/JuliaTomo/XfromProjections.jl.

All experimental data without and with the correction algorithm applied are available

to download from [122], and ready to use. With this, I believe that our classification

methods and iterative joint reconstruction algorithms developed are ready enough for

a practical use in security applications. I hope that the contributions of this thesis

will inspire researchers working within the spectral CT field, material science or other

industrial applications to future work and development.
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A B S T R A C T

We present a method for material classifications in spectral X-ray Computed Tomography (SCT) taking
advantage of energy-resolving 2D detectors to simultaneously extract the energy dependence of a material’s
linear attenuation coefficient (LAC). The method employs an attenuation decomposition presented by Alvarez et
al., and estimates system-independent material properties of electron density (𝜌e) and effective atomic number
(𝑍eff ), independent of the scanner, from the energy-dependent LAC measurements. The method uses a spectral
correction algorithm and the energy range is truncated to exclude bins with photon starvation and spectral
distortion present even after correction of detector response. A novel technique of energy bin selection is used
for optimized classification performance. The method is tested against another SCT classification method called
SRZE for inspecting materials in the range of 6 ≤ 𝑍eff ≤ 23. Our method aims at an increase in the speed of pot
processing workflow after the data acquisition, and it achieves explicitly up to 32 times better time efficiency
for the reconstruction with comparable accuracy for a range of materials important in threat detection.

1. Introduction

The discrimination between innocuous liquids and precursors for
homemade explosives is a difficult challenge for civil aviation safety
screenings, since both types of materials are organic liquids with similar
X-ray attenuation. The detection of these threats and other traditional
explosives requires a technology that can provide accurate material
features [1]. Over the years, X-ray Computed Tomography (CT) has
been widely used for Non-Destructive Testing (NDT), as well as in
the field of illegal material detection [2]. Conventional CT measures
the effective linear attenuation coefficient (LAC) across a broad energy
range since the typical X-ray sources generate a polychromatic beam.
The Hounsfield unit is often used with conventional CT. It represents
the attenuation spectra with a single value, with an uncertainty that is
larger than the inter-material variation for some materials [1]. In 1976,
Alvarez et al. [3] showed a method for CT that decomposes LAC into
photoelectric absorption and Compton scattering basis functions and
they demonstrated that an alternative material characterization with
just two parameters density, 𝜌, and effective atom number, 𝑍eff can
define the whole spectral range of the LAC. Dual-energy CT (DECT)

∗ Corresponding author.
E-mail addresses: doniyor.jumanazarov@fysik.dtu.dk (D. Jumanazarov), jakoo@dtu.dk (J. Koo), matteo.busi@psi.ch (M. Busi), hfpo@fysik.dtu.dk

(H.F. Poulsen), ullu@dtu.dk (U.L. Olsen), office@accent.ro (M. Iovea).

measures two different signals in the attenuation spectrum and can be
used to reconstruct both parameters [4–14]. The Dual-Energy detector
as shown in Fig. 1 have overlapping low- and high-energy spectrums
and the Dual-Energy Systems suffer from poor energy separation.

The material classification through the effective LAC with dual-
energy sandwich detectors, detectors currently in use in security screen-
ing systems is a system-dependent solution [4,15] since it depends on
source spectrum, filtration, and detector’s efficiency. Recently, Azevedo
et al. [4] proposed a method that estimates (𝜌e, 𝑍eff ) from dual-energy
CT known as the System-Independent 𝜌e∕𝑍eff (SIRZ), independent
of the scanner, presented in Fig. 1 and Champley et al. [16] have
developed the method further (SIRZ-2). Like all DECT this method
requires two successive scans with different source kilovoltage peaks
and filtration, and additionally the calibration of the detector’s spectral
response by using a group of reference materials. In the range of 𝑍eff

between 6 and 20, and energies up to 200 keV, the accuracy error and
precision errors for estimating both (𝜌e, 𝑍eff ) features in SIRZ were less
than 3% and 2% respectively, while the SIRZ-2 accuracy errors were
0.7% for 𝜌e and < 1.5% for 𝑍eff , and the SIRZ-2 precision errors for
both were up to 2.3%.

https://doi.org/10.1016/j.ndteint.2020.102336
Received 21 June 2020; Accepted 22 July 2020



NDT and E International 116 (2020) 102336

2

D. Jumanazarov et al.

Fig. 1. Illustration of the dual-energy CT, SRZE and SIMCAD methods. Left: in dual-energy X-ray CT, the sample attenuation is measured at low- and high energies with two
different spectra that are overlapping and thus reduces the estimation performance [17,18]. Center: in classical spectral X-ray CT, the sample attenuation is measured at multiple
energy bins using PCDs [19,20]. Right: in the optimized bi-energy bins approach to spectral X-ray CT, the sample attenuation is measured without overlap at low- and high energies
with PCDs in a single acquisition. The selection of the upper and lower thresholds of low- and high-energies, respectively 𝑏1 and 𝑏2 is discussed in the Section 3.2.

The development of cadmium telluride (CdTe) energy-
discriminating imaging detectors has paved the way for Spectral
CT [21–23]. Spectral CT with an energy resolved photon counting
detector (PCD) is proved to have a number of advantages over
dual-energy CT for improving material identification [24,25]. This has
resulted in a large interest in PCDs within security applications [19,26].
In material identification by radiography, Rinkel et al. [17] presented
through experimental data that the false detection rate when using
90 energy bins with a PCD was reduced by a factor of up to 2 and
more than 3 (for thin objects) compared to an optimized dual-energy
bins approach applied both on the same PCD data and to a dual-layer
sandwich detector, respectively. Beldjoudi et al. [18,24] showed
through simulations in Radiography that PCDs with data condensed
into two energy bins enhanced recognition of single materials by over
50% relative to dual-layer sandwich detectors. Increasing the number
of energy bins resulted in a further rise of 80% in material identification
with 90 energy bins compared to dual-layer sandwich detectors. They
found that the poor spectral separation in the dual-layer sandwich
detectors appears to be the main reason for the inferior performance.
In contrast PCDs exhibit a significantly better spectral resolution. As
expected, using energy bins with a width below the energy resolution
of the detector did not lead to great improvement in identification
performances. However, using a higher number of energy bins or
narrow bin widths provided a more robust configuration, regardless of
the thickness and nature of the material. A simulation study by Wang
et al. [27] showed how to select the energy bin widths to optimize the
performance of basis material decomposition in material recognition.
To check the accuracy and precision of the method in estimating the
thickness of the two basis materials, they investigated five different
energy bin combinations to define energy bins setting energy bin
thresholds for each; bins of equal width, bins of equal incident photon
counts, bins of equal incident photon intensity, bins of equal photon
count and bins with equal photon intensity after passing through
3 cm of PMMA. They found the best results when using energy bins
with similar incident photon counts. Martin et al. [19] introduced a
learning and adaptive model-based method to optimally select the bins
for material characterization from multi-energy data.

The MultiX ME100 (MultiX, Neuillysur-Seine, France) PCD is a good
candidate for high flux measurements to extract a spectrally resolved
LAC. Brambilla et al. [28] implemented a basis material decompo-
sition method for material characterization using this detector. This
method requires a calibration of the detector’s spectral response for
a group of reference materials, and only estimates 𝑍eff accurately in
3D measurements. Based on the Multix detector the SIRZ method was
further extended into the Spectral 𝜌e∕𝑍eff Estimation (SRZE) method
presented by Busi et al. [20], which estimates system-independent (𝜌e,
𝑍eff ) directly from the spectral LACs in Spectral CT (in Fig. 1). The
accuracy of the SRZE method relies on the accurate measurement of
spectral LACs, and it decreased for materials with smaller 𝑍eff due to

detector response artifacts at lower energies, where the contrast of low
𝑍eff material is also highest [20].

The method presented in this work aims to estimate the system-
independent material features (𝜌e 𝑍eff ), independent of the system
or specifics of the scanner, such as the X-ray spectrum. It uses the
attenuation decomposition presented by Alvarez et al. [3] for Spectral
CT. Fig. 1 illustrates the principles of the novel method, named system-
independent material classification through attenuation decomposition
(SIMCAD). As illustrated, this approach is based on non-overlapping
optimized bi-energy bins separated by a gap. Wang et al. [29,30]
presented that for PCDs that discriminate between low and high energy
photons, having a gap between energy thresholds is useful for material
separability. Photons with energies that lie in this gap should either
be discarded or counted separately to enhance performance. Therefore,
the energy range falling into this gap was discarded in the optimized
bi-energy bins approach in our work. The method requires a calibration
step to find the energy-dependent basis functions of the decomposed
attenuation by using a set of reference materials. Materials are then
classified through the two parameters (𝜌e and 𝑍eff ) that can fully
describe the wide range of materials that may appear in baggage
scanners [31].

In this work, we compare the performance of the SRZE and SIMCAD
methods over a common set of materials using experimental data. The
SRZE method reaches the optimal performance at 64 energy bins and
provides noticeably lower classification performance with two energy
bins [32]. The SIMCAD method utilizes optimized bi-energy bins for
comparable classification performance, and uses at least 32x shorter
time for the tomographic reconstruction after the data acquisition
directly due to a lower number of energy bins. The speed makes the
method compatible with the requirements for applications where rapid
scanning is required. Check-in baggage inspection at airports is such
an application where the time and computational resources required
for spectral reconstruction represents a major issue [33].

2. Theory and methods

The aim of this section is firstly to define the system-independent
material features used to classify materials from experimental data, and
secondly to present instrumentation and methods with the detection
algorithm.

2.1. Photoelectric-Compton decomposition

Bragg and Peirce (1914) [34], Owen (1919) [35] and Richtmyer
and Warburton (1923) [36] established the original concept of the
dependence of photon interactions upon atomic number (Z), and this
concept has been implemented in many radiation studies [37]. For a
computerized tomography system, Alvarez et al. [3] showed empiri-
cally over the range of 30−200 keV that the LAC could be decomposed
in the form:

𝜇(𝐸) = 𝑎1
1

𝐸3
+ 𝑎2𝑓KN(𝐸), (1)
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Fig. 2. The illustration of the instrumental setup.

where 𝑓KN(𝐸) is the Klein–Nishina function

𝑓KN(𝜀) =
1 + 𝜀

𝜀2

(
2
1 + 𝜀

1 + 2𝜀
−

ln(1 + 2𝜀)

𝜀

)

+
ln(1 + 2𝜀)

2𝜀
−

1 + 3𝜀

(1 + 2𝜀)2
, (2)

and 𝜀 = 𝐸∕511 keV (𝜀 = 𝐸∕𝑚e𝑐
2) is the reduced energy of the inci-

dent photon. The functions 1∕𝐸3 and 𝑓KN(𝐸) approximate the energy
dependence of the photoelectric absorption and Compton scattering,
respectively. Excluding the effect of absorption edges, they further
showed that the photoelectric coefficient, 𝑎1 and the Compton scatter-
ing coefficient, 𝑎2 could be expressed in terms of physical parameters
as:

𝑎1 ≈ K1

𝜌

𝐴
𝑍𝑛, 𝑎2 ≈ K2

𝜌

𝐴
𝑍 (3)

where K1 and K2 are constants, 𝜌 is mass density (g∕cm
3), 𝐴 is atomic

mass and 𝑍 is atomic number. 𝑛 is the exponent for photoelectric
attenuation (per atom). We optimize 𝑛 for each of the classification
approaches depending on how many energy bins are used. 𝑎1 and 𝑎2
represent only approximate expressions. The insertion of 𝑎1 and 𝑎2 from
Eq. (3) into Eq. (1) yields the LAC:

𝜇(𝐸) =
𝑍

𝐴
𝜌
(
𝑍𝑛−1𝑝(𝐸) + 𝑐(𝐸)

)
, (4)

where

𝑝(𝐸) = K1
1

𝐸3
, 𝑐(𝐸) = K2𝑓KN(𝐸). (5)

𝑝(𝐸) and 𝑐(𝐸) are photoelectric absorption and Compton scattering
basis functions, respectively. The basis functions are empirical defined
through experimental fit to data. In our calculations, we optimize the
basis functions and parameter 𝑛 for the best classification performance
and the resulting optimized values for all the multiple energy bins
approaches are presented in the Section 2.5.

2.2. Electron density and effective atomic number

X-ray attenuation is proportional to a material’s electron den-
sity [38]. The electron density is the number of electrons per unit
volume (electron − mole∕cm3) and related to mass density, atomic
number and atomic mass of an element as:

𝜌e =
𝑍

𝐴(𝑍)
𝜌, (6)

For a compound or mixture that has the composition of 𝑁 total differ-
ent elements 𝑖 each with a number of atoms, 𝛼𝑖, the electron density
can be derived as

𝜌e =

∑𝑁
𝑖=1 𝛼𝑖𝑍𝑖∑𝑁
𝑖=1 𝛼𝑖𝐴𝑖

𝜌. (7)

For compounds, the atomic number is referred to as effective atomic
number, 𝑍eff and a now classical parameterization was proposed by
Mayneord (1937) [39] and Spiers (1946) [40] as

𝑍eff =
𝑙

√√√√ 𝑁∑
𝑖=1

𝑟𝑖𝑍
𝑙
𝑖
, (8)

where 𝑁 is the number of elements in the material, 𝑍𝑖 is the atomic
number for each element, 𝑖, 𝑟𝑖 is ‘‘relative electron fraction’’ contri-
bution. The relative electron fraction of an element, 𝑖 is expressed
as

𝑟𝑖 =
𝛼𝑖𝑍𝑖∑𝑁
𝑗=1 𝛼𝑗𝑍𝑗

,

where 𝛼𝑖 is the number of atoms that have atomic number 𝑍𝑖.
No single formula of 𝑍eff can characterize the alteration of pho-

toelectric absorption cross section over the particular range of the
photon energies and materials with the acceptable accuracy of interest
in CT [37,40–47]. The Compton interaction takes place with relatively
unbound electrons for the photon energy range and materials relevant
to CT Systems, and consequently the Compton scattering cross section is
independent of chemical makeup of materials and only is a function of
photon energy [41], as discussed in the Sections 2.1 and 2.5. Therefore,
the exponent 𝑙 is optimized depending on the material, source spectrum
and system features. Usually, this parameter, 𝑙 changes between 2.94
and 3.8 based on experimental fits for different CT systems. In our cal-
culations, 𝑙 is set to the value of the original Lehmann parameterization,
which is 3.8 [44]. Even though Eq. (8) neglects the coherent scatter
part, this definition of 𝑍eff based on the Lehmann parameterization
operates quite well because the total cross section is mostly governed
by the Compton cross section for the set of our materials and photon
energy range [44,47]. Thus, we use two separate sets of parameters, 𝑛
and 𝑙 to define the photoelectric absorption cross section term, being
optimized depending on the approach of multiple energy bins and
single value for all the materials, respectively. In the Section 3.1, the
dependence of the classification performance on exponent 𝑙 is presented
and it is discussed how this exponent is selected in this work.

Substituting Eq. (6) into Eq. (4) we obtain a parameterized LAC for
a compound material as

𝜇(𝐸) = 𝜌e
(
𝑍𝑛−1

eff
𝑝(𝐸) + 𝑐(𝐸)

)
. (9)

2.3. Experimental setup and data correction

Fig. 2 illustrates the instrumentation. The experiments were per-
formed in the 3D Imaging Center at DTU, Denmark. A Hamamatsu
X-ray source was used operating at the acceleration voltage and the
filament current set to 160 kV and 0.5 mA, respectively. The focal spot
for these parameters is 75 μm. An aluminum filter of 2 mm thickness
was used to remove photons with energies lower than the detector
energy range. The beam was collimated into a fan beam geometry.
The samples were placed on the rotation stage and scanned during
the acquisition over a range of 360 degrees in discrete steps of 1◦

increments. The source to detector distance (SDD) was set to 701 mm

while the source to sample distance (SOD) was 500 mm.
The detector system comprises five MultiX ME100 modules, each

consisting of 1 × 128 pixels of size 0.8 × 0.8 mm2. The number of
energy bins is flexible and could be configured for the purpose of the
experiment between 2 and 128. In this work it was set to 128 with a
width of 1.1 keV each, evenly distributed in the energy range between
20 and 160 keV. The energy resolution of the detector, defined by the
Full Width at Half Maximum (FWHM) is 6.5% (8 keV at 122 keV)
by high X-ray fluxes [23]. In this work, the total integration time per
projection is 8 s.

Charge sharing, weighting potential, escape peaks, pulse pile-up and
incomplete charge collection in PCDs lead to data distortion [48]. These
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Fig. 3. X-ray source spectra before and after applying spectral correction algorithm.
The number of counts per second summed over all detector pixels is shown, measured
through the MultiX ME100 PCD.

effects are related to energy and flux, and therefore, the data distor-
tion affects the material’s attenuation property. To correct for these
spectral effects we used the correction algorithm presented by Dreier
et al. [48]. Fig. 3 shows the raw and corrected source spectrum. The
average counts integrated for the spectra was approximately 1.6×106

counts∕pixel per second.
Table 1 lists the materials studied in this work as well as their

reference 𝜌e and 𝑍eff values that were calculated by using Eq. (7) and
Eq. (8) and the exponent 𝑙 = 3.8, respectively. The material features
presented in the table will be used as the reference values in the fol-
lowing sections. The distribution of 𝑍eff for materials commonly found
in a passenger bag peaks between 7–8. Most organic materials belong
to this range [1]. The plastics used for the experiment were polymethyl
methacrylate (PMMA), polytetrafluoroethylene (PTFE), polyvinylidene
fluoride (PVDF), polycarbonate (PC), polyoxymethylene-C (POM-C),
polyethylene terephthalate (PET) and polyoxymethylene-H (POM-H).
These plastics were chosen since several explosives have similar
chemical compositions, e.g. POM has been considered an explosive
simulant [17]. The classification of plastics is thus an efficient gauge
for a system’s ability to identify explosive materials in luggage. The
materials used in the work represents the same 𝑍eff variation as
various organic tissues [49] and none have K-edge absorption within
the detector’s energy range. Sample dimension are found in Table 1
through width×length or diameter for rectangular and circular samples
respectively.

2.4. Setting low- and high-energy thresholds and LAC extraction

For each projection the photon counts 𝐼𝑘 of energy bin 𝑘 is
converted to line integrals 𝐿𝑘 based on Lambert–Beer’s law as:

𝐿𝑘(𝑥⃗) = −𝑙𝑜𝑔
𝐼𝑘(𝑥⃗)

𝐼0,𝑘(𝑥⃗)
, 𝑘 = 1, 2, 3,… , 128; (10)

where 𝐼0,𝑘 is the flat-field photon flux for energy bin 𝑘, i.e. the pro-
jection measured by the detector without inserting the sample. This is
also referred as the source spectrum or the system’s spectral response. 𝑥⃗
represents the 1D detector pixel array, the detector has total 128 energy
bins.

The intensity in the gap spaces between two adjacent modules, with
the width approximately equal to two pixels, were filled by neighbor
interpolation. Slice reconstructions were performed individually for
each energy bin from each line integral (or sinogram) by using the

SIRT implementation in the ASTRA Toolbox [51] to extract LACs of
materials. Fig. 4 presents how the LAC values are extracted from the
histogram based on Gaussian curve fits after sample reconstruction.
MATLAB®’s fitdist function with normal distribution was used to ex-
tract the LACs for all materials and for all approaches of the number of
used energy bins. The ring artifacts in the reconstruction may be due
to the difference in detector response for the pixels at crystal edges in
the detector since the correction algorithm is optimized for the central
pixels.

Fig. 5 shows measured and reference spectral LAC of PTFE plastic
and aluminum with and without spectral correction. Additional spectral
distortions appear at low- and high-energies, which cannot be totally
corrected by the spectral correction algorithm. LAC deviations from the
reference values at low- and high-energies could be due to detector
flux variation and photon starvation, i.e. complete attenuation of pho-
tons [48]. Energy bins with those deviations are excluded by setting
low- and high-energy thresholds, 𝐸i and 𝐸f that are kept constant for
all materials. We note that there is a slight deviation between the
measured LAC and the reference values between 55 keV and 65 keV.
We suspect that the detector resolution is lower for the higher flux flat
field and at places in the spectrum of higher discontinuities the LAC is
affected.

The data is rebinned in low- and high energy. The formulation pre-
sented here for the thresholds is compatible with an arbitrary number
of bins. As an example, merging energy-resolved data in the optimized
bi-energy bins approach defined in the Section 3.2 is performed by
summing the corrected incident photon flux 𝐼𝑘 for selected 𝑘 energy
bins before converting to line integrals as:

𝐼𝐿 =

𝑘=𝑏1∑
𝑘=i

𝐼𝑘, 𝐼𝐻 =

𝑘=f∑
𝑘=𝑏2

𝐼𝑘 (11)

where 𝐼𝐿 and 𝐼𝐻 are merged photon flux for low- and high-energies,
and i and f denote low- and high-energy threshold bins, respectively.
𝑏1 and 𝑏2 are the upper and lower thresholds of low- and high-energies,
respectively (in Fig. 1).

The classification performance has been tested for optimized bi-, 6,
15, 30, 45 and 90 energy bins and the results are presented in the
Section 3.4. Titanium showed the LAC noticeably deviated from the
reference values at lower energies that is due to complete attenuation of
radiation at this energy range. Fig. 6 presents the measured, fitted and
reference LAC of titanium. The deviated LAC of titanium has been fitted
by using polynomial extrapolation with MATLAB®’s polyfit function
between 32.1 keV and 131.3 keV, which became low- and high-energy
thresholds, respectively for 15, 30, 45 and 90 energy bins approaches
and for all materials. The energy bins in these approaches were spaced
uniformly between low- and high-energy thresholds with equal width
bins. For optimized bi- and 6 energy bins approaches the number of
bins was insufficient for the extrapolation, instead the deviated LAC of
titanium from 32.1 keV was truncated and the energy bins were spaced
over 57.5 keV and 131.3 keV that were set as low- and high-energy
thresholds, respectively for all materials. Without LAC extrapolation,
the number of bins in this PCD is insufficient to employ 90 bins for
classifications between 57.5 keV and 131.3 keV thresholds as shown in
Fig. 5.

Fig. 6 also shows counts for flat field spectra and low- and high-
energy thresholds for all variations of energy bins used and the
gap between low- and high-energies in the optimized bi-energy bins
approach.

2.5. Calibration of basis functions and 𝑛

From Eq. (9), LAC for each energy bin can be expressed as

𝜇𝑚(𝐸𝑘) = 𝜌𝑒,𝑚

(
𝑍𝑛−1

eff ,𝑚
𝑝(𝐸𝑘) + 𝑐(𝐸𝑘)

)
, (12)

where 𝑚 = 1, 2,… ,𝑀 , 𝑘 = 1, 2,… , 𝐾 with 𝑀 being the total number of
reference materials listed in Table 1 and 𝐾 being the number of energy
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Table 1
The list of all the materials scanned and processed through the method, and their physical properties 𝜌𝑒 and 𝑍eff . The mass density, 𝜌 for the
plastic materials was measured with uncertainties of ±0.15%. The mass densities for the rest of materials represent the theoretical values found
in PubChem data, [50].

Material Chemical formula Width×length/
Diameter (mm)

𝜌 (g/cm3) 𝜌𝑒 (𝑒−mol/cm3) 𝑍eff

PMMA (C5O2H8)𝑛 40 × 42 1.18 0.636 6.60
PTFE (C2F4)𝑛 9 × 53.3 2.16 1.039 8.50
PVDF (C2H2F2)𝑛 9 × 53.5 1.8 0.9 8.01
PC (CO3C13H8)𝑛 8.2 × 53.5 1.19 0.615 6.48
POM-C (CH2O)𝑛 9 × 53.5 1.42 0.758 7.07
PET (C10H8O4)𝑛 9 × 53.5 1.39 0.726 6.74
POM-H (CH2O)𝑛 15.5 × 53.3 1.44 0.766 7.07
Acetone C3H6O 20 0.785 0.432 6.44
Hyd. Peroxide H2O2 (50%) 20 1.22 0.661 7.65
Methanol CH3OH 20 0.792 0.446 6.86
Water H2O 20 0.997 0.554 7.54
Nitromethane CH3NO2 20 1.14 0.597 7.27
Aluminum Al 25 2.70 1.3 13
Silicon Si 25 2.33 1.161 14
Magnesium Mg 12.7 1.74 0.858 12
Titanium Ti 12.7 4.51 2.071 22

Fig. 4. The mean LAC extraction based on the normal distribution. Left: 2D reconstruction of a sample including the five plastic materials indicated by red arrows. The color bar
shows linear attenuation coefficients (LACs) for the low energy bin of the optimized bi-energy approach defined in the Section 3.2. Right: the histogram of PTFE plastic (blue bars)
shown with a Gaussian peak fit (red line). The pixel counts represent the number of pixels in the PTFE plastic area marked by the arrow to the left, each having the corresponding
LACs presented on the 𝑥-axis.

Fig. 5. Energy resolved LAC for PTFE (left) and aluminum (right) obtained with and without spectral correction. The reference LACs were defined by using NIST cross-sections, [52].
Where the LAC deviates at low- and high-energies the spectra are truncated, and low- and high-energy thresholds, 𝐸i and 𝐸f are constant for all materials as shown with the
vertical red dash-dotted lines.
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Fig. 6. Fitting LAC by extrapolation and photon counts for all the approaches for variations of energy bins used. Left: the measured and fitted LAC obtained by using polynomial
extrapolation and the reference LAC of titanium. Right: counts in the flat field spectra for optimized bi-, 6, 15, 30, 45 and 90 energy bins approaches. A vertical lines at 𝐸0 (57.5
keV) is the low-energy threshold for optimized bi- and 6 energy bins, and the lines at 𝐸1 (107 keV) and 𝐸2 (109.3 keV) show the gap between low- and high-energies of optimized
bi-energy bins. Note logarithmic scale on the 𝑦-axis.

Fig. 7. Optimized photoelectric absorption 𝑝(𝐸𝑘) (left) and Compton scattering 𝑐(𝐸𝑘) (right) basis functions for optimized bi-, 6, 15, 30, 45 and 90 energy bins approaches. The
optimized values of exponent 𝑛 are also presented for each multiple energy bins approach. A vertical lines at 𝐸0 (57.5 keV) is the low-energy threshold for optimized bi- and 6
energy bins, and the lines at 𝐸1 (107 keV) and 𝐸2 (109.3 keV) shows the gap between low- and high-energies of optimized bi-energy bins.

Fig. 8. The variation of accuracy with exponent 𝑙. Left: the percent relative deviations for 𝑍eff defined in Eq. (8), as a function of exponent 𝑙 for the materials presented. Right:
the mean percent relative deviation for 𝑍eff calculated from absolute values of relative deviations for each material shown in the left frame. As expected, the relative deviations
for the electron density for all the materials did not show noticeable dependence on 𝑙.
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Fig. 9. Photon counts of low- and high-energies of all detector pixels in the flat
field spectrum as a function of the gap position being shifted from low- to high-
energy threshold. The gap corresponds to the upper and lower thresholds of low- and
high-energies in the bi-energy bins approach, respectively.

bins used for a particular classification approach. 𝑝(𝐸𝑘) and 𝑐(𝐸𝑘) are
photoelectric absorption and Compton scattering basis functions for
energy bin 𝐸𝑘, respectively. These are calibrated and the same for all
materials.

We optimize not only the basis functions, but also the parameter 𝑛
for better estimation. Due to the non-linearity with respect to 𝑛, solving
Eq. (12) is not straightforward. We impose positivity constraints for all
basis functions and 𝑛 on the solution. With this constraint, we formulate
the objective function as follows:

min
0≤𝑝1 ,𝑐1 ,…,𝑝𝐾 ,𝑐𝐾 , 𝑛

𝑀∑
𝑚=1

𝐾∑
𝑘=1

(
𝜇𝑚(𝐸𝑘) − 𝜌e,𝑚(𝑍

𝑛−1
eff ,𝑚

𝑝𝑘 + 𝑐𝑘)
)2

, (13)

where 𝑝𝑘 = 𝑝(𝐸𝑘) and 𝑐𝑘 = 𝑐(𝐸𝑘). To optimize Eq. (13), we employ a
nonlinear least square solver based on trust region method [53]. The
minimization was performed with MATLAB®’s lsqnonlin function with
initial constraints that we chose as 𝑝0

𝑘
= 0.5, 𝑐0

𝑘
= 0.5 and 𝑛0 = 3.6 for

all 𝑘. The calibration results showed no particular dependency on the
starting values.

At low energies, the photoelectric cross section is a strong function
of atomic number, as seen in Eq. (1) and Eq. (3). This effect can be
used to achieve strong contrast even for materials with small differ-
ences in electron densities and effective atomic numbers. For most
biological materials, as the photon energy increases over 60 keV, the
dependence of the LACs on atomic number rapidly decreases and the
photon attenuation occur mostly due to Compton interaction where
mass density and electron density dominate the LACs [43]. Fig. 7 shows
the resulting optimized values of the 𝑝(𝐸𝑘), 𝑐(𝐸𝑘) basis functions and of
𝑛 for all the multiple energy bins approaches analyzed in our work. As
expected, over roughly 60 keV, photoelectric absorption basis functions
that decrease over the whole energy range become lower than those for
Compton scattering part. As a result, the 𝑝(𝐸𝑘) basis functions values
in optimized bi- and 6 energy bins approaches are 1.7 to 5 and 3.5 to
19.7 times lower than 𝑐(𝐸𝑘), respectively.

The reported values of exponent 𝑛 defined in photoelectric cross
section term in the literature changes between nearly 3.94 and 5, as a
function of the photon energy and also materials [37,42–45,47,54]. We-
ber et al. (1969) [42] proposed the value of 4.4 for 𝑛. For CT systems,
the suggested exponents were 3.94 by Phelps et al. (1975) [55], 4.4 by
Cho et al. (1975) [43], 4.62 by Rutherford et al. (1976) [54] and 4.8 by
McCullough (1975) [41]. For idealized dual-energy CT imaging in the

energies between 20 keV and 1000 keV, Williamson et al. (2006) [45]
separated parameterization into two sets of exponents depending on
atomic number range and found 5.05 and 4.69 for 2 ≤ 𝑍 ≤ 8 and 8 <

𝑍 ≤ 20, respectively. They estimated theoretically linear attenuation
coefficients with absolute mean and maximum accuracy errors of up
to 2.2% and 6%, respectively, however there were relatively higher
errors at low energies and at higher 𝑍. For high-energy X-ray cargo
inspection, Langeveld (2017) [47] gave an improved Lehmann-type
parameterization of LACs at energies of 20 − 1000 keV, which resulted
in a better definition of photoelectric absorption cross section term and
in turn 𝑍eff . X-ray attenuation coefficients were fitted quite well over a
broad range of 𝑍. The value of 𝑛 in their fits was 4.14. In our work, the
optimized values of exponent 𝑛 were found to be between 3.60 and 4.09
depending on the number of energy bins, as shown in Fig. 7. The higher
the 𝑛 value is, the lower 𝑝(𝐸𝑘) and the higher 𝑐(𝐸𝑘) basis functions are
for all energies. The highest value of 𝑛 = 4.09 found for the approach
using 6 energy bins presents the lowest classification performance, as
discussed in the Section 3.4. The reason for relatively lower values
of 𝑛 found in our work may be due to our parameterization and the
multi-spectral dimensionality of LACs defined in Eq. (12).

2.6. (𝜌e, 𝑍eff ) calculation

The calibration parameters (𝑝(𝐸𝑘), 𝑐(𝐸𝑘) and 𝑛) and the measured
LAC 𝜇(𝐸𝑘) are used to retrieve (𝜌e, 𝑍eff ). For 𝑀- and 𝐾- total number
of unknown materials and energy bins, respectively, we reformulate
Eq. (12) as a linear system equation as follows:

⎛
⎜⎜⎝

⃖⃗𝑝 ⃖⃗𝑐

⋱

⃖⃗𝑝 ⃖⃗𝑐

⎞
⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝

𝑧1
𝜌e,1
⋮

𝑧𝑀
𝜌e,𝑀

⎞⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎝

⃖⃗𝜇1

⋮

⃖⃗𝜇𝑀

⎞
⎟⎟⎠

(14)

where 𝑧𝑚 is a temporary variable introduced instead of 𝜌e,𝑚𝑍
𝑛−1
eff

and
⃖⃗𝑝 = (𝑝1,… , 𝑝𝐾 )

𝑇 , ⃖⃗𝑐 = (𝑐1,… , 𝑐𝐾 )
𝑇 and ⃖⃗𝜇𝑚 = (𝜇𝑚(𝐸1),… , 𝜇𝑚(𝐸𝐾 ))

𝑇 . In
the latter equation, the size of the linear matrix is (𝑀 ×𝐾)-by-(2 ×𝑀)
and the number of unknowns is 2 × 𝑀 . We use a linear least square
solver called lsqnonneg function in MATLAB® with the positivity
constraint on the solution returning the vector (𝑧1, 𝜌e,1,… , 𝑧𝑀 , 𝜌e,𝑀 )
that minimizes the norm. After solving it, the effective atomic numbers
are retrieved for all materials by

𝑍𝑚 =

(
𝑧𝑚

𝜌e,𝑚

) 1
𝑛−1

. (15)

The method accuracy was estimated as the percent relative
deviation from the reference values for 𝜌e and 𝑍eff as:

𝛥𝑍rel
ef f

= 100% ⋅

𝑍est
ef f

−𝑍ref
ef f

𝑍ref
ef f

, (16)

𝛥𝜌rel
e

= 100% ⋅
𝜌est
e

− 𝜌ref
e

𝜌ref
e

(17)

where superscripts est and ref refer to the estimated and reference
values, respectively.

3. Results and discussions

3.1. Investigating classification performance as a function of exponent 𝑙

We studied how the classification performance changes with the
selection of the exponent 𝑙 defined in 𝑍eff formula (Eq. (8)) for the
materials such as plastics and liquids listed in Table 1, to tune this value
on the best match for our experimental data. The classifications were
performed using plastic materials as references in the calibration step
and optimized bi-energy bins for the calculations. Fig. 8 presents the
dependence of relative errors for 𝑍eff on exponent 𝑙 for the materials
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Fig. 10. Optimization of the bi-energy-bin method based on relative deviations for 𝜌e (left) and 𝑍eff (right).
∗The mean deviation was calculated from the absolute values of

relative deviations for each material listed in Table 1.

Fig. 11. Estimated and reference (𝜌e , 𝑍eff ) obtained with the SIMCAD method using optimized bi-energy bins. A magnified version of the lower left part of the left frame is
presented in the right frame to avoid overlap of the material labeled names.

shown. Based on the mean relative deviations, we find that the optimal
range of exponent 𝑙 is between 7.2 and 10.5 with lower than 1%
deviations and the minimum deviation is approximately 0.9% at 𝑙 =

8.0 whereas the deviation is 1.4% at the reference value of 𝑙 = 3.8.
Thus, the exponent 𝑙 given in the references is not optimal with this
set of materials, source spectrum and detector response. To preserve
consistence with the previously published works in comparing the
performance, we keep the reference value of 𝑙 = 3.8 for our calculations
of reference 𝑍eff values.

3.2. Optimizing the method for bi-energy bins

Fig. 1 illustrates the gap between low- and high-energies when
using optimized bi-energy bins. How low and high energy photons are
binned together is important for classification performance. Therefore,
to optimize the method the gap is shifted from low- to high-energy
threshold in increments of one energy bin and the gap width is selected
as two energy bins equal to 2.3 keV and kept constant over the whole
energy range. Fig. 9 presents how the photon counts for low- and high-
energies change with respect to position of the gap corresponding to
the upper and lower thresholds of low- and high-energies, respectively.

Fig. 10 shows the changes in the percent relative deviations for
𝜌e and 𝑍eff of the mean values (for all materials), PMMA, water,

aluminum and titanium between the low- and high-energy thresholds
when using bi-energy bins. The chart shows that the relative devia-
tions for the materials with higher 𝑍eff values such as aluminum and
titanium remain lower and more stable over the whole energy range
compared to liquids and plastics for both 𝜌e and 𝑍eff . The optimal
classification performance is reached when low-energy is between 57.5
keV and 107 keV while high-energy is 109.3 keV to 131.3 keV with
mean relative deviations of 1.5% and 3.1% for 𝜌e and 𝑍eff , respectively.
The results for all the materials obtained with optimized bi-energy bins
are presented in the next subsection. In contrast to a simulation study
presented by Wang et al. [27] estimating the thickness of the two
basis materials, we find that similar incident photon flux in low- and
high-energies when using bi-energy bins do not provide the optimal
classification performance, this result is seen in Fig. 9. The reason may
be because our results are based on experimental data with realistic
noise level and spectral artifact.

3.3. (𝜌e, 𝑍eff ) map

Fig. 11 shows a (𝜌e, 𝑍eff ) chart of estimated and reference values.
Table 2 lists the percent relative deviations for both of estimated
material features for SIMCAD and SRZE methods. The SIMCAD method
gives promising results with mean relative deviations of 1.5% for 𝜌e,
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Fig. 12. The percent relative deviations for 𝜌e (left) and 𝑍eff (right) as a function of the number of energy bins used for classifications. Optimized bi-energy bins gives better
classification performance. ∗The mean deviation was calculated from absolute values of relative deviations for each material listed in Table 1.

Table 2
The percent relative deviations for (𝜌e , 𝑍eff ) with the reference values. To compare, SRZE estimations are taken from [20,32].

Material 𝜌ref
e
(e−mol/cm3) SIMCAD

𝛥𝜌rel
e
(%)

SRZE
𝛥𝜌rel

e
(%)

𝑍 ref
ef f

SIMCAD
𝛥𝑍rel

ef f
(%)

SRZE
𝛥𝑍 rel

ef f
(%)

PMMA 0.636 −2.0 −2.3 6.60 5.1 −0.3
PTFE 1.039 −2.7 0.1 8.50 4.5 −2.5
PVDF 0.9 −0.8 −0.8 8.01 3.5 −1.4
PC 0.615 −1.6 1.4 6.48 2.0 −1.8
POM-C 0.758 −0.6 −1.4 7.07 3.6 −0.9
PET 0.726 −1.4 −3.1 6.74 1.1 −0.1
POM-H 0.766 −2.0 −2.4 7.07 5.5 −0.4
Acetone 0.432 1.6 −2.3 6.44 −1.0 5.0
H2O2 (50%) 0.661 2.4 −0.2 7.65 4.6 5.4
Methanol 0.446 1.1 1.4 6.86 5.6 −4.7
Water 0.554 0.5 −6.9 7.54 4.4 −2.7
Nitromethane 0.597 2.6 1.7 7.27 −2.3 2.5
Aluminum 1.3 0.9 −3.2 13 −2.5 0.7
Silicon 1.161 3.4 −5.5 14 −1.2 −0.7
Magnesium 0.858 0.03 −5.4 12 −2.4 0.8
Titanium 2.071 −0.3 −0.7 22 0.2 −1.2
Meana − 1.5 2.4 − 3.1 1.9

aThe mean values were calculated from absolute values of each column.

and 3.1% for 𝑍eff using optimized bi-energy bins, whereas the SRZE
method yields deviations of 2.4% and 1.9% respectively with 64 energy
bins [20]. With only two energy bins, the SRZE method has a noticeably
higher deviation of 9.4% for 𝜌e, and 13.4% for 𝑍eff for single material
samples [32]. Thus, our method using much fewer energy bins can
provide a significant reduction in computing time, which is important
for security screening scanners. It can be noted from the table that as
the effective atomic number increases, the classification accuracy also
increases. Thus the method may be robust also for materials with higher
𝑍eff values.

3.4. Classification performance as a function of the number of energy bins
used

How a source spectrum is sampled for all the multiple energy
bins approaches is described in the Section 2.4. Fig. 12 highlights the
relative errors for (𝜌e, 𝑍eff ) depending on the number of energy bins
used. For 𝜌e, the mean relative error values increase as the number
of energy bins used increases reaching 4.2% at 90 energy bins. For
𝑍eff , the error remains almost unchanged being equal to 3.3% at 90
energy bins, with an exception for 6 energy bins where the error is
7.2%. Materials with higher 𝑍eff values such as aluminum and titanium
show noticeably lower relative error for all numbers of energy bins used
compared to plastics and liquids.

The classification performance is worse for the 6 energy bins ap-
proach compared to optimized-bi-energy bins. The reason may be that
the thresholds of 6 energy bins approach are not optimized whereas
those for optimized-bi-energy bins are. Thus, optimizing the energy
bin thresholds is desired for better performance when the number
of energy bins used is low. A similar phenomenon was previously
observed in radiography studies by Beldjoudi et al. [18,24]. However,
contrary to their findings, employing 15, 30, 45 and 90 energy bins
does not enhance but rather deteriorates classification performance
relative to optimized-bi-energy bins approach. This may be because
energy bin widths for 15, 30, 45 and 90 energy bins, which are equally
distributed throughout the spectrum are below the energy resolution of
the detector (8 keV) corresponding, respectively, to energy bin widths
of 6.6 keV, 3.3 keV, 2.2 keV and 1.1 keV; Secondly the detector noise
becomes greater as the number of energy bins increases. Since the
bin width for approaches using 30 and 45 energy bins are smaller
compared to the approach of 15 energy bins, they are less dependent
on energy threshold optimization. The approach of 90 energy bins
does not require any threshold optimization. Despite this fact, 15
energy bins approach without the energy bin threshold optimization
appears to have better classification performance compared to 30, 45
and 90 energy bins. Overall optimized bi-energy bins achieve the best
classification performance, and shows the best robustness for all the
materials we classified in this work.
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Fig. 13. *The mean deviation for (𝜌e , 𝑍eff ) obtained by corrected and uncorrected
LACs in the optimized bi-energy approach, calculated from absolute values of relative
deviations for each material used.

Fig. 13 shows the mean relative deviations obtained by corrected
and uncorrected LACs from optimized bi-energy bins, which equals
5.0% and 37.9% for 𝜌e and 𝑍eff , respectively without the correc-
tion. Therefore the method requires the use of a spectral correction
algorithm.

4. Conclusion

We have presented the SIMCAD method for material characteri-
zation from system-independent physical parameters (𝜌e, 𝑍eff ) using
Spectral CT systems. We explored the influence of the number of used
energy bins on the performance of the method by applying different
energy thresholds to define the energy bins. Employing a non-optimized
energy bins approaches with a low number of energy bins used leads
to a noticeable decrease in classification performance. It was presented
that the approaches with energy bin widths below the detector energy
resolution does not provide noticeable enhancement in classifications
further, and we found the method to be most accurate employing
just optimized bi-energy bins. The formulation of method however, is
compatible with an arbitrary number of energy bins. We saw the use of
a correction algorithm remove most detector response artifacts from the
LAC, and classification even with optimized bi-energy bins is shown to
require the correction. SIMCAD requires a calibration step using a set of
reference materials to calibrate photoelectric absorption and Compton
scattering basis functions and 𝑛 from the LAC expression.

In contrast to the SRZE method, which reaches the best accuracy
with 64 energy bins [20], the SIMCAD method gives comparable
accuracy with only optimized bi-energy bins, which gives up to 32
times reduction in computing time due to the reduced number of CT
reconstructions required. This makes the method compatible with the
requirements of high speed security scanners. Our method employing
a single scan is also comparable to the state-of-the-art techniques using
dual-energy CT scans in terms of reconstruction time and material clas-
sifications, and it provides a better classification performance for highly
attenuating materials [4,16]. The method is shown to be applicable in
the range of 6 ≤ 𝑍eff ≤ 23 however, since higher 𝑍eff materials showed
noticeably better accuracy compared to plastics and liquids, the method
may be expected to be suitable for a larger range of 𝑍eff materials.
Contrary to the results obtained in the studies by Rinkel et al. [17]
and Beldjoudi et al. [18], the method gives better accuracy with opti-
mized bi-energy bins, compared to the same technique with 90 energy

bins. This may be because the high and low energy thresholds of our
technique truncates the LAC’s where they have the highest amount of
experimental artifacts; Secondly compared to dual energy detectors our
energy bins are not overlapping and are thus not influenced by system
or sample parameters. The optimized bi-energy approach truncated the
low-energy bin below 57.5 keV and therefore the method is expected
also to work for the materials with 𝑍eff ≤ 68, which do not exhibit
absorption edges above this low-energy threshold. This range of atomic
numbers include most of the materials scanned by security screening
instruments. For further experiments, we will investigate robustness
of the technique for a broader range of 𝑍eff , and in the presence of
K-edges.
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A B S T R A C T

The development of energy resolving photon counting detectors (PCD) has paved the way to the Spec-
tral X-ray Computed Tomography (SCT), with which one can simultaneously extract the energy de-
pendence of a material’s linear attenuation coefficient (LAC). Spectral CT is proved to be an advanced
technique to classify materials based on their physical properties of electron density (�e) and effective
atomic number (Zeff ). However, the application of Spectral CT for material classification in security
screening applications may be hindered by the poor image reconstruction quality because of sparse-
view (few) projections and the insufficient number of photon counts, which is important to achieve
rapid scanning. The image reconstruction quality for each energy bin may also be degraded since the
division of photon counts into multiple energy bins naturally leads to higher noise levels. In this work,
we explore how to perform accurate Spectral CT reconstructions from such data. We propose to im-
prove Spectral CT by using correlations between multiple energy bins with joint reconstruction. This
improvement is realized through L∞norm-based vectorial total variation (L∞-VTV) regularization.
The L∞-VTV is tested on “real life” phantoms consisting of materials in the range of 6 ≤ Zeff ≤ 15.
From experimental data acquired with a custom laboratory instrument for Spectral CT, we find that the
L∞-VTV provides an improved reconstruction, better material classification performance and shorter
computation time compared to another state-of-the-art joint reconstruction of total nuclear variation
(TNV), and the total variation (TV) regularized and the non-regularized bin-by-bin reconstructions.
In a sparse-view case with 7 projections, the L∞-VTV gives the relative deviations of 3.5% for �e
and 2.4% for Zeff whereas the TNV and TV lead to deviations of 3.4% and 3.1%, and 3.8% and
4.2%, respectively. The L∞-VTV reconstruction algorithm is now ready for use in security screening
applications.

1. Introduction

Using sparse-view reconstructions from few projections
in X-ray Computed Tomography (CT) Systems can enable
rapid scanning which is important for security applications.
However, the poor reconstruction quality caused by the sparse
data may hinder achieving the desired accuracy in material
classification for security screening. Many studies have been
done in addressing the sparse data problems either in CT
Systems or image processing. The total-variation (TV) in-
troduced by Rudin, Osher, and Fatemi [1] has been effec-
tively used for various image processing problems in noise
suppression. TV regularization was shown to provide sharp
discontinuities and preserves edges in image reconstruction,
promoting sparse gradients of the images. Various TV based
reconstruction algorithms have been implemented for sparse-
view and limited angle CT [2, 3]. Sidky et al. (2006) [4] im-
plemented a TV-regularized reconstruction in fan-beam CT
for different insufficient data problems such as the few-view
projections and limited angles. They showed that the TV
outperforms the existing reconstruction methods for such data.

The development of energy-resolved, photon counting

∗Corresponding author.
doniyor.jumanazarov@fysik.dtu.dk (D. Jumanazarov);

jakoo@dtu.dk (J. Koo); jake@fysik.dtu.dk (J. Kehres); hfpo@fysik.dtu.dk
(H.F. Poulsen); ullu@dtu.dk (U.L. Olsen); office@accent.ro (M. IOVEA)

ORCID(s): 0000-0003-1583-7375 (M. IOVEA)

detectors (PCD) led to the emergence of Spectral CT, which
can simultaneously retrieve the energy dependence of a ma-
terial’s linear attenuation coefficient (LAC). Thus, Spectral
CT is just CT with multiple ”color" channels. The term
channel is referred to as bin in this work. Spectral CT with
multiple energy bins may suffer from the fact that narrower
energy bins integrate less photons and thus have significantly
lower signal to noise ratio (SNR). Therefore, to combat the
heavy sparse-view artifacts and improve denoising perfor-
mance at decreased SNRs in Spectral CT we aim to use the
joint reconstruction algorithms. The joint reconstruction al-
gorithm jointly reconstructs the images by simultaneously
employing all the multi-energy sinogram data instead of re-
constructing each energy bin independently. For image pro-
cessing problems, Blomgren and Chan (1998) [5] introduced
a first definition of vectorial TV (VTV) regularizer that ex-
tends the conventional scalar TV into a multi-dimensional
frame that considers dependency both in the spatial and spec-
tral dimensions.

The main question when formulating a VTV as a convex
regularizer is how exactly to couple color channels. Holt
(2014) [6] investigated several VTV types with color im-
age denoising experiments including Total Nuclear Varia-
tion (TNV). TNV algorithm uses the nuclear norm in the
gradients of images, which is the convex envelope of ma-
trix rank [7]. Holt showed that minimizing the nuclear norm

D. Jumanazarov et al.: Preprint submitted to Elsevier Page 1 of 16
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leads to promoting gradient vectors in different color chan-
nels to share common directions, compared to other VTV
regularizers of Total Frobenius Variation and Total Spectral
Variation. Thus, the TNV leverages the structure coherence
of a scanned object sharing the same structure information
at various energies. Using simulated data in Spectral CT,
Rigie et al. (2015) [8] applied TNV to reconstructing tissue
density maps. They showed that TNV is better in suppress-
ing noise and has less edge blurring compared to bin-by-bin
TV reconstructions. Even though each energy bin of a spec-
tral CT often has remarkably different noise levels, TNV
showed robustness to undesired transfer of individual char-
acteristics to other bins. With experimental data, Rigie et al.
(2017) [9] implemented TNV and another VTV algorithm
using the Frobenius norm as well as TV in dual-energy CT.
They found that both VTV regularized couplings are better
at suppressing noise compared to the conventional TV while
TNV was still the best regularizer among them. Zhong et al.
[10] investigated a TNV reconstruction algorithm by com-
bining energy-dispersive X-ray spectroscopy (EDS) with a
more precise high-angle annular dark-field STEM (HAADF-
STEM) tomography when the number of tilts is small and
photon counts are low. The TNV regularization was more
precise in preserving features of reconstructed images com-
pared to the simultaneous iterative reconstruction technique
(SIRT) [11] and TV reconstruction algorithms.

Miyata et al. [12] proposed using a L∞ norm for defin-
ing VTV term. For an image denoising task, they showed
that L∞-VTV can efficiently estimate the violation of inter-
channel dependency and provide strong coupling among color
channels. Duran et al. [13] analyzed several VTV regulariz-
ers, by applying different collaborative norms to the discrete
gradients of multi-channel images consisting of a 3D matrix,
whose dimensions correspond to color channels, the spatial
gradients in x and y-axis, and the image pixels. For color
image denoising tasks, they demonstrated that the L∞-VTV
and TNV give the better results to suppress color artifacts
compared to the other VTV norms, and the efficiency of par-
ticular norm appeared to be dependent on the experimental
data considered.

In this work, using experimental data we implement and
investigate a L∞ norm-based VTV algorithm for Spectral
CT with an attention to security screening applications. L∞-
VTV uses the infinity (maximum) norm to jointly penal-
ize the maximum image gradient magnitudes over multi en-
ergy bins. This joint reconstruction algorithm has a posi-
tive weighting parameter that controls the balance between
a good fit to energy-resolved sinogram data and a smooth
reconstruction. This parameter determines the strength of
the regularization term. We use the correlation coefficient
to estimate the reconstructed image quality against ground-
truth images as a figure of merit (FOM). For each recon-
struction algorithm, the reconstructed image quality is esti-
mated for different levels of photon counts as a function of
the weighting parameter. The robustness of each algorithm
to high noise added to certain energy bins is also tested.

In previous work, we presented the method for system-

independent material classification through attenuation de-
composition (SIMCAD) from Spectral CT [14]. The SIM-
CAD method estimates the system-independent material prop-
erties of electron density (�e) and effective atomic number
(Zeff ) from the energy-dependent LACs, independent of the
system or the scanner specification, such as the X-ray spec-
trum. This method employs the attenuation decomposition
introduced by Alvarez et al. [15] for the formulation of the
method and adopts it for multi-energies.

In this work, applying the SIMCAD method for each re-
construction algorithm we also aim to investigate the perfor-
mance of material classification by using sparse-view recon-
structions as an another FOM. We compare the reconstruc-
tion quality and classification performance of L∞-VTV with
TNV joint reconstruction algorithm, and TV and SIRT bin-
by-bin reconstruction algorithms. This study is based on real
experimental data over a common set of materials, measured
with a custom laboratory instrument for Spectral CT. We ex-
pect that the improvement in the reconstruction quality leads
to more accurate extraction of LACs, and therefore to better
material classification. The classification performance is es-
timated as a function of the weighting parameter for each
reconstruction algorithm. We also test the robustness of the
reconstruction algorithms for noisy projection data. For the
experimental validation, we use 20 different materials for the
calibration of SIMCAD classification method and 15 addi-
tional materials for the (�e, Zeff ) calculation.

The joint reconstruction algorithms presented in this work
can be easily extended to three-dimensional (3D) CT imag-
ing, which is a powerful quantitative tool for exploring com-
plex connections between the features and microstructure of
materials in the field of material science [16, 17]. There-
fore, the improvement of the distributions of (�e, Zeff ) in the
material through the improved image reconstruction can be
useful for studying the complex microstructure of materials.
Moreover, the methods introduced in this study can also be
applied to data from a variety of spectral imaging techniques
such as visible light, electron or neutron tomography.

2. Experimental setup. Data processing

2.1. Physical properties of materials
Linear attenuation coefficient (LAC) is proportional to a

material’s electron density [18], which is the number of elec-
trons per unit volume (electron − mole∕cm3). For a com-
pound or mixture that has the composition of N total differ-
ent elements, the electron density can be calculated as

�e =

∑N
i=1 �iZi∑N
i=1 �iAi

�. (1)

where � is mass density (g∕cm3), Ai and Zi are atomic mass
and atomic number for each element, i, respectively, �i is
the number of atoms that have atomic number Zi. For com-
pounds, the atomic number is referred to as effective atomic
number, Zeff and a now classical parameterization proposed
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Table 1

Parameters of experimental setup. Note that we use 7, 12 and 36 projections in the
subsection 5.1, 36 projections in 5.2, 12 projections in 5.3 and 5.4, and 7 and 12 projections
in 5.5. The total integration time per projection is 8 seconds in the subsections 5.1 and
5.5, while the integration times are 2 ms, 10 ms and 50 ms in 5.2, and 100 ms in 5.3 and
5.4.

Source parameters 150 kV, 0.5 mA

Focal spot 75 �m

Number of pixels 1 × 640 1D array
Pixel size 0.8 × 0.8 mm2

Detector resolution 6.5% (8 keV at 122 keV)
Number of energy bins 128 (1.1 keV width each)
Number of projections 7, 12, 36
Total integration time per projection 2 ms, 10 ms, 50 ms, 100 ms, 8 s

Source to detector distance (SDD) 701 mm

Source to sample distance (SOD) 500 mm

by [19, 20] is defined as

Zeff =
l

√√√√ N∑
i=1

riZ
l
i
, (2)

where ri is “relative electron fraction” contribution of an el-
ement, i, which is determined as

ri =
�iZi∑N
j=1 �jZj

,

In previous work [14], for material classification the ex-
ponent l was investigated to tune this value on the best match
depending on the materials, source spectrum and system fea-
tures. The l = 8.0 was found to be the optimal value for
classification performance, therefore we choose this value
for the calculations of reference Zeff values in this work.

2.2. Experimental setup and materials
Table 1 lists the parameters of the experimental setup

designed for spectral CT measurements. The experiments
were performed in the 3D Imaging Center at DTU, Den-
mark. The X-ray beam was generated by a micro focused
X-ray source of the type L12161-07 made by Hamamatsu.
The operating parameters were the acceleration tube voltage
of 150 kV and the anode filament current of 0.5 mA. A 2-
mm-thick aluminum filter was placed in front of the source
to remove photons with energies below the detector energy
range. The incident beam was collimated to a fan beam by
using a JJ X-Ray IB-C80-AIR slit with 5-mm-thick tungsten
carbide blades to fully illuminate all the detector pixels while
keeping the beam size to a minimum, and thereby to reduce
the background radiation composed of scattered and fluores-
cent photons. The sample placed on the rotation stage was
scanned between discrete rotations with different increments
over a range of 360 degrees depending on the number of pro-
jections. The source to detector distance (SDD) is 701 mm

whereas the source to sample distance (SOD) corresponds
to 500 mm. Fig. 1 illustrates the experimental setup.

The detector used for the experiments is MultiX ME-100
v2 produced by Detection Technology S.A.S. in Moirans,

France. We employ a system of five detector modules, each
module has a 1 × 128 line array of pixels each with the size
of 0.8 × 0.8 mm2. The number of energy bins is 128 with
a width of 1.1 keV each, evenly spaced in the energy range
between 20 and 160 keV. The energy resolution of the de-
tector with high X-ray fluxes is 6.5% (8 keV at 122 keV)
[21]. The detector is made up of a 3-mm-thick CdTe sen-
sor. Incoming photons pass through a collective cathode of
a continuous metal film. The sensor has pixelated anodes on
the other side with notably smaller size, which are placed on
readout electronics. A single MultiX detector has 128 pixe-
lated anodes (pixels) with a pitch of 800 �m and consists of
an array of 4 sensor crystals each with 32 pixels. The detec-
tor can operate with integration time from 2 ms to 100 ms

(in 10 �s increments). The lower integration time indicates
the lower photon counts.

Fig. 2 show the samples scanned and processed through
each reconstruction algorithm to estimate the reconstruction
quality. Table 2 and Table 3 list the materials used for the
calibration step and (�e, Zeff ) calculation in the material
classification described in Section 4, respectively. The ref-
erence �e and Zeff values in both tables were calculated by
using Eq. (1) and Eq. (2) and the exponent l = 8.0, respec-
tively. The �e and Zeff values in Table 2 will be used as
the reference values in the calibration step of the material
classification. Sample dimensions are shown as the diame-
ter for circular samples and as width×length for rectangular
samples. The plastic materials used for the material classi-
fication in both tables are polyvinylidene fluoride (PVDF),
polyoxymethylene-H (POM-H), polyethylene terephthalate
(PET), polytetrafluoroethylene (PTFE), polyoxymethylene-
C (POM-C), polymethyl methacrylate (PMMA) and poly-
carbonate (PC). The most materials listed are explosive or
precursor materials, and prohibited in checked-in or carry-on
luggage. The materials correspond to the range of effective
atomic number, 6 ≤ Zeff ≤ 15, which covers most of the
materials encountered in security screening [22]. Note that
if materials present K-edge absorption in the LAC defined
in Eq. (29), the bins with energies lower than the K-edge are
truncated making it consistent with the formulation of the
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Table 2

The list of the materials scanned and processed for the calibration step in material clas-
sification, for which the formulation of calibration and the results are presented in the
subsections 4.1 and 5.5, respectively. The mass density, � for the plastic materials was
measured with uncertainties of ± 0.15%. The mass densities for the rest of materials
represent the theoretical values found in PubChem data, [24].

Material
Chemical
Formula

Width×length/
Diameter (mm)

� (g∕cm3) �e (e
−mol∕cm3) Zeff

Graphite C 12.7 1.8 0.899 6
PC (CO3 C13 H8)n 8.2×53.5 1.18 0.610 6.82
PMMA (C5 O2 H8)n 40×42 1.18 0.636 7.02
POM-C (CH2 O)n 9×53.5 1.41 0.753 7.40
PTFE (C2 F4)n 9×53.3 2.16 1.035 8.70
N,N-Dimethylhydrazine C2H8N2 67 0.791 0.447 6.44
Ethylenediamine C2H8N2 67 0.90 0.509 6.44
Acetone 2 C3H6O 54 0.785 0.432 6.90
Nitrobenzene C6H5NO2 49 1.20 0.624 7.00
Ethanol 96% C2H6O (96%) 67×67 0.798 0.450 7.06
Methanol CH3OH 20 0.792 0.446 7.29
Hydrazine solution H4N2 (35%) 54 1.0 0.561 7.43
Nitromethane CH3NO2 20 1.14 0.597 7.50
Water H2O 20 0.997 0.554 7.78
Water 3 H2O 12.7 0.997 0.554 7.78
Hyd. Peroxide 2 H2O2 (50%) 73×74 1.22 0.661 7.83
Magnesium 2 Mg 18 1.74 0.859 12
Aluminum 2 Al 25 2.70 1.3 13
Aluminum 3 Al 20×20 2.70 1.3 13
Silicon Si 25 2.33 1.161 14

material classification method presented in Section 4. How-
ever, the materials used in this work do not possess K-edges
within the detector’s energy range.

Figure 1: The illustration of the experimental setup. SDD and
SOD represent the source to detector distance and the source
to sample distance, respectively.

2.3. Data correction. Rebinning energy bins.

Sinogram
The detector requires the correction of the detector’s

spectral response to achieve a LAC curve that follows the
reference attenuation curve [25]. The deviations of the LAC
from the reference values occur due to the physical effects
in the detector sensor such as charge sharing and weighting
potential cross-talk, fluorescence radiation, Compton scat-
tering radiation, pulse pile up and incomplete charge col-

lection. These spectral distortions cannot be completely re-
stored by the correction algorithm at the lower and higher
energies. Therefore, we truncate the unrestored energy bins
and set the low- (33.2 keV) and high-energy (132.4 keV)
thresholds [14].

The correction of the raw data is followed by rebinning
energy channels. In previous work, the material classifica-
tion performance was tested for 2, 6, 15, 30, 45 and 90 en-
ergy bins [14]. The results showed that 30, 45 and 90 energy
bins did not improve classification performance compared
to 15 energy bins approach, in which energy bins are dis-
tributed uniformly between low- and high-energy thresholds
with equal width. The reasons for this are firstly that the
width of the energy bins becomes narrower than the energy
resolution of the detector; Secondly that the detector noise
becomes greater as the width of each energy bin becomes
narrower when the number of bins increases. Consequently,
we use 15 energy bins in this study.

We generate line integrals or sinograms from the photon
counts of each energy bin based on Lambert–Beer’s law as
follows:

Lk(x⃗) = −log
Ik(x⃗)

I0,k(x⃗)
, k = 1, 2, 3, ..., 128; (3)

where I0,k is the flat-field photon counts corresponding to
energy bin k, which is the projection without the sample,
Ik is the measured photon counts for energy bin k when the
material is inserted, x⃗ represents the 1D detector pixel array.
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Figure 2: Presentation of 2D reconstructions of the samples scanned for the analysis of reconstructed image quality. Both
samples are reconstructed with SIRT from 360 projections. The gray scale bars show linear attenuation coefficients (LACs) with
the unit of cm−1. (a) The sample including the plastics indicated by red arrows, the image corresponds to the energy of 42
keV. This sample is used for the analysis of reconstruction quality for different number of projections, for which the results are
presented and discussed in the subsection 5.1. The polypropylene (PP) material is mixed with chemical colorants, which lead
to a higher Zeff value compared to the pure PP [23]. Therefore, this material is excluded in the estimation of the material
classification performances, for which the results are given in the subsection 5.5. (b) The sample including aluminum, magnesium
and polyetheretherketone (PEEK) indicated by red arrows. The image is for the energy bin corresponding to 61.9 keV. This
sample is used for the analysis, presented and discussed in the subsections 5.2, 5.3 and 5.4.

Table 3

The list of all the materials scanned and processed for the (�e, Zeff ) calculation in material
classification, for which the formulation of calculation and the results are presented in
the subsections 4.2 and 5.5, respectively. The mass density, � for the plastic materials
was measured with uncertainties of ± 0.15%. The mass densities for the rest of materials
represent the theoretical values found in PubChem data, [24].

Material
Chemical
Formula

Width×length/
Diameter (mm)

� (g∕cm3) �e (e
−mol∕cm3) Zeff

PET (C10 H8 O4)n 9×53.5 1.39 0.721 7.09
POM-H (CH2 O)n 15.5×53.3 1.43 0.763 7.40
PVDF (C2 H2 F2)n 9×53.5 1.79 0.896 8.40
PTFE 2 (C2 F4)n 12.7 2.2 1.056 8.70
2-Butanone C4H8O 83 0.805 0.447 6.76
Acetone C3H6O 20 0.785 0.432 6.90
Methanol 2 CH3OH 81 0.792 0.446 7.29
Ethanol 40% C2H6O (40%) 67×67 0.947 0.532 7.63
Water 2 H2O 51×51 0.997 0.554 7.78
Nitric acid HNO3 (65%) 83 1.39 0.714 7.80
Hyd. Peroxide H2O2 (50 %) 20 1.22 0.661 7.83
Magnesium Mg 12.7 1.74 0.859 12
Aluminum Al 25 2.70 1.3 13
Silicon powder Si 48 0.65 0.324 14
Silicon 2 Si 12.7 2.33 1.161 14

3. Reconstruction algorithms

3.1. Problem formulation
In spectral CT, the measurements with N energy bins

consist of N sinograms p1, ...,pN ∈ ℝ
M where M is the

number of detector pixels times the number of projection
angles. From the energy-resolved sinograms, we aim to re-
construct the corresponding N images u1, ...,uN ∈ ℝ

J rep-
resenting the linear attenuation coefficients for each energy

bin Ei (i = 1, 2, ..., N), where J is the number of pixels per
each image. For notational simplicity, we define the stack of
sinograms as a vector p ∈ ℝ

NM and the stack of N images
as u ∈ ℝ

NJ and we denote by ui,j the attenuation coefficient
for the energy bin Ei on the j-th pixel (j = 1, 2, ..., J ).

The forward-projection to map an image to the sinogram
domain can be modeled by a linear operator A such that Aui
estimates a sinogram for each energy bin Ei. By stacking the
same operator for all energy bins, we define the linear oper-
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ator A on the stack of images u such that Au = p. Then,
a typical reconstruction approach is to minimize the data fi-
delity term defined as the squared reprojection error that is
l2 norm of the difference between the computed (Au) and
the measured sinogram data (p). The data fidelity term can
be written as

(Au) = ‖Au − p‖2
2
. (4)

This data fidelity term is not enough, as data can be highly
noisy or obtained from a small number of projection angles.
To reconstruct high-quality images, we need a robust regu-
larization scheme, by imposing prior knowledge on the so-
lutions.

One can apply (isotropic) total variation regularization
on each energy bin Ei, independently, which can be written
as

TV(ui) =

J∑
j=1

√
)xu

2
i,j

+ )yu
2
i,j
, (5)

where )xui,j and )yui,j are the gradients of the image ui on
the pixel j with respect to x and y axis, respectively. This TV
regularization term does not exploit any correlation between
the images from different energy bins.

A more robust regularization can be achieved by corre-
lating the gradients of the images from different energy bins.
One way to exploit the inter-bin correlations of the image
gradients is Total Nuclear Variation (TNV) regularization
[8, 13], that is common to all energy bins and defined as the
sum of nuclear norm of the Jacobian matrix over all image
pixels:

TNV(u) =

J∑
j=1

‖‖‖‖‖‖‖‖

⎛⎜⎜⎜⎝

)xu1,j )yu1,j
)xu2,j )yu2,j

⋮

)xuN,j )yuN,j

⎞⎟⎟⎟⎠

‖‖‖‖‖‖‖‖∗
, (6)

where the nuclear norm ‖ ⋅‖∗ of the Jacobian matrix includ-
ing image gradients in pixel, spatial and energy dimension is
the sum of its singular values. TNV can be degenerate when
there are some outliers in the gradients of the images.

To overcome the disadvantage of TNV, we suggest to
use another VTV regularization based on L∞(infinity) norm
, which is the sum of the maximum of gradients among N

energy bins over all image pixels, defined as

L∞−VTV(u) = ‖Du‖∞,1,1

∶=

J∑
j=1

(
max
1≤i≤N

|)xui,j| + max
1≤i≤N

|)yui,j|
)
,

(7)

where D is a linear operator for the discrete gradient opera-
tions such thatDu is a 3D matrix. That is, (Du)i,j,l represents
the gradient of the image ui at the pixel j with respect to x

axis when l = 1 or y axis when l = 2. We use the nota-
tion ‖ ⋅ ‖∞,1,1, as it involves applying the L∞ norm along

the energy bins dimension, and l1 norm along the other di-
mensions with respect to the spatial (pixel) locations and the
spatial gradient directions [13]. This L∞-VTV norm corre-
lates the gradients strongly over multiple energy bins, while
disallowing some outliers in the sense of the gradient mag-
nitudes. This property will be illustrated in the subsection
5.3.

By combining the data fidelity term (Eq. (4)) and the reg-
ularization term L∞-VTV (Eq. (7)), we formulate the opti-
mization problem that we want to solve:

min
u≥0

�

2
(Au) +L∞−VTV(u), (8)

where � is the weighting parameter between the two terms.
Here, we impose the non-negativity constraint on u, as linear
attenuation coefficients are desired to be non-negative.

3.2. Optimization
We describe the optimization of our objective function

defined in Eq. (8). Although the objective function is con-
vex, the challenge lies in having the composite operators A
in the data fidelity term and D in the regularization term.
To deal with such difficulty, we employ an efficient primal
dual algorithm, called Hybrid Gradient Primal Dual method
(HGPD) [26]. The basic idea of primal dual algorithms is
to reformulate a minimization problem as a minimization-
maximization (min-max) problem and aim to find the sad-
dle point. To derive the min-max problem, primal dual al-
gorithms rely on the Fenchel conjugate function [26] F ∗ of
a convex function F , defined by,

F ∗(y) = sup
x
⟨x, y⟩ − F (x). (9)

To use the primal dual algorithm, we introduce two dual
variables q and r corresponding to the operatorsA andD, re-
spectively. To rewrite the original minimization problem de-
fined in Eq. (8) as a saddle point problem, we use the Fenchel
conjugate function to obtain

(Au) = max
q

⟨Au,q⟩ − ∗(q) (10)


L∞
VTV

(Du) = max
r

⟨Du, r⟩ −∗(r) (11)

where ∗ and ∗ are the conjugate functions of

(x) =
1

2
‖x − p‖2

2
, (12)

(X) = ‖X‖∞,1,1 . (13)

Based on Eq. (10) and Eq. (11), we now turn the minimiza-
tion problem of Eq. (8) into the following saddle point prob-
lem

min
u

max
q,r

⟨Au,q⟩+⟨Du, r⟩−∗(q)−∗(r)+�+(u), (14)

where �+ is the indicator function for the non-negative con-
straint, defined by,

�+(x) =

{
x if x ≥ 0 ,

∞ if x < 0 .
(15)
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HGPD provides an efficient way to solve the saddle point
problem, by alternatively updating the primal and dual vari-
ables as follows:

uk+1 = prox�+

(
uk − �

(
AT qk + DT rk

))
(16)

ū = 2uk+1 − uk (17)

qk+1 = prox�1∗
(
qk + �1Aū

)
(18)

rk+1 = prox�2∗

(
rk + �2Dū

)
(19)

where k is the iteration number, � is the step size for the pri-
mal variable, �1, �2 are the step sizes for the dual variables
and prox is the proximal operator [27] defined by

prox�f (x) = argmin
y

1

2�
‖x − y‖2

2
+ f (x). (20)

In Algorithm 1, we provide the whole procedure of op-
timization, where ‖A‖2 denotes the operator norm of A,
which is the largest eigenvalue of A. To guarantee the con-
vergence, we carefully choose the step sizes, following [26],
based on the operator norms, which can be computed by the
power method [28]. The concrete solutions to Eq. (16) and
Eq. (18) are provided in Eq. (24) and Eq. (26), respectively.
To evaluate Eq. (19), we use the fact that the proximal op-
erator to L∞ norm is the projection operator to L1 unit ball,
denoted by Π‖⋅‖≤1 [27]. Then, we can write the solution to
Eq. (19) as follows:(
prox�2∗ (V)

)
i,j,l

= sgn
(
Vi,j,l

)
Π‖⋅‖≤1

(
�2‖V∶,j,l‖

)
(21)

where sgn is the sign function, i denotes the index for the
energy bin, j for the pixel index and l ∈ {1, 2} denotes the
index for the gradient with respect to x or y axis. The nota-
tion V∶,j,l represents a vector consisting of the elements with
respect to the energy bins, given j and l. We refer to [13] for
a detailed derivation.

To check the convergence, we introduce two residuals 
and for the primal variables and the dual variables, respec-
tively, as follows:

k+1 = ‖(uk − uk+1)∕� − AT (qk − qk+1)

− DT (rk − rk+1)‖1, (22)

k+1 = ‖(qk − qk+1)∕�1 − A (uk − uk+1)‖1
+ ‖(rk − rk+1)∕�2 − D (uk − uk+1)‖1. (23)

These primal and dual residuals measure the changes of the
solutions per iteration for primal and dual variables, respec-
tively. Such residuals are expected to decrease with the it-
erations. The behaviors of these residuals and the stopping
criteria will be discussed in the subsection 3.4.

3.3. The definition of correlation coefficient
We estimate the reconstructed image quality through the

correlation coefficient, r, which measures how the recon-
structed image u is linearly connected to the ground-truth
(true) image v, and it is expressed as

r =

∑
i(ui − ū)(vi − v̄)√∑

i(ui − ū)2
∑

i(vi − v̄)2
, (28)

Algorithm 1 Primal dual updates for solving Eq. (14)

Set the step sizes:

� =
1

‖A‖2 + ‖D‖2 , �1 =
1

‖A‖2 , �2 =
1

‖D‖2
Initialize u0, q0, r0 as zero vectors.
for k = 0, 1, 2, ...

uk+1 = max
(
uk − �(AT qk + DT rk), 0

)
(24)

ū = 2uk+1 − uk (25)

qk+1 =
qk + �1(Aū − p)

1 + �1
(26)

rk+1 = prox�2∗

(
rk + �2Dū

)
(27)

where ū and v̄ are the mean values, and ui and vi are the
ith pixel values of u and v, respectively. In this work, to
compute correlation coefficients the ground-truth images of
a sample at multiple energy bins used are synthetically cre-
ated by assigning the corresponding mean LAC to each en-
ergy bin for each material in the sample. The mean LAC
for each energy bin is extracted from the attenuation value
histogram based on the normal distribution after sample re-
construction with SIRT from 360 projections [14].

3.4. Stopping criteria for the iteration number
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Figure 3: The sum of the primal and dual residuals with respect
to iteration number for TV, TNV and L∞-VTV. As expected,
the residuals decrease with the iterations. To obtain this plot a
sample shown in Fig. 2a was scanned with 8 s integration time
per projection for 36 projections. The weighting parameter
� defined in Eq. (8) corresponds to the maximum correlation
coefficients (shown in Fig. 5) for each reconstruction.

Fig. 3 shows the sum of primal and dual residuals for re-
construction algorithms that decreases as the number of it-
erations increases for each algorithm, as expected. The con-
vergence of each algorithm is therefore ensured. L∞-VTV
converges noticeably faster than TNV and TV whereas TV
shows the slowest convergence rate.

We use the correlation coefficient for stopping the iter-
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Figure 4: Correlation coefficients as a function of iteration number for 36 (left) and 7 projections (right) for all the algorithms. The
weighting parameter � corresponds to the maximum correlation coefficient (shown in Fig. 5) for each reconstruction algorithm.
The correlation coefficients represent the mean values calculated from the coefficients for 15 energy bins used.

Table 4

The number of iterations fixed for each algorithm and number
of projections.

Projection
number

SIRT TV TNV L∞-VTV

7 80 550 750 550
12 80 550 600 500
36 100 400 500 400
360 150 400 400 400

ation to define whether or not the algorithms will converge
to the ground-truth image. For 7 and 36 projections, Fig. 4
presents how the correlation coefficient changes with the
number of iterations for each algorithm. We stop the iter-
ation for SIRT when the correlation coefficient reaches the
maximal value. For other algorithms, we use the iteration
number at the point when the correlation coefficient and the
gradient of the correlation coefficient remain stable. Table 4
shows the number of iterations fixed for each reconstruction
algorithm and number of projections used in the reconstruc-
tion.

4. Method for material classification

The description of the SIMCAD method that estimates
�e and Zeff for materials from Spectral CT data is detailed
in Jumanazarov et al. [14], and it is briefly repeated in this
entire section for the convenience of the reader.

4.1. Calibration step
Based on [15], LAC for a material, m, and for each en-

ergy bin can be defined as

�m(Ek) = �e,m

(
Zn−1

eff ,m
p(Ek) + c(Ek)

)
, (29)

where m = 1, 2, ...,M , k = 1, 2, ..., K with M being the total
number of materials and K being the number of energy bins
used. Note that we use 15 energy bins as discussed in the
subsection 2.3. p(Ek) and c(Ek) are photoelectric absorption

and Compton scattering basis functions for energy bin Ek,
respectively. The energy-dependent basis functions and the
exponent n are calibrated by using the reference �e and Zeff

values, and the same for all the materials estimated.
To optimize the basis functions and n we define the non-

linear objective function as:

min
0≤p1,c1,…,pK ,cK , n

M∑
m=1

K∑
k=1

(
�m(Ek) − �e,m(Z

n−1
eff ,m

pk + ck)
)2

,

(30)

where pk = p(Ek) and ck = c(Ek). The objective function
is optimized by using a nonlinear least square solver based
on the trust region method [29]. We impose initial positivity
constraints as p0

k
= 0.5, c0

k
= 0.5 and n0 = 3.6 for all k.

The classification results are found to be independent from
the initial constraints. The classification method can be for-
mulated for any number of energy bins.

4.2. Calculation of material features
�e and Zeff of an unknown material scanned are esti-

mated by using the calibrated basis functions and the expo-
nent n and the extracted LACs. We reformulate the LACs
defined in Eq. (29) as a linear system equation as follows:

⎛⎜⎜⎝

⃖⃗p ⃖⃗c

⋱

⃖⃗p ⃖⃗c

⎞⎟⎟⎠

⎛⎜⎜⎜⎜⎝

z1
�e,1
⋮

zM
�e,M

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎝

⃖⃗�1

⋮

⃖⃗�M

⎞⎟⎟⎠
(31)

where zm is a temporary variable inserted instead of
�e,mZ

n−1
eff

and ⃖⃗p = (p1, ..., pK )
T , ⃖⃗c = (c1, ..., cK )

T and
⃖⃗�m = (�m(E1), ..., �m(EK ))

T . The linear matrix has the size
of (M × K)-by-(2 × M) and the number of unknowns is
2×M . Using the positivity constraint on the solution we re-
trieve the vector (z1, �e,1, ..., zM , �e,M ) minimizing the norm
in the linear least square problem. From this, the effective
atomic numbers are calculated for all the materials estimated
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as

Zm =

(
zm

�e,m

) 1

n−1

. (32)

The accuracy of the material classification is calculated as
the percent relative deviation from the reference values for
�e and Zeff as:

ΔZrel
ef f

= 100% ⋅

Zest
ef f

−Zref
ef f

Zref
ef f

, (33)

Δ�rel
e

= 100% ⋅
�est
e

− �ref
e

�ref
e

(34)

where superscripts est and ref are regarded as the estimated
and reference values, respectively. The results obtained with
this method of material classification by using the L∞-VTV,
TNV and TV reconstruction algorithms are presented in the
subsection 5.5.

5. Results and discussions

In this section we present and discuss the results obtained
with different reconstruction algorithms based on experi-
mental data. The subsections 5.1, 5.2, 5.3 and 5.4 include
the results for reconstruction quality studied with the cor-
relation coefficient for each algorithm. The subsection 5.5
presents the material classification results obtained with the
SIMCAD method described in Section 4.

5.1. Reconstruction results for different numbers

of projections
In this subsection, we perform the reconstructions with

each algorithm over a set of weighting parameters � for dif-
ferent number of projections. We now focus on reconstruc-
tions from few (7 and 12) projections. Fig. 5 presents the
correlation coefficients as a function of weighting parame-
ter computed for the different numbers of projections. Note
that a too small value of � may result in an over-regularized
image with blurred edges, while a too large value may give
insufficient regularization effects, as notable in Eq. (8). For
7 and 12 projections, the maximal correlation coefficients
for bin-by-bin reconstructions of TV and SIRT appear to be
noticeably lower compared to the coefficients for the joint
reconstructions of TNV and L∞-VTV. In all cases, the max-
imal correlation coefficient for L∞-VTV reconstruction are
clearly larger than the coefficients for TNV and TV recon-
structions, while SIRT reconstructions show the lowest val-
ues. Fig. 6 compares the TV, the TNV and the L∞-VTV
reconstructions for 7, 12 and 36 projections, which are ob-
tained with the corresponding maximal correlation coeffi-
cients presented in Fig. 5. In cases of 7 and 12 projections,
the TNV andL∞-VTV algorithms appear to have clearly less
structural artifacts than the TV reconstruction, which suffers
from over-smoothing and more distortion in shape. When
comparing L∞-VTV with TNV, L∞-VTV presents more ac-
curate reconstructions with better structure and preserved
edges.

10
-2

10
0

0.88

0.9

0.92

0.94

0.96

0.98

10
-2

10
0

10
-2

10
0

Figure 5: The correlation coefficients as a function of weight-
ing parameter � for 7, 12 and 36 projections, obtained with
different reconstruction algorithms. The correlation coefficient
determines how the reconstructed image is linearly associated
with the ground-truth image, and is defined in Eq. (28). These
results are based on scans of the plastics sample shown in
Fig. 2a with 8 s integration time per projection. The corre-
lation coefficients represent the mean values calculated from
the coefficients for 15 energy bins used. Note the logarithmic
scale in the x−axis.

5.2. Reconstruction results for different photon

counts
In this subsection, we test the robustness of each re-

construction algorithm to different (low) numbers of pho-
ton counts using the same sample scanned with integration
times of 2 ms, 10 ms and 50 ms. Fig. 7 shows the correla-
tion coefficient evaluating reconstruction quality as a func-
tion of weighting parameter for each algorithm. It can be
noted from the graphs that the TNV and L∞-VTV recon-
structions provide higher maximal correlation coefficients
compared to the maximal correlation coefficient for TV. This
difference becomes more significant when the integration
time is equal to 2 ms. As the integration time decreases,
the � value corresponding to the maximal correlation co-
efficient also decreases for each reconstruction algorithm,
i.e. the reconstruction algorithms needs the more regulariza-
tion to achieve the best reconstruction, as expected. Fig. 8
compares the TV, TNV and L∞-VTV reconstructions corre-
sponding to the maximal correlation coefficients for different
integration times. The lowest integration time, 2 ms shows
that the TV reconstruction noticeably suffers from blurring
and over-smoothing whereas the TNV and theL∞-VTV joint
reconstructions appear to be less noisy, sharper and better at
preserving the edges. Thus, the joint reconstruction algo-
rithms show better robustness to lower photon counts com-
pared to the bin-by-bin reconstruction, TV. When comparing
the L∞-VTV with the TNV, the L∞-VTV presents the recon-
structions with noticeably sharper edges and less structural
artifacts, which becomes more visible in the cases of 2 ms

and 10 ms integration time. The robustness to lower photon
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Figure 6: TV, TNV and L∞-VTV reconstructions of the plastics sample for 7, 12 and 36 projections corresponding to the X-ray
energy of 42 keV. The figure compares the image reconstructions, each obtained with the weighting parameter � corresponding
to maximal correlation coefficients presented in Fig. 5. The composition of the sample is presented in Fig. 2a. The integration
time per projection was equal to 8 s. The gray scale bar shows linear attenuation coefficients (LACs) with the unit of cm−1.

counts in terms of material classification is important for the
industrial applications, because the lower integration time
can enable faster data acquisition.

5.3. Reconstruction: robustness to significantly

higher noise levels in certain energy bins
Some energy bins may suffer from additional noise dur-

ing scanning. Significant noise in certain energy bins can
be caused by metal objects in the sample, which reduce the
photon counts leading to photon starvation and create metal
artifacts in the reconstructions. Metal artifacts influence pri-
marily the lower energy bins and may be more severe result-
ing in less reliable characterization of the material proper-
ties. To estimate the robustness of the algorithms to such ar-
tifacts, we added Gaussian noise to the sinogram data with a
standard deviation (�) of 0.5, 1.0 and 1.5. The noise is intro-
duced to two specific bins out of 15 energy bins: 48.7 keV

and 101.6 keV. Fig. 9 shows the correlation coefficients as

a function of photon energy for each �, obtained with each
reconstruction algorithm. We first found the optimal � value
corresponding to the highest mean correlation coefficient for
� = 1.5, which is calculated from the coefficients for each
of 15 energy bins used. We then used this optimal � to pro-
duce correlation coefficients for other � values for each re-
construction algorithm.

It can be noted from the graphs that there are no inter-
actions between energy bins for TV as expected, whereas
TNV and L∞-VTV show correlation between energy bins
and have noticeably smaller decreases in correlation coef-
ficient for the affected bins. Thus, the joint reconstruction
algorithms compensate for significantly higher noises in spe-
cific energy bins by effectively using the unaffected energy
bins, for which couplings between energy bins lead to slight
decrease in overall reconstruction quality. The figures also
show that L∞-VTV in turn outperforms TNV in compensat-
ing such increased noise, and significantly improves the re-
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Figure 7: Correlation coefficients as a function of weighting
parameter � for integration times of 2 ms, 10 ms and 50 ms,
obtained with different reconstruction algorithms. These re-
sults are based on scans of the sample shown in Fig. 2b with
36 projections. The correlation coefficients represent the mean
values calculated from the coefficients for the 15 energy bins
used. Note the logarithmic scale in the x−axis.

construction quality in the lower energy bins. This property
ofL∞-VTV can be highly important to reduce metal artifacts
that mainly affect lower energies.

5.4. The L-curve
L-curve is a plot showing the balance between the regu-

larization term and the respective reprojection error, as the
weighting parameter � changes [30]. The reprojection er-
ror is the square root of the data fidelity term expressed in
Eq. (4), and summed over all energy bins as ∥ Au� − p ∥2.
The regularization term TV(u) for TV defined in Eq. (5) is
computed independently for each energy bin, and summed
over all energy bins to plot L-curve. The regularization
terms TNV(u) and L∞−VTV(u) for TNV and L∞-VTV are
general for all energy bins, and described in Eq. (6) and
Eq. (7), respectively. If the L-curve criterion for a recon-
struction algorithm provides a robust estimation of �, L-
curve can be an alternative to correlation coefficient to find
the optimal � without the ground truth image.

Fig. 10 shows the correlation coefficient and the L-curve
for each reconstruction algorithm. The optimal � values the-
oretically lie on the corner of the L-curve and the values on
the flat and vertical parts lead to the reconstructions dom-
inated by over-regularization and under-smoothing, respec-
tively. The L-curve is represented on a log-log scale for the
Tikhonov regularization [30]. However, Yang et al. [31]
showed that using a linear-linear representation of the L-
curve gives a suitable L-shape for TV reconstruction. Sim-
ilarly, we found that a linear-linear representation makes L-
curve better suited for the reconstruction algorithms devel-
oped. Note that we use the real experimental data acquired
with the phantom presented in Fig. 2b, and few (12) projec-

tions, which may lead to some limitations of the L-curve.
Hanke [32] showed that the smoother reconstruction with
the Tikhonov regularization leads to a lower accuracy of
the estimated �. Similarly, we found that the TV has such
limitation that L-curve criterion leads to noticeable over-
regularization, as shown in Fig. 10a. This may be because
the TV tends to be over-regularized when using few pro-
jections and having low signal-to-noise ratios in the source
spectrum which are investigated in the subsections 5.1 and
5.2, respectively. As shown in Fig. 10, when comparing
the L∞-VTV with the TNV, the L∞-VTV demonstrates a
more accurate estimation of the optimal � based on the L-
curve criterion. Thus, with the L∞-VTV we found the clos-
est match between two weighting parameters corresponding
to the maximal correlation coefficient and to the corner of its
L-curve.

5.5. Classification performance as a function of �
For each reconstruction algorithm we tested the per-

formance of material classification by using the SIMCAD
method described in the Section 4. In the case of 7 projec-
tions, we artificially introduced Gaussian noise to the exper-
imental data with a standard deviation of � = 0.05 after the
spectral correction as described in the subsection 2.3. The
reason is that the noise may be added during x-ray genera-
tion from the x-ray source in real applications, and we aim to
test the robustness of the reconstruction algorithms to such
noise for material classification. The noise was added to all
the 15 energy bins for all the the materials scanned and pro-
cessed through the calibration step and (�e, Zeff ) calcula-
tion. Note that in the subsection 5.3 we added significant
noise to specific energy bins to evaluate the reconstruction
quality of each reconstruction algorithm and each energy
bin, and tested it with one sample.

Fig. 11 presents the relative deviations for (�e, Zeff ) as a
function of weighting parameter � for 7 and 12 projections,
and 7 projections with added noise. In the case of 12 pro-
jections, the reconstruction algorithms give almost identical
results. In the case of 7 projections, the TV shows its lowest
deviations of 3.8% for �e and 4.2% for Zeff (at � = 16.0),
whereas the TNV and L∞-VTV yield the lowest deviations
of 3.4% and 3.1% (at � = 150.0), and 3.5% and 2.4% (at
� = 30.0), respectively. These deviations correspond to
the optimal weighting parameters, for which both material
properties have the lowest overall deviations for each algo-
rithm. In the case of 7 noisy projections, the TV has devia-
tions equal to 4.7% and 5.1% for �e and Zeff (at � = 30.0)
respectively, while the TNV and L∞-VTV result in the de-
viations of 4.0% and 3.9% (at � = 150.0), and 3.9% and
2.8% (at � = 20.0), respectively. Thus, for such sparse-view
and noisy projections the joint reconstructions clearly show
better classification performance than the bin-by-bin TV re-
construction. When comparing the L∞-VTV with the TNV,
L∞-VTV can provide higher classification accuracy. It can
be noted from the figure that in the case of 7 noisy projec-
tions theL∞-VTV uses the lower � value to obtain the lowest
deviations. The reason may be that the algorithm requires a
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Figure 8: TV, TNV and L∞-VTV reconstructions for integration times of 2 ms, 10 ms and 50 ms corresponding to the X-ray
energy of 61.9 keV. The figure compares the image reconstructions, each obtained with the weighting parameter � corresponding
to the maximal correlation coefficients presented in Fig. 7. The composition of the sample is presented in Fig. 2b. The number
of projections is equal to 36. The gray scale bar shows linear attenuation coefficients (LACs) with the unit of cm−1.

stronger regularization term to combat the added noise.
Fig. 12 shows the relative deviations for different mate-

rials in the case of 7 projections. The L∞-VTV gives the
lowest deviations in both material features for POM-H plas-
tic, which can be a common explosive simulant with similar
chemical compositions [33]. Fig. 13 shows the classifica-
tion performance of the L∞-VTV for different materials as a
function of weighting parameter �, obtained with 7 projec-
tions. Thus, the L∞-VTV with � values between 20.0 and
40.0 can provide the optimal classification performance. We
found in our implementation that for material classification
the L∞-VTV requires 10.6% and 52.3% shorter computation
time compared to the TNV of the state-of-the-art joint recon-
struction in Spectral CT and to the TV, respectively.

6. Conclusion

We have presented the L∞-VTV joint reconstruction al-
gorithm for Spectral CT with focus on security screening ap-
plications. This study is based on the real experimental data
acquired with a laboratory X-ray Spectral CT. We tested the
L∞-VTV against the state-of-the-art joint reconstruction of
the TNV and also the TV and SIRT. We presented the im-
plementation of each algorithm and how the iteration num-
ber is fixed based on the correlation coefficient. We use the
correlation coefficient to estimate the image quality, which
finds how well the reconstructed image is correlated with
the ground truth image. We evaluated the reconstruction
quality of each algorithm when the image reconstruction is
performed from sparse-view projections and low levels of
photon counts. As a result, we found that the joint recon-
struction algorithms show significantly better image recon-
struction compared to bin-by-bin reconstructions. We also
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Figure 9: Correlation coefficients as a function of photon energy when different high Gaussian noise levels with standard deviation
(�) of 0.5, 1.0 and 1.5 are added to the certain energies that are 48.7 keV and 101.6 keV. These results are obtained by using
the phantom shown in Fig. 2b, being scanned with the integration time of 100 ms and reconstructed from 12 projections.
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Figure 10: The correlation coefficient as a function of weighting parameter � and L-curve for each reconstruction algorithm.
These results are obtained with the sample shown in Fig. 2b, being scanned with the integration time of 100 ms and reconstructed
from 12 projections. Note the logarithmic scale in the x−axis for the correlation coefficient.

studied the robustness of each algorithm when significantly
higher noise levels are introduced to specific energy bins.
The results showed that the joint reconstruction algorithms
effectively alleviate such noise with information from unaf-
fected bins and again achieve clearly better reconstructions
for all the energy bins compared to the TV. When compar-
ing theL∞-VTV with the TNV in these studies, theL∞-VTV
was found to give better reconstruction from few projections
and low photon counts, and to compensate more effectively
for excess noise. Thus, L∞-VTV correlates the image gra-
dients strongly over different energy bins, resisting outliers
in gradient magnitudes. This property can be very useful for
handling metal artifacts, which affect mainly the low-energy
bins. Furthermore, for each algorithm we studied the L-
curve to find the optimal weighting parameter for reconstruc-
tion, based on the scanned sample itself without the ground
truth image. TheL∞-VTV shows a clear correspondence be-
tween two optimal weighting parameters obtained with the
correlation coefficient and the L-curve. Lastly, we investi-
gated the material classification performance of each recon-
struction algorithm by using the SIMCAD method for few
and noisy projections, which estimates (�e, Zeff ) of a ma-
terial from Spectral CT. The broad range of materials have

been used for classifications in the range of 6 ≤ Zeff ≤ 15.
The joint reconstruction algorithms again show noticeably
better performance compared to bin-by-bin reconstructions.
The L∞-VTV appears to be more accurate for material clas-
sification and to require shorter computation time compared
to the TNV. The reconstruction algorithms presented can
easily be adapted for 3D CT.

7. Data and code availability

The raw and corrected data required to obtain the pre-
sented results are available to download from [34]. The im-
plementations of our codes for L∞-VTV and TNV joint re-
construction algorithms are available at https://github.com/
JuliaTomo/XfromProjections.jl.
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Figure 11: The relative deviation for (�e, Zeff ) as a function of weighting parameter � for 3 cases of 7 and 12 projections, and 7
projections with added Gaussian noise. The first row corresponds to the relative deviations for �e, and the second row is for Zeff .
The deviations are the mean values of the absolute deviations for each material listed in Table 3. The SIRT algorithm that is
not included in the figure gives significantly higher deviations of 8.4% for �e, and 2.4% for Zeff for 12 projections, and 13.9% and
3.0% for 7 projections, respectively. These results are based on scans of the samples listed in Table 2 and Table 3 used for the
calibration step and (�e, Zeff ) calculation, respectively. All the materials are scanned with a total integration time per projection
of 8 s. Note the logarithmic scale in the x−axis.
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responding to the optimal � values, in which the classification
performance for each reconstruction algorithm is the highest as
presented in Fig. 11. The reconstructions are performed from
sparse-view 7 projections. The mean deviations are calculated
from the absolute values of relative deviations for each mate-
rial listed in Table 3. The deviations for the different materials
represent the absolute values.
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case of 7 projections. The deviations are shown as the absolute
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ABSTRACT

Photon counting imaging detectors (PCD) has paved the way for the emergence of Spectral X-ray Computed
Tomography (SCT), which simultaneously measures a material’s linear attenuation coefficient (LAC) at multiple
energies defined by the energy thresholds. In previous work SCT data was analysed with the SIMCAD method
for material classifications. The method measures system-independent material properties such as electron den-
sity, ρe and effective atomic number, Zeff to identify materials in security applications. The method employs a
spectral correction algorithm that reduce the primary spectral distortions from the raw data that arise from the
detector response: charge sharing and weighting potential cross-talk, fluorescence radiation, scattering radiation,
pulse pile up and incomplete charge collection. In this work, using real experimental data we analyze the influ-
ence of the spectral correction on material classification performance in security applications. We use a vectorial
total variation (L∞-VTV) as a convex regularizer for image reconstruction of the spectral sinogram. This recon-
struction algorithm employs a L∞ norm to penalize the violation of the inter energy bin dependency, resulting
in strong coupling among energy bins. Due to the strong inter-bin correlation, L∞-VTV leads to noticeably
better performance compared to bin-by-bin reconstructions including SIRT and total variation (TV) reconstruc-
tion algorithms. The image quality was evaluated with the correlation coefficient that is computed relative to
ground-truth images. A positive weighting parameter defines the strength of the L∞-VTV regularization term
and thus controls the trade-off between a good match to spectral sinogram data and a smooth reconstruction in
both the spatial and spectral dimension. The classification accuracy both for raw and corrected data is analyzed
over a set of weighting parameters. For material classification, we used 20 different materials for calibrating
the SIMCAD method and 15 additional materials in the range of 6 ≤ Zeff ≤ 15 for evaluating the classification
performance. We show that the correction algorithm accurately reconstructs the measured attenuation curve,
and thus gives higher detection rates. We show that using the spectral correction leads to an accuracy increase
of 1.6 and 3.8 times in estimating ρe and Zeff , respectively.

Keywords: Spectral X-ray CT, Material classification, Photon counting X-ray detector, Spectral correction,
Joint reconstruction, Security screening

1. INTRODUCTION

X-ray radiography and Computed Tomography (CT) widely used for Non-Destructive Testing (NDT) in industrial
or laboratory applications give structural images of a material, however do not typically measure material
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properties such as electron density, ρe, and effective atomic number, Zeff .1,2 The main reason is that the energy
dependence of the attenuation is not measured. Security screening systems currently use dual-energy CT (DECT)
for material recognition3–8 with two channels of energy discrimination. However, the dual-energy CT suffer from
two main limitations. Firstly, they typically use dual sandwiched energy integrating detectors leading to poor
energy separation due to overlapping low- and high-energy spectrums. Secondly, the DECT only measures two
different data points in the attenuation spectrum and therefore, only provide limited material classification maps.
The development of cadmium telluride (CdTe) energy discriminating imaging detectors has laid groundbreaking
step towards multi-energy Spectral CT (SCT) and other energy-resolved imaging modalities.9–11 These detectors
can discriminate the energy of the incident photons enabling the simultaneous collection of the spectrum of the
whole range of material’s energy-dependent linear attenuation coefficients (LACs) and provide material features.
Spectral CT simultaneously measures the energy dependence of a material’s LAC using energy resolved photon
counting detectors (PCD). Spectral CT is proven to be superior to dual-energy CT for enhancing material
recognition.12 Radiography studies also showed that PCDs have clear advantages over dual-layer sandwich
detectors in reducing the false detection rate.13–15 The poor spectral separation in the dual-layer sandwich
detectors was found to be the major reason for the lower performance. This has attracted significant attention
in PCDs for material characterization within security applications.16–18

DECT Systems typically use an attenuation decomposition method presented by Alvarez et al.19 for the
formulation of an alternative material characterization. It decomposes a material’s linear attenuation coefficient
(LAC) into photoelectric absorption and Compton scattering basis functions and can define the whole spectral
range of the LAC through just two parameters, density, ρ, and effective atom number, Zeff . However, such
material identification through the effective LAC using dual-energy sandwich detectors is a system-dependent
solution, i.e. depend on source spectrum, filtration, and detector efficiency of the scanner.20 Recently, Azevedo
et al.21 presented a method that measures (ρe, Zeff) from dual-energy CT called the System-Independent ρe/Zeff

(SIRZ), independent of the scanning instrument, and Champley et al.22 have improved the method further
(SIRZ-2).

Busi et al.23 have adopted the SIRZ method for Spectral CT with the Spectral ρe/Zeff Estimation (SRZE)
method, which measures both system-independent material features directly from the energy-dependent LACs.
However, the SRZE method uses 64 energy bins for the optimal accuracy and gives significantly lower accuracy
at two energy bins.

In previous work we presented a novel classification method, named system-independent material classification
through attenuation decomposition (SIMCAD),24 which measures the material features (ρe, Zeff), independent
of the instrument or specifics of the scanner such as the X-ray spectrum, directly from energy resolved LACs
in spectral CT. The method uses attenuation decomposition presented by Alvarez et al.19 for the formulation
to adopt it for multiple energies. It was demonstrated with the experimental data that the SIMCAD method
can reach the optimal classification performance with optimized bi-energy bins and can give comparable results
to the SRZE method. Therefore, the SIMCAD method spends at least 32x shorter time for the tomographic
reconstruction after the data acquisition due to a lower number of energy bins used. The speed enables the
method well suited for the requirements of rapid scanning for real applications such as check-in baggage control
at airports.25 It is worth noting that even if SIMCAD only used two bins and thus had the same number of
data points of the energy spectrum as DECT, the overlap in DECT energy bins does not exist for PCD systems
which leads to the improved performance. The above classification methods rely on accurate LAC curves.
However, detector effects, such as charge sharing and pulse pileup, strongly distort the measured spectrum of
photon-counting x-ray detectors operating under high flux.26 These effects lead to severe deviation between
the measured and the transmitted spectrum, and therefore to a significant decrease in material identification
performance when used for both security and industrial applications. Thus, the correction of the detector’s
spectral response is required to correct the measured LACs. To correct for these distortions, we use a correction
algorithm developed by Dreier et al.27 This is a comprehensive semianalytical correction algorithm that corrects
the raw data distorted by charge sharing, weighting potential, pulse pileup, incomplete charge collection, and
x-ray fluorescence based on spectral distortion models. With small correction the correction algorithm is could be
applied to any photon counting CdTe detector. In this work, we scan 35 different materials with 12 projections
and reconstruct using the joint reconstruction method VTV. We analyze the contribution of the correction
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algorithm in material identification from sparse (few projections) Spectral CT, because the spectral correction
requires additional computation time which is a key factor for security and industrial applications.

2. EXPERIMENTAL SETUP AND MATERIALS. DATA CORRECTION
ALGORITHM

In this section, we define the system-independent physical properties used to classify materials and LACs. We
then present the experimental setup and the samples used to conduct the experiments. Lastly, the detector, data
correction and sinogram generation are introduced.

2.1 Physical properties of materials

Linear attenuation coefficient (LAC) is proportionally dependent upon a material’s electron density.28 The
electron density is the number of electrons per unit volume (electron − mole/cm3). For a compound or mixture
that consists of N total different elements, the electron density can be expressed as

ρe =

∑N

i=1 αiZi
∑N

i=1 αiAi

ρ. (1)

where ρ is mass density (g/cm3), Ai and Zi are atomic mass and atomic number for each element, i, respectively,
αi is the number of atoms that have atomic number Zi. For compounds, the atomic number is referred to as
effective atomic number, Zeff , which can be classically parameterized as29,30

Zeff = l

√

√

√

√

N
∑

i=1

riZl
i , (2)

where ri is “relative electron fraction” contribution of an element, i,

ri =
αiZi

∑N

j=1 αjZj

,

In previous work,24 the exponent l was studied to optimize the value for the best classification performance for
the materials, source spectrum and system features used. The value of l = 8.0 showed the highest accuracy, thus
we choose this value for the calculations of reference Zeff values in this work.

2.2 Decomposition of LAC

For a computed tomography system, Alvarez et al.19 presented empirically over the range of 30−200 keV that
the LAC could be decomposed in the form:

µ(E) = a1
1

E3
+ a2fKN(E), (3)

where fKN(E) is the Klein-Nishina function

fKN(ε) =
1 + ε

ε2

(

2
1 + ε

1 + 2ε
−

ln(1 + 2ε)

ε

)

+
ln(1 + 2ε)

2ε
−

1 + 3ε

(1 + 2ε)2
, (4)

and ε = E/511 keV (ε = E/mec
2) is the reduced energy of the incident photon. The functions 1/E3 and

fKN(E) represent approximation of the energy dependence of the photoelectric absorption and Compton scat-
tering, respectively. With exception of the absorption edges effect, they further presented that the photoelectric
coefficient, a1 and the Compton scattering coefficient, a2 could be defined as:

a1 ≈ K1

ρ

A
Zn, a2 ≈ K2

ρ

A
Z (5)
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where K1 and K2 are constants, ρ is mass density (g/cm3), A is atomic mass and Z is atomic number. n is
the exponent for photoelectric attenuation (per atom). n is optimized for each of the classification approaches
depending on how many energy bins are used. a1 and a2 are expressed with approximation. The insertion of a1
and a2 from Eq. 5 into Eq. 3 gives the LAC as:

µ(E) =
Z

A
ρ
(

Zn−1p(E) + c(E)
)

, (6)

where

p(E) = K1

1

E3
, c(E) = K2fKN(E). (7)

p(E) and c(E) are photoelectric absorption and Compton scattering basis functions, respectively. Inserting Eq. 1
into Eq. 6 we retrieve a parameterized LAC for a compound as

µ(E) = ρe
(

Zn−1
eff p(E) + c(E)

)

. (8)

The basis functions are empirically measured through fitting experimental data. In this work, the basis functions
and exponent n are calibrated to retrieve material properties, which is discussed in the next subsection.

2.3 Experimental setup and materials

The experiments were conducted in the 3D Imaging Center at DTU, Denmark. The X-ray beam was generated
by a Hamamatsu source working under the acceleration voltage and the filament current set to 160 kV and
0.5 mA, respectively. The focal spot is 75 µm. An aluminum filter of 2 mm thickness was mounted after the
source to suppress photons with energies lower than the detector energy range. The beam was collimated to
a fanbeam using a JJ X-ray IB-80-Air to a height of 0.6mm. Directly in front of the detector a custom built
5mm thick tungsten slit (opening: 0.6mm) minimize photon scattering. The sample was placed on the rotation
stage and scanned between discrete rotations with 30◦ increments over a range of 360 degrees. The source to
detector distance (SDD) was set equal to 701 mm whereas the source to sample distance (SOD) was 500 mm.
For material classification presented in the subsection 5.3, the total integration time per projection was set to 8
seconds.

The sample scanned for the uses in the subsections 5.1 and 5.2 contains aluminum, magnesium and
polyetheretherketone (PEEK) plastic and was scanned with different total integration time per projection varying
from 2 ms to 100 ms. This sample is described in Ref. 31. Tab. 1 and Tab. 2 in Appendix A lists the materi-
als used for the calibration as reference materials and estimation of material features, respectively. The tables
include the materials’ reference ρe and Zeff values that were calculated by using Eq. 1 and Eq. 2 respectively.
Sample dimension are also presented through width×length for rectangular samples or diameter for circular sam-
ples. The plastics shown in the tables are polymethyl methacrylate (PMMA), polytetrafluoroethylene (PTFE),
polyvinylidene fluoride (PVDF), polycarbonate (PC), polyoxymethylene-C (POM-C), polyethylene terephtha-
late (PET) and polyoxymethylene-H (POM-H). Materials used are commonly found in checked-in luggage, and
explosive or precursor materials without K-edge absorption within the detector’s energy range and in the range
of 6 ≤ Zeff ≤ 15.

2.4 The detector and data correction for spectral distortion

The detector adopted for the current experiments is MultiX ME-100 v2 manufactured by Detection Technology
S.A.S. in Moirans, France. We use a system of five detector modules, each module has a 1 × 128 linear array of
pixels sized 0.8 × 0.8 mm2. The number of energy bins is 128 with a width of 1.1 keV each, evenly distributed in
the energy range between 20 and 160 keV. The energy resolution of the detector operating at high X-ray fluxes
is 6.5% (8 keV at 122 keV).11 The detector has a CdTe sensor with 3 mm thickness. Incident photons strike a
collective cathode being composed of a continuous metal film. The sensor has pixelated anodes with significantly
smaller size, which are located on readout electronics.

The spectral response of photon counting detectors is severely distorted by a range of physical effects occurring
inside CdTe sensor crystal. These energy and flux dependent effects decrease the energy resolution of PCDs and
induce distortion in measured LAC curves. A X-ray photon absorbed near a pixel border generates electron
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charge cloud which may split between neighboring detector pixels. As a result, the high-energy x-ray photon is
falsely counted as two photons which have lower energies. This physical phenomenon is called charge sharing.
Another phenomenon is related to X-ray fluorescence. Detector sensor materials Cd and Te present K-edges
at 26.7 keV and 31.8 keV, respectively. Incoming x-rays at an energy E can expel K-electrons of CdTe sensor
crystal when the photon energy is larger compared to the K-shell binding energies. The vacant K-shells are
instantly reoccupied, and the fluorescence K-shell X-ray photons with energy Efl are emitted and are in some
cases re-absorbed and registered in the detector pixel itself or in adjacent detector pixels (K-escape). As a result,
the incoming photons are registered at an energy E − Efl, and the consequent peak in the energy spectrum is
called K-escape peak. Thus, high-energy x-rays are again recorded at lower energies which leads to a decrease
in energy separation and also spatial resolution.

Charge sharing and K-escape are border interactions. Contribution of these phenomena to the overall detector
response decreases as the size of the detector pixels increases, which can lead to improved energy discrimination.
However, the number of incident X-ray photons striking the same pixel increases in time if the pixel has larger
size. This may result in the overlapping of pulses created by two photons, which may be recorded as one photon
at a very high energy. This effect is called pulse pile-up. Pulse pile-up can cause non-linear detector counting
statistics and eventually detector saturation.32 The contribution of this effect to the total detector response can
be reduced with designing smaller pixels, however, this may result in increased charge sharing and K-escape.
Discovering the best size of the detector pixels to steady charge sharing, K-escape and pulse pile-up is very
important in making a PCD.

Charge carriers that are counted by one detector pixel may again produce a pulse in the adjacent pixel. This
phenomenon is called weighting potential (WP) cross talk and gives rise to the source spectrum at energies lower
than 30 keV.27 Effects such as electronic noise33 and Compton scattering of the incoming photons in the detector
crystal are another problems of PCDs. Both effects have less contributions to the detector signal compared to
other effects.

CdTe detectors are also subjected to another challenge that is charge trapping. Some of charge carriers are
trapped in crystal lattice defects or impurities, which are non-uniformly distributed.34 This results in the effect
called incomplete charge collection (ICC). The ICC becomes visible in the spectrum at energies higher than 60
keV.35 The electrons and holes move at drift velocities ve = µeEe and vh = µhEe towards the collective cathode
and pixelated anodes, respectively. µe and µh are the electron and hole drift mobilities, respectively, and Ee is
the external electric field. The holes drift with significantly smaller mobility than electrons. The electrons have
1000 cm2/V of the drift mobility whereas the holes have 80 cm2/V.36 This leads to more severe trapping of the
slow holes than electrons. The hole trapping is typically reduced by designing CdTe detector with much smaller
pixelated anodes than the crystal thickness. This gives comparatively far less contribution of hole transport
to the total signal and, thus, reduces ICC effect.37 Moreover, the trapped holes create the accumulation of
positive charges in the crystal which can change the external electric field distribution over time and distort
the characteristics of the charge collection. This effect is called polarization and also can lead to ICC.34,38

Polarization might cause noticeable ring artifacts in the reconstructed images at higher photon fluxes,32 and also
rapid decrease in signal pulses above a definite high flux rate.39

In the correction algorithm, using the simulated detector response matrix the distorted spectrum is first
corrected for the flux-independent effects, such as charge sharing, WP cross talk, X-ray fluorescence (escape
peaks), Compton scattering and electronic noise. Flux-independent effects are corrected by using an inverse
detector response matrix MC of size N ×N , where N is the number of energy bins. The raw data is represented
as matrix IR of size N × J , where J is the number of detector pixels. The matrix for corrected data for each
pixel is obtained by27

IC = MCIR, (9)

The inverse detector response matrix is decomposed into the individual detector response matrices, and it is
computed as27

MC = DWPDEDC, (10)

where DWP, DE and DC are the detector response matrices corresponding to WP cross talk, Compton scattering
and electronic noise, and charge sharing effects, respectively. The WP cross talk is firstly calculated to correct
distortion at low energies. The charge sharing is lastly corrected.
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For each pixel’s response to X-ray illumination, a Monte Carlo simulation is employed to calculate the total
detector response matrix, which is dependent on the incident X-ray energy and location of photon’s energy
deposition. The location of photon absorption is considered as a function of depth in the sensor under the
probability distribution function defined by the reference LACs which are obtained from NIST cross-sections.40

In the simulation, the escape peaks phenomenon occurring due to X-ray fluorescence is firstly defined, by assuming
that the emitted fluorescence photons are directed randomly and absorbed at certain travel distance. DWP, DE

and DC detector response matrices are then computed separately based on 2-D histograms of registered and
actual incident energy of X-rays in the simulation. In the model of calculating charge sharing, the excited
electron cloud is split between two adjacent pixels based on a 1-D Gaussian distribution that is aligned with the
detector array. The excited charge cloud can induce current in the adjacent pixels, and the amount of WP cross
talk is proportional to the amount of current. A simplified model presented in Ref. 41 is used for calculating
WP cross talk, in which the detector is considered as the detector surfaces are composed of two infinite parallel
sheets. The model employs the approach of reflected dipole layers (mirror charges), which assumes that WP
cross talk is defined as an infinite sum of the WP elementary functions corresponding to the reflected dipole
layers distributed at equal distances dependent on the depth of the crystal.

Flux dependent models such as the pulse pileup and incomplete charge collection are then considered for
correction. The model presented by Plagnard42 is employed to correct for the pile-up phenomenon. The pile-up
effect of photon with energy En on other whole energies Ex of the measured spectrum IR(E) gives the respective
pile-up spectrum IP(Enx), which is defined for all the range of x as27,42

Enx = En + Ex, (11)

IP(Enx) =
IR(En)

IR(E)max

CP IR(Ex). (12)

It is assumed that the two photons with energies En and Ex in the measured spectrum are recorded as one
photon with energy Enx in the pile-up spectrum. CP is a coefficient for defining pile-up probability. Dreier et
al.27 uses an automatic fitting method to compute this coefficient using the spectral LACs of aluminum. The
pile-up spectrum is deducted from the measured spectrum, and the result is added to

∑

x IP(Enx) summed over
the whole range of x. This gives the corrected spectrum IC(En) of the energy bin n27

IC(E) = IR(E) − IP(E), (13)

IC(En) = IC(En) +
∑

x

IP(Enx). (14)

To obtain the whole corrected spectrum, the same modelling is applied for each increment of n changing from
the initial to final values. We refer the reader to Dreier et al.27 for more details of the correction algorithm.

2.5 Sinogram generation

The correction of the raw data is followed by converting the photon counts to line integral or sinogram for each
energy bin based on Lambert–Beer’s law as follows:

Lk(~x) = −log
Ik(~x)

I0,k(~x)
, k = 1, 2, 3, ..., 128; (15)

where I0,k is the flat-field photon flux corresponding to energy bin k measured without the sample, Ik is the
measured photon flux for energy bin k that has passed through the material, ~x is the 1D detector pixel array.

3. IMAGE RECONSTRUCTION METHOD AND LAC EXTRACTION

In this section, we briefly describe the joint reconstruction method we previously presented in Ref.31 We also
present how LAC is extracted, and the data is rebinned into 2 and 15 energy bins between low- and high-energy
thresholds. Lastly, we present a tool for analyzing the reconstructed image quality obtained for the raw and
corrected data.
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3.1 Joint reconstruction

In Spectral CT, we measure a stack of energy-resolved sinograms with N energy bins denoted by p1, ...,pN ∈ R
M ,

with M being the number of detector pixels multiplied by the number of projection angles. From the spectral
sinograms, we target to reconstruct N respective images of u1, ...,uN ∈ R

J for each energy bin Ei, with J
being the number of pixels for each image. Energy-resolved LACs are retrieved directly from these spectral
reconstructions. We denote a stack of spectral sinograms by a vector p ∈ R

NM and a stack of N reconstructions
by u ∈ R

NJ as well as the LAC for the energy bin Ei on the j-th pixel by ui,j .

An operator, known as the forward projection, maps the images onto the sinogram domain and the forward-
projection is commonly formulated as a linear operator A such that Au = p. Here, we use the same forward-
projection operator for each energy bin and A is the stack of such operators. This formulation enables comparing
the estimation with the sinogram data p and we want to minimize the reprojection error (distinction between
the synthesized and observed sinogram) in L2 norm as follows:

G(Au) =
1

2
‖Au− p‖22. (16)

To deal with noisy data and a small number of projection angles and obtain better reconstruction taking
advantage of multi-spectral dimensionality of reconstructions, we consider a regularization term by imposing a
prior knowledge on the solutions. We employ a vectorial total variation scheme called L∞-VTV, which correlates
the image gradients using maximum norm over multi energy bins as follows:

RL∞

VTV(u) :=

J
∑

j=1

(

max
1≤i≤N

|∇xui,j | + max
1≤i≤N

|∇yui,j |

)

, (17)

where ui,j represents the image value for i-th energy bin and j-th pixel and ∇x and ∇y the gradient operators
with respect to x and y axis, respectively. We found in our previous work31 that this L∞-VTV norm correlates
the gradients strongly over spectral dimension, rejecting outliers in gradient magnitudes.

We aim to minimize the sum of the data fitting term (Eq. 16) and the regularization term (Eq. 17) with a
weighting parameter λ between two terms as follows:

min
u≥0

λG(Au) + RL∞

VTV(u), (18)

where a non-negativity constraint is imposed on u such that the LAC values should be non-negative. We refer
to Jumanazarov et al.31 for details of the optimization of our objective function defined in Eq. 18, and stopping
criteria for the number of iterations.

3.2 LAC extraction

After energy resolved reconstruction and manual segmentation, for each material and each energy bin the LAC
value of a segment is calculated from attenuation value histogram based on normal distribution fitting method
within a region of interest (ROI) of a sample.24 Fig. 1 presents an example of magnesium’s spectral LAC
calculated both from the raw data and from the data corrected using the correction algorithm as described in
the subsection 2.4. the two experimental curves are compared to the reference curve of LAC. The correction
algorithm largely restores the LAC towards the reference curve at the low energies, however, fails to correct for
additional spectral distortions at lower and higher energies. One reason for this could be because of detector
flux variation and photon starvation, i.e. complete attenuation of photons.27 Energy bins in which the LAC
is deviating from the reference values even after applying the correction algorithm are excluded in the later
processing by placing low- and high-energy thresholds, El and Eh.

Proc. of SPIE Vol. 11771  117710J-7
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 20 Apr 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



20 40 60 80 100 120 140 160
0

0.5

1

1.5

2

2.5

Figure 1: Spectral LAC for magnesium obtained from the raw and corrected data. The reference LACs were
obtained by employing NIST cross-sections.40 The vertical black dash-dotted lines represent the low- and high-
energy thresholds, El and Eh remaining same for all materials estimated.

3.3 Rebinning energy bins

In this work, we test the classification performance with approaches using 2 and 15 energy bins, rebinning the
corrected data by integrating photon counts between low- (33.2 keV) and high-energy (131.3 keV) thresholds.
Each bin in 15 energy bins approach has equal width. The 2 bin approach has a gap between low- and high-
energies, which corresponds to interval between 63.0 keV and 79.5 keV. To separate it from a simple rebinning
into two bins we refer to it as a bi-energy approach in the remainder of the article. 15 energy bins provide
high resolution spectral reconstruction with energy bin widths (6.6 keV) below the detector energy resolution (8
keV) and give measurement of spectral LAC curve of the raw and corrected data, however, spectral distortion
of attenuation curve for the raw data is more visible in this approach. With only two energy bins the bi-energy
approach are less sensitive to detector artefacts furthermore it integrates more photons into each of the two
bins, and consequently are robust to significantly higher noise levels. Finally reconstructing only 2 energy bins
makes this approach more computationally efficient. In our previous work,24 we found that the approaches with
energy bin widths below the detector energy resolution did not lead to noticeable improvement in classification
performance. Still Spectral CT has a trade-off between spectral binning and noise level and moreover, to match
industrial fast scanning application we only use 12 projections. Both aspects may result in more reconstruction
artifacts and to compensate for these aspects, we use the joint reconstruction method, L∞-VTV, described in
the subsection 3.1. The classification results are presented in the subsection 5.3.

3.4 Tool for evaluation of reconstruction quality

We use a correlation coefficient as a tool to measure the quality of reconstruction u determining the extent of
linear relation to the ground-truth image v, defined as

r =

∑

i(ui − ū)(vi − v̄)
√

∑

i(ui − ū)2
∑

i(vi − v̄)2
, (19)

where ū and v̄ are the mean values, and ui and vi represent the ith pixel values of u and v, respectively.

We also investigate the L-curve criteria43,44 on both raw and corrected data. The L-curve criteria is a plot
of the 2-norm of maximum gradients, ‖ uλ ‖L∞−VTV (Eq. 17), as a function of the 2-norm of the corresponding
residual vector, ‖ Auλ−p ‖2 (Eq. 16), both dependent on weighting parameters. Based on the L-curve, one can
find the optimal weighting parameter for a regularized reconstruction method without the ground truth image
of a sample. Ideally, the plot appears L-shaped, and the weighting parameters λ corresponding to the point
exactly at the knee of the curve represents the optimal λ values. The values on the flat and vertical lines result
in over-regularized and under-regularized solutions, respectively. Therefore, when studying a real experimental
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sample this graphical tool can be used to find the optimal λ values without using the ground truth image. We
use a linear-linear scale for plotting as in Refs. 31, 44. In our previous work,31 we found the optimal λ value for
the corrected data based on the L-curve criterion. In this work, we study how this graphical tool works for the
raw data.

We found in our study that using the minimization of the standard deviation within a ROI of a sample as
a method to find the optimal weighting parameter λ may lead to over-regularization. We therefore excluded it
from estimation of reconstruction quality.

4. METHOD TO MATERIAL CLASSIFICATION

In this section, we briefly give a description of the SIMCAD method presented in detail by Jumanazarov et al.24

to measure ρe and Zeff of materials from Spectral CT.

4.1 Calibration of parameters in LAC

From Eq. 8, LAC for each energy bin can be represented as

µm(Ek) = ρe,m

(

Zn−1
eff,mp(Ek) + c(Ek)

)

, (20)

where m = 1, 2, ...,M , k = 1, 2, ...,K with M being the total number of reference materials and K being the
number of energy bins used for a particular classification approach. p(Ek) and c(Ek) are photoelectric absorption
and Compton scattering basis functions for energy bin Ek, respectively, which are calibrated and the same for
all materials.

We also optimize the exponent n together with the basis functions for better measurement. To solve Eq. 20,
we set positivity constraints for all basis functions and n, and formulate the non-linear objective function as:

min
0≤p1,c1,...,pK ,cK , n

M
∑

m=1

K
∑

k=1

(

µm(Ek) − ρe,m(Zn−1
eff,mpk + ck)

)2

, (21)

where pk = p(Ek) and ck = c(Ek). To optimize Eq. 21, a nonlinear least square solver is used based on trust
region method.45 Initial constraints were chosen as p0k = 0.5, c0k = 0.5 and n0 = 3.6 for all k. No particular
dependency on the initial constraints was observed. Note that the calibration step is independently performed
for the raw and corrected data. The formulation of the classification method is compatible with an arbitrary
number of energy bins.

4.2 Calculation of material properties

The calibrated parameters and the measured LAC µ(Ek) of an unknown material scanned are used to obtain ρe
and Zeff . For M - and K- total number of unknown materials and energy bins, respectively, Eq. 20 is reformulated
as a linear system equation as follows:







−→p −→c
. . .

−→p −→c





















z1
ρe,1

...
zM
ρe,M















=







−→µ 1

...
−→µM






(22)

where zm is a temporary variable introduced instead of ρe,mZn−1
eff and −→p = (p1, ..., pK)T , −→c = (c1, ..., cK)T and

−→µm = (µm(E1), ..., µm(EK))T . The size of the linear matrix in the above equation is (M × K)-by-(2 × M)
and the number of unknowns is 2 × M . With the positivity constraint on the solution we retrieve the vector
(z1, ρe,1, ..., zM , ρe,M ) that minimizes the norm in the linear least square problem. The effective atomic numbers
are then obtained for all materials by

Zm =

(

zm
ρe,m

)
1

n−1

. (23)
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The classification accuracy was measured as the percent relative deviation from the reference values of ρe
and Zeff as follows:

∆Zrel
eff = 100% ·

Zest
eff − Zref

eff

Zref
eff

, (24)

∆ρrele = 100% ·
ρeste − ρrefe

ρrefe

(25)

where superscripts est and ref represent the estimated and reference values, respectively.

5. RESULTS AND DISCUSSIONS

5.1 Correlation coefficient and L-curve

(a) 10 ms (b) 10 ms

(c) 2 ms (d) 2 ms

Figure 2: Correlation coefficient as a function of weighting parameter λ (left column) and the L-curves (right
column) obtained with the raw and corrected data for 10 ms and 2 ms of integration time. The correlation coef-
ficients represent the mean values calculated from the coefficients for 15 energy bins used. Note the logarithmic
scale in the x−axis for correlation coefficients.

The sample for the experiments in this subsection was scanned with 4 different integration times 2 ms, 10
ms, 50 ms and 100 ms. The lower integration time, the lower photon counts. Fig. 2 shows correlation coefficients
depending on weighting parameters and L-curve obtained with the raw and corrected data for 10 ms and 2 ms
integration time. Based on the correlation coefficients the raw data have similar reconstruction quality as the
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corrected data, even with noticeably deviations in the LAC as shown in Fig. 1. For all of total integration times
we obtained similar correlation coefficients from the raw and the corrected data. For 10 ms acquisition time, the
figure also shows good agreement between the weighting parameter found on the corner of the L-curve and the
weighting parameter corresponding to the maximum correlation coefficient. We found that for both the raw and
corrected data the vertical parts of the L-curves deviate from initial vertical positions as the total integration
time decreases from 100 ms to 2 ms, which was more noticeable in 2 ms case. The raw data with less deflection of
vertical lines appears to be slightly more accurate in fitting using the L-curve criterion compared to the corrected
data.

5.2 Introducing high noise levels to specific energy bins
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Figure 3: Spectral LAC for aluminum obtained with four different cases of adding high Gaussian noise (σ = 1.5)
to 11 energy bins between the low- and high-energy thresholds; noise is added to the raw data, the correction is
performed after and before adding noise, and the correction is performed without adding noise.
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Figure 4: Correlation coefficient as a function of weighting parameter λ (a) and the photon energy between
the low- and high-energy thresholds (b) obtained with four such different cases. The correlation coefficients
(a) represent the mean values calculated from the coefficients for 96 energy bins used between the low- and
high-energy thresholds. Note the logarithmic scale in the x−axis for correlation coefficients (a).

The aim of the joint reconstruction is to correlate intensity shift across the spectral dimensions such that noise
in one energy bin blurring a specific edge is corrected by the information in the other channels of the same edge.
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The correction algorithm redistributes intensity between energy channels based on the detector response and
noise in one channel is thus distributed across the spectrum. We aimed to check the robustness of the combined
workflow of correction and reconstruction to this type of noise. Gaussian noise with a standard deviation (σ) of
1.5 was introduced to 11 energy bins distributed uniformly between 33.2 keV and 132.4 keV. The sample used
in this subsection was scanned with 100 ms of the total integration time per projection. We investigated four
different cases of added noise; noise is added to the raw data (Raw with noise), noise is added to the raw data and
then the data is corrected (Corrected after noise), the raw data is corrected and then noise is added to the data
(Corrected before noise) and the raw data is corrected and no noise is added (Corrected, no noise). For all cases
sinograms are calculated from the data, reconstructed and manually segmented. Fig. 3 shows energy-resolved
LACs from an aluminum segment for each of the 4 cases of added noise. The correction algorithm appears to
largely overcome such high noises except it shows some decrease in spectral LAC in the low energy. Adding
noise after the spectral correction gives noticeable drops in LACs for the affected energy bins similarly to the
case of adding noise to the raw data. Fig. 4 presents correlation coefficients depending on weighting parameter
λ and photon energy corresponding to the optimal λ for four such cases. It can be noted from Fig. 4a that the
case of correcting before adding noise (r = 0.90 at λ = 0.6) even gives slightly smaller correlation coefficients
compared to the case of noisy raw data (r = 0.91 at λ = 0.6). The correction algorithm significantly increases
reconstruction quality (r = 0.95 at λ = 0.6) whereas the correction algorithm without added noise gives r = 0.97
at λ = 1.6. The figure also shows that the joint reconstruction method uses lower weighting parameter in the
cases of added noises corresponding to increasing the regularization between energy bins. Fig. 4b shows that the
correction algorithm after adding noise mostly compensates for the affected bins giving lower overall correlation
coefficients whereas the cases of the noisy raw data and the data corrected before adding noise have very sharp
drops for such energy bins with added noises.

5.3 Material classification

Fig. 5 presents classification results for the bi- and 15 energy bins approaches. Note that we used the materials
listed in Tab. 1 and Tab. 2 in Appendix A for the calibration step as the reference materials and for calculation
of (ρe, Zeff) as unknown materials, respectively. We obtained the relative deviations for ρe and Zeff as a function
of the weighting parameter λ used for the reconstruction. Even though the correlation coefficients for the raw
and corrected data were found to be similar as shown in Fig. 2, the corrected data in 15 energy bins approach
gives 3.4% for ρe and 2.7% for Zeff of relative deviations at λ = 16.0 whereas the raw data results in 5.6% and
10.3% at λ = 4.0, respectively. The classification accuracy for the raw data in bi-energy approach was also
significantly lower than the corrected data. For bi-energy bins, the relative deviations are 8.0% for ρe and 12.4%
for Zeff at λ = 2.0 for the raw data whereas the corrected data gives 2.6% and 3.9% deviations at λ = 6.0. Thus,
the classification accuracy relies on how the measured LAC fits our parameterized LAC defined in Eq. 20. We
found that using a bin-by-bin reconstruction method significantly deteriorates classification performance for the
raw data.24

We tested the robustness of the classification performance for the raw and corrected data by adding Gaussian
noise with σ = 0.15 to all energy bins and all materials used for the calibration step and calculation of materials
features between the low- and high-energy thresholds. Fig. 6 shows the relative deviations for (ρe, Zeff) as a
function of weighting parameter. It can be noted from the graphs that applying the correction algorithm after
and before adding noise to the raw data gives similar results, for which the relative deviations are 4.1% for ρe
and 3.3% for Zeff at λ = 6.0, and 3.8% and 4.0% at λ = 20.0, respectively. In comparison, the raw data with
added noise leads to the deviations of 6.5% and 11.1% at λ = 2.0, respectively.

6. CONCLUSION

We explored the influence of spectral correction applied to the raw data collected by a PCD. We found the influ-
ence on the spectrally resolved LAC curve, the reconstruction quality, the L-curve and the material classification.
We used the SIMCAD classification method determining system-independent material properties (ρe, Zeff). The
correlation coefficient were employed to measure reconstruction quality of data acquired with different levels of
photon flux, acquisition time and number of bins. We have presented that decreasing the integration time and
thus decreasing photon counts, the raw data gave similar correlation coefficients and L-curve properties as the
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Figure 5: The percent relative deviations as a function of weighting parameter λ for ρe (left column) and Zeff

(right column) obtained with the raw and corrected data using bi- and 15 energy bins. The deviations are shown
as the mean values of the absolute deviations for each material listed in Tab. 2. Note the logarithmic scale in
the x−axis.

corrected data. However, very high noise levels introduced to certain energy bins deteriorates reconstruction
quality more for the raw data than for data corrected after the noise is added. The correction algorithm showed
robustness to such noise in specific energy bins in terms of correcting the noisy spectral LAC. For material
classification, we investigated the influence of spectral correction both for high resolution spectral reconstruction
where the number of bins exceed the energy resolution of the detector and for computational efficient binning
of the spectral dimension into high and low energy bins. We also tested noise conditions for classifications with
the raw and corrected data. We found that the correction algorithm significantly enhances the accuracy of the
classification performance important for both security and industrial applications where materials are identified
from Spectral CT. Since the spectral correction of the detector response could easily be implemented for other
types of photon counting detectors, results similar to what is obtained in this study can be expected when the
correction algorithm is used for other photon-counting applications and set-ups.

APPENDIX A. MATERIALS USED FOR CLASSIFICATION
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after and before adding noise. The deviations are shown as the mean values of the absolute deviations for each
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A B S T R A C T

We present a method for material classification in spectral X-ray Computed Tomography (CT) us-
ing energy-resolved, photon-counting detectors (PCD), with which one can simultaneously measure
the energy dependence of a material’s linear attenuation coefficient (LAC). The method uses a basis
material decomposition for the multi-energy LAC measurements and accurately estimates effective
atomic number (Zeff ) of a material. The decomposition is based on the fact that the material’s LAC
can be represented as the sum of multiple basis materials with respective equivalent thicknesses. The
measured spectra in PCDs working under high flux is distorted by a range of detector artifacts such
as charge sharing and pulse pile up. These physical effects lead to distortions of the measured LAC
curves, therefore we use a spectral correction algorithm for these distortions.

We use the different materials in the range of 6 ≤ Zeff ≤ 15 for experimental validation, which are
scanned with a MultiX ME-100 v2 line array PCD. We show that using spectral correction algorithm
before the material decomposition classification method decrease the relative deviation in Zeff to
2.4% from 5.2% when spectral correction is not used.

1. Introduction

Conventional X-ray computed tomography (CT) for lab-
oratory or industrial applications measures the distribution
of the averaged linear attenuation coefficients (LAC) within
an object. One reason is that it neglects polychromaticity
of radiation generated by an X-ray source, which integrates
photons over the broad energy range and results in the av-
eraged quantity of LAC. Material classification in conven-
tional single energy CT is just based on the contrast between
different materials that arises due to the difference of the av-
eraged LACs. However, various materials may have over-
lapping averaged LACs measured within the wide energy
range, which significantly limit the classification accuracy.
This is because the dependence of the LAC on the energy,
and also on material features like electron density, �e, and
effective atomic number, Zeff is neglected. Some research
showed that the overlapping LACs cause a decrease in con-
trast of soft human tissues with different �e or Zeff [1–3],
which means that the quantitative characterization based on
�e and Zeff is desired.

An accurate measurement of �e and Zeff is very use-
ful in radiotherapy and medical diagnosis [4–8], and secu-
rity field [9]. Alvarez et al. [10] alternatively presented
that the LAC can be decomposed into energy- and material-
dependent components, which can be defined by photoelec-
tric absorption and Compton scattering interactions, and den-
sity, �, and Zeff , respectively. This led to the emergence
of Dual-energy CT, which can retrieve a map of both �e
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and Zeff , and is the state-of-the-art method for the material
characterization in medical and security applications [3, 11–
19]. The dual-energy CT is usually performed with a single
source spectrum (i.e. single acquisition) using dual-energy
sandwich detectors. However, the dual-energy CT has the
main limitation that low- and high-energy spectrums mea-
sured by dual-energy sandwich detectors are overlapping re-
sulting in lower energy separation, and thereby limiting clas-
sification performance. Moreover, the dual-energy CT still
measures the averaged LACs at overlapping low- and high-
energies, and therefore material classification with the dual-
energy CT is dependent on the system, i.e. on source spec-
trum, filtration, and detector efficiency [20].

The development of cadmium telluride (CdTe) photon-
counting detectors (PCD) has laid the foundation for Spectral
CT [21, 22]. This technique is also known as multi-energy
X-ray CT in the literature. PCDs can separate different en-
ergies of the incident photons and simultaneously measure
a spectrum of energy-dependent material features by using
the selected thresholds to assemble and digitize the photon
counts. This has generated large interest in PCDs within di-
agnostic and radiation therapy imaging [23, 24]. With single
acquisition, spectral CT employing a PCD can quantitatively
obtain a material’s LAC at several energies, and is found to
have a large potential to improve material separation com-
pared to dual-energy CT [25]. As a result spectral CT has
drawn significant research attention from medical [26–31]
and security fields [32–34]. X-ray radiography investiga-
tions in explosive detection presented that PCDs reveal su-
periority over dual-layer sandwich detectors that have rela-
tively poorer energy separation ability in enhancing material
characterization [35–38].

In previous study we showed a novel classification method,
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namely system-independent material classification through
attenuation decomposition (SIMCAD) [39], independent of
the instrument or its specifics like the source spectrum. From
spectral CT measurements, the SIMCAD method decom-
poses LACs into energy- and material-dependent compo-
nents based on the model presented by Alvarez et al. [10],
and accurately estimates the material properties, �e andZeff ,
representing the measured and decomposed LACs at multi-
ple energies. Using the experimental data it was shown that
this method obtains the best classification performance with
optimized bi-energy bins. This is because the low- and high-
energy bins are separated by a gap of certain energy width
that makes them non-overlapping and improves the perfor-
mance. Another factor that contributes to classification im-
provement is that the position of the gap is optimized keep-
ing the low- and high-energy thresholds constant to find the
best classification.

Using MultiX ME100 PCD in spectral CT, Brambilla et
al. [33] presented a material identification method, which re-
lies on basis material decomposition that a material’s LAC
can be described as a linear combination of the LACs of se-
lected basis materials with respective equivalent thicknesses
[40–42]. PCDs operating under high flux suffer from the
spectrum distortions that physical interactions such as charge
sharing and weighting potential cross-talk, fluorescence ra-
diation, Compton scattering, pulse pile up and incomplete
charge collection significantly distort the raw data collected.
These spectral distortions cause a strong deviation of the ex-
tracted LACs from actual attenuation curve [43]. Therefore,
Brambilla et al. [33] used a calibration step to register the
detector’s response for different combinations of thicknesses
of the basis materials superposed on each other. The thick-
nesses of basis materials for which the detector’s response
function matches with the measurement are found using a
maximum likelihood solution relying on the assumption that
photon counts in each energy bin are distributed based in
a Poisson law. They calculated material’s Zeff from the
equivalent thicknesses obtained by the calibration step using
polyethylene (PE) and polyvinyl chloride (PVC) as basis ma-
terials. The equivalent thicknesses for the detector responses
of the materials corresponding to the intermediate or exter-
nal equivalent thicknesses were found by interpolation or
extrapolation, respectively. However, using the calibration
step may be to a system-dependent solution because of the
dependence on source spectrum when recording the detec-
tor’s responses. Su et al. using synthesized simulation data
from spectral CT investigated material discrimination per-
formance based on basis material decomposition model for
different number of energy bins and different exposure pa-
rameters per projection (in milliamp-seconds, mA ⋅ s). They
found that with both projection domain and image domain
techniques one could quantitatively discriminate iron from
calcium, potassium and water by choosing the appropriate
number of energy bins and the exposure parameters, being
different for each technique [44].

In this work, using the experimental data we present a
method for material classification that estimates Zeff of a

material based on basis material decomposition (BMD) in
spectral CT. The BMD method offers a system-independent
solution because we use a correction algorithm presented by
Dreier et al. [43] that corrects for severe spectral distortions
when applying to the raw data and gives the corrected LACs.
This allows us to directly use the corrected LACs for esti-
mations instead of using the calibration step presented by
Brambilla et al. [33]. In previous study [45], we presented
that the distorted LACs lead to a significant decrease in ma-
terial classification performance estimated by the SIMCAD
method, and the correction algorithm is required to improve
the performance. In this work, we aim to test the robust-
ness and accuracy of the BMD method for different materi-
als with a broad range of Zeff . We use sparse-view recon-
structions from just 12 projections that would enable rapid
scanning and low dose imaging desired for security and med-
ical applications, respectively. In comparison, 350–450 pro-
jections are usually employed by cone beam CT systems in
most diagnostic imaging applications such as the head scan-
ning, breast and extremities [46]. However, a fewer number
of projections will reduce image reconstruction quality be-
cause of the sparser sampling of the data [47]. In the present
work, to achieve improved image quality at few projections
we use the joint reconstruction regularization, vectorial total
variation based on L∞ norm (L∞-VTV), which utilizes ad-
ditional information in the spectral dimension of sinogram
data [45]. The BMD will be compared to another classifi-
cation method, the SIMCAD for inspecting a wide range of
materials.

2. Theory

2.1. Linear attenuation coefficient
When x-ray photons are sent to a material, some part of

the photons interact with the material’s particles and their
energy might be scattered or absorbed. The dominant in-
teractions are photoelectric effect and Compton scattering
within the detector’s energy range in our study. A quantity
of this scattering and absorption is named the linear attenu-
ation coefficient (LAC), denoted by �. The rest of photons
transmit through the material without interaction with the
material’s particles. The quantity of photons passed through
the material is dependent on the photon energy, and the den-
sity, atomic number and the thickness of the material. The
Beer Lambert law can describe the LAC for a homogeneous
material and for energy bin Ek as follows:

I(x⃗, Ek) = I0(x⃗, Ek)e
−�(Ek)d , k = 1, 2, 3, ..., K; (1)

where I(Ek) is the photon flux transmitted through the ma-
terial, and I0(Ek) is the flat-field photon flux, i.e. the projec-
tion measured by the detector without the sample. The latter
also represents the source spectrum or the system’s spectral
response. �(Ek) is the LAC for energy bin Ek, and d is the
thickness of the X-ray path through the material. x⃗ is re-
ferred to the 1D linear detector pixel array. K denotes the
total number of energy bins used. In conventional and dual-
energy CT, the polychromatic nature of the X-ray beam is ne-
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glected, and therefore the image reconstruction gives an av-
eraged LAC. Differently from dual-energy CT, spectral CT
measures the LAC at multiple energy bins, and this fact can
enable more accurate decomposition of the LACs to energy-
and material-dependent components. From this, we expect
better material classification.

2.2. Decomposition to photoelectric effect and

Compton scattering
For a CT system, Alvarez et al. [10] presented empiri-

cally within the energy region of 30−200 keV that the LAC
can be represented in two dimensions that approximate two
main physical interactions as:

�(E) = a1
1

E3
+ a2fKN(E), (2)

where fKN(E) is the Klein-Nishina function [10], the func-
tions 1∕E3 and fKN(E) approximate the energy dependence
of the photoelectric effect and Compton scattering, respec-
tively. a1 and a2 are the material-dependent coefficients of
the decomposition. In previous work, using this model of at-
tenuation decomposition being adjusted for spectral CT we
presented a novel classification method, the SIMCAD that
can efficiently estimate both material properties (�e, Zeff )
directly from spectral LAC measurements [39]. The method
was tested in the range of 6 ≤ Zeff ≤ 23.

2.3. General model of decomposition
The LAC can be represented with a more general mathe-

matical formulation, which decomposes the LAC to multiple
dimensions of x-ray attenuation space for energy bin Ek as
[48, 49]

�(Ek) = a1f1(Ek) + a2f2(Ek) + ...+ aNfN (Ek), (3)

where ai are the material-dependent coefficients, fi(Ek) are
energy-dependent basis functions (i = 2, 3, ..., N , k =

2, 3, ..., K) , and N and K are the total number of compo-
nents, i.e. dimensionality of the LACs, and energy bins, re-
spectively. The basis functions can be just a mathematical
formulation without a physical interpretation.

2.4. Singular Value Decomposition
Alvarez (1982) [48] explored how to efficiently quantify

the dimensionality of the LAC vector space (Eq. 3) based on
the Singular Value Decomposition (SVD) theorem, a tool
from matrix algebra. For dual-energy CT systems and for
biological materials within the energy region of medical di-
agnosis, they found that the LAC decomposition to linear
vector space with just two components yields sufficient ac-
curacy. Additionally, they noticed that if the energy region
has a discontinuity in the LAC due to a K-edge material like
iodine contrast agent, now three basis functions are needed
to accurately fit the vector space model of the LAC. Us-
ing synthetic spectral CT data, Eger et al. [50] investigated
the dimensionality of the spectral LAC decomposition for
a set of explosive and non-explosive materials for security
applications between 10 keV and 150 keV. They studied

a broad range of different materials with overall number of
124. Based on the SVD decomposition, they concluded that
two dimensional linear vector space representation of the
LAC is not sufficient for accurate approximation of the spec-
tral LACs, and more energy-dependent basis functions and
material-dependent coefficients are needed for better mate-
rial classification. Our assumption for the reason is that
some of the materials may have K-edge discontinuity in the
LAC, which may be expected for materials encountered in
security screening. From Spectral CT measurements, Busi
et al. [51] also performed a SVD analysis with innocuous
and threat materials in the range of 5 ≤ Zeff ≤ 10 with
an attention to security screening applications. They used
the filtered back projection algorithm with 360 projections
for image reconstruction. From SVD decomposition, they
found that the first two singular vectors are sufficient to find
a good approximation for the spectral LACs of all the mate-
rials used. Thus, the dimensionality is mostly dependent on
the range of materials and the energy range.

The SVD is applied to the matrix A, whose columns are
the measured LAC curves of all the materials with dimen-
sions (K × M) at multiple energy bins. K and M are the
total number of energy bins and materials estimated, respec-
tively. The SVD of the matrix A targets to retrieve a group
of optimal linearly independent vectors that can approximate
the measured LAC, and is defined as [48, 52]

A =

⎡⎢⎢⎢⎣

�1(E1) �2(E1) ⋯ �N (E1)

�1(E2) �2(E2) ⋯ �N (E2)

⋮ ⋮ ⋱ ⋮

�1(EK ) �2(EK ) ⋯ �N (EK )

⎤⎥⎥⎥⎦
= UDV T , (4)

where D is a diagonal matrix, whose diagonal elements are
the singular values �i of A, and the columns of U and V

are composed of the left and right singular vectors, respec-
tively. The left singular vectors can be called the optimal
basis set functions [48], which consist of linearly indepen-
dent vectors ui(E). The magnitude of each singular value �i
characterizes how the corresponding optimal basis set func-
tion ui relatively contributes to the decomposition model in
Eq. 3 or Eq. 5. The optimal basis set functions can alterna-
tively be considered as a group of energy-dependent basis
functions in Eq. 3 that can represent the spectral LACs of
materials [50].

We also performed the analysis to estimate the dimen-
sionality of LACs for the set of our materials and detector’s
energy range based on SVD decomposition, for which the
results are given in the subsection 4.1.

We also analyzed the dimensionality of LAC vector
space for the set of our materials and energy range using the
SVD, for which the results are presented in the subsection
4.2.

2.5. Basis material decomposition
As an alternative way to the general attenuation decom-

position, a material can also be decomposed into a lin-
ear combination of multiple basis materials with respective
equivalent thicknesses for each energy bin, Ek, which can be
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Figure 1: Spectral LAC decomposition for water 2 sample introduced in Tab. 1. (a) Basis material decomposition computed from
15 energy bins. The reference LACs of water, PE and PVC are obtained from NIST database [54]. Note logarithmic scale in the
y-axis. (b) Percent relative deviations of the attenuation decomposition with respect to the reference LACs at each energy bin.

written as [40–42, 53]

�(Ek) = ℎ1�1(Ek) + ℎ2�2(Ek) + ...+ ℎN�N (Ek), (5)

where ℎi and �i(Ek) (i = 2, 3, ..., N ; k = 2, 3, ..., K) repre-
sent the equivalent thickness and LAC of a basis material i
at energy bin Ek, respectively. N and K represent the num-
ber of basis materials, (or the dimensionality of the LAC)
and energy bins, respectively. Note that the number of basis
materials N should be smaller than or equal to the number
of energy bins K , otherwise the above equation would be
under-determined.

Fig. 1a shows basis material decomposition of the en-
ergy resolved LACs, exemplified for water. Using experi-
mental data, and PE and PVC basis materials, we first ob-
tained equivalent thicknesses ℎPE and ℎPVC using Eq. 10,
and then represented the LACs by linear combination of ba-
sis materials based on Eq. 5. Fig. 1b presents how the basis
material decomposition is accurate with respect to the refer-
ence LACs, shown as the percent relative deviations at mul-
tiple energy bins.

The basis material decomposition has an advantage over
the photoelectric absorption−Compton scattering model
that one can accurately approximate the LAC of materials
with K-edge absorption by including another basis material
that has a K-edge within the energy region used [33, 48].
How many basis materials are required to accurately define
the decomposed LAC of the material is an important ques-
tion in terms of classification. Using experimental data we
analysed the classification accuracy versus the number of ba-
sis materials in the LAC (Eq. 5), for which the results are
given in the subsection 4.2.

3. Methods

3.1. Material features under investigation
X-ray attenuation mechanism is related to a material’s

electron density [55], which is the number of electrons per
unit volume (electron − mole∕cm3). For a compound com-
posed of N total different elements i each with a number of
atoms, �i, the electron density is expressed as follows

�e =

∑N
i=1 �iZi∑N
i=1 �iAi

�, (6)

where � is mass density, Zi and Ai denote atomic num-
ber and atomic mass of an element i. For compounds, the
atomic number is referred to as effective atomic number,
Zeff , dependent on the atomic numbers of the elements in
the compound and on their corresponding quantities. May-
neord (1937) [56] and Spiers (1946) [57] proposed a now
classical parameterization of Zeff , defined as

Zeff =
l

√√√√ N∑
i=1

riZ
l
i
, (7)

where ri is the relative electron fraction of each element:

ri =
�iZi∑N
j=1 �jZj

,

where �i is the number of atoms that have the same atomic
number Zi. The exponent l is a free parameter that is ad-
justed depending on the energy range, materials and system
features. This exponent typically varies between 2.94 and
3.8 stemming from experimental fits for various CT systems
[42]. In our previous work [39], when estimating the clas-
sification performance with the SIMCAD method we found
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that l = 8.0 appeared to be the optimal value for the set of
our materials, source spectrum and system features. There-
fore, in this work to calculate reference Zeff values of the
materials listed in Tab. 1, required for Zeff estimation tech-
nique presented in the subsection 3.7, we employ the value
of l = 8.0.

3.2. Experimental setup and materials
The experiments were carried out in the 3D Imaging

Center at DTU, Denmark. The X-ray beam was produced by
a micro focused Hamamatsu source. The operating param-
eters of the source such as the acceleration tube voltage and
the anode filament current were 150 kV and 0.5 mA, respec-
tively. A 2-mm-thick aluminum filter was inserted in front
of the source to suppress photons with energies under the de-
tector’s energy range. The incoming beam was collimated to
a fan beam by employing a JJ X-Ray IB-C80-AIR slit with
5-mm-thick tungsten carbide blades to irradiate the full de-
tector area. The slit decreases the background radiation of
scattered and fluorescent photons by maintaining the beam
size to a minimum. The sample was mounted on the rotation
stage and the scans were performed between discrete rota-
tions with 30◦ increments over a range of 360 degrees be-
cause we use 12 projections for reconstructions. The source
to detector distance is 701 mm while the source to sample
distance is set to 500 mm.

We used MultiX ME-100 v2 PCD for the experiments
that is manufactured by Detection Technology S.A.S. in
Moirans, France. The detector consists of a system of five
detector modules, each module possesses a 1 × 128 linear
array of 0.8 × 0.8 mm2 pixels. The detector can measure
with 128 energy bins with a width of 1.1 keV each, evenly
distributed between 20 and 160 keV energy range. The de-
tector working under high X-ray fluxes provides the energy
resolution of 6.5% (8 keV at 122 keV) [22]. The integration
time of the detector can change from 2 ms to 100 ms (in 10
�s increments). In this work, the total integration time per
projection is set to 8 seconds for classification performance
estimations.

Tab. Table 1 lists the materials tested in this work
and their reference Zeff values that were computed by us-
ing Eq. 7 and the exponent l = 8.0. Sample dimen-
sions are described through width×length for rectangu-
lar samples or diameter for circular samples. The plas-
tics presented in the tables are polycarbonate (PC), poly-
methyl methacrylate (PMMA), polyoxymethylene-C (POM-
C), polytetrafluoroethylene (PTFE), polyethylene terephtha-
late (PET), polyoxymethylene-H (POM-H) and polyvinyli-
dene fluoride (PVDF). Zeff values of materials generally
found in a passenger luggage mostly changes between 7
and 8. Most organic materials are related to this region
[9]. The plastics were selected for estimations because their
chemical compositions show resemblance to several explo-
sives, e.g. POM can be regarded as an explosive simulant
[36]. The most human organs and tissues change between
6 ≤ Zeff ≤ 15 [58–61] within the detector’s energy region,
which represent the similar Zeff variation as the materials

used in the work. One reason may be that the major abundant
elements in various human tissues and polymers are com-
posed of H, C, N, and O [8]. The classification of these ma-
terials used is thereby an efficient gauge for an instrument’s
capacity to quantitatively classify materials in medical and
security fields. Note that none of the materials tested have
absorption edges in the energy range of the detector, oth-
erwise we would need to use one or multiple K-edge basis
materials to fit the basis material decomposition model, as
described in the subsection 2.5.

Fig. 2 presents just two ”real life” phantoms (samples)
among all the phantoms that were scanned and processed
through the BMD classification method, as examples.

3.3. Basis materials used for the study of LAC

dimensionality based on classifications
In this work, we perform classifications with the differ-

ent number of basis materials in the decomposition. In other
words, we study the dimensionality of LACs based on clas-
sifications. Tab. 2 lists all the used basis materials with ref-
erence density and Zeff . Tab. 3 shows the basis materials for
each LAC dimensionality study. Note that for classifications
we use only the theoretical LACs for all the basis materials,
taken from NIST database [54]. The classification results
obtained with respect to the number of basis materials are
given in the subsection 4.2, where we find that two basis ma-
terials give the best classification performance. Therefore,
we use two basis materials, PE and PVC, for classifications
in the subsections 4.3, 4.4 and 4.6.

3.4. Data correction and setting low- and

high-energy thresholds
Physical effects such as charge sharing and weighting

potential cross-talk, fluorescence radiation, scattering radia-
tion, pulse pile up and incomplete charge collection severely
distort the measured spectra of a Cadmium telluride (CdTe)
PCD working under high flux. These effects being related to
energy and flux decrease the detector’s energy resolution and
lead to large deviations in the extracted LACs of materials
from theoretical values. As a result the spectral distortions
will significantly decrease classification performance [45].
The correction of the detector’s spectral response is there-
fore needed to accurately extract the LACs. We employed
the correction algorithm introduced by Dreier et al. [43] to
correct for these distortions, of which we refer the reader to
for further details. Fig. 3 shows the spectral LACs of wa-
ter obtained with the raw and corrected data. The reference
LAC curve is also shown for comparison. The correction
algorithm significantly corrects the deviated LAC from the
raw data at the low energies, however, cannot correct the
deviated LACs at lower and higher energy bins. This may
be due to detector’s flux variation and photon starvation, i.e.
complete attenuation of photons at these energies, which are
excluded by setting low- (33.2 keV) and high-energy (132.4
keV) thresholds, El and Eh that remain the same for all the
materials used in the measurements.
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Table 1

The list of the materials used for classifications and their respective reference Zeff values
computed with Eq. 7. The mass density, � for the plastics was estimated with uncertainties
of ± 0.15%. The rest of mass density values are taken from PubChem database [62].

Index Material
Chemical

Formula

Width×length/
Diameter (mm)

� (g∕cm3) Zeff

1 Graphite C 12.7 1.8 6
2 N,N-Dimethylhydrazine C2H8N2 67 0.791 6.44
3 Ethylenediamine C2H8N2 67 0.90 6.44
4 PC (CO3 C13 H8)n 8.2×53.5 1.18 6.82
5 Acetone 2 C3H6O 54 0.785 6.90
6 Nitrobenzene C6H5NO2 49 1.20 7.00
7 PMMA (C5 O2 H8)n 40×42 1.18 7.02
8 Ethanol 96% C2H6O (96%) 67×67 0.798 7.06
9 Methanol CH3OH 20 0.792 7.29
10 POM-C (CH2 O)n 9×53.5 1.41 7.40
11 Hydrazine solution H4N2 (35%) 54 1.0 7.43
12 Nitromethane CH3NO2 20 1.14 7.50
13 Water H2O 20 0.997 7.78
14 Water 3 H2O 12.7 0.997 7.78
15 Hyd. Peroxide 2 H2O2 (50%) 73×74 1.22 7.83
16 PTFE (C2 F4)n 9×53.3 2.16 8.70
17 Magnesium 2 Mg 18 1.74 12
18 Aluminum 2 Al 20×20 2.70 13
19 2-Butanone C4H8O 83 0.805 6.76
20 Acetone C3H6O 20 0.785 6.90
21 PET (C10 H8 O4)n 9×53.5 1.39 7.09
22 Methanol 2 CH3OH 81 0.792 7.29
23 POM (CH2 O)n 12.7 1.42 7.40
24 POM-H (CH2 O)n 15.5×53.3 1.43 7.40
25 Ethanol 40% C2H6O (40%) 67×67 0.947 7.63
26 Water 2 H2O 51×51 0.997 7.78
27 Nitric acid HNO3 (65%) 83 1.39 7.80
28 Hyd. Peroxide H2O2 (50 %) 20 1.22 7.83
29 PVDF (C2 H2 F2)n 9×53.5 1.79 8.40
30 PTFE 2 (C2 F4)n 12.7 2.2 8.70
31 Magnesium Mg 12.7 1.74 12
32 Aluminum Al 25 2.70 13
33 Silicon Si 12.7 2.33 14

Table 2

The list of the basis materials used for classifications, and their Zeff values calculated with
Eq. 7. The mass densities are from in PubChem data [62].

Basis material
Chemical

Formula
� (g∕cm3) Zeff

Polyethylene (PE) (C2 H4)n 0.93 5.79
Polyacetylene (PAc) (C2 H2)n 0.4 5.89
Polypyrrole (PPy) (C4 H5N)n 0.97 6.22
Polymethyl methacrylate (PMMA) (C5 O2 H8)n 0.94 7.02
Polyoxymethylene (POM) (CH2 O)n 1.42 7.40
Polyvinyl Chloride (PVC) (C2 H3Cl)n 1.406 15.71

3.5. Energy rebinning step
After the spectral corrections are applied to the spec-

tra of each projection of the CT scan, the data is rebinned
by summing photon counts between low- (33.2 keV) and
high-energy (132.4 keV) thresholds. A higher number of

energy bins can give better resolution, but also results in
higher noise levels in each bin. This is because the signal-
to-noise ratio (SNR) in each energy bin is proportional to the
square root of the expected number of photons [65]. Spectral
CT thus has a compromise between hiring more energy bins
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Figure 2: Presentation of just two ”real life” phantoms among all the phantoms scanned, as examples. The materials in both
phantoms used for the classification performance estimation are listed in Tab. 1. These 2D reconstructions were performed with
the simultaneous iterative reconstruction technique (SIRT) [63] from 360 projections for presentation (at 55.3 keV X-ray energy).
The gray scale bars represent the LACs with the unit of cm−1. (a) This phantom was taken from the authors of Ref. [64] to test
it on our classification method. (b) This phantom was scanned with the different integration times of 2 ms, 10 ms, 50 ms and
100 ms, for which the results are presented in the subsection 4.2. PEEK represents polyetheretherketone.

Table 3

The basis materials for each LAC dimensionality study based on classification performance.
Note that in each case we use PVC with the highest Zeff value among all the basis materials,
whose fPVC fraction is used for classifications as explained in the subsection 3.7.

Dimensionality

of the LACs
Basis materials

2 PE, PVC
3 PE, PPy, PVC
4 PE, PPy, POM, PVC
5 PE, PAc, PPy, POM, PVC
6 PE, PAc, PPy, PMMA, POM, PVC
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Figure 3: Spectral LACs for water calculated from the raw and
corrected data. The reference LACs were taken from NIST
database [54]. The vertical black dash-dotted lines show the
low- and high-energy thresholds, El and Eh.

and having a higher SNR. Moreover, the classification per-
formance is dependent on the trade-off between the energy
bin width and detector’s spectral resolution [39]. Therefore,
we study the classification performance with 2 (bi-), 15 and
90 energy bins. A source spectrum is sampled for 2 energy
bins approach such that 2 separate bins has a gap between
low- and high-energies, whose higher and lower boundaries
correspond 63.0 keV and 79.5 keV, respectively. To differ-
entiate 2 energy bins from conventional overlapping dual-
energies in dual-energy CT, we refer to them as bi-energy
bins in the remainder of the paper. 90 energy bins were
formed just by collecting all the bins between low- and high-
energy thresholds without integration of photon counts. The
merging for 15 energy bins approach is done by rebinning
the data from 90 energy bins to increase photons statistics.
15 energy bins are uniformly distributed with equal energy
bin width within the detector’s energy range.

The classification results for all the multiple energy bins
approaches analyzed in our study are presented in the sub-
section 4.3, where we find that 15 energy bins give the best
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classification performance. Therefore, we use 15 energy
bins for estimations in the subsections 4.1, 4.2, 4.4, 4.5 and
4.6.

3.6. Reconstruction algorithm and LAC extraction
To achieve rapid scanning useful for security applica-

tions, we employ only 12 projections for estimations. To
improve the reconstruction quality from such sparse data, we
use the joint reconstruction algorithm called a vectorial total
variation scheme, L∞-VTV [45]. This algorithm jointly re-
constructs the LACs by using correlations between multiple
energy bins. Using L∞-VTV regularization, it is possible
to augment the available data of each bin with extra infor-
mation from another bins. The L∞-VTV uses a L-infinity
norm that jointly penalizes the violation of the inter-bin re-
lations, leading to strong couplings between bins. The algo-
rithm uses a weighting parameter � determining the strength
of the regularization term. � regulates the trade-off between
a good fit to the sinogram data and reconstruction smooth-
ness in both the spatial and spectral domain. In application,
the value of � should be selected carefully to have a desired
image reconstruction. A too small value may result in an
over-regularization with blurred edges, whereas a too large
value may give insufficient regularization results. Therefore,
we estimate classifications for a set of � values to examine
the impact of this factor.

After performing reconstructions, the mean LAC value
of a segment is extracted from the LAC histogram based on
the normal distribution fitting. A region of interest (ROI)
in the reconstruction is selected with manual segmentation
technique, being employed for all materials.

3.7. Curve fitting and calculation of Zeff

Brambilla et al. [33] showed that there is dependence be-
tween Zeff of the estimated material and quantity of equiv-
alent thickness of the basis material with the highest Zeff

among all the basis materials used. In particular, the fraction
for PVC, denoted by fPVC, increased monotonically with in-
creasing Zeff values of estimated materials. The curve of
this dependence can thus be fitted by a polynomial model of
degree 3 as [33]

Zeff = c0 + c1 ⋅ fPVC + c2 ⋅ f
2
PVC

+ c3 ⋅ f
3
PVC

, (8)

where c is a set of polynomial regression coefficients that are
estimated. The PVC fraction can be calculated by [33]

fPVC =
ℎPVC∑N
i=1 ℎi

, (9)

where ℎi is equivalent thickness of basis material i, and i =

2, 3, ..., N with N- being the total number of basis materials.
Fig. 4 presents the dependence between Zeff and fPVC

fraction, which is fitted by Eq. 8. The reference materi-
als (blue circles) corresponding to indexes from 1 to 18 in
Tab. 1 were used to obtain interpolated and extrapolated
points (plus signs), which can be used to estimate Zeff val-
ues. The reference and estimated materials used for classifi-
cation studies in the subsections 4.2, 4.3 and 4.4 correspond

to indexes from 1 to 18, and from 19 to 33 in Tab. 1, respec-
tively.

0 0.2 0.4 0.6 0.8
5

10

15

Figure 4: Zeff as a function of PVC fraction, fPVC, obtained
with PE and PVC basis materials, and 15 energy bins.

As mentioned previously, Brambilla et al. [33] employed
the calibration step to estimate the equivalent thicknesses
based on maximum likelihood function. For this step, the
detector’s response was recorded as a function of the real
thicknesses of PE and PVC basis materials superposed on
each other. In comparison, we correct the distorted LACs
using the spectral correction algorithm presented in the sub-
section 3.4, and thereby estimate the equivalent thicknesses
from Eq. 10. To retrieve equivalent thickness ℎi of each ba-
sis material, we reformulate Eq. 5 as a linear system of equa-
tions as

(
⃖⃗�1 … ⃖⃗�N

) ⎛⎜⎜⎝

ℎ1
⋮

ℎN

⎞
⎟⎟⎠
=

⎛
⎜⎜⎝

�(E1)

⋮

�(EK )

⎞
⎟⎟⎠

(10)

where ⃖⃗�i = (�i(E1), ..., �i(EK ))
T , and k = 2, 3, ..., K with

K- being the total number of energy bins used. �i(Ek) des-
ignates the LAC of the basis material i at energy bin Ek, and
�(Ek) represent the measured LACs of the estimated mate-
rial. In the latter equation, the size of the linear matrix on the
left hand side is K-by-N and the number of unknowns is N .
Note that both the minimum numbers of energy bins and ba-
sis materials used in this work are equal to two as discussed
in the subsections 3.5 and 3.3, respectively. We use a linear
least square solver called lsqnonneg function in MATLAB®

with the positivity constraint on the solution. This gives the
vector of equivalent thicknesses (ℎ1, ..., ℎN ) that minimizes
the norm.

Eq. 8 can thus be employed to compute Zeff of unknown
materials by interpolating or extrapolating the curve of Zeff

with respect to fPVC fraction, as shown in Fig. 4. The clas-
sification performance was estimated as the percent relative
deviation based on the reference values of Zeff , defined as

ΔZrel
ef f

= 100% ⋅

Zest
ef f

−Zref
ef f

Zref
ef f

, (11)
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Figure 5: Singular Value Decomposition examination of the matrix whose columns contain the extracted LACs of all the materials
listed in Tab. 1. (a) Singular values �i. Note logarithmic scale in the y-axis. (b) The first six optimal basis set functions ui
corresponding to the first six singular values �i. The scale is in arbitrary units.

where superscripts est and ref indicate the estimated and ref-
erence values, respectively.

4. Results and discussions

4.1. LAC dimensionality analysis based on

Singular Value Decomposition
Fig. 5a presents the first singular values �i indicating the

decomposition accuracy versus the number of dimensions of
the LAC space, and Fig. 5b shows the first six optimal ba-
sis set functions. The results are obtained by the corrected
LACs of all the materials listed in Tab. 1, computed from the
data corrected using the correction algorithm as presented
in the subsection 3.4. Based on singular values we can con-
clude that the first two optimal basis set functions can yield
precise approximations of the spectral LACs, as expected.
That may be because the materials used in this study do not
have K-edge discontinuities within the energy range used.
Moreover, the rest of optimal basis set functions may be in-
fluenced by noise and the characteristic K-edge peaks K�1
(59.3 keV) and K�1

(67.2 keV) of tungsten inside the X-ray
source. The latter may have decreased detector resolution
and thereby leaded to the LAC variations around the ener-
gies of K-edge peaks that are visible in Fig. 3. These find-
ings are similar to what have been reported by Busi et al.
[51]. However, in our study the first two optimal basis set
functions u1, u2 are clearly different from the photoelectric
and Compton scattering basis functions. This phenomenon
is similar to the one observed by Eger et al. [50].

SVD-based analysis based on the singular values of the
LACs shows that the dimensionality of LACs is thus esti-
mated at two for the set of our materials and energy range.

4.2. Classification performance as a function of

basis materials used
The basis materials used for each classification case us-

ing the different number of basis materials (N defined in
Eq. 5) in the decomposition were listed in Tab. 3. In this sub-
section, we compare the classification performance of each
case and find the most accurate dimensionality of LACs suit-
able for the set of our materials, source spectrum and system
feature. The classification results presented in this subsec-
tion are obtained by the corrected LACs of estimated mate-
rials, computed from the data corrected using the correction
algorithm. Fig. 6 highlights the relative deviations for Zeff

with respect to weighting parameter � values for each dimen-
sionality. The deviations increase as the number of basis ma-
terials increases. 2 basis materials give the lowest deviation
of 2.4% (at � = 60) whereas 5 basis materials provide the
highest deviation of 4.4% (at � = 30). The deviation is 4.1%
(at � = 30) for 6 basis materials.

The reason for the increase in the relative deviations with
the the number of basis materials may be because the fPVC
fraction for the most materials significantly decreases as the
numbers of basis materials increase, as shown in Fig. 7a. We
also estimated how fPVC fraction for PEEK in the sample
presented in Fig. 2b changes with the number of basis ma-
terials. fPVC fraction for each number of basis materials is
computed using Eq. 10, based on extracted LACs of PEEK.
We scanned the sample with the different integration times
(per projection) of 2 ms, 10 ms, 50 ms and 100 ms. The
resulting reconstruction images from 2 ms and 10 ms have
much higher noise levels due to the short data acquisition
time. Fig. 7b presents the mean fPVC fraction values calcu-
lated from such different integration times for each number
of basis materials, shown with respective percent relative er-
ror bars. The plot shows that the higher numbers of basis ma-
terials increase cause an overall decrease in the mean fPVC
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Figure 6: The percent relative deviations for Zeff as a function
of weighting parameter �, obtained with the different numbers
of basis materials N . The deviations are shown as the mean
values of the absolute deviations for each estimated material,
corresponding to indexes from 19 to 33 in Tab. 1. Note the
logarithmic scale in the x−axis.

fraction and the respective relative error, i.e. in robustness
to high noise in image reconstruction. Even though 2 ba-
sis materials give the lowest relative error of 21% in fPVC
fraction calculation among all the numbers of basis materi-
als, this error is still significantly high. This may be due to
that LACs extracted from the measurements of 2 ms and 10
ms integration times can be significantly noisy. Thus, as the
number of basis materials is larger, the respective fPVC frac-
tion changes significantly with respect to high noise levels.

The BMD method thus achieves the best classification
performance with just two basis materials, PE and PVC,
which are used for classifications in the subsections 4.3, 4.4
and 4.6.

4.3. Classification performance as a function of

the number of energy bins used
How a source spectrum is sampled for bi-, 15 and 90

energy bins was described in the subsection 3.5. The classi-
fication results shown in this subsection are retrieved by the
corrected LACs of estimated materials based on the correc-
tion algorithm. Fig. 8 presents the percent relative deviations
for Zeff as a function of weighting parameter �, for these en-
ergy bins approaches. The plot shows that bi- and 90 energy
bins give the lowest mean deviations of 4% (at the optimal
value of � = 6) and 3.2% (at � = 150), respectively, whereas
15 energy bins produce the lowest mean deviation of 2.4%
(at � = 60). Thus, using 90 energy bins does not improve
but rather deteriorates classification performance compared
to 15 bins approach. This may be due to that 90 energy bins
have energy bin widths of 1.1 keV, which is noticeably lower
than the detector’s energy resolution of 8 keV, while 15 en-
ergy bins have energy bin widths of 6.6 keV; Secondly hiring
more energy bins leads to the more detector noise. A similar
phenomenon was previously observed by Jumanazarov et al.

[39], with the SIMCAD classification method.
We discarded photon counts in the gap between non-

overlapping bi-energy bins, which could help to improve
the classification performance [66, 67]. Moreover, the gap
width was selected as 16.5 keV (with the boundaries at 63.0
keV and 79.5 keV), being greater than the detector’s en-
ergy resolution, and thus another factor for the improvement.
Nevertheless, bi-energy bins resulted in the poorest perfor-
mance among all the multiple energy bins approaches es-
timated. One reason may be that using radiography data
Beldjoudi et al. [37, 38] presented that the energy thresholds
should be optimized when few energy bins are used for ma-
terial identification. Based on this report, using experimen-
tal data from spectral CT Jumanazarov et. al [39] optimized
the classification performance for the position of the energy
separation gap in the bi-energy bins approach while preserv-
ing the low- and high-energy thresholds and the gap width
over the whole energy range. As a result, they achieved the
best classification performance with just bi-energy bins, in-
vestigating classification performance as a function of the
number of energy bins used. However, because in this study
we focus on testing the novel classification method against
a limited number of projection angles and noisy conditions
desired for security and medical applications, we use the
L∞-VTV joint reconstruction that helps to improve recon-
struction quality [68]. Therefore, in this work optimizing
the method for bi-energy bins with respect to the gap’s posi-
tion in a source spectrum as well as weighting parameter �
would be complicated.

Thus, the BMD method achieves the best classification
performance with 15 energy bins approach, which is em-
ployed for estimations in the subsections 4.1, 4.2, 4.4, 4.5
and 4.6.

4.4. Comparing performances of the raw and

corrected data
The uncorrected and corrected LACs obtained by the raw

data and the data corrected using the correction algorithm,
respectively, were described in the subsection 3.4, exempli-
fied for water. Fig. 9 compares the percent relative devia-
tions in Zeff for the raw and corrected data, with respect to
weighting parameter �. As expected, the uncorrected LACs
of estimated materials leads to the significantly larger devi-
ation of 5.2% (at � = 12.0), whereas the corrected LACs
achieves the deviation of 2.4% (at � = 60.0). Moreover, the
deviations produced by the raw data are not stable with re-
spect to weighting parameter, and slight changes in � value
result in the increased deviations. Thus, the correction for
the detector’s spectral distortions is required to significantly
increase the accuracy of the BMD characterization method.

4.5. Adding significantly high noise levels to

specific energies
Certain energies may be affected by additional noise dur-

ing data acquisition. Metal objects can result in such high
noise levels, which heavily attenuate photons causing pho-
ton starvation and generate metal artifacts in the image re-
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Figure 7: fPVC fraction with respect to the numbers of basis materials. (a) fPVC values are shown for the different materials from
the list in Tab. 1. Note the logarithmic scale in the y−axis. (b) The mean fPVC values with the respective relative error bars
are calculated from the different integration times of 2 ms, 10 ms, 50 ms and 100 ms, related to PEEK in the sample shown in
Fig. 2b.
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Figure 8: The percent relative deviations for Zeff as a function of weighting parameter �, obtained with bi-, 15 and 90 energy
bins. ∗The mean deviation was calculated from absolute values of relative deviations for the estimated materials, corresponding
to indexes from 19 to 33 in Tab. 1. Note the logarithmic scale in the x−axis.

construction. Compared to medical applications, in secu-
rity field a broader range of materials with metals tend to
be more commonly scanned. Metal artifacts mainly affect
lower energies and may severely decrease the classification
performance. To evaluate the robustness of the classifica-
tion method to such artifacts, normally distributed (Gaus-
sian) noise was added 12 specific energies (among 90 ener-
gies), with zero mean and standard deviation � = 1.25, i.e.
125% noise. These noisy energies were distributed each with
equal energy width between low- and high-energy thresh-
olds, to which such noise levels are added as well.

Such noise levels are added to the X-ray spectra of all
the projections with the sample being inserted, excluding the
flat field measurement. After adding the noise, the spectral
correction algorithm is applied to correct the spectral distor-
tions. Fig. 10a shows the raw and spectral corrected X-ray
spectra of the flat field measurement (I0) and the first pro-

jection (I1) of the CT scan, exemplified for water 2 sample.
I1 raw spectrum indicates significantly high noise levels in
noisy energies. I1 corrected spectrum shows that the cor-
rection of the detector’s spectral response smooths the noise
with a significant reduction of standard deviation.

After adding the noise, the data was rebinned from 90
energies to 15 energy bins to reconstruct LACs from such
noisy data. Fig. 10b presents the noisy raw LACs and the
noisy corrected LACs, which represent LACs being recon-
structed from the raw and corrected data after adding such
noise levels, respectively. For comparison, the reference and
noiseless corrected LACs (corrected without adding noise)
are shown as well. The noisy corrected LACs still deviate
from the noiseless corrected LACs with a significant drop at
most energy bins. This indicates that even though the cor-
rection algorithm smooths the spectrum with the added noise
in specific energies (as shown in Fig. 10a), it cannot elimi-
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Figure 9: The percent relative deviations for Zeff as a function
of weighting parameter �, obtained with the raw and corrected
data. The deviations are shown as the mean values of the
absolute deviations for the estimated materials, corresponding
to indexes from 19 to 33 in Tab. 1. Note the logarithmic scale
in the x−axis.

nate the noise completely, but redistributes between different
energy channels. The noiseless corrected LACs are also no-
ticeably below the reference LACs especially at high-energy
channels that are affected by measurement noise (introduced
during the data acquisition) in the experimental data due to
low photon statistics.

The reconstructions of the LACs presented in Fig. 10b
are performed with the L∞-VTV algorithm. Both the
noisy raw and noisy corrected LACs are reconstructed us-
ing weighting parameter � = 6, being the optimal value
for BMD classification performance as shown in Fig. 12a.
Based on the classification performance, similarly � = 60 is
applied for the extraction of the noiseless corrected LACs.
The L∞-VTV joint reconstruction also contributes to corre-
lation of intensity shift across the spectrum such that noise in
one energy causing blur in a certain edge is compensated by
the information in the other bins of the same edge [45, 68].

Fig. 11 shows the histograms of the noiseless and noisy
corrected LACs at the energy of 128 keV, both being as-
signed to the LACs shown in Fig. 10b. The plots show
that the high noise levels added to specific energies lead to
significant decreases and increases in attenuation values for
some pixels within a segment of the sample. Overall, the
mean LACs extracted based on the normal distribution de-
crease for all energy bins (see the noisy corrected LACs in
Fig. 10b), even though photon counts in some energies in-
crease after adding the noise, as shown in Fig. 10a. The rea-
son for decreases in the mean LACs may be due to that the
reconstruction quality is degraded severely after adding such
high noise levels, leading to the presence of more pixels with
the significantly decreased LACs.

4.6. Comparing BMD with SIMCAD
In the subsection 4.5 we added significantly high noise

levels to specific energies in the raw dataset, examining the
X-ray spectra and LACs of water 2 sample. In this subsec-
tion, we add similar noise levels to similar specific energies
in the raw data of all the materials listed in Tab. 4. We then
apply the spectral correction algorithm to the noisy raw data,
and hereafter rebin the data from 90 energies into 15 energy
bins. We extract LACs from such noisy corrected data af-
ter energy rebinning. Our aim is to compare classification
performances of BMD and SIMCAD method presented by
Jumanazarov et al. [39]. We classify the materials in Tab. 4
from the noiseless and noisy corrected data. The LACs ob-
tained by the noiseless and noisy corrected data were demon-
strated in Fig. 10b, exemplified for water 2 sample.

The classification performances of both methods un-
der noiseless and noisy conditions depend on the combined
workflow of the correction algorithm and the joint recon-
struction. The artifacts in reconstructions due to limited
number of projections are handled by the latter. We use L∞-
VTV joint reconstruction algorithm and just 12 projections
for both methods. The curve fitting (presented in the subsec-
tion 3.7) and calibration steps for the BMD and SIMCAD,
respectively, were performed using all the materials shown
in Tab. 1, from the noiseless corrected LACs.

Fig. 12a shows the percent mean relative deviations for
Zeff of the BMD and SIMCAD methods at the different
weighting parameters �. With the noiseless corrected data,
the BMD reaches the maximal classification performance
with the deviation of 2.3% (at � = 60.0), while the SIM-
CAD reaches it with the deviation of 2.7% (at � = 16.0).
With the noisy corrected data, for the BMD and SIMCAD
these deviations are 4.6% (at � = 6.0) and 5.4% (at � = 8.0),
respectively. Fig. 12b shows the relative deviations for �e
obtained with the SIMCAD using the noiseless and noisy
corrected data, for which the mean deviations are 2.5% (at
� = 16.0) and 6.1% (at � = 8.0), respectively. Compared
to the SIMCAD, the BMD thus reaches 17.4% improved ac-
curacy with the noiseless corrected data. Under noisy con-
ditions, the SIMCAD appears to be more stable with re-
spect to � compared to the BMD, for which slightly lower
or higher � values lead to noticeably higher deviations. On
the other hand, the SIMCAD results higher deviations un-
der such noisy conditions. Tab. 4 compares the deviations
obtained by the noiseless and noisy corrected data of each
method for the different materials. The results in the table
are from in Fig. 12a corresponding to the the optimal � val-
ues. Under noisy conditions, the BMD and SIMCAD show
the deviations of −4.6% and −6.1% for PET, respectively,
and the deviations are −11.0% and −13.9% for magnesium,
respectively. It is noteworthy that the BMD shows better ro-
bustness to such high noise levels for inspecting plastics in
the range of 6 ≤ Zeff ≤ 9.

The main advantage of the SIMCAD is its capability to
estimate both material properties, �e and Zeff . However,
the BMD has an outstanding advantage that it can classify
a broader range of Zeff , including materials with K-edge
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Figure 10: X-ray spectra and energy resolved LACs, exemplified for water 2 sample introduced in Tab. 1. (a) X-ray source spectra
before and after applying spectral correction algorithm for the flat field (I0) and the first projection data (I1). The number of
counts per second shown is summed over all detector pixels. (b) Energy resolved LACs obtained by the raw and corrected data,
when high noise levels are added to specific energies between low- and high-energy thresholds. The reference and noiseless
corrected (without adding noise) LACs are also presented for comparison.
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Figure 11: The histograms of LACs of water 2 sample presented with a Gaussian peak fit (red line), both corresponding to the
LACs shown in Fig. 10b at the energy of 128 keV. The pixel counts denote the number of pixels within a region of interest
(ROI), each having the respective LACs presented on the x-axis. (a) The histogram of the noiseless corrected LACs (corrected
without adding noise). (b) The histogram of the noisy corrected LACs (corrected after adding noise).

discontinuities in their LACs. For this purpose, the BMD
method uses basis materials that at least one basis material
should have a K-edge absorption within the detector’s en-
ergy region to represent the extracted LACs with a K-edge
[33, 48]. It is important to note that Zeff range of basis ma-
terials should cover Zeff range of estimated materials. Oth-
erwise, the value of fPVC fraction of the estimated material
would become larger than one, for which the extrapolation
would lead to lower accuracy in fitting Zeff (see the subsec-
tion 3.7). A similar phenomenon was reported by Brambilla

et al. [33]. The SIMCAD cannot estimate materials that
have K-edges in their LACs between detector’s energy re-
gion [39]. This is because this method uses an attenuation
decomposition model based on photoelectric absorption and
Compton scattering interactions, whose energy-dependent
components (i.e. basis functions) are smooth [10], being
not capable to approximate a discontinuity in the LACs of
estimated materials. One solution could be to truncate the
energy bins below the edge, however this would limit the
energy range, and thereby may decrease the classification
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Figure 12: The percent relative deviations for Zeff (a) and �e (b) as a function of weighting parameter �, obtained by the BMD
and SIMCAD methods. The BMD does not estimate �e.

bThe deviations are obtained from the noisy corrected data in which
how the noise is introduced is described in the subsection 4.5. The deviations are shown as the mean values of the absolute
deviations for each estimated material listed in Tab. 4. Note the logarithmic scale in the x−axis.

Table 4

The percent relative deviations for Zeff and �e with the reference values that are calculated
using Eqs. 7 and 6, respectively. The deviations for each method correspond to the maximal
classification performance presented in Fig. 12a. aThe mean values were calculated from
absolute values of each column. bThe deviations are obtained from the noisy corrected
data in which how the noise is added is described in the subsection 4.5. Note that the
BMD does not estimate �e.

Material Z ref
ef f

BMD
ΔZ rel

ef f
(%)

SIMCAD
ΔZ rel

ef f
(%)

BMDb

ΔZ rel
ef f

(%)
SIMCADb

ΔZ rel
ef f

(%)
�ref
e

SIMCAD
Δ�rel

e
(%)

SIMCADb

Δ�rel
e

(%)

PMMA 7.02 1.3 −0.4 −0.03 0.4 0.636 1.8 2.0
PTFE 8.70 3.0 4.0 2.1 −1.3 1.035 3.2 7.1
PVDF 8.40 4.3 3.9 3.5 0.3 0.896 −3.1 −0.6
PC 6.82 0.2 −2.0 −4.2 −2.9 0.610 −1.9 −1.2
POM-C 7.40 0.9 0.4 −0.3 −2.5 0.753 3.9 5.0
PET 7.09 0.1 −1.3 −4.6 −6.1 0.721 2.8 7.4
POM-H 7.40 1.7 0.3 1.6 0.6 0.763 2.4 2.6
Acetone 6.90 −4.1 −2.6 −5.2 −4.7 0.432 0.9 4.6
Hyd. Peroxide 7.83 −4.7 −4.9 −9.3 −11.5 0.661 2.5 5.8
Methanol 7.29 −1.8 −2.6 −0.2 0.2 0.446 1.5 6.1
Water 7.78 −4.5 −4.7 −10.9 −13.1 0.554 0.5 8.3
Nitromethane 7.50 −5.6 −6.6 −9.3 −10.9 0.597 1.1 6.2
Aluminum 13 −1.8 −2.9 −5.3 −7.8 1.3 1.8 8.0
Silicon 14 0.7 3.5 1.4 −4.2 1.161 −4.8 9.2
Magnesium 12 0.2 −0.1 −11.0 −13.9 0.859 −4.8 17.2
Meana − 2.3 2.7 4.6 5.4 − 2.5 6.1

accuracy.

5. Conclusion

We have presented the BMD method for material clas-
sification from system-independent physical parameter Zeff

with Spectral CT measurements. We showed that the cor-
rection for the detector’s spectral distortions aids in recon-
struction of the LACs, as they are brought much closer to

the reference LACs. Therefore, using the correction algo-
rithm is required to achieve desired classification results. We
explored the influence of the number of basis materials on
the performance of the method. As a result, we found the
method to be most accurate employing just two basis ma-
terials. We observed that the use of a correction algorithm
suppresses most detector response artifacts from the LAC,
and classification even with two basis materials is presented
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to require the correction. The BMD requires a curve fitting
step using a set of reference materials to define the relation
between Zeff values of reference materials and the fraction
from the decomposed LAC expression. We also investigated
the performance of the method as a function of the number
of energy bins rebinned. It was demonstrated that 90 energy
bins with energy bin widths lower than the detector’s en-
ergy resolution did not enhance classifications further, and
we saw that the method gives most accurate results with 15
energy bins.

In contrast to another state-of-the-art method, the SIM-
CAD [39], the BMD can provide higher accuracy with
17.4% improvement in terms of estimating relative devia-
tions from the expected reference Zeff values. In addition,
the BMD appeared to give better robustness to high noise
levels in certain energy bins. However, the SIMCAD has the
main advantage that it can mapZeff against �e on a chart, es-
timating both material properties and suggesting a complete
way to distinguish materials. It is also noteworthy that be-
cause the BMD method uses an attenuation decomposition
model based on basis materials’ LACs, it can be applica-
ble to estimate a larger range of Zeff materials with K-edges
within detector’s energy region [33, 48].

The method has been tested in the range of 6 ≤ Zeff ≤

15. This range of atomic numbers include most of the mate-
rials commonly found in a passenger luggage [9], and most
of human organs and tissues [58–61]. We inspected the per-
formance of the method for few projections important for
security applications where rapid scanning is required. We
found that the relative deviations were lower than 5.6% for
all the samples, with a mean deviation of 2.3% for Zeff . For
future experiments, we will explore the robustness of the
method to materials with a larger range of Zeff , and with
the presence of K-edge absorption.

6. Data and code availability

The raw and spectral corrected data required to re-
produce these findings are available to download from
[69]. The developed code for L∞-VTV joint reconstruc-
tion algorithm is available at https://github.com/JuliaTomo/
XfromProjections.jl.
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