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Abstract

Since the industrial revolution metrology has played and important role behind the scene.
With the invention of the transistor and later the development of modern integrated
circuits, that role has only become more and more important. One of the key methods in
electrical characterization is the four-point measurement. Where four contacts are made
to a sample, these are then used to pass a current between two of them and measure
the corresponding potential drop across the other two. As the critical dimension shrunk,
first below a micrometer and then to the nanometer-scale, the traditional four point probe
became increasingly unsuited for the job. Micro four-point probes, consisting of electrodes
on the micrometer scale, have since been a viable and often superior alternative.
Several different measuring methods have been developed using the micro four-point

probe. Including micro Hall, sheet resistance measurements and measurements on ultra-
shallow junctions.

In this thesis the governing mechanics of cantilevers, consisting of two beams joint at an
angle, is derived. This is then used to optimize an existing cantilever to achieve a higher
tolerance to vibrations. In order to do this an expression for the vibration tolerance is
derived and tested. Based on the existing cantilever, two new designs are found. Not only
does the new designs improve the mechanical performance by a factor of two or more. But
they achieve this while either keeping the minimum pitch or decreasing it from 1.5µm to
1.1µm.
This thesis also presents the use of micro four-point probes to perform field effect mea-

surements on two dimensional materials. Only a single crystal basis thick, these materials
form large continues flakes that in bulk are held together by van der Waals forces. How-
ever, it is their properties as a single or a few layer materials that is of interest in the
development of electronics. The most known of these is graphene. With a high mobil-
ity and semi-metallic electron behavior. Graphene has seen its introduction in everyday
electronics already. Due to its conductive nature its uses in many devices are limited.
Alternatively, other materials such as transition metal dichalchoginites show interesting
physical attributes. And, the one studied in this thesis (molybdenum disulfide - MoS2) is a
semiconductor, making it interesting as a transistor material. To measure on this material
a microRSP-M200 tool from CAPRES, was modified so that it could source voltage in
DC.
On this modified setup field effect measurements were successfully performed, allowing

for the measurement of threshold voltage and field effect mobility on the material. A
precision of the measured current within the same engage of 10% was achieved.
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Resumé

Metrologi har spillet en vigtig rolle siden den industrielle revolution. Opfindelsen af tran-
sistoren og senere det integreret kredsløb, har kun gjort metrologi endnu vigtigere. En
af de vigtigste metoder inde for elektriskkarakterisering er fire punktmålingen. Som den
kritiske dimension blev mindre og mindre, så blev brugbarheden af traditionelle fire punk-
tmålinger også mindre. Mikro fire punktmålinger er en metode der benytter elektroder på
mikrometer skala, i stedet for millimeter skala. Denne metode er blevet brugbart og ofte
bedre alternativ til den traditionelle fire punktmåling.
Der eksisterer allerede en række metoder der bygger på mikro fire punktmålinger, så

som mikro Hall, flademodstandsmålinger og målinger på ultra-shallow junctions.

I denne afhandling er den underliggende mekanik for to bjælke kantilevere, en elektrode
type benyttet i mikro fire punktmålinger, udledt og brugt til at optimere designet af
eksisterende prober, så de kan modstå større vibrationer. To nye designs er fremlagt, det
ene beholder den samme elektrodeafstand og det andet mindsker elektrodeafstanden fra
1,5µm til 1,1µm. For at kunne gøre dette er der blevet udviklet og testet et udtryk for
vibrationstolerancen.
Denne afhandling præsenterer også brugen af mikro fire punktmålinger til at foretage

felteffekts målinger på todimensionale materialer. Disse kommer fra en familie af materi-
aler som består af lag et atom tykt, som er holdt sammen med van der Waals kræfter. Det
todimensionale materiale er et enkelt af disse lag. Det mest velkendte af disse materialer
er grafen, som består af karbon i en heksagonal krystal. Mange todimensionale materi-
aler udviser interessante egenskaber og det materiale, der er studeret i denne afhandling
(molybdæn disulfid – MoS2) er en halvleder, hvilket gør den interessant som en transistor.
For at kunne måle på dette materiale, var et microRSP-M200 tool fra CAPRES ændret
til at kunne levere en jævnspænding.
På dette modificerede udstyr er det lykkedes at fortage felteffekt målinger, og dermed

at måle tærskelspændingen of felteffektmobiliteten for materialet. En præcision på 10% i
den samme måling blev opnået
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1 | Introduction

In modern physics and engineering metrology plays a key role in measuring and quantifying
the world around us. And, as tolerances becomes tighter and requirements higher, the
need for metrology also increases. There are few places where this is more evident than in
micro- and nanoelectronics. In more than 50 years the number of transistors in integrated
circuits have roughly doubled every two years [1]. This corresponds to around 32 million
times the number of transistors in a computer today compared to 1970. In order to make
room for all these new transistors their size have had to go down. This has happened to
a degree where the critical dimension for commercially available chips have reached sub
10nm. This exponential miniaturization of components has meant that good metrology
have moved from a benefit, to a necessity [2].

1.1 Micro Four-Point Probe

Four-point measurements have existed for more than a century [3], and have since its
inception become the method of choice for precise electrical measurements, as well as
being the standard in the semiconductor industry for the past 61 years [4]. Since then
the four-point probe have developed into the Micro Four-Point Probe (M4PP) [5, 6]. This
have allowed four-point measurements to measure on fragile and thin materials [7], but also
just to measure on smaller areas which taken to the extreme have allowed for four-point
measurements directly on fin-structures [8].
There are multiple variants of M4PP including but not limited to: all metal cantilevers

[9], metal coated polymer cantilevers [10], monocantilevers where all four electrodes are
on the same cantilever [11], probes were the individual electrodes can move compared to
each other [12] and the designs considered here. These designs consists of four cantilevers
connected to a common probe-body. The cantilevers are made out of either silicon dioxide
or poly silicon with a metal coating on one side to form the electrical contact [6, 13]. A
Scanning Electron Microscope (SEM) micrograph of a commercially available M4PP from
CAPRES is shown in Figure 1.1.
Through the use of lock-in amplification, advanced algorithms for data treatment [14]

and automatic configuration switching. The M4PP has through the past 10 years become
the most reliable electrical method available for characterization of ultra-thin semiconduc-
tors [15, 16, 17]. Were both sheet resistance [18], magnetoresistance measurements [19]
and micro Hall effect measurements [13, 20] are possible.
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Figure 1.1: SEM micrograph of an L-shaped M4PP. The four L-shaped electrodes used for
measuring is shown on the left. The cantilever on the right, that looks like two cantilevers
joint at the tip, is a strain gauge.

1.1.1 Stability at the Nanometer Scale

When performing M4PP measurements it is very important that the electrodes stay in
place on the surface for the duration of the measurement. Since any movement during
measurement leads to measurement errors [21]. Depending on what is measured this
could be measured in seconds, or as will be shown in this thesis tens of minutes. A lot
of work have gone into removing the impact of static positioning errors, i.e. errors from
all electrodes not being in the nominal position, that occurs during an engage, but does
not change during the engage [21, 22]. Dynamic positioning errors on the other hand,
can be estimated for a measurement but cannot be removed analytically [21]. Dynamic
positioning errors are most likely caused by vibrations in the system. To counter act this,
the L-shaped cantilever was introduced [23, 24]. Since then the minimum electrode pitch
have become an issue, were more closely packed probes are desired. Consequently, probes
with a smaller angle on the bend have been introduced [14]. But, without a theoretical
understanding of their mechanical behavior direct comparisons have been difficult. The
idea of a measure of the vibration tolerance for micro electrodes was discussed in the D.
H. Petersen’s PhD thesis [25] and has since then been expanded and formalized during
this PhD study [26].

1.2 Two Dimensional Materials

Since the introduction of graphene in electronics [27, 28, 29], several new Two Dimensional
(2D) materials have been discovered [30]. Among these are the family of materials know
as the 2D Transition Metal Dichalcogenide (TMD) [31]. Where graphene is semi-metallic
or metallic in nature many of the TMDs are semiconductors [32]. One of these TMDs
is Molybdenum Disulfide (MoS2), a material that, just like graphene, can be found in
abundance in nature, in the form of molybdenite crystals [33], which can be exfoliated to
stable mono-layer materials [34]. With its direct band-gap of 1.8eV and high mobility of up
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CHAPTER 1. INTRODUCTION

to 200 cm2V−1s−1 [35] MoS2 is highly interesting. People are looking in to the possibility
of using it in a wide number of applications, including: solar cells [36], peizo-electrics [37],
supercapacitors [38], flexible electronics [39], biosensors [40] and others. Many of which
utilizes the MoS2 in a field effect transistor structure. Thus far, most data and theory
concerning MoS2 have been based on exfoliated material [32]. However, a lot of work have
been put in to developing synthesis processes, such as Chemical Vapor Deposition (CVD)
[41, 42]. CVD grown materials is of particular interest to the industry because of its
scalability, making it easier and less labor intensive to produce more material and as a
consequence the devices using the material [41].

1.2.1 Electrical characterization of MoS2

Traditionally if you wanted to characterize an MoS2 flake, it was necessary to either
build a finished device and characterize that, or make a simpler test structure that still
needed a lithographic step [43]. As the production of TMD moves from the lab to the
fab (fabrication plant) non-destructive methods of characterization becomes increasingly
desirable. On such method is the use of THz Time Domain Spectroscopy to measure on
the sample. This method is still a while of from working fully on these materials due
to the high resistances. An alternative would be to use M4PP to perform a field effect
measurement on MoS2. Something similar with four-point probes have already been done
to characterize as-grown Silicon-on-Isolator (SOI) wafers by the semiconductor industry
[44, 45]. This method is known as the Pseudo-Metal-Oxide-Semiconductor Field-Effect
Transistor (Ψ-MOSFET) characterization method [44]. The method uses macroscopic
probes, either in a two probe or a four point probe technique to perform a field effect
measurement [46]. While measurements are performed on the device layer, a gate voltage
is applied to the handle of the SOI. The Buried Oxide Layer (BOX) acts like the insulator
between the gate and channel in a traditional Metal-Oxide-Semiconductor Field-Effect
Transistors (MOSFET). The entire measurement setup is without the need for lithography
[44].
A similar method to the Ψ-MOSFET method, is presented in this thesis for measuring

on MoS2, but instead of using macroscopic probes with a contact force around 0.5N [47],
microscopic probes are used, that have a pressure around 50µN [24]. In other words the
equivalent weight is four orders of magnitude lower. In comparison this is the same weight
relation as comparing a can of soda (330mL) with two and a half average European cars
(∼3500kg) [48].

1.3 Aim of the Thesis

This thesis has two overall goals that it attempts to achieve. As part of a larger European
Union project (Three Dimensional Advanced Metrology - 3DAM) the main goal was to
build a measurement setup, using M4PP, that is able to perform field effect measurements
on 2D materials, such as MoS2. By using M4PP instead of lithographically designed
contacts, measurements can be made directly on the material. In theory this allows for
either near or in-line characterization of the materials, without the loss of real-estate on
the wafer for test structures.
The goal in this thesis was not to necessarily reach a point were using M4PP became the

automatic go to for field effect measurements. But rather to make a proof of concept setup.
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Showing that these types of measurements are possible, despite the long measurement
times, and high contact resistances. Consequently the target is to reach a precision of
around 10%.
The goal of the other part of the thesis was to characterize the mechanical behavior of

micro-electrodes, so to better understand how they behave during vibrations. But also to
develop a fundamental understanding of how changing different dimensions of the micro-
electrode changes their behavior. As part of this, an analytic expression for the stiffness
and compliance of the micro-electrodes needed to be derived. The unifying idea of the
two parts, are in its essence a desire to make the best possible field effect measurements
on MoS2. For this we need to be able to make probes that have a small electrode pitch.
But that can be relied on to stay in place, during measurements that can easily take more
than half an hour to complete.
As the project progressed, a limitation in the number of usable MoS2 samples from our

collaboration partners, forced the focus of the thesis to shift from primarily focusing on the
field effect measurements, to focus more on the design optimization of micro-electrodes.

1.4 Outline

This thesis is separated into two parts, a part that is about the mechanical behavior of
M4PP, and a part that talks about the use of M4PP to do field effect measurements on
MoS2.

Chapter 2 Theory chapter, describing some of the basic theory used in the thesis.

The first part consists of three main chapters.

Chapter 3 This chapter consists of the derivations of the compliance tensor that is used to
describe a cantilevers mechanical behavior.

Chapter 4 Here the concept of vibration tolerance is introduced. An expression for the vibration
tolerance is derived and experimentally tested.

Chapter 5 The last chapter in this part of the thesis deals with the problem of optimizing a
cantilever design. This chapter contains a general study of how each design parame-
ter of the cantilever affects the performance of the hole. Finally the chapter presents
two examples of optimization on a cantilever design.

The second part of the thesis, dealing with the measurements on MoS2, consists of two
chapters.

Chapter 6 This chapter deals with all the work that went into creating the setup used in the field
effect measurements. Here the physical setup, the LabView code and the reference
measurements are presented. The chapter also includes a short study of the possible
damage a M4PP can do to a MoS2 sample.

Chapter 7 After a description of the samples, this chapter delves into the actual field effect
measurements done on MoS2 samples.

The last chapter in the thesis (Chapter 8) presents an outlook and conclusion to the
thesis.
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2 | Theory: Micro Four-Point and
Field Effect Measurements

2.1 Basics of Micro Four-Point Probing

In this thesis the main use of four-point measurements have been through the use of a
M4PP, where all electrodes were evenly spaced and co-linear.
In a four-point measurement, four contacts to a material is made. Two of which is

used as a source and drain for a current. This is either done by forcing a current ISD
or by applying a potential difference VSD between the two contacts. While the current is
running the potential drop between the two other contacts is measured. Since there is no
current running through the sensing electrodes, the potential drop inside these electrodes
is zero. Consequently the only potential drop that the sensing pins will measure is the
potential drop inside the sample. This potential drop will moving forward be referred to
as the four-point voltage. Combining the four-point voltage with the sourced current gives
the four-point resistance. One or more four-point resistances can be used to calculate the
sample/material parameter known as the sheet resistance.
Looking at a co-linear probe consisting of four electrodes there are 24 ways of choosing

the positions of the sourcing and sensing electrodes. However, only six of these give rise
to unique results. All other configurations gives either the same results as the six unique
or the same result with opposite sign. This is only the case if the sample behaves ohmic,
meaning that the resistance does not depend on the direction of the current. E.g. a
diode would be an example of something not ohmic. The basic six unique configurations
for a M4PP are shown in figure 2.1. These six configurations are connected through the
relation RA +RAP

= RB +RBP
+RC +RCP

[15] where in the absence of a magnetic field
RA = RAP

, RB = RBP
and RC = RCP

[49]. These relations can be used to self validate
the results from a four point measurement. This is called the reciprocity theorem

2.1.1 Sheet Resistance and Sheet Conductance

M4PP has been used to measure a wide variety of parameters, but for the purpose of this
thesis the most important is the sheet resistance, RS , or sheet conductance, GS . One
being the inverse of the other. The equations in this chapter will mainly refer to the
sheet resistance, but all references to the sheet resistance could be replaced with the sheet
conductance by using that GS = R−1

S . For ease of reading and brevity the derivations
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Figure 2.1: Sketch showing the six unique configurations possible with M4PP. Note that
the prime configurations are simply a swap of the source-drain electrodes with the sensing
electrodes. s1, s2 and s3 are the distance between the first and second, second and third, and
third and fourth electrode respectively.

shown here will only discuss sheet resistance.
The sheet resistance is derived from the resistivity, ρ. The resistivity of a material is

given by [50].

1/ρ = neµe + peµh, (2.1)

where n and p are the concentrations of electrons and holes in the material respectively,
e is the elemental charge, and µe and µh are the mobility of electrons and holes in the
material respectively. For semiconductors the charge concentrations (and therefore the
resistivity) depends heavily on doping and the presence of any electric fields.
Where ρ (and consequently conductivity) is a material parameter, the sheet resistance

is a device specific parameter. Meaning two objects of the same material can have widely
different sheet resistances. In its most basic description the sheet resistance is the electrical
resistance for passing a current from on side of a square to the other, through a material
with uniform thickness, d [51].

RS = ρ

d
(2.2)

This is also the reason why the unit for sheet resistance, while being measured in Ω, is
often reported in Ω/�. In this thesis sheet resistance and sheet conductance will be given
in Ω and S respectively.
Using M4PP the sheet resistance of a infinite sheet can in general be calculated by using

a modification to the van der Pauw (vdP) equation [49].

exp
(
−πRA
RS

)
+ exp

(
−πRB
RS

)
= 1 (2.3)

where RS is the sheet resistance. Note that this equation is only valid for collinear probes.
Alternatively the sheet resistance can also be calculated using constant corrections fac-

tors to the measured four-point resistances

Ri = RS
2π ln

|rV− − rI+ ||rV+ − rI− |
|rV+ − rI+ ||rV− − rI− |

(2.4)
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where i ∈ {A,B,C}, rj is the position of the j’th electrode, so that |rj−rk| is the distance
between the j’th and k’th electrode [4, 25, 22]. As an example the four-point resistance
for a B-configuration is given by:

RB = RS
2π ln (s1 + s2 + s3)s2

s1s4
= RS

2π ln 3 (2.5)

where si is the electrode pitch between i’th and i+1’th electrode. For a equidistant probe,
the logarithmic term simplifies to ln 3, as si = s for all i. The electrode pitches are shown
in Figure 2.1.
The method shown in (2.4) will not correct for any electrode position errors that might,

and most likely will, occur during measurements. For this reason it is advised to use the
vdP expression whenever possible (Equation (2.3)).

2.1.2 Position Errors

Position error is an umbrella term that contains all sources of errors that causes the four-
point probe electrodes not to be in the intended position during measurement. Generally
they can be sorted into three categories [21].

Probe geometry errors are errors that are a result of variations in the design of the
probe used. E.g. these variations can be caused by uncertainty or a mistake in the
fabrication process of the probe. Statistically this category contains all position errors
that are constant and independent of the engage and can be considered a systematic
error.
Static position errors are errors that are introduced during the engage. E.g. this could be

caused by a rough surface that made each electrode slide in a different way. Statistically
this category contains all position errors that are constant during a single engage, but
varies from engage to engage and can be considered a systematic error within a single
engage.
Dynamic position errors are errors from the electrodes moving on the surface during

measurement. E.g. this could be due to vibrations in the system, making the electrodes
oscillate on the sample. Statistically this category contains all position errors that varies
within a single engage and can be considered a random error.

When dealing with these position errors it is assumed that the three categories of position
errors are independent of each other. Meaning that the dynamic position error does not
depend on the engage, and that the static position errors does not depend on the probe
geometry. In reality any one source of position errors would probably affect all three
categories. However each of these contributions will be dealt with as a separate error
source.
Going forward in this description of position errors the formalism used in Kjær et al [21]

will be used.
When talking about position errors we are not interested in the absolute positions of

the electrodes but rather their relative position. That means that the position of the
first electrode can be defined as being (x, y) = (0, 0). With x being in-line and y being
off-line position. Figure 2.2 shows a sketch of an in- and off-line error. This in turn means
that the nominal position of all other electrodes are positioned at rn0 = (xx0, 0). Where
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Figure 2.2: Sketch of an in- and off-line error. The black rings indicate the nominal position
of the electrodes. The red dot indicates the actual position of the electrode.

n,m ∈ {1, 2, 3, 4} indicates electrode 1 through 4 with n 6= m. Taking the three sources
of error into account the actual position is given by,

rn = (xn0 + ∆nx,∆ny) (2.6)

where ∆nx and ∆ny are the total position errors in- and off-line respectively [21].
Now looking at the effect of an position error on one of the distance terms in equation

(2.4),

|rn − rm| =
√

(xn0 + ∆nx − xm0 −∆mx)2 + (∆ny −∆−my)2

= |xn0 − xm0|
√(

1 + ∆nx −∆mx

|xn0 − xm0|

)2
+
(∆ny −∆my

|xn0 − xm0|

)2
. (2.7)

By doing a taylor expansion and using the probe is equidistant, |xn0 − xm0| = s|n −m|,
this can be simplified to [21]

|rn − rm| ≈ s|n−m|
(

1 + ∆nx −∆mx

s|n−m| + 1
2

(∆ny −∆my

s|n−m|

)2)
. (2.8)

From this it can be concluded that the off-line position errors are a second order term,
where in-line errors are a first order term [21]. Meaning that for small positional errors,
compared to the electrode pitch, off-line errors are negligible.
Assuming all position errors are normally distributed and in-line, their effect on a four-

point measurement can be calculated as

σrel
Ri

= 1
Ri

4∑

n=1

(
∂Ri
∂xn

σx

)2
(2.9)

where σrel
Ri

is the relative standard deviation of the four-point resistance from the static
position errors and σx is the standard deviation of the static position errors [23, 21]. For
an equidistant probe this can be simplified to

σrel
RA

=
√

5
ln 4

σx
s
∼= 1.61σx

s
(2.10)

σrel
RB

= 4
√

5
3 ln 3

σx
s
∼= 2.71σx

s
. (2.11)

Similarly for the dynamic position error

σrel,dyn
RA

=
√

5
ln 4

σdyn
x

s
(2.12)

σrel,dyn
RB

= 4
√

5
3 ln 3

σdyn
x

s
. (2.13)
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Where σdyn
x is the standard deviation of the dynamic position errors [21].

The static in-line position error can be compensated for by using the vdP expression
in Equation (2.3). The dynamic position errors cannot be compensated for analytically,
since it is a random error and are indistinguishable from the electric noise. The effect of
the dynamic position errors on the position-corrected sheet resistance for an equidistant
probe is, [21]

σrel
RS
∼= 5.61σ

dyn
x

s
(2.14)

where σrel
RS

is the relative standard deviation of the sheet resistance. This expression is
based on a first-order calculation [21]. In case of non-equidistant probes the geometrical
coefficients can be found in Kjær et al. [21] and will not be recreated here.
Chapter 4 and 5 will deal with designing cantilevers that passively suppress dynamic

position errors in the form of vibrations.

2.2 Field Effect Measurements

One of the most interesting applications of semiconductor materials is the fabrication of
Field Effect Transistor (FET). Transistors form the foundation of modern society, and
without them there would be no computers. Therefore, it is very important to be able to
characterize their behavior. The most common of these transistors is the FET. Simply
put a FET is a piece of semiconductor with two electrical terminals; a source and a drain.
Between the two terminals are placed a gate terminal. The gate consists of a conductive
material separated from the semiconductor by an insulator. By applying a potential at
the gate, charges can either be introduced or removed from the semiconductor near the
gate. If enough potential is applied, the number of charges will reach a point where the
semiconductor becomes conductive. In layman’s terms a transistor acts like a switch.
The transistor structures considered in this thesis are a slight variation on a MOSFET,

where the metal in the gate is replaced with highly conductive silicon on the backside
of the structure. An equivalent setup is used when measuring on SOI ans is called a
Ψ-MOSFET [44]. A sketch of a typical MOSFET is shown in figure 2.3 (left). The source
is where charge carriers enter the structure and the drain is where they leave. In the case
of electrons this means that the high potential is on the drain [51]. In the derivation made
here it will be assumed that the source is at zero potential.
The following explanations and derivations are to a large degree, based on the book

“Handbook of Silicon Semiconductor Metrology” by Diebold [51].

2.2.1 Threshold Voltage

One of the most important metrics when it comes to a MOSFET is the threshold voltage,
VT , which indicates the gate voltage, VG, needed to change the transistor from the off-
state to the on-state. The magnitude of VT influences, to a large degree, the use of the
transistor. When the transistor is in the on-state a current can pass from the drain to
the source (or vice versa). This current is typically known as the drain current, ID. VT
can be determined from the curve of ID plotted against VG. In this section two methods
for extracting VT from this curve will be presented. The two methods are valid in two
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Figure 2.3: (Left) Sketch of a typical MOSFET. IS and ID are the source and drain currents
respectively. VG is the gate voltage. The semicircles indicates contacts. (Right) Sketch of
how to find the linearly extrapolated threshold voltage, VT . The sketch is not to scale, and
should not be used for anything besides visualizing how to extract VT .

different operation regimes of a MOSFET, namely the linear and saturation regime. The
linear regime is achieved if the transistor is operated with a low source-drain voltage, VD,
i.e. VD < VG−VT [52]. In this regime the transistor functions roughly like a resistor. The
saturation regime is when the transistor is operated with a high VD, i.e. VD > VG − VT
[52]. In this regime the potential drop between the source and drain is high enough to
cause a pinch-off in a traditional MOSFET [52].

Linear Regime

The first method is by linear extrapolation of the ID–VG curve. The slope of the ID–VG
curve is better known as the transconductance, gm.

gm = ∂ID
∂VG

(2.15)

The extrapolation is performed from where gm is largest, and goes to zero current. A
sketch of the extrapolation is shown in Figure 2.3 (right). The threshold voltage is the
gate voltage at which the extrapolation reaches zero [51].
This method is only valid if the transistor is operated in the linear regime. The drain

current in this regime can be modeled as

ID = µcCox
(
VG − VT − 1

2VD
)
VD (2.16)

where µ is the minority carrier mobility, Cox is the capacitance of the transistor gate and
c is the device specific geometric factor. For a standard MOSFET this would be the width
divided by the length of the channel [51].

Saturation Regime

The other method of finding VT is valid when the transistor is operated in the saturation
regime. In this case VT is found in much the same manner as for the linear, but the√
ISD–VG curve is used instead. From this curve the threshold is found by linear extrapo-

lation to zero. The drain current for a MOSFET in the saturation regime can be modeled
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as [51]

ID = µcCox
2 (VG − VT )2 (2.17)

2.2.2 Field Effect Mobility

The field effect mobility, µFE, is the measure for µ gained from a field effect measurement.
Strictly µFE is given by

µFE = µ
ns
nind

(2.18)

where ns is the concentration of free conduction band electrons, and nind is the induced
charge concentration [52]. For traditional MOSFET ns = nind meaning that µFE = µ [52].
Just as with VT , how to determine µFE depends on which regime the transistor is operated
in.

Linear Regime

Using Equation (2.16) the transconductance is calculated.

gm = ∂ID
∂VG

= µcCoxVD (2.19)

Using that µFE and µ is the same, µFE is simply isolated from the expression for gm
[51].

µFE = gm
CoxVD

1
c

(2.20)

Saturation regime

Instead of isolating µFE from gm, it is here isolated from the slope of the
√
ID–VG curve

instead. For this we introduce a new variable gs.

gs = ∂
√
ID

∂VG
=
√

1
2µcCox (2.21)

µFE is then simply isolated from the expression for gs [51].

µFE = g2
s

Cox

2
c

(2.22)

Four-Point Measurements

Using a four-point measurement technique, µFE can be determined from Equation (2.20),
substituting ID/(cVD) with the sheet conductance, GS [41].

µFE = ∂GS
∂VG

1
Cox

(2.23)
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Since this is based on the expression for the linear regime it is naturally only valid in that
regime.
Following the same logic the saturation regime should be given by

µFE = ∂GS
∂VG

2VD
Cox

. (2.24)
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3 | Cantilever Compliance and
Stiffness

In most cases when working with cantilevers in micro four-point probes but also in other
applications, a parameter of great interest is the cantilevers spring constant, or to be more
clear its stiffness tensor K. The stiffness tensor is usually a three by three matrix that
describes which forces F arises when the cantilever is deflected δ in some direction in space
[53].

F = Kδ


Fx
Fy
Fz


 =



Kxx Kxy Kxz

Kyx Kyy Kyz

Kzx Kzy Kzz






δx
δy
δz


 (3.1)

However often it is hard to calculate the stiffness tensor analytically. Instead the inverse
of the stiffness tensor, the compliance tensor C, is calculated. The compliance tensor can
be written as the sum of individual compliance contributions [53].

C = K−1 (3.2)

The compliance describes the deflection that results from an applied force. It is much
easier to apply a force mathematically than it is to apply a deflection. This is due to the
other important parameters, such as bending moment and shear force, are directly linked
to the force but not the deflection.

3.1 Evaluation of Compliance Elements

The deflection of a beam in relation to an applied load is described by the Euler-Bernoulli
equation [53].

d2

dx2

(
EI

d2δ(x)
dx2

)
= q(x) (3.3)

Corresponding to a bending in either the y or z-direction at some position x. Here E
is the Young’s modulus for the beam, often a constant along the x-direction. I is the
area moment of inertia for the beam, and depends on the shape of the beam. δ(x) is the

15



deflection orthogonal to the x-axis at x. q(x) is the applied load on the beam. For the
Euler-Bernoulli equation to be applicable the beam must be modeled as a one-dimensional
object, additionally it is assumed that only small deflections are applied. As long as the
length of the beam is considerably larger than its other dimensions, the one-dimensional
model is a good choice.
In the case of calculating the deflection of cantilevers affected by a point force, it makes

more sense to use the second order linear differential equation, that relates the deflection
with the bending moment [53].

d2δ(x)
dx2 = −M(x)

EI
(3.4)

where M(x) is the bending moment. This equation can be derived from equation (3.3),
but is also a fundamental equation of beam bending.
Additionally forces applied along the direction of the beam will result in an elongation

of the beam. The elongation is given by [53]

δelong = F

EA
L (3.5)

where A is the cross sectional area of the beam and L is the length of the beam. All
further equations and investigations are based on eq. (3.4) and (3.5).
To find the total deflection of the cantilever the bending moment, Young’s Modulus and

area moment of inertia needs to be determined. Young’s modulus is a material constant
that can easily be found for most materials either online or in engineering textbooks. For
now it is left as E in the equations.
The area moment of inertia depends on the cross-sectional design of the beam. Here

the focus will be on simple beams with a rectangular cross-section. Besides resulting in
simple expressions for the area moment of inertia, it is also the nominal design of most
cantilevers used in micro four-point probes. The area moment of inertia, for a rectangular
beam rotated around an axis orthogonal to the beam direction is given by [54]:

Ij =
∫
k2da = wjw

3
k

12 . (3.6)

where (i, j, k) is an orthogonal base, with the beam pointing along i and rotates around
j. a is the cross sectional area of the beam in the jk-plane. wj and wk are the dimensions
of the beam in the j and k directions respectively. E.g. the beam shown in Figure 3.1,
rotated around the y-axis, has an area moment of inertia of Iy = WH3/12.
In general the bending moment is given as the cross product of the location vector and

the force vector; M = r×F. However in the case of micro-electrodes this can be simplified
considerably. First of it is assumed that all beams are one dimensional, meaning the
bending moment collapses to a scalar. Additionally the considered cantilevers are always
fixed (clamped) in one end, and a force is a applied in a single point at the other end.
These corresponds to where the cantilever is connected to the probe-body, and where the
cantilever touches the sample, respectively. A beam that is fixed in one end and is affected
by a point force at the other end is subject to a constant shear force along the beam. This
in turn means that the bending moment can be expressed as:

M(`) = F (L− `). (3.7)
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where F is the point force, L is the length of the beam and ` is a point along the length
of the beam.

Returning to the differential equation (3.4). A beam with one end fixed and one free,
will always lead to a pair of Dirichlet and Neumann boundary conditions [55].

Dirichlet: δ(x0) = t1 (3.8)

Neumann: d
dxδ(x0) = t2 (3.9)

where t1 and t2 are constants, and x0 is specific value of x.
Every new beam added to the cantilever results in an extra differential equation that

needs to be solved. These new beams are in turn fixed at the end of the previous beam,
meaning their boundary conditions will also be a pair of Dirichlet and Neumann bound-
ary conditions [53, 55]. While the first beam will have the homogeneous Dirichlet and
Neumann boundary conditions (i.e. t1 = t2 = 0), any subsequent beam will have inho-
mogeneous boundary conditions that depends on the previous beam. A linear ordinary
differential equation with a mixture of Dirichlet and Neumann boundary conditions can
always be solved by integration.
The compliance elements C ′′ij can be found as the deflection in the i-direction from a

force in the j-direction divided by the magnitude of said force (δi = CijFj). Where i
and j are x, y or z. The double prime notation (i.e. C ′′) indicates that the compliance
element is written in the cantilever coordinate system. This becomes relevant in the next
chapter when the compliance tensor in the sample coordinates is needed. Following this
method the full compliance tensor can be calculated by applying a force in each of the
three directions one by one and calculating the resulting deflections.
In the remainder of this chapter the compliance tensor for the straight cantilever and

Two-Beam (2B) cantilevers will be derived. 2B cantilevers consists of two beams connected
at the ends with an arbitrary angle in the xy-plane. A sketch of such a cantilever is shown
in Figure 3.2.

3.2 Straight Cantilever

The simplest cantilever design that was originally used in M4PP is the straight cantilever.
This is simply a rectangular beam of length L that is connected orthogonally to the probe-
body. A sketch of a straight cantilever is shown in Figure 3.1. When used the cantilever tip
will be engaged on a surface, resulting in a force being applied on the tip of the cantilever.
By using eq.(3.6) the area moments of inertia for rotating around the y- and z-axis are
found to be:

Iy = WH3

12 , Iz = W 3H

12
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Force in x-direction

Applying a force at the tip of the cantilever in x-direction, i.e. along the cantilever, will
not result in any bending of the cantilever [6]. It will however result in an elongation.

δxx(L) = L

EWH
Fx (3.10)

Force in y- and z-direction

A force in the y- or z-direction will cause a bending in that respective direction. Equation
(3.4) with the area moments of inertia for this cantilever gives this equation:

d2

dx2 δii(x) = −Fi(L− x)
EIj

sin η BC: δ(0) = 0
d

dxδ(0) = 0

where (i, j) = (y, z) or (i, j) = (z, y).
Solving this using homogeneous boundary conditions gives the deflections:

δyy(L) = L3

3EIz
Fy = 4L3

EW 3H
Fy (3.11)

δzz(L) = L3

3EIy
Fz = 4L3

EWH3Fz (3.12)

A bending of a cantilever in either the y- or z-direction will naturally make the tip of
the cantilever move slightly in the x-direction. However due to the small angle assumption
made earlier, this is negligible. Elongation is also ignored in y- and z-directions, since they
are negligible compared to the bending.
The compliance tensor for a straight cantilever is then found to be [54]:

C′′ =




L

EWH
0 0

0 4L3

EW 3H
0

0 0 4L3

EWH3




(3.13)

Figure 3.1: Sketch of a straight cantilever. Relevant parameters are shown on the figure.
The grayed out area is the surface on which the cantilever is connected to a probe body. For
calculation purposes the cantilever is considered clamped on this surface.
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Figure 3.2: Sketch of a cantilever with an bend of arbitrary angle. Relevant parameters are
shown on the figure. The grayed out area is the surface on which the cantilever is connected
to a probe body. For calculation purposes the cantilever is considered clamped on this surface.

3.3 Cantilever with Bent of Arbitrary Angle

Instead of having a straight cantilever, a bend can be introduced to allow for greater
control of the cantilevers mechanical behavior when engaged. These types of cantilevers
are here collectively referred to as 2B cantilevers. A sketch of such a cantilever is shown
in Figure 3.2. These cantilevers can be modeled as two beams, where the second beam
connects to the first beam at an angle η. Here the two beams have been named a and
b for the first and second beam respectively. Moving forward the joint between the two
beams will be referred to as the "elbow" of the cantilever. Likewise, the point where the
cantilever is clamped to the probe-body will be referred to as the "shoulder".
The derivations for the special case where η = 90◦ is shown in the paper “Three-Way

Flexible Cantilever Probes for Static Contact” by Fei Wang et al. [24]. The expression for
which will be shown in the next section.
When calculating the compliance tensor elements for 2B cantilevers the procedure is

much the same as for the straight probe. However, due to the bend at the elbow, a
force in x- and y-direction will also cause a deflection y- and x-direction respectively.
Additionally a force in the z-direction will not only cause the cantilever to bend, but also
to twist.
There are four relevant area moments of inertia for these cantilevers; the moment around

the z-axis of both beams, the moment around the y-axis for beam a, and the moment
around the transverse axis for beam b. This vector will be referred to as m and the
direction along beam b will be referred to as `. Both are shown in Figure 3.3.

Iz,a = W 3
aH

12 , Iz,b = W 3
bH

12

Iy,a = WaH
3

12 , Im,b = WbH
3

12 (3.14)

The boundary conditions for beam a are the homogeneous boundary conditions also
used for the straight cantilever. The boundary conditions for beam b will depend on the
deflection of beam a.
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Figure 3.3: Sketch of the force diagram for a force in the x-direction on a cantilever with
arbitrary bent.

3.3.1 Force in the x-direction

First the deflection of beam a is calculated. Figure 3.3 depicts a sketch how the force can
can be split into a part that is orthogonal to beam b and a part that is parallel. A new
coordinate system has also been introduced, ` and m which are parallel and orthogonal
to beam b respectively and has its origin in the elbow. The part that is parallel to beam b
will only cause an elongation. The orthogonal part gives rise to a constant shear force in
beam b and by extension a linearly increasing bending moment going from the tip of the
cantilever to the elbow. Since the cantilever is in a steady state. Segment a most have a
constant bending moment that has the same magnitude as the bending moment in b at
the elbow, but with an opposite sign.

Ma = LbFx sin η
Mb(`) = −(Lb − `)Fx sin η (3.15)

where ` indicates a position on beam b. The differential equation (3.4) for beam a becomes;

d2

dx2 δ(x) = −LbFx
EIza

sin η
BC: δ(0) = 0

d
dxδ(0) = 0

Solving this gives the deflection of beam a at the elbow in the y-direction.

δyx,a = − 6L2
aLb

EW 3
aH

Fx sin η (3.16)

Naturally this deflection also leads to a change in the angle of the second beam. Under the
small angle assumption the angle of the deflection is equal to the slope Θx of the beam.

Θx = ∂δyx,a
∂La

= −12LaLb
EW 3

aH
Fx sin η (3.17)

Now the differential equation is solved for beam b, in the (`,m)-coordinate system. Due
to the deflection of beam a and the subsequent angle, the Neumann boundary condition
for beam b is changed to match this angle shift. The differential equation becomes

d2

d`2 δ(`) = (Lb − `)
EIzb

Fx sin η
BC: δ(0) = 0

d
d`δ(0) = Θx

Solving this gives a deflection in the m-direction (δ`x) that then needs to be translated
back into deflections in the x- and y-directions. The total deflection in m at the tip of the
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cantilever becomes:

δmx = − 4
EH

(
L3
b

W 3
b

+ 3LaL
2
b

W 3
a

)
Fx sin η. (3.18)

When translated back to x, y-coordinates the deflections becomes:

δxx,b = −δmx sin η = 4
EH

(
L3
b

W 3
b

+ 3LaL
2
b

W 3
a

)
Fx sin2 η (3.19)

δyx,b = δmx cos η = − 4
EH

(
L3
b

W 3
b

+ 3LaL
2
b

W 3
a

)
Fx sin η cos η (3.20)

That last thing that is needed in the equation is the terms that comes from the elongation
of the cantilever. These are quite easy to calculate following the method demonstrated
in the derivations on the straight cantilever (sec. 3.2), while remembering that beam b is
elongated along `.

δxx,e =
(

La
EWaH

+ Lb
EWbH

cos2 η

)
Fx (3.21)

δyx,e = Lb
EWbH

Fx cos η sin η (3.22)

Combining all of these terms the compliance tensor element Cxx becomes:

C ′′xx = δxx,b + δxx,e
Fx

= 1
EH

([
4L3

b

W 3
b

+ 12LaL2
b

W 3
a

]
sin2 η + La

Wa
+ Lb
Wb

cos2 η

)
(3.23)

The compliance tensor element C ′′yx becomes:

C ′′yx = δyx,a + δyx,b + δyx,e
Fx

= − 1
EH

(
6L2

aLb
W 3
a

+
[

4L3
b

W 3
b

+ 12LaL2
b

W 3
a

− Lb
Wb

]
cos η

)
sin η (3.24)

These expressions are still quite unwieldy. So three dimensionless constants are intro-
duced: λ = La/Lb, α = H/Wa, β = H/Wb. Written with these dimensionless constants
the tensor elements becomes

C ′′xx = 4L3
a

EH4

(
β3

λ3 + 3α
3

λ3

)
sin2 η + La

EH2

(
α+ β

λ
cos2 η

)
(3.25)

C ′′yx = − 4L3
a

EH4

(
3
2
α3

λ
+
[
β3

λ3 + 3α
3

λ2

]
cos η

)
sin η + La

EH2
β

λ
cos η sin η (3.26)
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Figure 3.4: Sketch of the force diagram for a force in the y-direction on a cantilever with
arbitrary bent.

Test of Solution

As a test the angles η = 90◦ and η = 0◦ is inserted, and compared to the solutions for the
straight cantilever (sec. 3.2) and that of the L-shaped cantilever found in [24].

When inserting η = 0◦, and using that W = Wa = Wb and that L = La + Lb, the
compliance element becomes;

C ′′xx(η = 0◦) = L

EWH

C ′′yx(η = 0◦) = 0

When looking at the compliance matrix for the straight cantilever, Equation (3.13), this
is as expected.
Now inserting η = 90◦, the compliance elements becomes;

C ′′xx(η = 90◦) = L3
a

EH4

(
4β

3

λ3 + 12α
3

λ2

)
+ La
EH2α

C ′′yx(η = 90◦) = −6 L3
a

EH4
α3

λ

Besides the addition of an elongation term, which were ignored in [24], this matches
with what was expected for L-shaped cantilever. The compliance tensor for the L-shaped
cantilever is shown in eq. (3.44).

3.3.2 Force in the y-direction

The procedure to find the deflections when the cantilever is acted upon by a force in the
y-direction is much the same as for the force in the x-direction. A force diagram is shown
in Figure 3.4. First the deflection is calculated for beam a. The bending moments for the
two beams can be found to be:

Ma(x) = − (La + Lb cos η − x)Fy

Mb(`) = − (Lb − `)Fy cos η (3.27)

The Euler-Bernoulli equation for beam a becomes:
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CHAPTER 3. CANTILEVER COMPLIANCE AND STIFFNESS

d2

dx2 δ(x) = La + Lb cos η − x
EIza

Fy
BC: δ(0) = 0

d
dxδ(0) = 0

The deflection and slope Θy of beam a at the elbow are found by, following the same
steps as the derivation for the force in the x-direction.

δyy,a = 2
EW 3

aH

(
2L3

a + 3L2
aLb cos η

)
Fy

Θy = 6
EW 3

aH

(
L2
a + 2LaLb cos η

)
Fy (3.28)

The deflection is then calculated for beam b.

d2

d`2 δ(`) = Lb − `
EIzb

Fy cos η
BC: δ(0) = 0

d
d`δ(0) = Θy

Which solves to

δ`y = 4
EH

(
3
2
L2
aLb
W 3
a

+ 3LaL
2
b

W 3
a

cos η + L3
b

W 3
b

cos η
)
Fy (3.29)

Like for the force in the x-direction the solution is translated from the (`,m)-coordinate
system back to the (x, y)-coordinate system.

δxy,b = −δ`y sin η

= − 4
EH

(
3
2
L2
aLb
W 3
a

+
[
3LaL

2
b

W 3
a

+ L3
b

W 3
b

]
cos η

)
Fy sin η (3.30)

δyy,b = δ`y cos η

= 4
EH

(
3
2
L2
aLb
W 3
a

cos η +
[
3LaL

2
b

W 3
a

+ L3
b

W 3
b

]
cos2 η

)
Fy (3.31)

And the elongation terms are calculated:

δxy,E = Lb
EWbH

Fy cos η sin η (3.32)

δyy,E = Lb
EWbH

Fy sin2 η (3.33)

Using the (α, β, λ)-notation from before the compliance elements becomes:

C ′′xy = − 4L3
a

EH4

(
3
2
α3

λ
+
[
3α

3

λ2 + β3

λ3

]
cos η

)
sin η + La

EH2
β

λ
cos η sin η (3.34)

C ′′yy = 4L3
a

EH4

(
α3 + 3α

3

λ
cos η +

[
3α

3

λ2 + β3

λ3

]
cos2 η

)
+ La
EH2

β

λ
sin2 η (3.35)
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Figure 3.5: Sketch of the force diagram for a force in the z-direction on a cantilever with
arbitrary bent.

Test of Solution

For an isotropic material it is known that off diagonal elements must match, so that C ′′xy
from equation (3.34) and C ′′yx from equation (3.26) has to be identical, which is also the
case. Secondly the new solution can be tested against known solutions for the straight (sec
3.2) and L-shaped probe [24] for C ′′yy, corresponding to η = 0 and η = 90◦ respectively.
Using that for the straight cantilever La + Lb = L and Wa = Wb.

C ′′yy(η = 0◦) = 4L3

EW 3H

C ′′yy(η = 90◦) = 4L3
a

EH4α
3 + La

EH2
β

λ

For zero degrees this is exactly the same result as for the straight cantilever. For 90
degrees this is the same result as in [24] (also reproduced in (3.44)) but with addition of
a elongation term Laβ/(λEH)

3.3.3 Force in the z-direction

The response to a force in the z-direction consists of a pure bending part and a torsion
part. A force diagram is shown in Figure 3.5. Focusing on the bending part to begin with.
The derivations are reminiscent of the derivations done for forces in x and y. The bending
moments in the two beams becomes

Ma(x) = − (La + Lb cos η − x)Fz

Mb(`) = − (Lb − `)Fz (3.36)

Looking at the differential equation for beam a, it becomes clear that the only difference
between this equation and the one for a force in the y-direction is the force subscript and
area moment of inertia

d2

dx2 δ(x) = La + Lb cos η − x
EIya

Fz
BC: δ(0) = 0

d
dxδ(0) = 0

The deflection and slope Θz of beam a at the elbow is:

δzz,a = 2
EH3

(
2 L

3
a

Wa
+ 3L

2
aLb
Wa

cos η
)
Fz

Θz = 6
EWaH3

(
L2
a + 2LaLb cos η

)
Fz (3.37)
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The differential equation for the second beam is given by:

d2

d`2 δ(`) = Lb − `
EIma

Fz
BC: δ(0) = 0

d
dxδ(0) = Θz cos η

Note the extra cos η on the Neumann boundary condition.
This solves to:

δzz,b = 2
EH3

(
2 L

3
b

Wb
+ 6LaL

2
b

Wa
cos2 η + 3L

2
aLb
Wa

cos η
)
Fz (3.38)

There are no elongation terms worth taking into account, since the force is acting orthog-
onally on all beams. However, there is a torsion term from the second beam twisting
the first beam. The torsion deflection is given by the torsion angle ϕτ multiplied by the
orthogonal distance from the force point of attack to the elbow.

δz,τ = ϕτLb sin η (3.39)

In turn the torsion angle is given by the torque (FzLb sin η) multiplied by the length of
the twisted beam (La), divided by the shear modulus (G = 1

2
E

1+ν , where ν is Poisson’s
Ratio) and the so called torsion constant J .

ϕτ = FzLaLb
GJ

sin η (3.40)

Finding the torsion constant for a rectangular beam is by no means a trivial matter.
Luckily Timoshenko have derived it in his book “Theory of Elasticity” [56].

J = W 3
aH


1

3 −
64Wa

π5H

∑

n∈O

1
n5 tanh nπH2Wa


 = W 3

aHkα (3.41)

where O is the set of all odd natural numbers. kα is a constant, introduced to carry the
cumbersome sum. The torsion deflection is then:

δz,τ = 2
EH

LaL
2
b

W 3
a

1 + ν

kα
Fz sin2 η (3.42)

Combining all of this gives the following compliance tensor element in (α, β, λ) notation:

C ′′zz = 4L3
a

EH4

(
α+ 3α

λ
cos η + 3 α

λ2 cos2 η + β

λ3 + α3

λ2
1 + ν

2kα
sin2 η

)
(3.43)

Test of Solution

Just like for the force in the x- and y-direction the solution is tested against the two known
cases, η = 0◦ and η = 90◦.

C ′′zz(η = 0◦) = 4L3

EWH3

C ′′zz(η = 90◦) = 4α3 + 4β
λ3 + α3

λ2
2(1 + ν)
kα

Both of these results matches perfectly the results found for the straight cantilever (3.2)
and the L-shaped cantilever ([24] equation (3.44)).
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Figure 3.6: Sketch of an L-shaped cantilever. Relevant parameters are shown on the figure.
The grayed out area is the surface on which the cantilever is connected to a probe body. For
calculation purposes the cantilever is considered clamped on this surface.

3.4 L-Shaped Beam

For ease of reference, the solution for L-shaped beam shown in [24], is shown here, in the
notation used in this thesis, without any derivations. The compliance tensor is

C′′ = L3
a

EH4




12α3

λ2 + 4β3

λ3 −6α3

λ
0

−6α3

λ
4α3 0

0 0 4α3 + 4β
λ3 + 2(1 + ν)α3

kαλ2




(3.44)

The elongation terms for the L-shaped cantilever is written in it own tensor C′′∆ below.

C′′∆ =




α
La
EH2 0

0 β

λ

La
EH2 0

0 0 0




3.5 Rotation from Cantilever to Sample Coordinates

Thus far the compliance tensors shown have been in the cantilevers own coordinate system.
This was done since it makes the calculations much simpler. However, when engaging the
cantilevers to the sample they have typically been rotated as shown in Figure 3.7. To
separate the two coordinate systems the cantilever coordinate system is marked with a ′′,
e.g. the compliance tensor in the cantilever coordinate system is named C′′.
To get from the cantilever system to the sample system two rotations are necessary. First

a rotation around the z-axis with an angle of θ. Then a rotation around the y-axis with
an angle of φ. The rotation matrix for a rotation around the z-axis in three dimensions is
given by

Rz,θ =




cos θ sin θ 0
− sin θ cos θ 0

0 0 1


 (3.45)
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Figure 3.7: Sketch of a straight and an L-shaped cantilever engaged on a surface. The
straight probe is only rotated around the y-axis by the angle φ. The L-shaped cantilever is
both rotated around the y-axis by the angle φ, but also around the z-axis by the angle θ.
Figure originally from [26].

Note that since the probe is actually upside down when engaged, θ rotates in the opposite
direction than what is normal convention. This has been taken into account in the rotation
matrix, resulting in the change of sign on the sinus elements.
The rotation matrix around the y-axis in three dimensions is given by

Ry,φ =




cosφ 0 sinφ
0 1 0

− sinφ 0 cosφ


 (3.46)

The full rotation matrix from cantilever coordinates to sample coordinates then becomes:

R = Ry,φRz,θ =




cos θ cosφ sin θ cosφ sinφ
− sin θ cos θ 0

− cos θ sinφ − sin θ sinφ cosφ


 (3.47)

and the rotation matrix from sample coordinates back to cantilever coordinates is

R−1 =




cos θ cosφ − sin θ − cos θ sinφ
sin θ cosφ cos θ − sin θ sinφ

sinφ 0 cosφ


 (3.48)

This is the same rotation matrix found in [24].
Finally the compliance and stiffness tensor can be transformed from cantilever coordinates
into sample coordinates by:

C = RC′′R−1 (3.49)
K = RK′′R−1 (3.50)

3.6 Conclusion to Compliance and Stiffness Calculations

In this chapter the compliance and stiffness tensor for any cantilever that consists of two
straight beams connected at the ends, were derived. The compliance tensor can be written
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as four unique tensor elements summarized below.

C ′′xx = 4L3
a

EH4

(
β3

λ3 + 3α
3

λ3

)
sin2 η + La

EH2

(
α+ β

λ
cos2 η

)

C ′′yy = 4L3
a

EH4

(
α3 + 3α

3

λ
cos η +

[
3α

3

λ2 + β3

λ3

]
cos2 η

)
+ La
EH2

β

λ
sin2 η

C ′′zz = 4L3
a

EH4

(
α+ 3α

λ
cos η + 3 α

λ2 cos2 η + β

λ3 + α3

λ2
1 + ν

2kα
sin2 η

)

C ′′xy = C ′′yx = − 4L3
a

EH4

(
3
2
α3

λ
+
[
3α

3

λ2 + β3

λ3

]
cos η

)
sin η + La

EH2
β

λ
cos η sin η

C ′′xz = C ′′zx = 0

C ′′yz = C ′′zy = 0 (3.51)

where λ = La/Lb, α = H/Wa and β = H/Wb. Before this compliance tensor can be used
it needs to be rotated to sample coordinates, as described in section 3.5.
An experiment is presented in Section 4.3, were the compliance tensor is used to correctly

predict the Czz and Kzz elements for three cantilevers, with η ranging from 0◦ to 140◦,
made from Polyactic Acid.
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4 | Vibration Tolerance and Can-
tilever Contact Types

When designing micro-electrodes, that needs to measure on a micrometer scale or smaller,
it is important to ensure that the probe stays in place during the measurements. Even
movements on the nanometer scale can cause a large increase in measurement error [23].
In this chapter a parameter named the vibration tolerance, Γ, is introduced, derived and
experiments measuring it for two M4PP designs is presented. This chapter will, to a large
extend, present the findings of the article “Vibration Tolerance of Micro-Electrodes” by
K. Kalhauge et. al. [26].
When a cantilever is engaged on a surface, one of two things will happen: Either the

cantilever will slide on the surface, until the forces tangential to the surface becomes lower
than the friction; or the cantilever stays still on the surface. These will be referred to
as sliding contact and static contact respectively going forward. Sliding contact may be
expected for most cantilever designs, while static contact has quite strong requirement.
Most 2B cantilevers will form sliding contacts. However, it is possible to design cantilevers
to have static contact [23, 24]. For the purpose of calculating the vibration tolerance of a
cantilever, it is of greater interest to look at the sliding contact.
The expression presented in this chapter, are in many ways similar to the expression

presented in D. H. Petersen’s PhD thesis [25]. However, this expression does differentiate
it self in some distinct ways. The first, and probably least exciting, it fixes a mistake where
Kzzδz is used instead of C−1

zz δz. The second, it introduces the possibility of vibrations in
any direction in the xy-plane, instead of looking only at vibrations 45◦ to the x- and
y-axis. Finally the two expressions are fundamentally answering two different questions.
The expression presented here gives the minimum relative deflection (deflection divided
by engagement depth) in the xy-plane needed, to make a cantilever overcome the static
friction and start to slide. The expression given in [25] gives the smallest needed static
friction coefficient needed to avoid a specific deflection of the cantilever, from making it
slide on the surface.

4.1 Vibration Tolerance and Sliding Contact

It makes sense to calculate the vibration tolerance assuming that the cantilever have
reached the point on the surface where the tangential force is zero. Any cantilever that
have not reached this point will have a lower vibration tolerance, than a cantilever that
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Figure 4.1: Angle dependent vibration tolerance of the straight and L-shaped cantilever used
in [26], with a friction coefficient of µ = 0.2. The dimensions are also written in Table 4.2.
Figure is a simplificant of the one presented in [26]

have reached it, due to built in spring forces. Additionally, a cantilever moving on the
surface will on average move towards this point. Assuming that vibrations are random,
any movement, on the surface can be described as a random walk in a harmonic potential,
and consequently will normally distribute around the zero tangential force point. The
forces affecting a cantilever that has already reached the zero tangential force point can
be written as

F = Fzẑ = C−1
zz δzẑ (4.1)

where δz is the engage depth. C−1
zz will later be referred to as the engage stiffness [26].

From this point we are interested in the strongest possible vibration that does not cause
the cantilever to move. This means that the tangential force due to a vibration must not
exceed the the total normal force multiplied by the static friction coefficient.

|FT | ≤ µFN,tot. (4.2)

Thus far the vibrations have simply been mentioned as random. So to formalize the
vibrations a bit more, they are now modeled as in-plane sample-body vibrations at an
arbitrary polar angle ψ.

δ̃(t) = A sin(ωt)




cosψ
sinψ

0


 (4.3)

where A is the amplitude, ω is the angular vibration frequency and t is time [26]. The
total force as a result of this vibration is the sum of the normal force from the engage and
the vibrational force

F = C−1
zz δzẑ + Kδ̃(t). (4.4)

Which can be separated into the normal and tangential parts

FN,tot = C−1
zz δz +KN (ψ)A sin(ωt) (4.5)

FT = KT (ψ)A sin(ωt) (4.6)
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where KN (ψ) and KT (ψ) are the effective normal and transverse spring constants re-
spectively [26]. Written out, based on the stiffness tensor elements, KN (ψ) and KT (ψ)
becomes:

KN (ψ) = Kzx cosψ +Kzy sinψ (4.7)

KT (ψ) =
√

(Kxx cosψ +Kxy sinψ)2 + (Kyx cosψ +Kyy sinψ)2 (4.8)

Naturally the worst case scenario happens when the vibrations are at its peak (| sin(ωt)| =
1). In addition since KT (ψ) is positive for all values of ψ, the vibration amplitude must
fulfill

KT (ψ)A ≤ µ
(
C−1
zz δz −A|KN (ψ)|

)

⇒ A

δz
≤ µC−1

zz

KT (ψ) + µ|KN (ψ)| ≡ Γ(ψ), (4.9)

to avoid the cantilever sliding on the sample in accordance to eq. (4.2) [26]. This we define
as the angle dependent vibration tolerance and can be seen in Figure 4.1 for the L-shaped
and straight cantilever used in [26]. By choosing the polar angle ψ where the vibration
tolerance is at its global minimum, the angle independent vibration tolerance (or simply
vibration tolerance for short) is found as

Γ ≡ min
ψ∈Ψ

Γ(ψ), Ψ = [−π, π]. (4.10)

This minimum is often found at either ψ = 0±π or with a small offset from this. Maximum
is typically found at ψ = ±π

2 or offset slightly from this [26]. Therefore the vibration
tolerance can normally be estimated by

Γ ≈ Γ(0) = µC−1
zz√

K2
xx +K2

yx + µ|Kzx|
(4.11)

When vibration tolerance is used in this thesis, it will be calculated using the full
expression shown in Equation (4.9) and (4.10).

4.2 Static Contact

It is possible to design cantilevers that are so flexible, that when engaged they do not slide
over the surface but stay in place. As mentioned this is what is called static contact. In
order for a probe to be of this type the following relation needs to be fulfilled [24, 23],

µKzz ≥
√
K2
xz +K2

yz (4.12)

The vibration tolerance for a probe in static contact can be calculated by solving for Γ
in the following equation.

µKzz + µKN (ψ)Γ

=
√

(Kxz + [Kxx cosψ +Kxy sinψ]Γ)2 + (Kyz + [Kyx cosψ +Kyy sinψ]Γ)2 (4.13)
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Cantilever contact type
Dimension Unit Sliding Stick-slip Static
La (mm) 60 60 60
Lb (mm) 30 30 30
Wa (mm) 3.9 1.9 1.9
Wb (mm) 3.9 1.9 1.9
H (mm) 4.1 5.1 5.1
η (deg) 0 90 140
θ (deg) 0 45 70

Table 4.1: Dimensions of the cantilevers used in the stick-slip experiment. The cantilevers
have a Young’s modulus of E = 2.347GPa [58] and Poisson’s ratio of ν = 0.33 [59]. Repro-
duced from [57].

Solving this, results in a very long expression. The vibration tolerance calculated from
this, is a metric for how large vibrations the static contact can sustain before it turn into
a sliding contact and the previous expression for the vibration tolerance is valid instead
(Equation (4.9)).
The requirements for static contact was investigated and discussed in F. Wang’s paper

[24].

4.3 Stick-Slip Contact

This section is largely based on an experiment presented in the article “Vibration Tolerant
Two-Beam Cantilevers for Small Pitch Micro-Electrodes” by K. Kalhauge et al. [57]. The
experiment was designed in collaboration with A. K. Pedersen, and was performed by A.
K. Pedersen.
Thus far everything that is not static contact has been described as a sliding contact.

This is overall a good approximation, but also a simplification. As mentioned previously
most cantilevers will slide during engagement until the friction becomes larger than the
transverse forces. If the engage depth is increased further, the cantilever tip will remain
in place until the transverse forces are able to overcome the friction again. This type of
contact is called a stick-slip contact.
An experiment was performed, where 3D printed cantilevers were engaged on a scale,

at increasingly large engage depths. Three cantilevers were designed using the compliance
tensor in Equation 3.51: a straight cantilever that was expected to make a sliding contact
and two 2B cantilevers expected to make a stick-slip contact and static contact respectively.
The dimensions of the cantilevers are reported in Table 4.1. The cantilevers were drawn
and printed in Polyactic Acid (PLA) by A. K. Pedersen on a Ultimaker 2 3D-printer [57].
The results from the experiment are shown in Figure 4.2.
The straight cantilever, expected to have a sliding contact, show contact force in excellent

agreement with the expected force from C−1
zz (Figure 4.2 a). A slight curving of the force

is observed, that is most likely caused by plastic deformation. The disengagement show
a large hysteresis, the cause of which is not entirely clear to us, but is probably a result
of a change in friction type. The signal on the engage is rather noisy, with several small
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Figure 4.2: Contact force as a function engage depth. The also contains photographs, in
bottom right corner, of the three cantilevers used. Red dots indicate engagement. Blue dot
indicate disengagement. The dotted gray line and the solid black line are the theoretical
curves for Kzz and C−1

zz respectively. a) Response from the straight cantilever, arrows indi-
cate areas of interest. Kzz for this design falls on top of the y-axis. b) Response from 2B
cantilever with stick-slip contact. c) Response from 2B cantilever with static contact. Figure
originally from [57].

jumps. Our hypothesis is that this is due to surface roughness. There are especially three
large disruptions that are reproduced during the disengagement. On Figure 4.2 they are
marked with black arrows. Going from engage to disengage the peaks move 0.2mm down
in engage depth. This is the same change in engage depth in which the contact force
rapidly decrease, right after changing from engaging to disengaging, suggesting that the
cantilever tip is stationary in that part [57].
The 2B cantilever, expected to have a static contact, (Figure 4.2 c) show no sudden

changes in contact force and only minimal hysteresis, which is probably due to plastic
deformation. Based on this it seems fair to say that the cantilever tip have indeed remained
stationary during the engage. Since the values of Kzz and C−1

zz are so similar it impossible
based on these measurements to determine which the force follows [57].
Now with both sliding and static contact examined, the cantilever, expected to have a

stick-slip contact, is considered. The contact force is shown to rise linearly until they sud-
denly drop, and then start rising again. Repeating multiple times during the engagement.
The phases in which the contact force is rising are parallel to the line from Kzz, suggest-
ing that the cantilever tip is stationary in these phases. When the contact force drops, it
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L-beam I-beam
Symbol Value (µm) Symbol Value (µm)
H 9.7 HI 9.9
La 92.1

LI 201.0
Lb 36.9
Wa 4.8

WI 12.0
Wb 2.3
θ 45◦ θI 0◦
η 90◦ ηI 0◦
φ 30◦ φI 30◦

Table 4.2: Dimensions of the two cantilevers designs used in the vibration tolerance experi-
ments. The electrode pitch of both probes is 20 µm. Table was taken from [26].

obtains the value described by the line from C−1
zz , suggesting that the cantilever tip have

moved to a position with close to zero transverse force. Since the cantilever always returns
to the C−1

zz line, it will on average behave like a sliding contact probe [57]. This in turn
supports the use of (4.9) to calculate the vibration tolerance for these cantilevers.

4.4 Vibration Tolerance Experiments

Vibration experiments were performed by Henrik H. Hartmann using two types of probes,
a straight and an L-shaped. The L-shaped had a complete 90◦ bend at the elbow. The
dimensions for the two cantilever types are shown in Table 4.2, and the angle dependent
vibration tolerance for these design are shown in Figure 4.1.
For the experiments the probes were engaged on either Indium-Tin-Oxide (ITO) or sili-

con. While engaged on the surface, electrical measurements were continuously performed
while the vibration amplitude was increased. The vibrations were supplied by a small
piezoelectric element that was driven at a frequency of 100Hz. The point of probe failure
due to vibrations were defined as the minimum amplitude required to make the electri-
cal measurement fail five times in a row. Using this method the vibration tolerance was
measured for engagement depths ranging from 500nm to 3000nm. Where the engagement
depth was measured using a strain gauge with an error of max 200nm.
It quickly became clear during analysis that due to how stiff the straight cantilever is

in the length direction, a system compliance element had to be added to the straight
cantilevers C ′′xx element. This element represents the compliance of the rest of the system,
i.e. the probe body, probe holder and the rest of the machine. To estimate this compliance
element. It was used that it appeared that the straight cantilever had made indentations
in the ITO. This had prevented it from sliding on the surface. Modeling the vibration
tolerance for this situation was done assuming that µ→∞ giving:

Γ(ψ) = 1
Czz|KN (ψ)| (4.14)

By fitting this to the measurement on ITO with the straight probe, gave a system com-
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Figure 4.3: Results from measurements of the vibration tolerance of two cantilever types.
The filled symbols are measurements with a straight cantilever. The hollow symbols are
measurements with an L-shaped cantilever. Theoretical predictions are shown as blue and
red areas. The full gray line represents a straight probe engaged on a surface with artificially
large friction coefficient (µ→∞). The plot was reproduced from [26].

pliance of ε = 0.2mm/N .

C′′ε =



ε 0 0
0 0 0
0 0 0


 (4.15)

This compliance tensor was added to the straight probe, effectively increasing its C ′′xx
element by roughly an order of magnitude, But was not added to the compliance tensor
of the L-shaped probe, since it would only change the element size by less than 0.5%.
The results from the experiment are shown in Figure 4.3. Figure 4.3 shows that there

is a good correlation between the theoretical predictions for the L-shaped probe and the
experiments. The measurement error on the vibration amplitude (a few nm) meant it was
impossible to measure the vibration tolerance for the straight beam below an engagement
depth of 1500nm. The plot also shows that the measurements with the straight probe
on ITO has significantly higher vibration tolerance than what is expected for a friction
coefficient between 0.2 and 0.6. The gray line sows the fitted system compliance assuming
µ→∞.
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5 | Optimization of Cantilever
Design

In this chapter the analytical expressions for the vibration tolerance (4.9) and the com-
pliance tensor (section: 3.3) are used to study how changing different design parameters
for a cantilever will change its mechanical behavior. Finally the expressions are used to
optimize an existing cantilever design.
The cantilever design that is going to be optimized and is going to form the basis for

this study, is the probe that A. Cagliani, et al. [14] used in their paper on improving
measurement precision. This probe had a smallest possible electrode pitch of 1.5µm,
which ultimately influences which samples it can measure on. The probe from [14] has the
dimensions shown in Table 5.1 and a sketch of it is shown in Figure 5.1.

5.1 Study of the Effect of Cantilever Parameters on Me-
chanical Behavior

Using the design in Table 5.1 as a basis. A study of the different parameters effect on the
mechanical behavior of a cantilever was initiated. Due to the complexity of the problem
(seven possible parameters to optimize), a reduction of the parameter space is necessary
before continuing.

Parameter Space

We decided to keep the total length constant throughout the study for easier comparison
of designs. In general a longer probe will cause the stiffness of the cantilever to fall while
the vibration tolerance stays relatively unchanged. The total length is given by

LT = La cos θ + Lb cos(η − θ). (5.1)

While the total length is fixed, the length of beam a and beam b were chosen as variables
dependent on the two angles, the total length and the ratio λ = La/Lb. From experience
working with the optimization of specific probe designs, we knew that the best vibration
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Dimension Value
La 8.7µm
Lb 4.3µm
Wa 0.91µm
Wb 0.50µm
H 1.11µm
θ 20◦
η 40◦
E 69GPa
ν 0.17
Γ 0.0157

C−1
zz 13.1 N/m

Table 5.1: Design Parameters for the
probe in [14]. Young’s modulus and
Poisson’s ratio are for SiO2 and are
taken from [53]. The stiffness and vibra-
tion tolerance were calculated using the
expressions presented in this thesis.

Figure 5.1: A sketch of two cantilevers
from 5.1, placed with the minimum spac-
ing.

tolerance is achieved for λ between one and five.

La = λLT
λ cos θ + cos(η − θ) (5.2)

Lb = LT
λ cos θ + cos(η − θ) (5.3)

λ ∈ [1; 5] (5.4)

This reduces the number of parameter that needs to be studied by one.
From experience it has also become clear that the highest possible vibrational tolerance

is always achieved when the width of beam b is as small as possible. How small this can
be made depends heavily on the fabrication method chosen. Cantilevers of the dimensions
we are looking at are typically defined using UV-lithography. As a consequence we have
chosen a Critical Dimension (CD) of 500nm. While it is possible to do smaller CD with
some UV-lithography systems, 500nm should be achievable by most modern systems.

Wb = 0.5µm (5.5)

This further reduces the number of parameters that needs to be studied.
In this study the height and the width of beam a is chosen in rough steps to show

their overall effect on the mechanical behavior. Three heights were chosen; H = 1.5µm,
H = 2.0µm and H = 2.5µm, two widths were chosen; Wa = 0.5µm and Wa = 1.0µm.
We decided that any angle for θ more than 45◦ is not relevant. If the angle is increased

beyond this angle, beam a begins to hug the probe-body. In the same track, η is at least
the same value as θ. If η was smaller the overall direction of the cantilever would not be
in the x-direction, meaning a cantilever with a smaller θ could have been chosen instead.
Additionally, η is chosen to be less than 60◦ + θ.

θ ∈ [0; 45◦] (5.6)
η ∈ [θ; θ + 60◦] (5.7)
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Figure 5.2: Shell plot of the vibration tolerance as a function of θ, (η − θ) and λ = La/Lb.
Each shell shows the limit between going from under to over the value shown in the legend.
Pitch lines are shown on the θ (η−θ) plane, these shows which areas of the angle plane were
it is possible to achieve the given pitch. Notice that as the width increases some pitches are
no longer possible anywhere in angle plane.

This has reduced the total number of parameters to five making it possible to make a
three dimensional shell plot for each combination of Wa and H, with θ, (η − θ) and λ on
the axis. The result from this is shown in Figure 5.2 and Figure 5.3.
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Figure 5.3: Shell plot of the inverse of the zz-element of the compliance tensor, here referred
to as the engage stiffness, as a function of θ, (η − θ) and λ = La/Lb. Each shell shows
the limit between going from under to over the value shown in the legend. Pitch lines are
shown on the θ (η − θ) plane, these shows which areas of the angle plane were it is possible
to achieve the given pitch. Notice that as the width increases some pitches are no longer
possible anywhere in angle plane.

The plots of the vibration tolerance (Figure 5.2) show that going towards higher an-
gles increases the vibration tolerance. This is as we would expect. The plots also show
that increasing either the width of beam a or the height will also increase the vibration
tolerance. This was not immediately clear from the offset, and is most likely caused by
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CHAPTER 5. OPTIMIZATION OF CANTILEVER DESIGN

Figure 5.4: Shell plot of the cantilever shown in Table 5.1. The shell shows the what happens
if either one of the angles or λ is changed. The small red dot, on a red pillar, indicates were
the cantilever design is in this parameter space. Pitch lines are shown on the θ (η − θ)
plane, these shows which areas of the angle plane were it is possible to achieve the given
pitch. (Left) Shell plot of the vibration tolerance. (Right) Shell plot of the engage stiffness.

the additional height causing the engage stiffness (C−1
zz ) to increase while the transverse

stiffness (KT ) is largely unchanged. Lastly, as mentioned earlier, the shape of the surfaces
makes it clear that the optimal value for λ is indeed between one and five.
Now looking at the engage stiffness plots (Figure 5.3), the engage stiffness decreases as

the angles increase. From Equation (4.9) it is known that the vibration tolerance is linearly
dependent on the engage stiffness. Which might make the fact that the vibration tolerance
increases while the engage stiffness decreases slightly surprising. However when increasing
the angles all stiffness elements decreases. The other stiffness elements compensate for the
lower engage stiffness, thereby increasing the vibration tolerance. It is also clear from the
plots that increasing λ will generally increase the engage stiffness. This is clearer from the
plots with high values of Wa. That is as expected since high λ means that most of the
cantilever length is in La, thereby making it look more like a straight cantilever.
The code used to calculate these designs are shown in Appendix A.5 and proved to be

roughly 225000 times faster than doing finite element simulations. The plotting script is
shown in Appendix A.6.

5.2 Same Pitch Optimization of Cantilever

The goal of the optimization presented in this section, is to improve the vibration tolerance
of the cantilever shown in Table 5.1. This has to be done while keeping the electrode pitch,
engage stiffness and widths constant. Figure 5.4 shows a shell plot of the cantilever design
and its surroundings in θ, (η − θ and λ. On the figure the specific cantilever design is
marked as a red dot.
From the pitch lines on Figure 5.4, we see that it is possible to increase the angle η

so that η − θ = 48.2◦, without changing the minimum possible pitch. From the study
done in the previous section, and Figure 5.4 (left), it is known that increasing any of
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Figure 5.5: (Left) Plot of the engage stiffness for the optimized cantilever as a function of H
and λ. The red contour line shows the design with the same engage stiffness as the original
cantilever. (Right) Plot of the vibration tolerance for the optimized probe. The red line is
the combinations of H and λ that formed the contour line from the engage stiffness plot.
The green dot indicates where on the red line the vibration tolerance is largest.

the angles also increases the vibration tolerance. However, by moving to this point, the
engage stiffness has decreased. It is possible to compensate for this by modifying some of
the other parameters. By changing the angle η, an optimization based on the angles have
already been made. This leaves H and λ.
To find the combinations of H and λ that has the desired engage stiffness, the engage

stiffness was calculated for all combinations of 101 values of H ∈ [1, 3]µm and λ ∈ [1, 5],
totaling 10201 combinations. The engage stiffness surface from this is shown in Figure
5.5 (left). On this surface a contour line corresponding to the desired engage stiffness
(13.1N/m) is traced. This contour line is shown in the figure as a red line. All of the
designs on this line have the desired engage stiffness, so by tracing the line to a surface
plot of the vibration tolerance, the design with the best vibration tolerance can be found
by simply maximizing. The vibration tolerance surface is shown in Figure 5.5 (right).
The optimal point is shown on this figure with a small green dot. The code used for the
optimization is shown in Appendix A.7.
The optimized solution gives H = 1275nm, λ = 1.84 and of course η = 68.2◦, and results

in a constant engage stiffness but an increase in vibration tolerance by a factor of three,
from 1.6% to 4.7%. To update Figure 5.4 with the new cantilever design, the plot needs
to be made for the new height. The new plots are shown in the top row of Figure 5.6. The
blue dot indicates where in the parameter space the new solution is. The red dot indicates
were the original probe design were in (θ, η− θ, λ) space, but does represent a design with
a different height than what the plot shows.

5.3 Optimize Cantilever for Specific Pitch

The goal in this section is to optimize original cantilever to work with a minimum electrode
pitch of 1.1µm while still having the same engage stiffness and critical dimension as the
original. From some simple geometry it can be realized, that in order to reduce the pitch
to 1.1µm, the width of beam a has to be reduced. There is however a point where one
can choose between slightly higher angles or a slightly wider beam a. From the plots in
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CHAPTER 5. OPTIMIZATION OF CANTILEVER DESIGN

Figure 5.6: Top row: Shell plot of the optimized cantilever keeping the same pitch. Bottom
row: Shell plot of the optimized cantilever with a pitch of 1.1µm. The shells show the what
happens if either one of the angles or λ is changed. The small red dot, on a red pillar and
small blue dot on a blue pillar, indicates were the original cantilever and new design is in
this parameter space respectively. Pitch lines are shown on the θ (η − θ) plane, these shows
which areas of the angle plane were it is possible to achieve the given pitch. (Left) Shell plot
of the vibration tolerance. (Right) Shell plot of the engage stiffness.

Figure 5.2 it is known that both increasing the width of the first beam and increasing the
angles will result in a larger vibration tolerance. Since it is hard to determine before hand
which will have the greater effect, the angles θ and η will be tied to the value of Wa. So
that for any width Wa the largest possible angles are chosen.

θ = arccos
(
Wa + CD

s

)
(5.8)

η = arccos
(
Wb + CD

s

)
+ θ (5.9)

where CD is the critical dimension, and s is the electrode pitch.
An Optimization of the height and width of beam a is performed in the same manner as

explained in the previous section. During this optimization λ has not been changed, and
perhaps more optimized choices of λ exists. so the optimization in H and Wa is repeated
several times. Each time the value of λ is changed slightly. In the end we have a list
of optimized designs, each one corresponding to a specific λ. We then simply choose the
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Cantilever Original Same Pitch Smaller Pitch
(Analytical) Γ 1.57% 4.77% 3.82%
(Simulation) Γ 1.46% 4.59% 3.95%

(Analytical) C−1
zz 13.1N/m 13.1N/m 13.1N/m

(Simulation) C−1
zz 13.2N/m 13.4N/m 13.7N/m
La 8.70µm 9.38µm 8.71µm
Lb 4.30µm 5.10µm 4.73µm
λ 2.02 1.84 1.84

Wa 0.91µm 0.91µm 0.50µm
Wb 0.50µm 0.50µm 0.50µm
H 1.11µm 1.28µm 1.77µm
θ 20.0◦ 20.0◦ 24.6◦
η 40.0◦ 68.2◦ 49.2◦

Table 5.2: Table containing the parameters of the original design as well as the two optimized
designs. Simulations consisted of finite element modeling of the compliance and stiffness
tensor elements using COMSOL. Finite element model shown in Appendix A.9

design in the list that have the highest vibration tolerance.
The new design has a height of H = 1765nm, a width of Wa = 500nm, a λ = 1.84, a

θ = 24.62◦ and an η = 49.24◦. This design has a vibration tolerance of 3.82%, slightly
lower than the optimized probe with the large pitch, but still an improvement of a factor
of 2.4 over the original. The new design is shown in the bottom row of plots in Figure 5.6.

5.4 Conclusion to Cantilever Optimization

What have been demonstrated here is the basics of how to optimize the vibration tolerance
for a given design. Naturally this is very useful, but it is not the be all and end all of
cantilever designs. Parameters such as the lead resistance from the shoulder to the tip are
also very important. The method shown here should therefor not be seen as the initial
go to for designing a cantilever, but rather the last step, when a lot of constrains on the
design have already been imposed by outside sources. In that case this method can help
squeezing a little extra out of the cantilever without compromising on any of the important
parameters.
The designs that was found in this chapter are summarized in Table 5.2 along with

results from finite element simulations of the same designs.
The discrepancies shown between the analytical and numerical results, could be caused

by both the simulation and the analytical model. The simulations errors could have come
from the meshing or the simplifications to the model (see Appendix A.9) in order make it
sound for all designs. For the analytical model a number of assumptions were made that
might have led to slight inaccuracies. In the end the difference seen between the models,
are smaller than what can be expected from fabrication variations.
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6 | Field Effect Integration in
Micro Four-Point Platform

In this chapter the work that have gone into making a functioning setup for doing field
effect measurements is presented and explained. This will consist mainly of two parts:
the physical modifications to the microRSP-M200 semiautomatic tool from CAPRES [60],
now a part of KLM; and the LabView code used to run the experiments.

6.1 M200 Modification

The microRSP-M200 semiautomatic tool (or M200 tool for short) is a machine that uses
M4PP to typically either do sheet resistance measurements, or micro-Hall measurements.
To do this an alternating current is applied between the two source electrodes while mea-
suring the potential between the two sensing electrodes. By using a AC signal as input,
the sensing can be filtered using a lock-in amplifier at the same frequency. Using a lock-in
technique has a huge effect on the precision of the measurements, allowing for much better
measurements.
When doing field effect measurements, the source has to be DC instead of AC and

a potential has to be sourced instead of a current. This means that not only is it not
possible to use a lock-in amplifier to improve the signal to noise ratio, it is also necessary to
circumvent the entire measurement equipment already present in the M200 tool, replacing
it with something else. In this section, what that something else is, will be discussed.
At DTU Nanotech (now DTU Physics) there already existed a setup for doing field

effect measurements using macroscopic probes on lithographically defined structures. The
setup was built by, former employee at DTU Nanotech, David Mackenzie. It was quickly
decided that instead of inventing the wheel again, the modification to the M200 tool
would be based on this setup. The setup consists of two Keithley 2400 sourcemeters and a
Keithley 2700 multimeter with a Keithley 7709 matrix module. All of which is connected
using GPIB cables. The sourcemeters provided either the source drain voltage needed in
the measurements or the gate voltage. At the same time the multimeter measures the
potential drop across the source electrodes. The matrix module is used to switch between
different configurations on the M4PP. The basic setup of sourcemeters and multimeters
are mostly the same between the fixed electrode setup and the M200 modification. The big
difference between the setups, was located in the connection between the matrix module
and the sample.
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Figure 6.1: Schematic of the switch array in the Keithley 7709. The user can connect to the
rows and columns. Schematic reprinted from the “Model 7709 User’s Guide” by Tektronix
[61]. The old and new wiring is shown drawn on top of the schematic at the top and bottom
of the figure respectively.

In the fixed electrode setup the matrix module only needed to be able to multiplex
between four contacts, and only the basic six configurations at that. On the M200 tool it
is possible to use probes with more electrodes than four. Throughout the measurements
a probe with seven electrodes were used, a so called Micro Seven-Point Probe (M7PP).
With a M7PP only four electrodes are used in a measurement at any time, but it allows
the user to choose any of the possible sub-probes (a selection of four electrodes) and to
use multiple different sub-probes during the same engage. In the new setup, in order to
take advantage of the M7PP, the matrix module needs to be able to choose any sub-probe
as well as any configuration for said sub-probe. This required a complete rework of the
wiring, connecting the matrix module to the electrodes, and a rewriting of the program
controlling the measurements.
A schematic of the switching array in the matrix module is shown in Figure 6.1 with the

old and new wiring. The matrix module consist of multiple rows and columns that can be
connected by opening or closing the channels numbered 1 through 48 on the schematic.
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PLATFORM

Figure 6.2: (Left) Photograph of the PCB used to connect the matrix module to the probe.
On the picture it is mounted inside the machine, with the PCB connecting to the original
measurement equipment inside the EDS bag. (Right) Photograph of the entire setup.

Doing so connects Hi with Hi and Lo with Lo. The original setup used the fact that it is
possible to write six configurations using only six Hi-Lo electrode pairs (14, 23, 13, 24, 12,
43). So that all six configurations can be written by choosing a pair for the source-drain
and a pair for the sensing. As an example 14 could be chosen for the source-drain, so that
source is on electrode 1 and drain is on electrode 4, meanwhile sensing would be on 23,
so that sense high is on electrode 2 and sense low is on electrode 3. Each of these pairs
were then hard wired unto column in the matrix module. In this setup the sourcemeter
providing the source and drain is connected to row 3, while the multimeter measuring on
the sense electrodes are connected to row 1. This works very well as long as only one
sub-probe is available. When the number of possible electrodes goes up this is no longer
a possible way to do it.
In the new system each electrode of the M7PP is connected to the Hi of a column. The

eighth (and last) column is then connected with its Lo to the Hi on row 3 and its Hi to
the Hi on row 6. This is necessary since the multimeter is automatically connected to
channel 50 directly. The sourcemeter is then connected with source on Hi on row 4 and
ground on Hi on row 5. This setup allows any of the electrodes to act as either source,
drain or any of the sensing electrodes as the user sees fit. Thereby allowing for the use of
all sub-probes and configurations.
The matrix module is connected to the probe using a Printable Circuit Board (PCB)

that is designed to interface with CAPRES probe heads. A picture of the PCB connected
to probe head is shown in Figure 6.2 (left). A photo of the entire setup connected is shown
in Figure 6.2 (right).

6.2 LabView Program

To connect the equipment and to automate the measurement process, a LabView program
was used. This program was based on a program originally written by David Mackenzie.
Some of the core code was kept but large segments were replaced to better serve the needs
in the new setup. In this section some of the key functionalities and sub-programs are
presented and discussed.
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Configuration Order Example: 1357
A 1234 1357
AP 2143 3175
B 1243 1375
BP 2134 3157
C 1432 1753
CP 3214 5317

Table 6.1: Table of the ordering used to create the configuration strings. The example is
based on the sub-probe string ‘1357’.

6.2.1 Multiplex Compiler

The biggest change to the program, is the new compiler for the multiplexer. The compiler
is the part of the program that translates the user choices of configurations (and in the new
version, sub-probe) to a series of machine code that can be read by the matrix module.
The original program was designed to control the measurements of a fixed electrode vdP
setup. In this setup the choice of contacts to use on the surface, was selected by physically
moving individual pins to the appropriate contacts. Additionally since the setup is focused
on a square vdP setup, only the six basic configurations had to be taken into account.
For these reasons the original compiler was quite simple. The only input to the original
compiler was the six configurations, which were hard-coded to give a specific piece of
machine code each. The new compiler was designed for the use of a M7PP. The addition
of three extra pins, changes the number of possible sub-probes from one to 35. On top of
this, due to how M4PP works, it can be interesting to also have some of the none basic
configurations, so all 24 configurations should be possible. This is a total of 840 possible
combinations. In other words way more combinations than is practical to hard code for.
Before continuing with the explanation of how the compiler works, a few code naming

choices has to be explained. Code wise all sub-probes are given to the program as a
sub-probe string of four digits. This string translates to how an A-configuration would
look in the chosen sub-probe. With the first number being the position of the source
pin, the second the position of high sense, the third the position of low sense and the
fourth the position of the ground (See Figure 2.1). Unless some of the 18 non-traditional
configurations are wanted, the string should be in ascending order. So as an example if the
user wants to do the standard six-configuration using the sub-probe consisting of electrode
one, three, five and seven, the program should be given the string ‘1357’.
The first part of the new compiler takes the input sub-probe string, and combines it

with the chosen configurations. This is done by taking the sub-probe string and ordering
it according to the chosen configurations, resulting in the configuration string. How a
sub-probe string should be ordered to give an A, AP and so on, is hard coded in the
program. The ordering is shown in Table 6.1. The configuration strings are stored in a
configuration array and passed to the next part of the compiler.
Since each of the source pins and each of the sense pins have a row in the matrix

module, and each electrode on the M7PP has a column. The channels that need to be
closed can easily be found as a fixed number unique to the pin plus the electrode number.
I this case the numbers are 16, 24, 32 and 41 for the sense low, source, ground and sense
high respectively. Additionally since the matrix module was installed in slot one of the
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1234 A-config Electrode # Pin # Module Slot Channel #
Source 1 24 100 125
Ground 4 32 100 136
Sense Hi 2 40 100 142
Sense Lo 3 16 100 119

Table 6.2: Example of how to calculate the channels to close for a measurement using an A
configuration for the sub-probe 1234

multimeter the channel numbers have to be increased by a further 100. An example of
the calculation of the channel numbers are shown in Table 6.2 for an A configuration with
sub-probe using electrodes 1 through 4. Finally the channel 108 and 150 also needs to be
closed to connect the multimeter to the probe. Channel numbers are shown in the matrix
module schematic on Figure 6.1. Notice, when a channel is opened or closed, it means
that it is disconnected or connected respectively.
A channel can be opened or closed by using the commands :ROUT:MULT:OPEN(@142,119)

and :ROUT:MULT:CLOS(@142,119) respectively, where 142 and 119 are the channel num-
bers used in this example. The compiler writes a long machine command string of these
consisting of all changes to the channels throughout the entirety of the measurement se-
quence. However, the compiler does not simply close or open all the channels at the same
time. The order in which the channels are opened and closed, as the measurement changes
from one to another configuration, will now be addressed. We will start by looking at the
rules implemented for how the ground should be connected.
The first thing that needs to be connected to the sample is the ground. There should

always be a ground connected to the sample at all times, in order to avoid unintentional
built ups of charge in the sample. Therefore, all changes to the ground happens when all
other channels are open. For each configuration that needs to be measured the compiler
looks at the configuration array and does one of four things.

• If the configuration is the first in the entire measurement sequence it closes the
ground channel.

• If the configuration is the last in the entire measurement sequence and all other
channels are open, it opens the ground channel.

• If the configuration is followed by a configuration that shares the same ground elec-
trode, it does nothing to the ground.

• If the configuration is followed by a configuration with a different ground electrode,
it first closes for the new ground channel and then opens for the old ground channel.

After the ground channel is closed, all other relevant channels are closed except the
source channel. Finally when they have been closed the source channel is closed and the
measurement is performed. After a measurement the source channel is the first channel to
be opened again. As an example the complete machine command string, for a measurement
sequence consisting of only the A and B configuration for sub-probe 1234, will look like
this:
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:ROUT:OPEN:ALL opens all channels
:ROUT:MULT:OPEN(@148) filler string
:ROUT:MULT:CLOS(@136) ground close
:ROUT:MULT:CLOS(@142,119,108,150) sense close
:ROUT:MULT:CLOS(@125) source close - measurement here
:ROUT:MULT:OPEN(@125) source open
:ROUT:MULT:OPEN(@142,119,108,150) sense open
:ROUT:MULT:OPEN(@148) filler string
:ROUT:MULT:CLOS(@135) new ground close
:ROUT:MULT:OPEN(@136) old ground close
:ROUT:MULT:CLOS(@142,120,108,150) sense close
:ROUT:MULT:CLOS(@125) source close - measurement here
:ROUT:MULT:OPEN(@125) source open
:ROUT:MULT:OPEN(@142,120,108,150) sense open
:ROUT:MULT:OPEN(@135) ground open
:ROUT:OPEN:ALL opens all channels

On the right side of the code there is written some comments. These are not present in
the real output, but have been added here for ease of reading. To keep all configuration
segments the same length a filler line is added whenever the ground does not need to
change, or it is the first configuration to be measured. This is done, so the program
always have to get the same string length for all configurations.

6.2.2 Gate Sweeping

The other large change to the original program is the way measurements are done during
a sweep of the gate voltage. In the original program, if a sweep of the gate voltage was
wanted, it would first do the sweep for one configuration and would then do it for the next
and so on. This works well for the large connections that it was designed for. However, with
M4PP two measurements performed in the same engage, cannot necessarily be compared
if measured too far apart temporally. Basically the longer one waits the large the chance
that something happens that changes either the electrode position or the electrical contact
in general. The new program was changed so that instead, all configurations would be
measured before the gate voltage is changed.
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CHAPTER 6. FIELD EFFECT INTEGRATION IN MICRO FOUR-POINT
PLATFORM

Figure 6.3: (Left) Plot of the mean four-point (4p) resistance, measured on the gold sample,
as a function of configuration. (Right) Plot of the mean four-point (4p) resistance, measured
on the ruthenium sample, as a function of configuration. The bars indicate one standard
deviation.

6.3 Reference Measurements on Gold and Ruthenium

The system has undergone multiple iterations of improvements and changes. In the latest
version reference measurements have been performed on gold and ruthenium samples. All
the reference measurements were performed at a source voltage of 10mV resulting in a
current around 5µA to 6µA. The voltage and current were chosen this low to emulate the
conditions that will exist when measuring on MoS2.
The calculated four-point resistances from the measurements are shown in Figure 6.3.

The first two series of measurements on ruthenium (Ru1 and Ru2) were measured on the
same day using the same sub-probe. The last two series of measurements on ruthenium
(Ru3 and Ru4), were measured the day after Ru1 and Ru2, and with different sub-probes.
All measurements on ruthenium were measured on the same sample, and all measurements
within a measurement series were done in the same engage. Looking at the data it quickly
becomes clear that the configuration pairs (i.e. Ri and RiP , where i is A, B or C) are
not the same, and that the difference is largest for the A configurations (see section 2.1).
Additionally, it is clear that the measurement, Ru3, behaves completely different to the
other three measurement series on ruthenium. This odd man out could be caused by leak
current running inside the sub-probe. Most of the difference seen between the other B
and C configuration pair, cannot be distinguished from the measurement noise at a 95%
confidence level. The differences for the A configuration pairs could be caused any number
of systematic errors, from transient currents when switching configurations to a small leak
inside the setup. However, the differences seen here are small enough that for the purposes
of the setup this is more than precise enough.
Looking at the relation between the four-point resistance in the A configurations with

those in the B and C configurations (see Figure 6.4 (left)), it again becomes very clear that
something strange is going on with the measurement series Ru3. All the other measure-
ments distribute nicely around 1, as they should, with an error of around 2%. On Figure
6.4 (right) the measured vdP corrected sheet resistance is shown for the different mea-
surement series. Once again it is clear the the measurement series Ru3 is doing something
completely different than expected based on the other measurements. The variance in the
measured sheet resistance, from the other measurements on ruthenium, is considerably
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Figure 6.4: (Left) Plot of the relation (RA+RAP
)/(RB +RBP

+RC +RCP
for the different

measurements series. (Right) The van der Pauw corrected sheet resistance calculated for the
different measurement series.

larger than for the measurements on gold. The reason for this is not entirely clear.
All in all based on these measurements it is clear that there are certain systematic mea-

surement errors present in the system. However, since the system is only expected to
measure the source-drain current with a precision of 10%, a systematic error and mea-
surement noise in the range of a few percent is not a problem.

6.4 Sample Damage During Probe Engage

When engaging with a probe on a sample there is a risk of damaging the sample. This
would typically happen if the probe slides over the surface during engagement, and the
sample is either softer or weaker than the probe. When measuring on materials that are
only a single to a few atoms thick, the risk of sample damage is quite significant.
Four probe designs were used to engage on four MoS2 samples. The used designs con-

sisted of two straight designs and two L-shaped designs. Each of the pair consisted of a
large probe (pitch of 10µm) and a small probe (varying pitch but smallest 1.5µm). Each
design was engaged on two samples along with its size pair. The large probes were engaged
2µm. For standard sheet resistance measurements this would be quite excessive. However,
from experience a deeper than normal engage is necessary, due to the difficulties in getting
a good electrical contact to MoS2. The small probes where engaged roughly 1µm. Each
probe were engaged several times with a spacing of 5µm. This made it easier to find any
damage to the sample afterwards, as it would appear as a dashed line more than 100µm
long. Four of these lines can be seen in Figure 6.6 (top). The marks visible in the picture
comes from the large (10µm pitch) straight probe engaging from the right and sliding to
the left on the surface. The color channels, from a line across three marks made by the
large straight probe, is shown in Figure 6.5. This plot shows that the marks are visible
in the color channels as an increase in the red channel, but a dip in the green and blue
channels. From this plot, it is also evident that the removed material have built up in the
left most end of mark, appearing as a sharp dip in the green and blue channel. The best
example of this is the third marker in Figure 6.5.
To increase the contrast in the picture for further analysis the green and blue channels

were inverted and the red channel had its signal increased. The resulting picture is shown
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Figure 6.5: Plot of the three color channels from a line across three engage markers. The
insert show the three markers used. The markers where made with the large straight probe
(10µm pitch).

in Figure 6.6 (mid). The new color scale allows for an easier distinction of the engage
markers, with a clear peak in gray-scale. The gray-scale value is shown in Figure 6.6
(bottom). Markers from all four straight cantilevers are visible in the micrograph of the
straight cantilever while the corresponding micrographs from an L-shaped cantilever shows
only the presence of marks from the strain gauge. The strain gauge is a large straight
cantilever used to detect the surface of the sample. A comparison of the two large probe
designs are shown in Appendix A.11.
In order to avoid damaging the sample, all measurements on MoS2 will be done using

L-shaped probes.
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Figure 6.6: Top: Micrograph of MoS2 sample after engaging a straight probe several times
on the surface. The dark marks are areas where the probe has damaged the sample. These
marks form four horizontal dashed lines. Mid: To enhance the contrast between the marks
and the material, the green and blue channels have been inverted, and the signal of the red
channel have been increased. Bottom: Line plot of the grayscale value of a line going through
the top most of the four dashed lines form by the engagement marks. To make the grayscale
value the picture with enhanced contrast (mid) have been used.
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7 | Characterization of MoS2

In this chapter measurements performed on MoS2 will be presented. Samples were received
from, the Technical Univeristy of Eindhoven, IMEC and DTU. The samples from both
Eindhoven and IMEC were stored in a box with a nitrogen atmosphere, to avoid oxidation
of the samples. Despite this, it was not possible to get any useful measurements on these
samples. Of the samples from DTU, it was possible to measure on two of them. The first of
which was measured at the start of the project (Sample A), while the other was measured
towards the end of the project (Sample B). The second sample were an old sample that
had been lying around in an office for at least two years.

7.1 The MoS2 samples

The samples that were measured on, with success, in this project came from Tim Booth’s
group at DTU Nanotech (now DTU Physics) and were made by Abhay Shivayogimath.
The process of which is described in his paper [41]. After synthesis of the material it is
transfered to a silicon die, that consists of highly doped silicon with a 300nm layer of
thermal oxide and then a lithographic gold structure on top. The structure is used to
contact the MoS2 using conventional macroscopic four-point measurement techniques. A
sketch of how the sample is prepared is shown in Figure 7.1 (left) and a picture of a piece
of MoS2 is shown in Figure 7.1 (right).

Si

SiO2

Shadow Mask

Cr / Au

MoS2

Figure 7.1: (Left) Sketch of the process used to prepare the MoS2 samples. (Right) micro-
scope picture of a piece of MoS2.
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Figure 7.2: Measurement on Sample B. (Left) Plot of the supplied current as a function of
the gate voltage, the source voltage was 18V. The black dotted line shows the threshold voltage
calculated from the linear regime (see Equation (2.16)). The red line shows an approximation
for the start of the linear regime. (Right) The sheet conductance as a function of the gate
voltage in a semi-logarithmic plot.

7.2 The Measurements

Before each measurement series the probe and setup was tested by measuring on a small
piece of conductive material, this was often either the gold leads on the sample itself or a
piece of ITO. The goal of these measurements, was to test that all electrodes were working
and to breakdown any native oxide that might have formed on the tip, analogous to a
punch through (high transient current to create a good electrical contact [8]) in a regular
M4PP measurement. In essence it was more important to pass a current than it was to
get usable measurement. A high source current was used, that often caused the system to
reach compliance.
Immediately after, measurements were performed by landing the M4PP on top of the

MoS2 and connecting the backside of the sample to a gate voltage. The connection to the
gate was made by mounting the sample on a microscope slide using conductive graphite
glue (see Figure A.2 for photo) and then connected to the sourcemeter using a wire.
Since all the regular electronics of the microRSP-M200 tool had been circumvented,

access to the strain gauge on the M4PP was gone. This meant that all engages had to e
made manually, using a microscope to see when the probe was engaged. Consequently the
engagement depth could vary with around 500nm from engage to engage.

Current-Voltage curve and Threshold Voltage

An example of the I-VG curve for a field effect measurement on MoS2 is shown in Figure
7.2 (Left). On this plot the measured current in the A, B and C configurations for an
applied potential of 18V is shown along with the extrapolated threshold voltage. The
threshold voltage was found using the method for the linear regime (see Equation (2.16)).
The plot shows two repeats of the same measurement, sweeping the gate voltage from
60V to 0V, up to 120V, back to 60V and then repeat the sweep. The current seem to rise
linearly from about 68V up to 120V. While there are discrepancies between the repeats
they are largely overlapping their previous run. The largest difference between runs are
for the C-configuration and is 11.5%. There is also a clear hysteresis in the measurement,
with the current being lower when the gate is swept down. Most likely this hysteresis is
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Figure 7.3: Measurement on Sample B. Plot of the supplied current for the A configuration
as a function of gate voltage in a semilogarithmic plot. Each color corresponds to a different
source potential. Each point is an average over two sweeps with two measurement points at
each gate voltage. Legend for the sweeps only shown in right figure. (Left) Only the sweep
up has been included. In the insert the current at VG = 120V is shown as a function of the
source potential. (Right) Only the sweep down has been included.

caused by moisture trapped in the sample [62, 63].
The sheet conductance for the same measurement is shown in Figure 7.2 (right). This

measurement looks quite noisy, which makes sense, considering the noise on the current
measurements. It is still possible to see, that the ratio between the conductance in the on
and off state, is around three orders of magnitude.
While it looks like the measurement shown in Figure 7.2 (Left) was done in the linear

regime, it makes sense to check if that is actually the case. On the same sample the
the supplied current was measured as a function of the gate voltage for different source
potentials. By doing this it is possible to check if the material is truly operated in the
linear regime. Semilogarithmic plots of the supplied current are shown in Figure 7.3. The
left plot shows the current when the gate voltage is swept up, and on the right plot the
current is shown when the gate voltage is swept down. In both cases each point is the mean
taken over two sweeps of the gate voltage, where each measurement point was repeated
twice.
On the plot for the sweep up (left), it seems that the vertical distance on the plot between

any two curves is constant for all values of the gate voltage. On a semilogarithmic plot
that translates into the same factor is needed to go from one curve to another. Or put
another way, the influence of the source potential is independent on the gate voltage.
As an insert in the left plot, the supplied current at VG = 120V is shown as a function

of the source voltage. From this plot it can be concluded that the current is increasing
linearly with the source voltage, i.e. the measurement was performed in the linear regime.
On the plot for the sweep down (Figure 7.3 (right)), five straight lines are shown going

from 120V to ∼60V. From this it can be concluded that the current during the down
sweep is exponentially decreasing. Looking at the downwards sweep of a measurement
done on a different sample at a different rate (Figure 7.4), it turns out that this downwards
sweep is also described by an exponential function. More surprising is that the rate in
both exponential functions is 0.085V−1. From this it may be inferred that the decay is
not caused by a time depend process. Although the value is the same for two different
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Figure 7.4: Measurement on Sample A. Field effect measurements on a piece of MoS2.
Measurements performed at an applied potential of 10V. (Left) RA/(RB + RC) relation as
a function of gate voltage. (Right) plot of the RA/RB relation as a function of the gate
voltage. Over both plots is the I-VG curve for the A configuration.

samples (measured years apart), it seems unlikely that a material with so high variance
for other parameters should give the precise same rate by themselves. It seems more likely
that this is combination of some natural constants, that I am unaware of.
The relative measurement error of measurements shown in Figure 7.3, decreases to

10% or lower with gate voltages over 60V, for all source voltages except 2V. All the
measurements in Figure 7.3 were performed within a single engagement across four hours.
Each sweep taking 15 minutes to complete. Note that B and C configurations were also
measured along with sweeps using a source voltage of 4, 8, 12 and 16V.

Resistance Relations and Current Flow

Taking the relation between the the resistances for the A configuration and the sum of
the resistances for the B and C configuration, the result according to theory should give
1 (see Section 2.1). On Figure 7.4 (Left) this is shown for a measurement on sample A of
MoS2. The measurement was performed at a source voltage of 10V. For low gate voltages
the MoS2 is in the off-state and we are basically attempting to measure an insulator.
Logically the ratio will differ from unity. At a gate voltage of around 70V to 90V the
MoS2 is transitioning between the off and on state. However, the measured current is still
very low, at around 50nA, and the ratio is dominated by noise. Finally as the current
increases and the signal, to noise ratio improves the RA/(RB + RC) tends towards 1 as
expected.
As discussed in M. R. Lotz paper [64] the ratio RA/RB is dependent on the dimension-

ality of the current transport. Such that a ratio of ln(4)/ ln(3) ≈ 1.262 is indicative of
a two dimensional transport in the material, i.e. the material is continuous. However, a
ratio of 1 indicates a one dimensional current transport, e.g. current runs along boundary
edges. The RA/RB ratio is plotted for a MoS2 measurement in Figure 7.4 (Right). Like
for the RA/(RB + RC) low and medium gate voltages is of little interest since the error
is to large for any conclusions. At the high gate voltages the RA/RB seems to go from
roughly 1.2 to 1.1 as the gate voltage increases. This might suggest that as the Fermi
Energy for the MoS2-flake is increased, the boundaries between crystals become more and
more dominant.
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Figure 7.5: Measurement on Sample B. Line scan on a piece of MoS2 using M4PP. (Left)
Threshold voltage as a function of position on sample. (Right) Sheet conductance as a
function of position on the sample.

Line Scan

As a proof of concept a line scan across a MoS2 sample was performed consisting of
seven points (eight if you include the point that landed in a hole in the sample). The
measurements were done by landing on the sample and performing a gate sweep. After
the sweep was done the probe was disengaged and moved to the next point. The line scan
was started a couple of electrode pitches away from the edge. Far enough that the edge
of the sample should not affect the measurement directly [65]. And, then proceeded to
move across the center of the sample. Figure 7.5 shows the linear threshold voltage (left)
and the highest measured sheet conductance (right). The threshold voltage has a jump
at the beginning of the scan, but seems to gradually decrease along the scan from there.
The sheet conductance on the other hand increased until about 200µm into the line scan,
after which it decreases.
Without a proper test of the engage to engage precision it is impossible to conclude

whether or not this is caused by sample variations or engage dependent measurement
errors.

Field Effect Mobility

The field effect mobility was measured for an MoS2 sample. The results from this mea-
surement is shown in Figure 7.6. The measured field effect mobility is rather low compared
to what was documented [41] for similar samples. Which had a mobility between 5 and
30 cm2/V/s. However, those measurements were performed when the material was new.
When the measurements shown here were performed the sample was already nearing three
years old. It is quite likely that a MoS2 sample stored in ambient conditions, would de-
teriorate in that time span. The measured field effect mobility is roughly two orders of
magnitude lower than what was hoped for.

7.3 Common Problems During Measurements

In this section a list of some of the most common problems, that were experienced during
measurements, is presented. The solutions or attempts there at, is also presented for each
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Figure 7.6: Measurement on Sample B. Plot of the field effect mobility in the linear regime,
calculated using the van der Pauw corrected sheet resistance [41].

problem.

One or more dead electrodes

In the first few iterations of the setup, there were problems with electrodes not working
either immediately or shortly after beginning to measure. Because of other problems at
this stage it took awhile to realize that the electrodes in question was those used as ground.
At this point the setup simply closed all channels for a measurement at the same time.
Additionally, all switching between configurations were hot switching i.e. switching an
array while the current is running. Most likely this caused a built up of charges between
measurements and a rapid discharge. This transient current might very well have burned
out the ground electrodes. To prevent this, the new opening and closing sequence seen
in Section 6.2.1 was implemented. In this sequence it was ensured that there was always
a ground electrode connected to the sample at all times. In the same series of updates
to the software hot switching was replaced with cold switching. This was done for longer
durability of the setup, as well as avoiding built-ups of charge during switching.
After the implementation of the new measurement sequence the number of dead elec-

trodes became effectively zero. Note that this does not mean that all electrodes necessarily
works for all engages. Just that no electrodes were permanently damaged.

Bad electrical contact to the sample

A bad electrical contact with a M4PP is something that can happen on all samples,
even with a regular M4PP setup. Samples with higher resistivity being more difficult
to contact. In a traditional M4PP setup this is typically mitigated by doing a punch
through (as mentioned earlier). However, with measurements on MoS2 it is not feasible.
This can be realized by looking the two-point resistance measured at the start of the
sweeps (VG = 80V for sample A and VG = 60V for sample B) shown in this chapter. The
resistances are roughly 2×108Ω in both cases. A typical punch through current is between
25µA and 100µA [8]. This means that in order to make a punch through the potential on
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the electrodes has to be allowed to reach 5 to 20kV. Besides being more than the chosen
sourcemeter can deliver, it would also cause a complete breakdown of the insulating layers
in the probe as well as the BOX of the sample. In short, it cannot be done with the
equipment and even if it could, it should not be done.
Since punch through is not possible directly on the sample, measurements on a conduc-

tive material was done before each measurement session. On a conductive material such
as gold or ruthenium a punch-through like measurement is possible. With a two-point
resistance in the hundreds of ohms instead of hundreds of megaohm, the potential only
needs to be able to reach about 0.01 to 0.1V. Doing this has half of the benefit normally
associated with a punch-through. It will breakdown any oxides on the cantilever that pre-
vents a good electrical contact, but unlike a real punch-through it will not create a weak
“welding” of the electrodes to the sample that needs to be measured (It will most likely
create one with the conductive sample though). To facilitate these pseudo punch-throughs
a mode for doing a non gate sweep measurement with a current source was implemented.
Implementing the use of a short measurement on conductive materials before real mea-

surements, significantly improved the chance of getting a good contact. From roughly
fifty-fifty to almost all having a good contact.

Leakage current running between source/drain and gate

For some samples a large leakage current was measured between either the source or drain
and the gate terminal. The leakage was independent on the probes used, seemingly only
dependent on the sample. Based on this the samples were deemed defective.
The problem seemed unrelated to the setup and caused by a short inside the sample.

Contracting or expanding conductive glue

The problem here is quite simple and easily fixable, but something that one needs to be
aware of nonetheless. When adding an electrical contact to the backside of the sample using
conductive glue. It is important to ensure that the glue is completely cured. Otherwise the
sample may move during measurements. If a silicon die is glued to something impermeable
such as a glass microscope slide (as used in this thesis). It takes a surprisingly long time
for the glue to cure at the center of the silicon die. The glue used in this thesis, would
cure at the edge of the silicon die within a minute, but sometimes would still be uncured
at the center after several hours.
The solution to this problem is simply to wait for a couple of hours, until the glue is

either completely cured, or cured to the point were it wont change on the timescale of an
hour, before measuring. Alternatively, the sample can be baked to speed up the curing
process.

7.4 Conclusion to MoS2 measurements

In this thesis it have been shown that it is possible to perform field effect measurements
on MoS2 using M4PP. From these measurements it has been possible to determine the
threshold voltage and field effect mobility of the material. The method has reached a point,
that with a good sample, most engages will have a useful two point measurement, and
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many will also have useful four point measurements. This is a considerable improvement
to the first iteration of the setup.
Due to the scarcity of good samples, it has not been possible to perform reproducibility

studies, finding the engage to engage error. Additionally, while it is possible to look at the
good measurements and calculate the variance of same engage measurements. It is hard
to determine the sources of said variance.
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8 | Conclusion and Outlook

8.1 Outlook: Field Effect Measurements with M4PP

The thesis has presented proof of concept measurements on MoS2 using a Ψ-MOSFET
like technique involving M4PP. The next step for this type of measurements is to do
a more vigorous reproducibility study, that really tests the technique and maps out the
errors and determines its precision, and if possible accuracy. This would naturally require
samples that are more consistent in their electrical properties, as well as samples with
special geometries.
The easiest way to do a reproducibility study, would be to make a ribbon of MoS2 with

two lithographic contacts at each end. In theory this would allow for a comparison between
the measurements done using the lithographic contacts and a linescan along the ribbon
done with the M4PP. The measurements from the M4PP gives a more detailed picture of
the sheet resistances inside the ribbon, that should average to what was measured across
the entire ribbon with the lithographic contacts. A sketch of the setup is shown in Figure
8.1. It is known from a previous study [15], that a sheet resistance on a ribbon will
be sensitive to the materials roughly one electrode pitch away. By measuring only one
electrode away from the last measurement, in the reproducibility study, the measurements
of two neighbor engages will be correlated, thereby allowing for an extra sanity check, since
every measurement should be explainable by its immediate neighbors.
A different route, could be to attempt to measure on fully depleted SOI wafers. These

samples have notoriously low conductance, making it impossible to measure on them with
regular M4PP techniques. The normal measurement technique for characterizing these
samples is the Ψ-MOSFET technique, using large probes that are pressed very hard into

Figure 8.1: Sketch of a possible reproducibility study using a combination of lithographic con-
tacts and M4PP measurements. The gray area is the MoS2. Normal four point measurements
are performed using the yellow contacts. The black dots indicates M4PP measurements along
the the MoS2 ribbon.
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the surface. Similar to this technique, the method presented in this thesis, are based
around the use of an electrical field to induce carriers in the sample. It stands to reason
that this might allow for M4PP field effect measurements on fully depleted SOI. A very
exciting possibility if doable.

8.2 Outlook: Design Optimization of Micro Electrodes

The study of cantilevers consisting of two beams connected at an arbitrary angle is at
this point almost done. Besides looking at describing completely different designs of
cantilevers, it would be interesting to study the cantilever tips path across the surface
during an engage. This might ultimately help better understand and minimize off-line
positioning errors.

8.3 Conclusion

The overarching goal of the thesis was to develop a theoretical framework for making new
cantilever designs, as well as to build a measurement setup capable of doing field effect
measurements on MoS2 and test it.
As a part of the goal, to make a framework for designing new cantilevers in the future,

an analytical expression for the compliance tensor of a cantilever with a arbitrary two
beam design was introduced and compared with previous known solutions. To do this
a “new” parameter η was introduced, describing the angle between the first and second
beam. With η = 0◦ being them forming a straight cantilever and η = 90◦ being them
forming an L-shaped cantilever. In this derivation both elongation and deflection was
taken into account, making it precise at both low and high angles of η. With the solution
being identical to straight and L-shaped cantilever at η = 0◦ and η = 90◦ respectively.
Numerical work, using finite element modeling, was done, that showed that a disagree-

ment between the analytical model and numeric calculation was less than 5% for the
engage stiffness and typically around 4% for the vibration tolerance, unless the vibration
tolerance was very low. This disagreement contains both errors in the analytical expres-
sion, since certain simplifications was made in the calculations. But, also numerical errors
in the finite element model. These could come from the chosen mesh, or the model geom-
etry used for the cantilever. All in all, a 5% error is less than what can be expected from
the uncertainty in the fabrication process.
Cantilever where also printed in a scale of 1:10000 in the material PLA [57]. When

measuring the contact force as a function of engage depth excellent agreement with theory
was observed. Where the compliance element Czz and Kzz was recreated with a high level
of precision. This confirmed the validity of both the stipulated contact models, but also
the expression for the compliance tensor presented derived as part of this project.
In addition to the new compliance tensor, an expression for the vibration tolerance was

also formalized. The vibration tolerance was defined as the minimum vibration, measured
in units of the engagement depth, needed to make a cantilever slide on the surface. This
expression was then tested against an experiment were two probes were used to measure
the sheet resistance of either ITO or silicon, during which the vibrations were increased.
When a measurement had failed five times in a row, it was deemed to have moved because
of the vibrations [26].

66



CHAPTER 8. CONCLUSION AND OUTLOOK

By combining the new expression for the compliance tensor with the expression for the
vibration tolerance, a cantilever used in a previous publication [14], was optimized in two
ways. The first optimization was based on the desire to keep a constant electrode pitch,
CD and engage stiffness, but still improving the vibration tolerance of cantilever. The
optimization changed the height and lengths of the beams and the angle of the second
beam. The new cantilever design saw an improvement of the vibration tolerance form 1.6%
to 4.8% corresponding to a tripling. The second optimization was focused on changing the
design to achieve an electrode pitch of 1.1µm without changing the CD. This optimization
used that for any choice of widths, the vibration tolerance is always biggest at the highest
possible angles. This way the optimization was run first over the width and height, and
then over the lengths. The resulting designed had an electrode pitch of 1.1µm, while
keeping the engage stiffness and increasing the vibration tolerance from 1.6% to 3.8%, or
by a factor of 2.5. In short, a tool that can be used for designing new cantilevers have been
presented and used to improve an existing design, to achieve markedly higher vibration
tolerances.
The other part of the goal was to design and test a measurement setup that can be

used to characterize TMDs. The setup was based on an existing setup at DTU Nanotech,
combined with a semiautomatic microRSP-M200 tool at CAPRES. Changes were made
to the facilitate the complete use of the M7PP, and to interface the new measurement
equipment with the M200. To utilize the M7PP a complete rework of the multiplexing
system was necessary. The new setup has since it initial creation undergone several updates
and tweaks, improving the measurement sequence. The setup was tested by measuring
on a gold film and a ruthenium covered silicon sample. Despite some irregularities in the
magnitude of the A-configurations, the error was deemed low enough, not to be worth
investigating, for now.
Doing M4PP based field effect measurements on materials with sheet resistances in

the 10MΩ regime, is already extremely difficult. Due to it being hard to make a good
electrical contact. In addition to this, there were only two samples throughout the course
of the project, that was of a high enough electrical quality that they could be somewhat
reliably contacted with a M4PP. Unfortunately that meant it was difficult to make the
reproducibility studies necessary to find the precision of the system. On a positive note,
the two samples that worked with the M4PP allowed for some nice proof of concept
measurements, showing that it is possible to measure on these materials. And, that from
these measurements the sheet resistance, threshold voltage, field effect mobility and the
RA/RB relation can be calculated. The repeatability on the measured current within
one measurement sequence was found to be around 10% or better. Thereby partially
achieving the goal of a precision of around 10%, since the engage to engage precision is
still unknown.
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A | Appendix

A.1 Rotation Matrix Code

1 %% RotMaker
2 % [ Rot ] = RotMaker (Th, Ph)
3 % C a l c u l a t e s the r o t a t i o n matr i ce s f o r a vec to r o f theta va lue s and a
4 % s i n g l e Phi va lue
5 f u n c t i o n [ Rot ] = RotMaker (Th, Ph)
6
7 [NN, ~ ] = s i z e (Th) ;
8 Rot = z e r o s (NN, 3 , 3 ) ;
9

10 f o r i = 1 :NN
11 Rot ( i , : , : ) = [ cos (Th( i ) ) ∗ cos (Ph) ,− s i n (Th( i ) ) ,− cos (Th( i ) ) ∗ s i n (Ph) ;
12 s i n (Th( i ) ) ∗ cos (Ph) , cos (Th( i ) ) ,− s i n (Th( i ) ) ∗ s i n (Ph) ;
13 s i n (Ph) , 0 , cos (Ph) ] ;
14 end
15 end

A.2 Compliance and Stiffness Tensor Code

1 %% Vibrat ion Tolerant C a n t i l e v e r s − Compliance and Spring Matrix Ca l cu la to r
2 % C a l c u l a t e s the compliance and s p r i n g matrix f o r d e s i g n s that i t i s g iven .
3 %
4 % [C,K] = AnVec( Vdata , Rot , Enu)
5 %
6 % Vdata : Vector o f d e s i g n s that i s going to be c a l c u l a t e d . Dimensions (N, 9 )
7 % Vdata = N ∗ [− , −, L1 , L2 , W1, W2, theta , H, eta ]
8 % Vdata has a l i n e f o r each des ign .
9 %

10 % Rot : Rotation m a t r i c i e s f o r the g iven d e s i g n s . Dimensions (N, 3 , 3 )
11 % Rot = N ∗ [ 3 −X− 3 ]
12 %
13 % Enu : Vector conta in ing the Young ’ s Modulus and Poisson ’ s Ration f o r the
14 % mat e r i a l c a l c u l a t e d on . Dimensions ( 2 , 1 )
15 % Enu = [ Young ’ s Modulus ; Poisson ’ s Ration ]
16 %
17 % The output has the dimensions (N, 3 , 3 )
18 f u n c t i o n [ Cr , Kr ] = AnVec( Vdata , Rot , Enu)
19
20 %% Constants
21 % % Math Constants
22 [NN, ~ ] = s i z e ( Vdata ) ;
23 a = Vdata ( : , 3 ) . / Vdata ( : , 4 ) ;
24 b = Vdata ( : , 8 ) . / Vdata ( : , 5 ) ;
25 g = Vdata ( : , 8 ) . / Vdata ( : , 6 ) ;
26 eta = Vdata ( : , 9 ) ;
27 Rot = permute ( Rot , [ 2 , 3 , 1 ] ) ;
28
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29 % % Mater ia l Constants
30 E = Enu (1) ; % Young ’ s Modulus [ Pa ]
31 nu = Enu (2) ; % Poisson ’ s Ratio [− ]
32
33 % % Moments o f i n e r t i a
34 % Iz1 = h ∗ b1^3 / 12 ; % m^4
35 % Iz2 = h ∗ b2^3 / 12 ; % m^4
36 % Iy1 = h^3 ∗ b1 / 12 ; % m^4
37 % Ix2 = h^3 ∗ b2 / 12 ; % m^4
38
39 % % Torsion Constant
40 KappaP = 1/3∗ ones (NN, 1 ) ;
41 f o r k = 1 : 2 : 1 0 0
42 KappaP = KappaP − 6 4 . / ( p i ^5 .∗ b) . ∗ (1/ k ^5) . ∗ tanh ( k∗ p i ∗b/2) ;
43 end
44 Kappa = (1+nu ) /2∗KappaP.^(−1) ;
45 c l e a r KappaP
46
47 % Other Constants
48 kon1 = 4 ∗ Vdata ( : , 3 ) .^3 . / (E ∗ Vdata ( : , 8 ) . ^ 4 ) ;
49 kon2 = Vdata ( : , 3 ) . / (E ∗ Vdata ( : , 8 ) . ^ 2 ) ;
50
51 %% Terms in the Compliance matrix
52 C = z e r o s (3 , 3 ,NN) ;
53 % As a r e s u l t o f Fx
54
55 C( 1 , 1 , : ) = kon1 . ∗ ( g . ^ 3 . / a .^3 + 3∗b . ^ 3 . / a . ^ 2 ) . ∗ s i n ( eta ) .^2 . . .
56 + kon2 . ∗ (b + g . / a . ∗ cos ( eta ) . ^ 2 ) ;
57
58 C( 2 , 1 , : ) = − kon1 . ∗ ( g . ^ 3 . / a .^3 + 3∗b . ^ 3 . / a . ^ 2 ) . ∗ cos ( eta ) . ∗ s i n ( eta ) . . .
59 − kon1 . ∗ 3/2 .∗ b . ^ 3 . / a . ∗ s i n ( eta ) . . .
60 + kon2 . ∗ g . / a . ∗ cos ( eta ) . ∗ s i n ( eta ) ;
61
62 % As a r e s u l t o f Fy
63
64 C( 1 , 2 , : ) = C( 2 , 1 , : ) ;
65
66 C( 2 , 2 , : ) = kon1 . ∗ (b .^3 . . .
67 + g . ^ 3 . / a .^3 . ∗ cos ( eta ) .^2 . . .
68 + 3∗b . ^ 3 . / a . ∗ cos ( eta ) . . .
69 + 3∗b . ^ 3 . / a .^2 . ∗ cos ( eta ) .^2 ) . . .
70 + kon2 . ∗ g . / a . ∗ s i n ( eta ) . ^ 2 ;
71
72 % As a r e s u l t o f Fz
73
74 C( 3 , 3 , : ) = kon1 . ∗ ( b . . .
75 + g . / a .^3 . . .
76 + 3∗b . / a . ∗ cos ( eta ) . . .
77 + 3∗b . / a . ^ 2 . ∗ cos ( eta ) .^2 . . .
78 + b . ^ 3 . / a . ^ 2 . ∗ Kappa . ∗ s i n ( eta ) . ^ 2 ) ;
79
80 %% Spring Matrix
81 Cr = z e r o s (NN, 3 , 3 ) ;
82 Kr = z e r o s (NN, 3 , 3 ) ;
83
84 % f o r i = 1 :NN
85 % Roti = pinv ( Rot ( : , : , i ) ) ;
86 % K = pinv (C( : , : , i ) ) ;
87 % Cr ( i , : , : ) = Roti ∗ C( : , : , i ) ∗ Rot ( : , : , i ) ;
88 % Kr( i , : , : ) = Roti ∗ K ∗ Rot ( : , : , i ) ;
89 % end
90
91
92 f o r i = 1 :NN
93 Cr ( i , : , : ) = Rot ( : , : , i ) \ C( : , : , i ) ∗ Rot ( : , : , i ) ;
94 Kr( i , : , : ) = Rot ( : , : , i ) \ ( C( : , : , i ) \ Rot ( : , : , i ) ) ;
95 end
96
97 end
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A.3 Vibration Tolerance Code

1 %% Vibrat ion Tolerance
2 % Gamma = VibTol ( ps i ,VC,VK,mu)
3 % C a l c u l a t e s the v i b r a t i o n t o l e r a n c e f o r at a s p e c i f i c ang le p s i
4 % mu i s the f r i c t i o n c o e f f i c i e n t .
5 f u n c t i o n Gamma = VibTol ( ps i ,VC,VK,mu)
6
7 Fx = VK( : , 1 , 1 ) . ∗ cos ( p s i ) . . .
8 + VK( : , 1 , 2 ) . ∗ s i n ( p s i ) ;
9

10 Fy = VK( : , 2 , 1 ) . ∗ cos ( p s i ) . . .
11 + VK( : , 2 , 2 ) . ∗ s i n ( p s i ) ;
12
13 Fz = VK( : , 3 , 1 ) . ∗ cos ( p s i ) . . .
14 + VK( : , 3 , 2 ) . ∗ s i n ( p s i ) ;
15
16 P = mu ∗ VC( : , 3 , 3 ) .^(−1) ;
17
18 Gamma = P . / ( s q r t ( Fx .^2 + Fy .^2 ) − mu ∗ Fz ) ;
19
20 end

A.4 Vibration Tolerance Minimizer Code

1 %% Vibrat ion Tolerance Ca l cu la to r
2 % [Gamma, S ] = VibVecPsi ( Vdata ,VC,VK, ps i ,mu)
3 % Finds the ang le at which the v i b r a t i o n t o l e r a n c e i s lowest
4 f u n c t i o n [Gamma, S ] = VibVecPsi ( Vdata ,VC,VK, ps i ,mu)
5
6 [NN, ~ ] = s i z e ( Vdata ) ;
7 m = p s i (2 ) ;
8 S = ones (NN, 1 ) ∗ p s i (1 ) ;
9

10 f o r k = 1 :4
11 So = z e r o s (NN, 1 ) ; % The
12 a = VibTol (S+m,VC,VK,mu) − VibTol (S ,VC,VK,mu) ; % The s l o p e +p s i d i r e c t i o n
13 b = VibTol (S−m,VC,VK,mu) − VibTol (S ,VC,VK,mu) ; % The s l o p e −p s i d i r e c t i o n
14 l o = ones (NN, 1 )−(a>0) . ∗ ( b>0) ; % i f both are + i t
15 % doesn ’ t move u n t i l next i t e r a t i o n , where the s tep s i z e i s s m a l l e r
16 a = a . ∗ l o ;
17 b = b . ∗ l o ;
18
19 n = s i g n (b−a ) ; % The d i r e c t i o n with the b i g g e s t s l o p e i s chosen
20 n = n + (n==0) ; % In the case o f s i m i l a r s l opes , p o s i t i v e i s chosen
21
22 whi le sum(sum(sum(sum( So−S) ) ) ) ~= 0 % As long as the re are
23 So = S ;
24 S = S + n ∗ m . ∗ ( VibTol (S ,VC,VK,mu) > VibTol (S+n∗m,VC,VK,mu) ) ;
25 end
26 m = m/10 ;
27 end
28 Gamma = VibTol (S ,VC,VK,mu) ;
29
30 end

A.5 Multiple Design Calculator Code

1 c l e a r v a r s −except H W1 CanDes Design Loop
2 % c l o s e a l l
3 % c l c
4
5 %% Constants
6 LT = Design (10) ; % Total l ength (um)
7 CD = 0.5 e−6; % C r i t i c a l Dimension (um)
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8 W2 = CD; % Width 2 (um)
9 Ph = pi /6 ; % Phi ( rad ) ;

10 Enu (1) = 70 e9 ; % Young ’ s Modulus (Pa)
11 Enu (2) = 0 . 1 7 ; % Poisson ’ s Ratio (−)
12 Psi1 = pi ; % Psi 1 ( rad )
13 Psi2 = 0 . 0 1 ; % Psi 2 ( rad ) approx zero
14 psim = pi /10 ; % p s i s t e p s
15 mu = 0 . 2 ; % f r i c t i o n c o e f f i c i e n t
16
17
18 %% Var iab l e s
19 % theta
20 thn = 91 ;
21 Th = l i n s p a c e (0 , p i /4 , thn ) ;
22 % eta
23 etan = 91 ;
24 % lambda
25 lamn = 91 ;
26 lamb = l i n s p a c e (1 , 5 , lamn ) ;
27
28 %% Design Matrix
29 NN = thn∗ etan ∗lamn ;
30 datamat = z e r o s (NN, 1 4 ) ;
31 % Rot = z e r o s (NN, 3 , 3 ) ;
32
33 n = 0 ;
34 f o r i 1 = 1 : thn
35 eta = l i n s p a c e (Th( i 1 ) ,Th( i 1 )+pi /3 , etan ) ;
36 f o r i 2 = 1 : lamn
37 f o r i 3 = 1 : etan
38 n = n + 1 ;
39 L2 = (LT) /( lamb ( i 2 ) ∗ cos (Th( i 1 ) )+cos ( eta ( i 3 )−Th( i 1 ) ) ) ;
40 L1 = lamb ( i 2 ) ∗L2 ;
41 datamat (n , [ 3 : 1 0 , 1 3 ] ) = . . .
42 [ L1 , L2 ,W1,W2, Th( i 1 ) ,H, eta ( i 3 ) ,LT,CD] ;
43 end
44 end
45 end
46 %% Rotation Matrix and Compliance and S t i f f n e s s t e n so r
47 Rot = RotMaker ( datamat ( : , 7 ) ,Ph) ;
48 [CT,KT] = AnVec( datamat , Rot , Enu) ;
49 datamat ( : , 2 ) = CT( : , 3 , 3 ) .^(−1) ;
50 datamat ( : , 1 1 ) = CT( : , 2 , 2 ) .^(−1) ;
51
52 %% Vibrat ion Tolerance
53 [Gam1, ang1 ] = VibVecPsi ( datamat ,CT,KT, [ Psi1 , psim ] ,mu) ;
54 [Gam2, ang2 ] = VibVecPsi ( datamat ,CT,KT, [ Psi2 , psim ] ,mu) ;
55 ANG = [ ang1 , ang2 ] ;
56
57 [ datamat ( : , 1 ) , In ] = min ( [ Gam1,Gam2 ] , [ ] , 2 ) ;
58 Index = ( 1 : l ength ( In ) ) ’ + ( In−1) . ∗ l ength ( In ) ;
59 datamat ( : , 1 4 ) = ANG( Index ) ;
60
61
62
63 %% Reshape v a r i a b l e s
64 GAMMAT = datamat ( : , 1 ) ;
65 GAMMAT = permute ( reshape (GAMMAT, [ etan , lamn , thn ] ) , [ 1 , 3 , 2 ] ) ;
66
67 CZZMAT = permute ( reshape ( datamat ( : , 2 ) , [ etan , lamn , thn ] ) , [ 1 , 3 , 2 ] ) ;
68
69 thetaX = unique ( datamat ( : , 7 ) ) ;
70 etaY = unique ( round ( datamat ( : , 9 )−datamat ( : , 7 ) , 5 ) ) ;
71 lamvec = round ( datamat ( : , 3 ) . / datamat ( : , 4 ) , 5 ) ;
72 lambdaZ = unique ( lamvec ) ;
73
74 [X, Y, Z ] = meshgrid ( thetaX , etaY , lambdaZ ) ;
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A.6 Surface Plotting Code

1 % c l o s e a l l
2 % Create f i g u r e
3 At = CanDes (7 ) ∗180/ p i ;
4 Aet = ( CanDes (9 )−CanDes (7 ) ) ∗180/ p i ;
5 Al = CanDes (11) ;
6 Dt = Design (7 ) ∗180/ p i ;
7 Det = ( Design (9 )−Design (7 ) ) ∗180/ p i ;
8 Dl = Design (11) ;
9

10 l t = [ " − " , " − − " , " − . " , " : " , " − " , " − − " , " − . " , " : " , " − " ] ;
11 l c = [ 1 . 0 1 1 .05 1 .2 1 .3 1 .4 1 .5 1 .7 2 .0 Design (12) ∗1 e6 ] ;
12 co = [ 0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; 1 0 0 ; 1 0 0 ; 1 0 0 ; 1 0 0 ; 1 0 1 ] ;
13
14 [ cX , cY ] = meshgrid ( thetaX ∗180/ pi , etaY ∗180/ p i ) ;
15 cZ ( : , : , 1 ) = ( datamat ( 1 , 5 ) ∗1 e6 + 0 . 5 ) . / cosd (cX) ;
16 cZ ( : , : , 2 ) = ( datamat ( 1 , 6 ) ∗1 e6 + 0 . 5 ) . / cosd (cY) ;
17 cZ = max( cZ , [ ] , 3 ) ;
18
19 %%
20 f i g u r e 1 = f i g u r e ( ’ PaperSize ’ , [ 4 0 5 0 ] ) ;
21 axes1 = axes ( ’ Parent ’ , f i g u r e 1 , ’FontName ’ , ’ Times New Roman ’ , ’ FontSize ’ ,14) ;
22 gv = [ 0 . 0 1 0 .02 0 .03 0 . 0 5 ] ;
23
24 X1 = X∗180/ p i ;
25 Y1 = Y∗180/ p i ;
26
27 hold on ;
28 p = patch ( i s o s u r f a c e (X1 , Y1 , Z ,GAMMAT, gv (1 ) ) ) ;
29 i sonormal s (X1 , Y1 , Z ,GAMMAT, p)
30 s e t (p , ’ FaceColor ’ , ’ red ’ , ’ EdgeColor ’ , ’ none ’ , . . .
31 ’ DisplayName ’ , [ ’ \Gamma = ’ num2str ( gv (1 ) ) ] ) ;
32 p = patch ( i s o s u r f a c e (X1 , Y1 , Z ,GAMMAT, gv (2 ) ) ) ;
33 i sonormal s (X1 , Y1 , Z ,GAMMAT, p)
34 s e t (p , ’ FaceColor ’ , ’ green ’ , ’ FaceAlpha ’ , 0 . 8 , ’ EdgeColor ’ , ’ none ’ , . . .
35 ’ DisplayName ’ , [ ’ \Gamma = ’ num2str ( gv (2 ) ) ] ) ;
36 p = patch ( i s o s u r f a c e (X1 , Y1 , Z ,GAMMAT, gv (3 ) ) ) ;
37 i sonormal s (X1 , Y1 , Z ,GAMMAT, p)
38 s e t (p , ’ FaceColor ’ , ’ magenta ’ , ’ FaceAlpha ’ , 0 . 7 , ’ EdgeColor ’ , ’ none ’ , . . .
39 ’ DisplayName ’ , [ ’ \Gamma = ’ num2str ( gv (3 ) ) ] ) ;
40 p = patch ( i s o s u r f a c e (X1 , Y1 , Z ,GAMMAT, gv (4 ) ) ) ;
41 i sonormal s (X1 , Y1 , Z ,GAMMAT, p)
42 s e t (p , ’ FaceColor ’ , ’ cyan ’ , ’ FaceAlpha ’ , 0 . 6 , ’ EdgeColor ’ , ’ none ’ , . . .
43 ’ DisplayName ’ , [ ’ \Gamma = ’ num2str ( gv (4 ) ) ] ) ;
44 g r i d on
45 xlim ( [ 0 4 5 ] )
46 ylim ( [ 0 6 0 ] )
47 z l im ( [ 1 5 ] )
48 y l a b e l ( ’ $\ eta−\theta$ ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ FontSize ’ , 1 6 , . . .
49 ’FontName ’ , ’ Times New Roman ’ )
50 x l a b e l ( ’ $\ theta$ ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ FontSize ’ , 1 6 , . . .
51 ’FontName ’ , ’ Times New Roman ’ )
52 z l a b e l ( ’ $\lambda$ ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ FontSize ’ , 1 6 , . . .
53 ’FontName ’ , ’ Times New Roman ’ )
54 view (−145 ,35)
55 l egend1 = legend ( axes1 , ’ show ’ ) ;
56 s e t ( legend1 , ’ P o s i t i o n ’ , [ 0 . 7 5 0 .65 0 .1915 0 . 1 9 9 8 ] ) ;
57 % Create l i g h t
58
59 l i g h t ( ’ Parent ’ , axes1 , ’ P o s i t i o n ’ , [ 0 0 1 0 ] , ’ S t y l e ’ , ’ l o c a l ’ )
60
61 % Contour l i n e s and des ign s p e c i f i e r s
62 f o r i = 1 :9
63 [CC,HH]= contour (cX , cY , cZ , [ l c ( i ) , l c ( i ) ] , . . .
64 ’ ShowText ’ , ’ o f f ’ , ’ l i n e c o l o r ’ , co ( i , : ) , ’ l i n e s t y l e ’ , l t { i } , . . .
65 ’ l i n e w i d t h ’ ,2 , ’ H a n d l e V i s i b i l i t y ’ , ’ o f f ’ ) ;
66 HH. ContourZLevel = 1 ;
67 end
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68 t i t l e ( [ ’$H = ’ num2str ( round ( datamat ( 1 , 8 ) ∗1 e9 ) ) ’$nm $W_a = ’ . . .
69 num2str ( datamat ( 1 , 5 ) ∗1 e9 ) ’$nm ’ ] , . . .
70 ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ FontSize ’ , 1 8 , . . .
71 ’FontName ’ , ’ Times New Roman ’ )
72 p lo t3 (At , Aet , Al , ’ r . ’ , ’ markers i ze ’ ,20 , ’ H a n d l e V i s i b i l i t y ’ , ’ o f f ’ )
73 p lo t3 (Dt , Det , Dl , ’b . ’ , ’ markers i ze ’ ,20 , ’ H a n d l e V i s i b i l i t y ’ , ’ o f f ’ )
74 p lo t3 ( [ At At ] , [ Aet Aet ] , [ 1 Al ] , ’ r− ’ , ’ l i n e w i d t h ’ ,2 , ’ H a n d l e V i s i b i l i t y ’ , ’ o f f ’ )
75 p lo t3 ( [ Dt Dt ] , [ Det Det ] , [ 1 Dl ] , ’b− ’ , ’ l i n e w i d t h ’ ,2 , ’ H a n d l e V i s i b i l i t y ’ , ’ o f f ’ )
76 p lo t3 ( [ At Dt ] , [ Aet Det ] , [ Al Dl ] , ’ y− ’ , ’ l i n e w i d t h ’ , 1 . 2 , ’ H a n d l e V i s i b i l i t y ’ , ’ o f f ’ )
77
78 name=[ ’ f i g /Gam/OptiS_Gam_H=’ num2str ( round ( datamat ( 1 , 8 ) ∗1 e9 ) ) . . .
79 ’W1=’ num2str ( datamat ( 1 , 5 ) ∗1 e9 ) ’ . png ’ ] ;
80 saveas ( gcf , name) ;
81
82
83 %% Create f i g u r e
84 f i g u r e 2 = f i g u r e ( ’ PaperSize ’ , [ 4 0 5 0 ] ) ;
85 axes2 = axes ( ’ Parent ’ , f i g u r e 2 , ’FontName ’ , ’ Times New Roman ’ , ’ FontSize ’ ,14) ;
86 cv = [ 7 10 13 1 5 ] ;
87
88 X1 = X∗180/ p i ;
89 Y1 = Y∗180/ p i ;
90
91 hold on ;
92 p = patch ( i s o s u r f a c e (X1 , Y1 , Z ,CZZMAT, cv (1 ) ) ) ;
93 i sonormal s (X1 , Y1 , Z ,CZZMAT, p)
94 s e t (p , ’ FaceColor ’ , ’ red ’ , ’ EdgeColor ’ , ’ none ’ , . . .
95 ’ DisplayName ’ , [ ’C_{ zz }^{−1} = ’ num2str ( cv (1 ) ) ’ N/m’ ] ) ;
96 p = patch ( i s o s u r f a c e (X1 , Y1 , Z ,CZZMAT, cv (2 ) ) ) ;
97 i sonormal s (X1 , Y1 , Z ,CZZMAT, p)
98 s e t (p , ’ FaceColor ’ , ’ green ’ , ’ FaceAlpha ’ , 0 . 8 , ’ EdgeColor ’ , ’ none ’ , . . .
99 ’ DisplayName ’ , [ ’C_{ zz }^{−1} = ’ num2str ( cv (2 ) ) ’ N/m’ ] ) ;

100 p = patch ( i s o s u r f a c e (X1 , Y1 , Z ,CZZMAT, cv (3 ) ) ) ;
101 i sonormal s (X1 , Y1 , Z ,CZZMAT, p)
102 s e t (p , ’ FaceColor ’ , ’ magenta ’ , ’ FaceAlpha ’ , 0 . 7 , ’ EdgeColor ’ , ’ none ’ , . . .
103 ’ DisplayName ’ , [ ’C_{ zz }^{−1} = ’ num2str ( cv (3 ) ) ’ N/m’ ] ) ;
104 p = patch ( i s o s u r f a c e (X1 , Y1 , Z ,CZZMAT, cv (4 ) ) ) ;
105 i sonormal s (X1 , Y1 , Z ,CZZMAT, p)
106 s e t (p , ’ FaceColor ’ , ’ cyan ’ , ’ FaceAlpha ’ , 0 . 6 , ’ EdgeColor ’ , ’ none ’ , . . .
107 ’ DisplayName ’ , [ ’C_{ zz }^{−1} = ’ num2str ( cv (4 ) ) ’ N/m’ ] ) ;
108 g r i d on
109 xlim ( [ 0 4 5 ] )
110 ylim ( [ 0 6 0 ] )
111 z l im ( [ 1 5 ] )
112 y l a b e l ( ’ $\ eta−\theta$ ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ FontSize ’ , 1 6 , . . .
113 ’FontName ’ , ’ Times New Roman ’ )
114 x l a b e l ( ’ $\ theta$ ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ FontSize ’ , 1 6 , . . .
115 ’FontName ’ , ’ Times New Roman ’ )
116 z l a b e l ( ’ $\lambda$ ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ FontSize ’ , 1 6 , . . .
117 ’FontName ’ , ’ Times New Roman ’ )
118 view (−145 ,35)
119 l egend2 = legend ( axes2 , ’ show ’ ) ;
120 s e t ( legend2 , ’ P o s i t i o n ’ , [ 0 . 7 5 0 .65 0 .1915 0 . 1 9 9 8 ] ) ;
121
122 % Create l i g h t
123 l i g h t ( ’ Parent ’ , axes2 , ’ P o s i t i o n ’ , [ 0 0 −1] , ’ S t y l e ’ , ’ l o c a l ’ )
124
125 % Contour l i n e s and des ign s p e c i f i e r s
126 f o r i = 1 :9
127 [CC,HH]= contour (cX , cY , cZ , [ l c ( i ) , l c ( i ) ] , . . .
128 ’ ShowText ’ , ’ o f f ’ , ’ l i n e c o l o r ’ , co ( i , : ) , ’ l i n e s t y l e ’ , l t { i } , . . .
129 ’ l i n e w i d t h ’ ,2 , ’ H a n d l e V i s i b i l i t y ’ , ’ o f f ’ ) ;
130 HH. ContourZLevel = 1 ;
131 end
132 t i t l e ( [ ’$H = ’ num2str ( round ( datamat ( 1 , 8 ) ∗1 e9 ) ) ’$nm $W_a = ’ . . .
133 num2str ( datamat ( 1 , 5 ) ∗1 e9 ) ’$nm ’ ] , . . .
134 ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ FontSize ’ , 1 8 , . . .
135 ’FontName ’ , ’ Times New Roman ’ )
136 p lo t3 (At , Aet , Al , ’ r . ’ , ’ markers i ze ’ ,20 , ’ H a n d l e V i s i b i l i t y ’ , ’ o f f ’ )
137 p lo t3 (Dt , Det , Dl , ’b . ’ , ’ markers i ze ’ ,20 , ’ H a n d l e V i s i b i l i t y ’ , ’ o f f ’ )
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138 p lo t3 ( [ At At ] , [ Aet Aet ] , [ 1 Al ] , ’ r− ’ , ’ l i n e w i d t h ’ ,2 , ’ H a n d l e V i s i b i l i t y ’ , ’ o f f ’ )
139 p lo t3 ( [ Dt Dt ] , [ Det Det ] , [ 1 Dl ] , ’b− ’ , ’ l i n e w i d t h ’ ,2 , ’ H a n d l e V i s i b i l i t y ’ , ’ o f f ’ )
140 p lo t3 ( [ At Dt ] , [ Aet Det ] , [ Al Dl ] , ’ y− ’ , ’ l i n e w i d t h ’ , 1 . 2 , ’ H a n d l e V i s i b i l i t y ’ , ’ o f f ’ )
141
142 name=[ ’ f i g /Czz/OptiS_Czz_H=’ num2str ( round ( datamat ( 1 , 8 ) ∗1 e9 ) ) . . .
143 ’W1=’ num2str ( datamat ( 1 , 5 ) ∗1 e9 ) ’ . png ’ ] ;
144 saveas ( gcf , name) ;

A.7 Optimization for same pitch

1 c l e a r
2 c l o s e a l l
3 %% Def ine mat e r i a l cons tant s
4 Enu = [70 e9 0 . 1 7 ] ; % SiO2
5 p s i = [ 0 . 0 1 p i / 1 8 ] ;
6 Ph = pi /6 ;
7 %% Def ine O r i g i n a l C a n t i l e v e r
8 CanDes = z e r o s (1 , 10 ) ;
9 CanDes ( 3 : 9 ) = [ 8 . 7 e−6 4 .3 e−6 0 .91 e−6 0 .5 e−6 20∗ p i /180 1 .11 e−6 40∗ p i / 1 8 0 ] ;

10
11 % Creates r o t a t i o n matrix f o r i n i t i a l des ign
12 CanRot = RotMaker ( CanDes ( 1 , 7 ) ,Ph) ;
13
14 % C a l c u l a t e s s t i f f n e s s and compliance t e n so r f o r i n i t i a l des ign
15 [ Cc , Kc ] = AnVec( CanDes , CanRot , Enu) ;
16 T a r g e t S t i f f n e s s = Cc ( 1 , 3 , 3 ) .^(−1) ;
17 CanDes ( 1 , 2 ) = T a r g e t S t i f f n e s s ;
18
19 % C a l c u l a t e s the v i b r a t i o n t o l e r a n c e f o r the i n i t i a l des ign
20 [ TargetTolerance , ~ ] = VibVecPsi ( CanDes , Cc , Kc , ps i , 0 . 2 ) ;
21 CanDes ( 1 , 1 ) = TargetTolerance ;
22 % C a l c u l a t e s the t o t a l l ength L_T f o r the i n i t i a l des ign
23 CanDes (1 , 10 ) = CanDes ( 1 , 3 ) ∗ cos ( CanDes ( 1 , 7 ) ) + . . .
24 CanDes ( 1 , 4 ) ∗ cos ( CanDes ( 1 , 9 )−CanDes ( 1 , 7 ) ) ;
25 % C a l c u l a t e s lambda f o r the i n i t i a l des ign
26 CanDes (1 , 11 ) = CanDes ( 1 , 3 ) /CanDes ( 1 , 4 ) ;
27
28 %% Max an g l e s
29 S = ( CanDes ( 1 , 5 ) +0.5e−6 ) / cos ( CanDes ( 1 , 7 ) ) ;
30 ETA = acos ( ( CanDes ( 1 , 6 ) +0.5e−6)/S) + CanDes ( 1 , 7 ) ;
31
32 %% Optimizat ion o f des ign over Lambda and H
33 % c r e a t e s the seed des ign ( i . e . o r i g i n a l des ign ) .
34 Seed = CanDes ;
35 Seed ( 1 , 9 ) = ETA;
36 % c a l c u l a t e s lambda and H v e c t o r s
37 Lambda = l i n s p a c e (1 , 5 , 101 ) ;
38 Ln = length (Lambda) ;
39 H = l i n s p a c e (1 , 3 , 101 ) ∗1e−6;
40 Hn = length (H) ;
41 % Def ines the new d e s i g n s
42 OptiMat = repmat ( Seed , [ Ln∗Hn , 1 ] ) ;
43 n = 0 ;
44 f o r h = 1 :Hn
45 f o r l = 1 : Ln
46 n = n + 1 ;
47 L2 = Seed (10) /(Lambda( l ) ∗ cos ( Seed (7 ) )+cos ( Seed (9 )−Seed (7 ) ) ) ; % L2
48 L1 = Lambda( l ) ∗L2 ; % L1
49 OptiMat (n , 3 : 4 ) = [ L1 , L2 ] ;
50 OptiMat (n , 8 ) = H(h) ;
51 end
52 end
53
54 % Rotation matrix
55 OptiRot = RotMaker ( OptiMat ( : , 7 ) ,Ph) ;
56 % compliance and s t i f f n e s s t e ns o r
57 [ OptiC , OptiK ] = AnVec( OptiMat , OptiRot , Enu) ;
58 OptiMat ( : , 2 ) = OptiC ( : , 3 , 3 ) .^(−1) ;
59 % v i b r a t i o n t o l e r a n c e
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60 [ OptiMat ( : , 1 ) , ~ ] = VibVecPsi ( OptiMat , OptiC , OptiK , ps i , 0 . 2 ) ;
61 % reshape vec to r to matrix
62 MatDes = reshape ( OptiMat , [ Ln , Hn, 1 1 ] ) ;
63 CZZ_opt = MatDes ( : , : , 2 ) ;
64 GAM_opt = MatDes ( : , : , 1 ) ;
65 [XH,YL] = meshgrid (H, Lambda) ;
66
67 %% Czz p l o t and i n t e r p o l a t i o n
68 f i gureA = f i g u r e ( ’ PaperSize ’ , [ 4 0 5 0 ] ) ;
69 axesA = axes ( ’ Parent ’ , f igureA , ’FontName ’ , ’ Times New Roman ’ , ’ FontSize ’ ,14) ;
70 hold on
71 s u r f (XH,YL, CZZ_opt , ’ l i n e w i d t h ’ , 0 . 1 , ’ edgealpha ’ , 0 . 5 )
72 x l a b e l ( ’$H$ (m) ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ FontSize ’ , 1 6 , . . .
73 ’FontName ’ , ’ Times New Roman ’ )
74 xlim ( [H(1) H( end ) ] )
75 y l a b e l ( ’ $\lambda$ ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ FontSize ’ , 1 6 , . . .
76 ’FontName ’ , ’ Times New Roman ’ )
77 ylim ( [ Lambda (1 ) Lambda( end ) ] )
78 z l a b e l ( ’$C_{ zz }^{−1}$ (N/m) ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ FontSize ’ , 1 6 , . . .
79 ’FontName ’ , ’ Times New Roman ’ )
80 % Finds contour l i n e f o r Czz that has the same value as the o r i g i n a l des ign
81 [CC,HH]= contour (XH,YL, CZZ_opt , [ T a r g e t S t i f f n e s s T a r g e t S t i f f n e s s ] , . . .
82 ’ ShowText ’ , ’ o f f ’ , ’ l i n e c o l o r ’ , ’ red ’ , ’ l i n e s t y l e ’ , ’− ’ , . . .
83 ’ l i n e w i d t h ’ ,2 , ’ H a n d l e V i s i b i l i t y ’ , ’ o f f ’ ) ;
84 HH. ContourZLevel = T a r g e t S t i f f n e s s ;
85 view (3)
86 g r i d on
87 saveas ( gcf , ’ f i g / Alberto_Optimization_Czz . png ’ ) ;
88
89
90 % I n t e r p o l a t e along the contour l i n e to get the other va lue s
91 H_interp = CC( 1 , 2 : end ) ;
92 L_interp = CC( 2 , 2 : end ) ;
93 Gam_interp = i n t e r p 2 (XH,YL,GAM_opt, H_interp , L_interp ) ;
94 [mG, In ] = max( Gam_interp ) ;
95 mH = H_interp ( In ) ;
96 mLam = L_interp ( In ) ;
97
98
99

100
101 %% Gamma p l o t and maximum
102 f i gureB = f i g u r e ( ’ PaperSize ’ , [ 4 0 5 0 ] ) ;
103 axesB = axes ( ’ Parent ’ , f igureB , ’FontName ’ , ’ Times New Roman ’ , ’ FontSize ’ ,14) ;
104 hold on
105 s u r f (XH,YL,GAM_opt, ’ l i n e w i d t h ’ , 0 . 1 , ’ edgealpha ’ , 0 . 5 )
106 x l a b e l ( ’$H$ (m) ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ FontSize ’ , 1 6 , . . .
107 ’FontName ’ , ’ Times New Roman ’ )
108 xlim ( [H(1) H( end ) ] )
109 y l a b e l ( ’ $\lambda$ ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ FontSize ’ , 1 6 , . . .
110 ’FontName ’ , ’ Times New Roman ’ )
111 ylim ( [ Lambda (1 ) Lambda( end ) ] )
112 z l a b e l ( ’ $\Gamma$ ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ FontSize ’ , 1 6 , . . .
113 ’FontName ’ , ’ Times New Roman ’ )
114
115 p lo t3 ( H_interp , L_interp , Gam_interp , ’ r− ’ , ’ l i n e w i d t h ’ , 2 )
116 p lo t3 (mH,mLam,mG, ’ g . ’ , ’ markers i ze ’ , 20)
117 view (3)
118 g r i d on
119 saveas ( gcf , ’ f i g /Alberto_Optimization_Gam . png ’ ) ;
120
121
122 %% New Best Point
123 % Writes down new des ign
124 L2 = Seed (10) /(mLam∗ cos ( Seed (7 ) )+cos ( Seed (9 )−Seed (7 ) ) ) ;
125 L1 = mLam ∗ L2 ;
126 Design = Seed ;
127 Design ( 3 : 4 ) = [ L1 L2 ] ;
128 Design (8 ) = mH;
129 Design (10) = L1∗ cos ( Seed (7 ) ) + L2∗ cos ( Seed (9 )−Seed (7 ) ) ;
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130 Design (11) = mLam;
131 RR = RotMaker ( Design (7 ) ,Ph) ;
132
133 [DC,DK] = AnVec( Design ,RR, Enu) ;
134 Design (2 ) = DC( 1 , 3 , 3 ) .^(−1) ;
135
136 [DG, ~ ] = VibVecPsi ( Design ,DC,DK, ps i , 0 . 2 ) ;
137 Design (1 ) = DG;
138
139 % p r i n t s r e l e v a n t va lue s
140 f p r i n t f ( ’ Czz Alberto : %0.4 f , New: %0.4 f \n ’ , T a r g e t S t i f f n e s s , Design (2 ) )
141 f p r i n t f ( ’Gam Alberto : %0.4 f , New: %0.4 f \n ’ , TargetTolerance ,DG)
142 f p r i n t f ( ’Lam Alberto : %0.4 f , New: %0.4 f \n ’ , CanDes (11) , Design (11) )
143 f p r i n t f ( ’H Alberto : %0.4 f , New: %0.4 f \n ’ , CanDes (8 ) ∗1e6 , Design (8 ) ∗1 e6 )
144
145 c l e a r v a r s −except AlbertoDes ign Design

A.8 Optimize for better pitch, and best possible vibration
tolerance

1 c l e a r
2 c l o s e a l l
3 %% Def ine mat e r i a l cons tant s and Phi
4 Enu = [70 e9 0 . 1 7 ] ; % SiO2
5 p s i = [ 0 . 0 1 p i / 1 8 ] ;
6 Ph = pi /6 ;
7 %% Def ine o r i g i n a l C a n t i l e v e r
8
9 CanDes = z e r o s (1 , 10 ) ;

10 CanDes ( 3 : 9 ) = [ 8 . 7 e−6 4 .3 e−6 0 .91 e−6 0 .5 e−6 20∗ p i /180 1 .11 e−6 40∗ p i / 1 8 0 ] ;
11
12 % Creates r o t a t i o n matrix f o r i n i t i a l des ign
13 CanRot = RotMaker ( CanDes ( 1 , 7 ) ,Ph) ;
14
15 % C a l c u l a t e s s t i f f n e s s and compliance t e n so r f o r i n i t i a l des ign
16 [ Cc , Kc ] = AnVec( CanDes , CanRot , Enu) ;
17 T a r g e t S t i f f n e s s = Cc ( 1 , 3 , 3 ) .^(−1) ;
18 CanDes ( 1 , 2 ) = T a r g e t S t i f f n e s s ;
19
20 % C a l c u l a t e s the v i b r a t i o n t o l e r a n c e f o r the i n i t i a l des ign
21 [ TargetTolerance , ~ ] = VibVecPsi ( CanDes , Cc , Kc , ps i , 0 . 2 ) ;
22 CanDes ( 1 , 1 ) = TargetTolerance ;
23
24 % C a l c u l a t e s the t o t a l l ength L_T of the i n i t i a l des ign
25 CanDes (1 , 10 ) = CanDes ( 1 , 3 ) ∗ cos ( CanDes ( 1 , 7 ) ) + . . .
26 CanDes ( 1 , 4 ) ∗ cos ( CanDes ( 1 , 9 )−CanDes ( 1 , 7 ) ) ;
27
28 % C a l c u l a t e s Lambda f o r the i n i t i a l des ign
29 CanDes (1 , 11 ) = CanDes ( 1 , 3 ) /CanDes ( 1 , 4 ) ;
30
31 % Finds s m a l l e s t p o s s i b l e p i t ch that can s u s t a i n the i n i t i a l c a n t i l e v e r
32 Salb (1 ) = ( CanDes (5 ) +0.5e−6)/ cos ( CanDes (7 ) ) ;
33 Salb (2 ) = ( CanDes (6 ) +0.5e−6)/ cos ( CanDes (9 )−CanDes (7 ) ) ;
34 CanDes (1 , 12 ) = max( Salb ) ;
35
36
37 %% Target
38 TargetPitch = 1 .1 e−6;
39
40 %% Optimizat ion o f des ign over W1 and H
41
42 % c r e a t e s the seed des ign ( i . e . o r i g i n a l des ign ) .
43 Seed = CanDes ;
44 % c a l c u l a t e s W1 and H v e c t o r s
45 W1max = TargetPitch − 0 .5 e−6;
46 W1 = l i n s p a c e ( 0 . 5 e−6,W1max, 6 1 ) ;
47 W1n = length (W1) ;
48 H = l i n s p a c e (1 , 3 , 101 ) ∗1e−6;
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49 Hn = length (H) ;
50
51 % Def ines the new d e s i g n s
52 OptiMat = repmat ( Seed , [ W1n∗Hn , 1 ] ) ;
53 n = 0 ;
54 f o r h = 1 :Hn
55 f o r w = 1 :W1n
56 n = n + 1 ;
57 Th = acos ( ( W1(w) + 0 .5 e−6 ) / TargetPitch ) ; % C a l c u l a t e s theta
58 Et = acos ( ( Seed (6 ) + 0 .5 e−6)/ TargetPitch ) + Th ; % C a l c u l a t e s eta
59 OptiMat (n , 4 ) = Seed (10) /( Seed (11) ∗ cos (Th)+cos ( Et−Th) ) ; % L2
60 OptiMat (n , 3 ) = Seed (11) ∗OptiMat (n , 4 ) ; % L1
61 OptiMat (n , 7 ) = Th ;
62 OptiMat (n , 9 ) = Et ;
63 OptiMat (n , 5 ) = W1(w) ;
64 OptiMat (n , 8 ) = H(h) ;
65 end
66 end
67 OptiRot = RotMaker ( OptiMat ( : , 7 ) ,Ph) ; % C a l c u l a t e s r o t a t i o n m a t r i c i e s
68 [ OptiC , OptiK ] = AnVec( OptiMat , OptiRot , Enu) ; % C a l c u l a t e s S t i f f n e s s and
69 % compliance t e n s o r s
70 OptiMat ( : , 2 ) = OptiC ( : , 3 , 3 ) .^(−1) ;
71 [ OptiMat ( : , 1 ) , ~ ] = VibVecPsi ( OptiMat , OptiC , OptiK , ps i , 0 . 2 ) ; % C a l c u l a t e s
72 % Vibrat ion t o l e r a n c e
73
74 MatDes = reshape ( OptiMat , [ W1n, Hn, 1 2 ] ) ; % Reshapes from vecto r to matrix
75 CZZ_opt = MatDes ( : , : , 2 ) ;
76 GAM_opt = MatDes ( : , : , 1 ) ;
77 [XH,YW] = meshgrid (H,W1) ;
78
79 %% Czz p l o t and i n t e r p o l a t i o n
80 f i gureA = f i g u r e ( ’ PaperSize ’ , [ 4 0 5 0 ] ) ;
81 axesA = axes ( ’ Parent ’ , f igureA , ’FontName ’ , ’ Times New Roman ’ , ’ FontSize ’ ,14) ;
82 hold on
83 s u r f (XH,YW, CZZ_opt , ’ l i n e w i d t h ’ , 0 . 1 , ’ edgealpha ’ , 0 . 5 )
84 x l a b e l ( ’$H$ (m) ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ FontSize ’ , 1 6 , . . .
85 ’FontName ’ , ’ Times New Roman ’ )
86 xlim ( [H(1) H( end ) ] )
87 y l a b e l ( ’$W_1$ (m) ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ FontSize ’ , 1 6 , . . .
88 ’FontName ’ , ’ Times New Roman ’ )
89 ylim ( [W1(1) W1( end ) ] )
90 z l a b e l ( ’$C_{ zz }^{−1}$ (N/m) ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ FontSize ’ , 1 6 , . . .
91 ’FontName ’ , ’ Times New Roman ’ )
92
93 % Finds contour l i n e f o r Czz that has the same value as the o r i g i n a l des ign
94 [CC,HH]= contour (XH,YW, CZZ_opt , [ T a r g e t S t i f f n e s s T a r g e t S t i f f n e s s ] , . . .
95 ’ ShowText ’ , ’ o f f ’ , ’ l i n e c o l o r ’ , ’ red ’ , ’ l i n e s t y l e ’ , ’− ’ , . . .
96 ’ l i n e w i d t h ’ ,2 , ’ H a n d l e V i s i b i l i t y ’ , ’ o f f ’ ) ;
97 HH. ContourZLevel = T a r g e t S t i f f n e s s ;
98 view (3)
99 g r i d on

100 saveas ( gcf , ’ f i g / Alberto_Optimization_CzzS2 . png ’ ) ;
101
102
103 % I n t e r p o l a t e along the contour l i n e to get the other va lue s
104 H_interp = CC( 1 , 2 : end ) ;
105 W_interp = CC( 2 , 2 : end ) ;
106 Gam_interp = i n t e r p 2 (XH,YW,GAM_opt, H_interp , W_interp ) ;
107 Th_interp = i n t e r p 2 (XH,YW, MatDes ( : , : , 7 ) , H_interp , W_interp ) ;
108 Et_interp = i n t e r p 2 (XH,YW, MatDes ( : , : , 9 ) , H_interp , W_interp ) ;
109 [mG, In ] = max( Gam_interp ) ;
110 mH = H_interp ( In ) ;
111 mW = W_interp ( In ) ;
112 mT = Th_interp ( In ) ;
113 mE = Et_interp ( In ) ;
114
115
116
117 %% Gamma p l o t and maximum
118 f i gureB = f i g u r e ( ’ PaperSize ’ , [ 4 0 5 0 ] ) ;
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119 axesB = axes ( ’ Parent ’ , f igureB , ’FontName ’ , ’ Times New Roman ’ , ’ FontSize ’ ,14) ;
120 hold on
121 s u r f (XH,YW,GAM_opt, ’ l i n e w i d t h ’ , 0 . 1 , ’ edgealpha ’ , 0 . 5 )
122 x l a b e l ( ’$H$ (m) ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ FontSize ’ , 1 6 , . . .
123 ’FontName ’ , ’ Times New Roman ’ )
124 xlim ( [H(1) H( end ) ] )
125 y l a b e l ( ’$W_1$ (m) ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ FontSize ’ , 1 6 , . . .
126 ’FontName ’ , ’ Times New Roman ’ )
127 ylim ( [W1(1) W1( end ) ] )
128 z l a b e l ( ’ $\Gamma$ ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ FontSize ’ , 1 6 , . . .
129 ’FontName ’ , ’ Times New Roman ’ )
130
131 p lo t3 ( H_interp , W_interp , Gam_interp , ’ r− ’ , ’ l i n e w i d t h ’ , 2 )
132 p lo t3 (mH,mW,mG, ’ g . ’ , ’ markers i ze ’ ,20)
133 view (3)
134 g r i d on
135 saveas ( gcf , ’ f i g /Alberto_Optimization_GamS2 . png ’ ) ;
136
137
138 %% New Best Point
139
140 % Writes down new des ign
141 Design = Seed ;
142 Design (4 ) = Design (10) / ( Design (11) ∗ cos (mT) + cos (mE−mT) ) ;
143 Design (3 ) = Design (4 ) ∗ Design (11) ;
144 Design (5 ) = mW;
145 Design (7 ) = mT;
146 Design (8 ) = mH;
147 Design (9 ) = mE;
148 Design (12) = TargetPitch ;
149
150 RR = RotMaker ( Design (7 ) ,Ph) ;
151 [DC,DK] = AnVec( Design ,RR, Enu) ;
152 Design (2 ) = DC( 1 , 3 , 3 ) .^(−1) ;
153 [DG, ~ ] = VibVecPsi ( Design ,DC,DK, ps i , 0 . 2 ) ;
154 Design (1 ) = DG;
155
156 % p r i n t s r e l e v a n t va lue s
157 f p r i n t f ( ’ Czz Alberto : %0.4 f , New: %0.4 f \n ’ , T a r g e t S t i f f n e s s , Design (2 ) )
158 f p r i n t f ( ’Gam Alberto : %0.4 f , New: %0.4 f \n ’ , TargetTolerance ,DG)
159 f p r i n t f ( ’Lam Alberto : %0.4 f , New: %0.4 f \n ’ , CanDes (11) , Design (11) )
160 f p r i n t f ( ’H Alberto : %0.4 f , New: %0.4 f \n ’ , CanDes (8 ) ∗1e6 , Design (8 ) ∗1 e6 )
161 f p r i n t f ( ’S Alberto : %0.4 f , New: %0.4 f \n ’ , CanDes (12) ∗1e6 , Design (12) ∗1 e6 )
162 f p r i n t f ( ’The Alberto : %0.4 f , New: %0.4 f \n ’ , . . .
163 CanDes (7 ) ∗180/ pi , Design (7 ) ∗180/ p i )
164 f p r i n t f ( ’ Eta Alberto : %0.4 f , New: %0.4 f \n ’ , . . .
165 CanDes (9 ) ∗180/ pi , Design (9 ) ∗180/ p i )
166
167 c l e a r v a r s −except AlbertoDes ign Design

A.9 Finite Element Model

The finite element model used in this thesis, consists of two beams connected at the center
of their end points. In order to avoid discontinuities, both beams a fitted with a semicircle
at the joint. A force of 10 µN is applied at the tip of the cantilever in the x-, y- and z-
directions, and the corresponding deflection is read out.
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Figure A.1: Picture of the model used for the finite element model of the cantilevers.

A.10 Mounted Probe

Figure A.2: Photograph of a MoS2 sample mounted on a microscope slide using graphite
glue.
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A.11 Probe Engage Damage

Figure A.3: Side by side comparison of the damage done by a straight probe and an L-shaped
probe. The L-shaped probe is to the left and the straight to the right. The only mark for the
L-shaped probe was made by the strain gauge, where all four cantilevers damaged the surface
for the straight cantilever. The green pictures are the same as the blue, but with the green
and blue signal inverted and the red signal enhanced.
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1.  Introduction

For more than a century the four-point probe (4PP) has been 
a preferred method for precise electrical characterization 
of materials [1–3]. However, the size of the probes and the 
contact force during engagement have limited its use for mea-
surements on ultra thin materials [4, 5].

Miniaturization obtained by use of microfabrication 
technologies has had a strong impact on micromanipulator 
performance [6] and also improved the performance of 4PP 
with the introduction of the micro four-point probe (M4PP) as 
an alternative to conventional 4PP [7]. During the past decade, 
M4PP measurements have become the most reliable method 
for electrical characterization of ultra-thin semiconducting 
layers [8]. Today, fully automatic systems can perform sheet 
resistance [9] and micro Hall effect [10, 11] measurements in 
scribe-line test pads using lock-in technique and configuration 
switching combined with advanced data treatment algorithms 
[12] for state-of-the-art reliability [4, 5, 13].

An M4PP typically comprises (at least) four cantilever 
electrodes extending from a silicon probe body. The canti-
lever electrodes are silicon or silicon dioxide beams coated 
with metal (e.g. Ni). During measurements the contact force 
of each electrode is around 10–100 μN, i.e. around five 
orders of magnitude lower than that of a conventional 4PP 
[8]. M4PPs can be made of metal coated polymer [14, 15], or 
alternatively measurements may be done with independently 
movable probes [16].

M4PP measurements rely on a static contact between the 
micro-electrodes and the test sample during the full dura-
tion of the data acquisition which lasts for several seconds. 
However, fully automatic metrology systems are most often 
placed in production environments with significant ambient 
vibrational noise, which could result in unintended motion of 
the contact points. If a static contact is not maintained during 
a measurement sequence, the result is discarded due to strin-
gent measurement requirements imposed by the need for high 
reproducibility [12, 17–20].
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2

The original M4PP electrodes were simple straight cantile-
vers (I-beams) [7] as shown in figure 1(a). Later, high aspect 
ratio, three-way flexible cantilever electrodes (L-beams, 
figure 1(b)) were proposed for reducing abrasive wear of the 
electrode tips by forming a static contact [21, 22].

Here we experimentally determine the vibration tolerance 
of I-beam and L-beam cantilevers on two different sample 
surfaces as a function of engagement depth (i.e. contact 
force). We show experimentally that the L-beam has a higher 
vibration tolerance than that of the traditional I-beam. We also 
develop a theoretical model for the vibration tolerance of any 
cantilever with a known compliance tensor. We continue to 
calculate the vibration tolerance of the I-beam and L-beam 
cantilevers, and show that the model predictions are in excel-
lent agreement with the experimental results.

2. Theory

In a typical measurement instrument, the electrodes are 
engaged with the sample at a tilt angle φ (e.g. φ = 30◦) and 
an engagement depth δz  (e.g. δz = 500 nm) to provide suf-
ficient contact force FN  for reliable electrical contact. The 

electrode-sample geometry is illustrated in figure 2(a) for both 
I-beam and L-beam electrodes. Figure 2(a) also illustrates the 
sample based Cartesian coordinate system (x, y, z) we shall 
use for analysis of vibration tolerance, while figure 2(b) shows 
the cantilever based coordinate system (x′′, y′′, z′′) which we 
shall use for analysis of the elastic behavior of the beams. 
Figure 2(b) also defines the geometry of the L-beam, which is 
attached to the probe body at the hinge angle θ as illustrated 
in figure 2(a). The analysis of vibration tolerance is simplified 
significantly if the electrode-sample contact is assumed to be 
point like such that the contact point can support forces, but 
not torques. Then the relation between the deflection vector δ  
and force F on the electrode-tip is characterized by a stiffness 
[K] or compliance tensor [C] = [K]−1, i.e. F = [K]δ and δ  = 
[C]F as discussed by Wang et al [22].

During electrode-sample engage two extreme cases may 
occur: Either static contact is obtained, i.e. δ  = δzẑ where ẑ 
is the unit vector normal to the surface of the sample. Or the 
cantilever slides on the surface until forces tangential to the 
surface vanish, i.e. F = FNẑ =C−1

zz δzẑ. In the analysis we 
shall assume sliding contact. During measurements, when the 
sample and probe are in contact, the sample may move rela-
tive to the probe body due to environmental noise vibrations, 
and then the contact point may or may not move on the sample 
depending on the vibration amplitude and properties of the 
contact and the electrode. We shall assume that the contact is 
maintained if the magnitude of the tangential force FT is less 
than the total normal force FN,tot times the friction coefficient 

(a)

(b)

Figure 1.  SEM images of micro four-point probes. (a) I-beam 
probes with straight electrodes. (b) L-beam probes with more 
flexible electrode beams. The images also show Wheatstone bridge 
strain-gauges (for surface detection) on both probes.

(a)

(b)

Figure 2.  (a) Sketch of the electrode-sample geometry in the 
sample coordinate system. Both the I-beam and the L-beam 
electrodes are engaged with the sample at the tilt angle φ. The 
L-beam is attached to the probe body with the hinge angle θ. (b) 
Sketch of the L-beam electrode in the cantilever coordinate system 
illustrating the definition of geometry symbols.

J. Micromech. Microeng. 28 (2018) 095010
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μ, i.e. |FT| � µFN,tot, otherwise the contact point will slide on 
the surface and compromise measurement quality.

Consider now in-plane sample-body vibrations δ̃(t) with 
the amplitude A at an arbitrary polar angle ψ to the x-axis

δ̃(t) = A sin(ωt)



cosψ

sinψ

0


 ,� (1)

where ω is the angular vibration frequency and t is time. The 
resulting force due to engagement with sliding contact and 
added vibration is F = FNẑ+[K]δ̃(t) and thus the total normal 
force FN,tot and tangential force FT become

FN,tot = C−1
zz δz + KN(ψ)A sin(ωt),� (2)

FT = KT(ψ)A sin(ωt),� (3)

where KN(ψ) and KT(ψ) are effective normal and transverse 
spring constants, respectively. In terms of the stiffness tensor 
elements the spring constants are

KN(ψ) = Kzx cosψ + Kzy sinψ,� (4)

KT(ψ)

=
√

(Kxx cosψ + Kxy sinψ)2 + (Kyx cosψ + Kyy sinψ)2.
� (5)

The worst case scenario occurs when |sin(ωt)| = 1, and 
since KT(ψ) is always positive the vibration amplitude must 
fulfill

A
δz

� µC−1
zz

KT(ψ) + µ |KN(ψ)|
≡ Γ (ψ)� (6)

to avoid a sliding contact point according to the criterion 
|FT| � µFN,tot discussed above. The vibration tolerance, in 
units of the engagement depth, for a vibration in the direction 
ψ is thus Γ (ψ).

Depending on the design of the electrodes two simplified 
cases can be identified, i.e. in case KT(ψ) � µ |KN(ψ)| the 
vibration tolerance Γ (ψ) � µ/ [CzzKT(ψ)] is proportional to 
the friction coefficient, and in case KT(ψ) � µ |KN(ψ)| the 
vibration tolerance Γ (ψ) � 1/ [Czz |KN(ψ)|] is independent 
on the friction coefficient.

The vibration tolerance for the I-beam is minimum at polar 
angles ψ = 0 ± π and maximum at ψ = ±π

2 , and the same 
is roughly the case for the L-beam, albeit with a negligible 
offset. At the minimum and maximum the vibration tolerance 
becomes

Γ (0) =
µC−1

zz√
Kxx

2 + Kyx
2 + µ |Kzx|

,� (7)

Γ
(π

2

)
=

µC−1
zz√

Kxy
2 + Kyy

2 + µ |Kzy|
,� (8)

respectively.

2.1.  Compliance tensors

To proceed further, the compliance tensors of the cantilevers 
must be calculated and here we use Euler’s beam equa-
tion [23] and the double-primed cantilever coordinate system 
of figure 2(b).

The calculation of the compliance tensor describing the 
I-beam, which is a prismatic beam of length LI, thickness HI 
and width WI, proceeds by assuming that one end is rigidly 
clamped to the probe body. The resulting I-beam compliance 
tensor 

[
C′′

I

]
 in the cantilever coordinate system is

[C′′
I ] =




LI
EWIHI

0 0

0 4L3
I

EW3
I HI

0

0 0 4L3
I

EWIH3
I


� (9)

where E  =  170 GPa is Young’s modulus of the beam material. 
Note, the element C′′

I,xx is a low compliance element which 
is controlled by longitudinal deformation. In the remaining 
non-zero elements the effect of longitudinal deformation is 
insignificant and thus ignored.

The L-beam consists of two prismatic beams, the first beam 
(length La, width Wa, and height H) is clamped to the probe 
body, while the second beam (length Lb, width Wb, and height 
H) is connected to the first beam at a 90° degree elbow. The 
compliance tensor 

[
C′′

L

]
 for the L-beam cantilever was calcu-

lated by Wang et al [22]

[C′′
L ]

=
1
E




12LaL2
b

W3
a H +

4L3
b

W3
b H − 6L2

a Lb

W3
a H 0

− 6LaLb
W3

a H
4L3

a
W3

a H 0

0 0 4L3
a

WaH3 +
4L3

b
WbH3 +

EL2
b

kτ


 ,

� (10)

where kτ  is the torsion constant of the first prismatic bar of 
the L-beam [24]

kτ =
EW3

a H
2(1 + ν)La

(
1
3
− 64Wa

π5H
β

)
,� (11)

where ν is Poisson’s ratio and

β =

∞∑

n=1

1
(2n − 1)5 tanh

(2n − 1)πH
2Wa

.� (12)

These compliance tensors describe the deflection of the 
cantilever tips relative to the probe body in response to an 
applied force. However, the probe body may not be perfectly 
rigidly attached to the bulk of the instrument, and thus it is 
necessary to include also a system compliance 

[
C′′

ε

]
 to fully 

describe the electrode-sample interaction. Since the impact 
of system compliance is significant only in low compliance 
directions of the cantilevers a system compliance tensor with 
only a single non-zero element is sufficient, i.e.
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[C′′
ε ] =



ε 0 0
0 0 0
0 0 0


 ,� (13)

with the non-zero element assigned the value ε = 0.2 mm 
N−1, which is an insignificant compliance compared to all 
compliance elements except C′′

I,xx, which is an order of mag-
nitude smaller than ε. As a result the total compliance tensors 
are 

[
C′′

Iε

]
= [C′′

I ] + [C′′
ε ] and 

[
C′′

Lε

]
� [C′′

L ] for the I-beam and 
L-beam, respectively. The method used for determining the 
magnitude of ε is described in section 4.

For vibration tolerance calculations in the sample coordi-
nate-system the compliance tensors are then rotated using the 
rotation matrix [22]

[T] =



cos θ cosφ − sin θ − cos θ sinφ

sin θ cosφ cos θ − sin θ sinφ

sinφ 0 cosφ


 .� (14)

Table 1 shows the dimensions of the I-beam and L-beam 
cantilevers used in vibration tolerance calculations. The 
dimensions reported in table 1 were measured on SEM images 
of the beams. For the calculations the elastic parameters, 
Young’s modulus E  =  170 GPa and Poisson’s ratio ν = 0.22, 
were used [25].

Figure 3 shows the calculated vibration tolerances for I-beam 
(black) and L-beam (red) electrodes as a function of the polar 
angle ψ for two different values (µ = 0.2 full lines and µ = 0.6 
dashed lines) of the electrode-sample friction coefficient. The 
curves labelled Iε-beam (blue) results when the system compli-
ance is included; the system compliance has a major effect on 
the calculated vibration tolerance for the I-beam as seen. The 
calculated vibration tolerance of the L-beam is roughly a factor 
of 50 higher than that of the Iε-beam.

3.  Experiment

The vibration tolerance of the cantilever probes (Iε-beam 
and L-beam) shown in figure  1 was characterized exper
imentally by intentional vibration of the sample during dual 
configuration sheet resistance measurements. The sample to 
be measured was placed on a calibrated piezoelectric element, 
which was driven at a frequency of 100 Hz and with the vibra-
tion amplitude A steadily increased during a measurement 

series. The direction of the sample vibration was aligned to the 
direction of minimum vibration tolerance for the cantilevers, 
i.e. ψ � 0. Measurements were done on two different sam-
ples, i.e. on a silicon sample (Si) with a highly doped p-type 
shallow junction and on an indium-tin-oxide (ITO) sample 
with sheet resistances of 380 Ω and 90 Ω, respectively. Sheet 
resistance measurements were done using an M200 tool from 
CAPRES A/S, and performed according to industry standards 
with a 1% median filter on the dual configuration sheet resist
ance measurements [26].

Measurement failure is interpreted as caused by motion of 
the cantilever contact points on the sample surface. Thus, the 
absolute vibration tolerance Γδz was experimentally defined 
as the minimum vibration amplitude A where the dual con-
figuration sheet resistance measurement failed five times in 
a row (note in clarification: at larger amplitudes resistance 
measurements almost always fail, while smaller amplitudes 
result in less frequent measurement failures.). In this fashion 
the vibration tolerance was measured as a function of the 
engagement depth δz , which was varied in the range from 500 
to 3000 nm, with an estimated error of 200 nm, as controlled 
by the probe stage on the M200. The engagement depth is 
measured as the set travel of the probe stage beyond detection 
of the surface. Representative measurements of the vibration 
tolerances of the Iε-beams and the L-beams on the two sam-
ples are reported in figure 4.

4.  Results and discussion

The experimental vibration tolerance data in figure 4 show that, 
indeed, the absolute vibration tolerance increases approximately 
linearly with increased engagement depth δz for each combina-
tion of probe (I-beam or L-beam) and sample (Si or ITO) as 
expected. The vibration tolerance of the L-beam is much larger 
than that of the Iε-beam, and is, within measurement error, 

Table 1.  Dimensions of the two cantilever designs used as defined 
in figure 2. The electrode pitch of both probes is 20 μm.

L-beam I-beam

Symbol Value (μm) Symbol Value (μm)

H 9.7 HI 9.9
La 92.1 LI 201.0
Lb 36.9
Wa 4.8 WI 12.0
Wb 2.3
θ 45◦ θI 0◦

φ 30◦ φI 30◦

Figure 3.  Calculated normalized vibration tolerance Γ for I-beam 
(black) and L-beam (red) cantilevers as a function of the polar angle 
ψ assuming friction coefficients µ = 0.2 (full) and 0.6 (dashed). 
The curves in blue, labeled Iε-beam, are calculated by taking into 
account the system compliance.
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independent of the properties of the sample. This behavior 
is in stark contrast to the vibration tolerance of the Iε-beam, 
which is strongly dependent of the properties of the sample, 
i.e. the vibration tolerance on Si is an order of magnitude lower 
than that on ITO. This sample dependence of the vibration 
tolerance can be understood by inspecting post-measurement 
SEM images (not shown) of the sample surfaces, which show 
rather deep indentations from the Iε-beam on the ITO sample, 
but not on the Si sample. The indentations on the ITO sample 
effectively prevents the normal sliding motion on the surface; 
thereby the vibration tolerance is increased significantly.

In figure 4 error bars are not reported, but there are sources 
of error on both axes. The larger error is that of the engage-
ment depth, which is determined based on a threshold signal 
from the built-in strain gauge on the probes (figure 1) and the 
motion of the calibrated probe stage of the M200 tool beyond 
this threshold. The threshold detection is expected to give a 
systematic error of at most 200 nm. The probe stage has a reso-
lution of 2.5 nm and a position stability of 10 nm peak-to-peak; 
thus it contributes with a random error of at most 5.6 nm. The 
vibration amplitude is much more accurately determined, and 
here the main source of error is environmental vibration noise 
(a few nm) during the measurements. This noise affected the 
measurements for the Iε-beam on Si where data could not be 
obtained at low engagement depths (below 1500 nm).

The experimental vibration tolerance of the L-beam is in 
very good agreement with the calculated vibration tolerance 
as illustrated by the red band (top) in figure 4, which shows 
calculated vibration tolerance for friction coefficients in the 
range from µ = 0.2 to 0.6; i.e. almost all measurement points 
for both samples are within this band. The blue band (bottom) 
in figure  4 illustrates a similar calculation for the Iε-beam 
assuming a system compliance ε = 0.2 mm N−1, and again 
the agreement between experiment and theory is very good 

and essentially all measurement points on Si are within the 
band defined by the friction coefficient range (0.2–0.6).

The vibration tolerance of the Iε-beam on ITO is an order of 
magnitude higher than that on Si and the theoretical prediction 
(blue band in figure 4), but as mentioned above the indentation 
of the electrode in the sample prevents the usual sliding motion 
on the surface. We may model this behavior by allowing an 
artificially high friction coefficient (i.e. µ → ∞) and then the 
normalized vibration tolerance becomes Γ(0) � 1/(Czz |Kzx|), 
which is independent on μ. By fitting this simplified expres-
sion to the measurement data for the Iε-beam on ITO using 
the system compliance ε as the fitting parameter produces the 
full grey line in figure 4 for ε = 0.2 mm N−1, and the agree-
ment with measurements is excellent. Thus, this experiment 
essentially measures the system compliance, and the resulting 
system compliance was also used to explain the data for the 
Iε-beam on Si experiments in the previous paragraph.

5.  Conclusion

We have measured the vibration tolerance of I-beam and 
L-beam electrodes on ITO and Si samples. The measure-
ments show that L-beam electrodes are at least 50 times more 
vibration tolerant than I-beam electrodes. We have explained 
this behavior theoretically and the model of vibration toler-
ance we have developed is in excellent agreement with the 
experiments. Our theoretical framework may thus serve as a 
valuable tool for future micro-electrode design focusing on 
improved vibration tolerance.
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INTRODUCTION 

Two dimensional (2D) materials have the possibility of becoming more widely used materials in the semiconductor 
industry, however for this to happen the industry must be able to produce consistently high-quality materials. To fulfill this 
requirement, metrology needs to be developed that can quickly and easily characterize the materials. At the moment the choice 
for electrical characterization of 2D materials is typically a combination of van der Pauw and Hall effect measurements [1] or 
building complete devices for characterization [2]. All of which involves one or more lithography steps increasing the risk of 
contamination as well as the possibility of changing or damaging the material. Here we present the use of micro four-point 
probes to characterize 2D materials as an alternative or complementary method. Micro four-point probes allow the user to 
skip disturbing lithography steps and measure directly on the raw material [3]. It also opens for the possibility of doing 
uniformity studies that are not possible with a fixed structure characterization method [4]. 

Micro Four-Point Probe Measurements 

Similar to van der Pauw a micro four-point probe measurement is performed by sourcing either current or voltage through 
two electrodes while measuring the potential drop across two other electrodes. The difference is that while van der Pauw 
measurements are performed using fixed electrodes a micro four-point probe measurement is performed using a small probe 
(pin pitches on the micrometer scale) with all electrodes on a line, that can easily be moved around on the sample. A picture 
of a micro seven-point probe (from which a four-point sub probe can be chosen) is shown in Figure 1 (Left). 

 
FIGURE 1.  (Left) A microscope picture of a micro seven-point probe a few micrometers above an MoS2 sample. (Right) Sketch of the 
three unique configurations of source-drain and sensing pins possible with a micro four-point probe. 
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There are three unique configurations of the source-drain and sensing pins, the configurations are shown in Figure 1 
(Right). All other configurations will correspond to different permutations of the plus minus pins for the source-drain and 
sensing pins or switching the source-drain and sensing pins. At most these permutations should change the sign of the 
measured four-point voltage. The most important check of consistency for a four-point measurement, is the reciprocity 
theorem that states that the four-point resistance in the A-configuration must equal the sum of the four-point resistance in the 
B and C configuration i.e. RA = RB + RC. As long as the material that is measured on is ohmic and nothing other than the 
configuration changes between measuring the configurations [5].  

The Samples 

The sample of interest is 1-2 layers of MoS2 on a 300 nm SiO2 layer on a highly doped Si wafer. The MoS2 was grown in 
a CVD process using a gold catalyst on a sapphire substrate and transferred to the silicon substrate. The sample was 
characterized using Raman, photoluminescence and electron microscopy. The samples were also characterized electrically 
using a fixed array of electrodes [6].  
 

FIELD EFFECT MEASUREMENTS USING MICRO FOUR-POINT PROBES 

In this study we look at field effect measurements on MoS2 using a micro four-point probe. A MicroRSP-M200 tool from 
CAPRES A/S was used as the mechanical platform to engage the micro four-point probe on the sample fixed in a customized 
sample holder as illustrated in Figure 2 (Left). DC voltage was then sourced between two probes using a Keithley 2400 and 
the corresponding current was measured using the same Keithley. The four-point voltage across the two other pins was 
measured using a Keithley 2700 that also switched between the configurations. In order to mechanically stabilize the sample 
and to ease the interface to the gate (i.e., the silicon substrate), the sample was glued to a microscope slide using electrically 
conductive graphite glue. Using a wire, the gate was connected to a voltage supply. A probe contacted to an MoS2 sample is 
shown in Figure 2 (Left). 

A full measurement cycle consists of a series of measurements at different gate voltages. At each voltage step all unique 
configurations are measured before changing to the next gate voltage. By performing the experiment in this way, (instead of 
sweeping the gate voltage for each configuration sequentially), it ensures that all configurations which are measured at the 
same gate voltage value, are close to each other temporally. This minimizes the impact of long time-scale drift. 

This setup has been used to measure the sheet conductance of several pieces of MoS2. Data from two of these are shown 
in Figure 2 (Right). The figure shows that the sheet conductance measured in A and B configurations are comparable within 
the same sample as expected. The differences can be explained by local inhomogeneities [7]. Both samples were measured in 
ambient air without any annealing. Below the threshold voltage the measurements become very noisy, which is to be expected 
since the device is in the off-state. Resulting in the current being of the same order of magnitude or lower than the noise floor. 

 
FIGURE 2. (Left) Picture of the micro four-point probe contacted to a sample of MoS2. The wire shown is connecting to the back gate. 
(Right) Plot of the sheet conductance of two pieces of MoS2, measured using micro four-point probes. 
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CONCLUSION 

We show here that micro four-point probes can be used to characterize MoS2 and can prove a viable alternative to van der 
Pauw measurements for device characterization, with the added feature of being a lithography free method. From these field 
effect measurements important parameters, such as the threshold voltage and the field effect mobility, can be determined at 
multiple points on the sample. Allowing the user to study the sample uniformity. 
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Abstract 
Micro four-point probes (M4PP) provide rapid and automated lithography-free transport properties 
of planar surfaces including two-dimensional materials. We perform sheet conductance wafer maps 
of graphene directly grown on a 100 mm SiC wafer using a multiplexed seven-point probe with 
minor additional measurement time compared to a four-point probe. Comparing the results of three 
subprobes we find that compared to a single-probe result, our measurement yield increases from 
72-84% to 97%. The additional data allowed for uniformity analysis and subprobe variations revealed 
wafer homogeneity properties hidden by single-probe maps. Seven-point-probe maps tracked sheet 
conductance change over several weeks. Terahertz time-domain spectroscopy conductivity maps 
both before and after M4PP mapping showed no significant change due to M4PP measurement, 
with both methods showing the same qualitative changes over time.  

Keywords: Graphene, SiC, Conductance, Micro four-point probe, Terahertz spectroscopy, Metrology, 
Mapping 

Introduction  

Graphene is an atomically-thin two-dimensional material [1]–[3] which has properties suitable for a 
large number of practical technologies from corrosion protection[4]–[6] to OLEDS[7]–[9] to sensors 
[10]–[12]. Now that the capability of large-scale growth[13]–[15], transfer [16]–[18], and lithography 
techniques [19], [20] of graphene are well established, methods for assessing the quality[21], [22] 
and homogeneity of wafer-scale graphene are required if the lab-proven graphene-based 
technologies will transition to commercial products. Ideally, these methods should not require any 
wafer dicing (so the characterized wafer can be further processed), or contact with liquids or 
polymers so to not change the properties of the material [23]. One automated electrical 
characterization method that meets these requirements are micro four-point probes (M4PP).  

Methods 

Graphene was grown on a four-inch silicon carbide wafer as described previously [24]. Electrical 
measurements were performed with a CAPRES microRSP-M300 using lock-in technique at 12 Hz, and 
with a current of 250 μA. In this work we have used a probe with seven nickel-coated electrodes as 
shown in Fig. 1 a. The right-hand-side of Fig. 1 a shows a strain gauge, which is used to control the 
contact force when the probe is engaged on the surface [25]. A low contact force and three-way 
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flexible electrodes [26], [27] are used to prevent unnecessary damage to the probe and surface. 
During a single engage of the probe to the surface, electrical measurements were performed in A-
configuration, and then B-configuration as defined in Fig. 1 b-c, respectively. With seven electrodes 
available, we can select four electrodes of the seven to create a subprobe. The three subprobes used 
in this paper are shown in Fig. 1 e-g, where subprobes 1 and 2 have 10 µm electrode pitch and 
subprobe 3 has 20 µm electrode pitch. Subprobes 1 and 2 were chosen since they are the smallest 
possible subprobes with the least overlap. Subprobe 3 is the largest possible subprobe. 

During each engage a total of 24 resistance measurements were performed (8 for each subprobe). 
These multiplexed measurements enabled a variety of error-checking measures to increase result 
accuracy as previously described [28]. Firstly, because the measurements were performed with lock-
in technique, the phase of each individual measurement was assessed, and individual resistance 
measurements rejected if outside a set tolerance. The sheet resistance (RS) is determined from the 
modified van der Pauw equation [29], [30] using resistance values measured in A configuration (RA) 
and B configuration (RB)  

𝑒𝑒
2𝜋𝜋𝑅𝑅𝐴𝐴
𝑅𝑅𝑠𝑠 − 𝑒𝑒

2𝜋𝜋𝑅𝑅𝐵𝐵
𝑅𝑅𝑠𝑠 = 1 

All accepted sheet resistance values were then subjected to a median filter and the mean of the 
remaining sheet resistance values 〈𝑅𝑅𝑆𝑆〉 which pass the filter gave a single sheet conductance 𝐺𝐺𝑆𝑆 =
〈𝑅𝑅𝑆𝑆〉−1 value for the subprobe. If no 〈𝑅𝑅𝑆𝑆〉 values pass the filters with the set tolerances, then we 
define the sheet conductance 𝐺𝐺𝑆𝑆 = 0 in subsequent analysis and mapping. Probes were replaced 
automatically every 2000 engages. When subprobes are combined an additional median filter is 
applied. In this work our phase tolerance was 1°, and both median filter tolerances were 2%. 

 

 

Fig 1. M4PP configurations and subprobes. a)  Optical microscope image of the l-shaped cantilever-
based seven-point-probe used for measurements equipped with strain gauge. b-c) Measurement 
configurations A and B. d) Subprobe 1 with 10 µm pitch. e) Subprobe 2 with 10 µm pitch. f) Subprobe 
3 with 20 µm pitch. 

 

Results and discussion 
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A wafer-scale 𝐺𝐺𝑆𝑆 map performed with each of the three subprobes are shown in Fig. 2 (a-c) with a 
map combining the data from all three subprobes is shown in Fig. 2d. Previously, M4PP data from 
this wafer was compared with a THz-TDS conductance map [24]. Here, we compare 𝐺𝐺𝑆𝑆 results 
obtained from different subprobes during the same probe engage. For a perfectly uniform material 
using multiple subprobes provides a redundancy in the measurement, in case of subprobe failure or 
localized sample defects. In either case, a measurement from of the other subprobes may be 
successful. For a non-uniform sample, multiple subprobe analysis can reveal the spatial and 
quantitative information about the extent of inhomogeneities.  
Qualitatively, all the subprobe maps in Fig 2 a-c are similar, each having different regions where no 
𝐺𝐺𝑆𝑆 values passed the filters described in the methods section. The most prominent of these features 
appear as annulus sectors (circular ring sectors) and are attributed to subprobe failure as it matches 
the spiral-like measurement order. Thus, there is no reason to attribute these measurement failures 
to the local thin-film properties.  
When 𝐺𝐺𝑆𝑆 from the three subprobes are combined (Fig 2 d) all the null-𝐺𝐺𝑆𝑆 annulus sectors disappear. 
We then find that for this combined map only 385 out of 11,310 engages did not return an accepted 
𝐺𝐺𝑆𝑆 value (10,925 accepted, 97%). In contrast, the successful measurements for individual subprobes 
was 9528 (84% accepted), 9135 (81% accepted) and 8163 (72% accepted), for subprobe 1, subprobe 
2, subprobe 3, respectively. For our measurements choosing more than one subprobe offered a level 
of measurement redundancy, with significant higher measurement yield from 72-84% to 97%. 
Although some regions of the wafer have over an order of magnitude lower 𝐺𝐺𝑆𝑆, by studying the 
RA/RB ratio of the measurements (Fig S1), it can be concluded that this graphene does not exhibit any 
significant quasi 1D electrical behaviour.  
Increasing the number of subprobes also increases the total measurement time. The time to 
measure one subprobe, disengage, move and reengage took approximately five seconds. 
Measurement time was increased by one second per additional subprobe. Three subprobes were 
chosen as a good compromise between measurement yield and measurement time. 
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Figure 2. Conductance maps measured with M4PP. a) Subprobe 1 (10 µm pitch). b) Subprobe 2 (10 
µm pitch). c) Subprobe 3 (20 µm pitch). d) Combination of data from subprobes from (a-c). Dead 
pixels/wafer outline shown in grey. 

Multi-subprobe 𝐺𝐺𝑆𝑆 maps can be a useful metrology tool for evaluating the variation in graphene 
quality across a wafer. With a wafer map of 𝐺𝐺𝑆𝑆 enough data is available to perform analysis that 
would otherwise be impossible or imprecise with a linescan, reduced-area map, or single probe scan. 
For example, a comparison between 𝐺𝐺𝑆𝑆 values for different subprobes can be compared to give an 
insight into homogeneity on the order of the probe length. Figure 3a shows a uniformity map of Fig 
2d, which was calculated using the relative standard deviation of each pixel and its 15 nearest 
neighbours (uniformity maps for different number of nearest neighbours are shown in Fig S2). The 
single-subprobe uniformity maps for data from Fig 2 a-c are shown in Fig S3 a-c., where the lack of 
data coverage conceals many uniformity features. Homogeneity is known to be important for two-
dimensional device performance[31], [32], so it is important to know if the entire wafer, or certain 
areas are suitable for device processing. 

 

 

Figure 3. a) Uniformity map of data from Fig 2d showing the relative standard deviation of 15 
nearest neighbours. b) Subprobe-to-subprobe correlation comparing subprobe 3 with subprobe 1 
(triangles) and subprobe 2 (circiles). Four regions of 𝐺𝐺𝑆𝑆  are defined by 𝐺𝐺𝑆𝑆 < 0.3 mS (black region), 0.3 
mS ≤ 𝐺𝐺𝑆𝑆<0.75 mS (blue region), 0.75 mS ≤ 𝐺𝐺𝑆𝑆<7.5 (green region), 7.5 mS ≤𝐺𝐺𝑆𝑆 (red region). c) Fig 2d 
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replotted in colourscale from Fig 3b. d) Histogram of the conductance as measured by all three 
subprobes with three peaks in the data I-III.  

 

The subprobe-to-subprobe conductance correlation is shown in Fig 3b, where four regions are 
defined: 𝐺𝐺𝑆𝑆 < 0.3 mS (black region), 0.3 mS ≤ 𝐺𝐺𝑆𝑆<0.75 mS (blue region), 0.75 mS ≤ 𝐺𝐺𝑆𝑆<7.5 (green 
region), 7.5 mS ≤𝐺𝐺𝑆𝑆 (red region). We observe good subprobe-to-subprobe agreement for high and 
low values of 𝐺𝐺𝑆𝑆, the blue and red regions, but poorer agreement in the green region. The fact the 
subprobe-to-subprobe error decreases again for the red region shows the subprobe-subprobe error 
is not simply proportional to the magnitude of 𝐺𝐺𝑆𝑆, and is likely an indication the green region has 
variations on the order of the probe length. When Fig 2b is replotted using the colourscale from Fig. 
3b, we in fact do observe most of the green pixels as a transition area separating the regions of high 
and low values of 𝐺𝐺𝑆𝑆. Because the width of the transition areas are significantly larger than the size 
of the probe, it can be concluded this data represents a true variation in the sample 𝐺𝐺𝑆𝑆.  

When the 𝐺𝐺𝑆𝑆 data for all subprobes is plotted as a histogram three distinct peaks emerge, as shown 
in Fig. 3c, where the peaks are labelled I through III, and in addition between peak II and peak III a 
plateau in the data where the counts are roughly constant. Measurements representing the three 
peaks all originate from connected regions of graphene. The plateau between the second and third 
peak originates from measurements made in the transition area. Representing the data as a 
histogram allows for easy comparison of changes to the wafer over time.  

𝐺𝐺𝑆𝑆 was also mapped at different times over several weeks using THz-TDS and M4PP, expanding on 
the work from [24]. After the maps shown above, a THz-TDS map of the wafer was performed, 
followed by an additional M4PP map, and then by a second THz-TDS map. Histogram analysis of the 
results are shown in Fig S4  and show that the two THz-TDS maps are almost identical, heavily 
suggesting that the intervening M4PP map has not made significant changes the sample. Overall, 
observe slightly higher 𝐺𝐺𝑆𝑆 values in the M4PP map in comparison to both THz-TDS results, which is 
attributed to the fact that M4PP analyses 𝐺𝐺𝑆𝑆 over micron-sized areas whereas THz-TDS at 1 THz 
probes over tens of nanometres [33]. We also note that peak I and II observed in Fig 3d have now 
combined as part of the change in 𝐺𝐺𝑆𝑆 over time. The progression of wafer changes over nine weeks 
are shown in Fig. S5. The changes over time are quantitatively similar for both for both M4PP and  
THz-TDS showing that either method has the resolution required to track changes in graphene over 
time. 

We have the following recommendations when mapping 2D materials with M4PP. Choosing to use a 
M4PP with greater than four probes allows for additional subprobe measurements while adding with 
negligible additional measurement time, allows a level of measurement redundancy for failed 
measurements, and allows insightful additional analysis. We have shown in Fig. 2 that a higher 
accuracy 𝐺𝐺𝑆𝑆, with less dead pixels was achieved by combining the data from subprobes into a single 
map. In addition, the combined map can be used via both uniformity assessment (e.g. Fig 3a) and 
subprobe-correlational assessment of 𝐺𝐺𝑆𝑆  to determine spatial quality. The technique is sensitive 
enough to track changes in the graphene over time.   

Conclusion 

In summary, we have investigated wafer conductance maps of graphene using multiple subprobe 
M4PPs. Combining subprobes increased measurement yield from under 85% to 97% without adding 
significant measurement time. 𝐺𝐺𝑆𝑆 varied across the wafer by over an order of magnitude, leading to 
local regions with different 𝐺𝐺𝑆𝑆 landscapes. Producing wafer-scale analysis can be used to determine 
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overall growth quality, identify graphene areas which are suitable for further device processing, or to 
reject/accept an entire wafer. The M4PP map was compared to THz-TDS which showed qualitatively 
similar maps, even when the wafer changed over many weeks, further suggesting that M4PP 
produces accurate 𝐺𝐺𝑆𝑆 data. THz-TDS conductivity maps performed before and after the M4PP 
mapping showed no decrease in conductivity attributable to the M4PP process. 
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Supplementary information:  

 

Figure S1. Histogram of the RA/RB ratio for the M4PP map shown in Fig 2d. The requirement for quasi 
1D electrical behaviour is either a ratio of 0 or 1, which only a very small number of pixels have. 

 

 

Figure S2. Uniformity maps showing relative standard deviation of local areas for regions for the 
combined map from Fig 2 d. a) 4 × 4 pixels. b) 10 × 10 pixels. c) 20 × 20 pixels.  

 

 

Figure S3: Uniformity Maps for 5 x 5 pixels for a) subprobes 1 (Fig 2a), b) subprobe 2 (Fig 2b), and c) 
subprobe 3 (Fig 2a).  

Terahertz time-domain spectroscopy (THz-TDS) was performed using a Picometrix T-ray 4000 [34]. 
The spot size was ≈350 µm at 1 THz [35] and THz-TDS conductivity maps were acquired with a step 
size of 400 µm. The DC sheet conductance, 𝜎𝜎𝑇𝑇𝑇𝑇𝑇𝑇, was extracted by fitting the frequency-dependent 
sheet conductivity in the 0.4 - 1.1 THz range to the Drude model [35]–[37].  
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Figure S4. Histogram of three maps of the graphene wafer spaced with a week between each. The 
two THz-TDS maps, taken before and after the M4PP map, are almost identical. 
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Figure S5. Showing the change in sheet conductance for the sample, measured with THz-TDS and 
M4PP. The measurements are ordered chronologically as they were measured. Each measurement 
has a time stamp indicating when they were measured compared to the first. Next to each 
histogram there is a spatial map of the conductance. 
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Abstract

Micro four-point measurements on advanced materials are often dependent on the electrode pitch of the micro four-point
probe used. In some cases the electrode pitch can determine if it is possible to measure the sample at all. Reasons
ranging from loss of confinement of the current, to the probe being too large to land on the sample itself. Thus, a small
absolute value of the probe pitch is often necessary; unfortunately, probes with small pitch are very sensitive to dynamic
position errors. To counteract the high sensitivity to dynamic position errors, probes with built-in vibration tolerance can
significantly reduce the frequency of dynamic position error incidents. Here we discuss a method for optimizing probe
design for maximum vibration tolerance in the case where the electrodes on the probe consist of two rectangular beams
connected at an arbitrary angle. We used the method to study the effect of design variations on the vibration tolerance.
We show that there are two effective design schemes; one for probes with a pitch below 2

√
2 times the minimum feature

size, and another one for probes with larger pitch.

1 Introduction

Four-point probe (4PP) measurements were first described
more than a century ago [1], and has since become a pre-
ferred method for characterization of electronic material
properties [2–4]. In the semiconductor industry, where ma-
terial dimensions continuously decrease [5], the size of the
traditional 4PP with millimeter electrode pitch has become
a problem which has been solved by application of mi-
cro four-point probes (M4PP) with micron sized electrode
pitch [6–10]. The M4PP was first introduced to achieve
high surface sensitivity [11] and high spatial resolution [12].
The individual electrodes were straight cantilevers typically
consisting of silicon dioxide [12], polysilicon [13] or polymer
cantilevers [14] with a thin conductive metal coating (e.g.,
Au or Ni). The cantilevers may also be made completely
out of metal [15].

M4PP measurements have now developed into a fully au-
tomated process. Using configuration switching and lock-in
amplification, sheet resistance [16] and Hall effect [17,18] can
be measured on micron-scale scribe-line test pads. Combin-
ing M4PP measurements with advanced data treatment al-
gorithms [19,20] have made M4PP the most reliable method
for electrical characterization of ultra-thin materials during

the last decade [9, 10,21,22].
In order to achieve high precision results with M4PP, the

electrode contacts must remain stationary during a com-
plete measurement. Depending on the measurement type
this may be a few seconds [23]. Movement of the elec-
trodes during a measurement will lead to dynamic posi-
tion errors which affects the measurement precision through
incorrect application of geometrical correction algorithms
[19, 24–26]. As a result, vibration tolerant electrode de-
signs [27] have been introduced based on three-way flexible
electrodes [13, 28]. These electrodes consist of two beams
connected at a right angle [13,28]. While being highly vibra-
tional tolerant [27], this design limits the minimum possible
electrode pitch.

In this article, we look at hybrid electrode designs that
combine the small electrode pitch of the straight cantilever
with the vibration tolerance of three-way flexible electrodes.
This type of cantilever have been presented before [19] but
the mechanical behaviour has not been described. We look
for the best possible vibration tolerances as function of elec-
trode pitch. In order to do this, a theoretical expression is
derived for the compliance tensor of a cantilever consisting
of two beams joint at an arbitrary angle.

1
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Figure 1: Sketch of the dimensions of a two beam cantilever.
Basis for cantilever coordinate system is shown on the left side
of the cantilever.

2 Theory
The cantilevers considered in this paper consist of two rect-
angular beams connected at an angle η. Here they will be
referred to as two-beam cantilevers. The beams have lengths
L1 and L2 and widths W1 and W2 for the first and second
beam respectively. Both beams have the same height of H.
The first beam is clamped at one end and connected to the
second beam at the other. The second beam has one end
connected to the first beam and the other end is free. A
sketch of a two-beam cantilever is shown in Figure 1.

The mechanical behaviour of the cantilevers can be de-
scribed using Hooke’s law generalized to three dimensions.
So that the deflection vector, δ, of a cantilever can be de-
scribed as the compliance tensor, [C], multiplied with the
force vector, F, δ = [C]F. The inverse relation can also be
defined using the stiffness tensor [K] = [C]−1, F = [K]δ, as
also discussed by Wang et al. [28].

To describe the cantilevers, two Cartesian coordinate
systems are used. The cantilever coordinate system, O −
x′′y′′z′′, defined so that x′′ points along the direction of the
first beam, while y′′ is in the plane in which the cantilever
bends. The coordinate system is shown in Figure 1. The
sample coordinate system, O − xyz, is rotated the angle φ
around the y′′-axis and θ around the z′′-axis. These angles
represent the angle with which the probe is tilted compared
to the sample and the angle between the probe body and
the first beam of the cantilever, respectively.

The rotation from cantilever coordinates O − x′′y′′z′′ to
sample coordinates O − xyz can be described using the ro-
tation matrix [T].

[T] =




cos θ cosφ − sin θ cosφ − cos θ sinφ
sin θ cosφ cos θ − sin θ sinφ

sinφ 0 cosφ


 (1)

So that [C] = [T−1][C′′][T] [28].

2.1 Compliance Tensor
In the expression presented here it will be assumed that
the cantilevers are made from an isotropic material with
Young’s modulus E and Poisson’s ratio ν. Derivation of
the compliance elements in the cantilever coordinates is in
Appendix I.

Taking both bending and elongation of the cantilever into
account, the compliance tensor elements for a two-beam can-
tilever become.

C′′xx =
4L3

1
EH4

(
γ3

α3 + 3β
3

α3

)
sin2 η + L1

EH2

(
β + γ

α
cos2 η

)

C′′yy =
4L3

1
EH4

(
β3 + 3β

3

α
cos η +

[
3β

3

α2 + γ3

α3

]
cos2 η

)
+ L1
EH2

γ

α
sin2 η

C′′zz =
4L3

1
EH4

(
β + 3β

α
cos η + 3 β

α2 cos2 η + γ

α3 + β3

α2
1 + ν

2kβ
sin2 η

)

C′′xy = − 4L3
1

EH4

(
3
2
β3

α
+
[

3β
3

α2 + γ3

α3

]
cos η

)
sin η + L1

EH2
γ

α
cos η sin η

C′′yx = C′′xy

C′′xz = C′′zx = 0

C′′yz = C′′zy = 0 (2)
where α ≡ L1/L2, β ≡ H/W1 and γ ≡ H/W2. kβ is a
constant that describes the deflection from the torsion of the
first beam, given by a sum over all odd natural numbers:

kβ = 1
3 −

64
π5β

∞∑

n=1,3,5

1
n5 tanh nπβ2 , (3)

which is valid as long as β > 1 [29].

2.2 Static and Sliding Contact
Two types of contact can be made between the cantilever
tip and the sample, i.e. sliding and static contact.

Static contact is defined by the cantilever remaining sta-
tionary on the sample during engagement because the fric-
tion force exceeds the transverse forces. In this situation,
of zero transverse displacement of the cantilever tip i.e.
δ = δz ẑ, the related force becomes

F =



Kxz

Kyz

Kzz


 δz. (4)

Consequently the criterion to the static friction coeffi-
cient, to form a static contact, is given by [13]

µS ≥
√
K2
xz +K2

yz

K2
zz

, (5)
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where µS is the static friction coefficient.
Sliding contact represents the other extreme, where the

cantilever tip during engagement slides over the surface un-
til zero transverse force is achieved. Mathematically this
scenario requires F = Fz ẑ. The normal force is then related
to engage depth by

Fz = C−1
zz δz. (6)

2.3 Transition Between Static and Sliding
Contact

Pure sliding contact only happens when the kinematic fric-
tion coefficient is zero, which is mostly unrealistic. However,
sliding is a good assumption if either the kinematic friction
coefficient is very low or if the angle η is small, equivalent
to a straight cantilever. In both of these cases the cantilever
tip will end very close to the zero transverse force point.

Most cantilevers will behave somewhere between static
and sliding contact; during engagement, the cantilever tip
slides across the surface until the friction exceeds the trans-
verse forces. If the engage depth is increased further, the
cantilever tip will remain stationary until the transverse
forces exceeds the friction again, at which point it will jump
to the next stable point and get stuck again. This type of
contact is known as stick-slip.

In Appendix II an experiment using 3D-printed can-
tilevers is discussed; here the normal force during an en-
gagement was measured as a function of engage depth. The
experiment was performed with 3 cantilevers: a straight can-
tilever with sliding contact, a bent cantilever with static
contact and a bent cantilever with a stick-slip contact.

Equation (7) describes the largest deflection that a static
contact, after pure sliding, can maintain without moving.
This equation shows that the necessary deflection is propor-
tional with the engage depth. The deeper the engage is,
the larger the necessary deflection has to be to move the
cantilever tip [30]. This proportionality is also seen in the
stick-slip experiment, where the “sawtooth” become longer
when the engage depth is increased. The experiment indi-
cates that a stick-slip contact will on average behave like a
sliding contact.

2.4 Vibration tolerance
Due to friction between the cantilever tip and the sample,
the cantilever tip will be able to withstand some vibrations
before moving. The vibration tolerance describes the neces-
sary lateral vibration magnitude in order to move the can-
tilever tip-sample contact point. A measure for the vibration

Figure 2: Model geometry used in finite element modelling using
COMSOL 5.2a, to simulate the compliance tensor of the can-
tilever.

tolerance, Γ, was derived in [27]

A

δz
≤ µC−1

zz

KT (ψ) + µ|KN (ψ)| ≡ Γ(ψ), (7)

where ψ is the angle of attack for a vibration in the sample
plane and A is the lateral vibration magnitude. HereKN (ψ)
and KT (ψ) are the effective normal and transverse spring
constants, given by

KN (ψ) =Kzx cosψ +Kzy sinψ (8)

KT (ψ) =
[
(Kxx cosψ +Kxy sinψ)2

+ (Kyx cosψ +Kyy sinψ)2
]1/2

(9)

To compare individual cantilever designs, the minimum vi-
bration tolerance is used to represent a measure of the worst
case vibration tolerance, i.e.,

Γ = min
ψ∈[−π,π]

Γ(ψ). (10)

3 Simulation
In order to validate accuracy of the calculated compliance el-
ements, finite element modelling of the cantilevers was done
in COMSOL 5.2a [31] using the Solid Mechanics module.

The model geometry consists of two beams connected to
each other at the centre points of their respective ends. In
order to ensure that cantilever of arbitrary angles and di-
mensions can be simulated, a hinge between the two beams
was introduced. The hinge consists of two semicircles each
connected to the end of a beam with a diameter equal to the
respective beam width. The model geometry of a cantilever
with η = 37◦ is shown in Figure 2. The model was clamped
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in one end while a point force was applied at the tip of the
cantilever.

Each compliance element was then found by applying a
force in either x̂′′, ŷ′′ or ẑ′′ and extracting the resulting de-
flection in x̂′′, ŷ′′ or ẑ′′, e.g. element C ′′xy is found by apply-
ing a force in the ŷ′′ direction and extracting the deflection
in the x̂′′ direction. The deflection is then divided by the
magnitude of the force to get the compliance element. The
model will be used to validate the results in Section 5.2.

4 Vibration Tolerance Vs. Elec-
trode Pitch

This study, of the effect of the electrode pitch on the vi-
bration tolerance, is based on the silicon dioxide cantilever
design presented in Cagliani et al. [19], which is used as a
base line for comparison. The new designs uses the total
length (LT = 12.2 µm), engage stiffness (C−1

zz = 13.1 N/m)
and minimum feature size (d = 0.5 µm) from the cantilever
design in [19]. The total cantilever length is given by

LT = L1 cos θ + L2 cos(η − θ). (11)

Finally, the gap between two neighbouring cantilevers in a
probe must be at least the minimum feature size, this con-
dition can be expressed as

σ cos θ −W1/d ≥ 1
σ cos(η − θ)−W2/d ≥ 1 (12)

where σ is the dimensionless electrode pitch, given by the
electrode pitch divided by d.

To identify the optimal design at each value of the nor-
malized electrode pitch, a brute force based optimization
was used. This method is based on calculating all permuta-
tions of the design parameters and then choosing the best.
However, some limits on the parameter space were intro-
duced to improve calculation speed and precision, these are
described in Appendix III.

Of the nine parameters (θ, η, φ, α, LT , H, W1, W2 and
C−1
zz ) necessary to describe the problem, three were kept

constant (φ, LT and C−1
zz ), one always resulted in the same

value (W2) while the remaining five (θ, η, α, H and W1)
were variable. The results will be evaluated in Section 5.2.

5 Results and Discussion

5.1 Generalized Observations
To form a general idea of how each geometric parameter af-
fects the vibration tolerance of the cantilever, the vibration

tolerance was plotted as a function of the three dimension-
less parameters α, β and γ as well as the angles θ and η. The
plots are shown in Figure 3. In the plots, a cantilever height
ofH = 2 µm was used. The length of the first beam, L1, was
adjusted for each data point to make the engage stiffness,
C−1
zz , constant at 10 ± 0.1 N/m. The cantilever is assumed

to be tilted at an angle of φ = 30◦ and made of SiO2, with
a Young’s modulus of E = 69 GPa and a Poisson’s ratio of
ν = 0.17 [32].

Figure 3 shows that increasing γ (corresponding to de-
creasing W2) increases the vibration tolerance. It appears
as a general rule that minimizing W2 always results in a
larger vibration tolerance. The effect of changing β (corre-
sponding to changingW1) is less straightforward. Generally,
increasing β increases the range of α-values that leads to a
large vibration tolerance. A high value of β combined with a
small value of γ results in a larger vibration tolerance com-
pared to cases where both β and γ are small. However, when
both β and γ are high the vibration tolerance is smaller than
when β is small while γ is high. In other words the opti-
mal value of β depends heavily on the choice of parameter
values. From Figure 3 it is also evident that increasing the
angles θ and η also increases the vibration tolerance. Except
when the angles are allowed to be very large (θ ≈ 60◦ and
η ≈ 130◦).

5.2 Design Optimization
The normalized vibration tolerance of the optimized designs
is shown in Figure 4 as function of the normalized electrode
pitch σ. Since the electrode pitch needs to include both the
gap between cantilevers and the width of the beams, it must
be at least two minimum feature sizes. The dimensionless
vibration tolerance is in percent of the engage depth. The
results of simulating the same designs using finite element
modelling is shown in the same plot. In general, the analyti-
cal and numerical results are in excellent agreement, with an
average relative difference (Numerical/Analytical - 1) of 3%.
The resulting angles for the optimized designs are shown in
Figure 5.

For σ ∈ [2, 2
√

2] the design freedom is severely limited by
the gap between the cantilevers. The most efficient change
to the cantilever design in this interval is to maximize the
angles θ and η. Since LT is kept constant and the angles are
increasing, the individual lengths (L1 and L2) must neces-
sarily increase. However, α (L1/L2) also increases, in this
interval of σ, i.e. from α ∈ [1.5, 2.3]. H/d, the height in
units of minimum feature size, is increased linearly from 2.6
to 8.2 in order to maintain an engage stiffness of 13.1 N/m.
At σ = 2

√
2 it is possible to make a cantilever with θ = 45◦

and η = 90◦.
Beyond σ = 2

√
2, α and H is kept roughly constant while
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Figure 3: Shell plots of the vibration tolerance for two-beam cantilevers. Each shell represents the design surface that results in
the given vibration tolerance. The height and engage stiffness of the cantilever designs were kept constant at 2 µm and 10 N/m
respectively. Each plot shows the effect of changing α, θ and η while β and γ is changed between plots.

σ increases. At the same time the angles θ and η keep
increasing. However, since the height is constant, W1 has
to increase in order to maintain an engage stiffness of 13.1
N/m. This limits the growth of θ, since

θ ≤ arccos
(
W1/d+ 1

σ

)
. (13)

In Figure 5 this appears as a splitting of the θ and η − θ
curves.

This behaviour continues until σ ≈ 6.7. Based on the
calculations made as a part of this work, the exact value
of σ depends on the total length and engage stiffness, with
observed values ranging from 6 to 7. After σ has reached
this value the design is not changing any more.

6 Conclusion

An expression for the compliance tensor for two-beam can-
tilevers of arbitrary angle was derived. This expression was
used to study the effect of design parameters on the vibra-
tion tolerance of a cantilever. From this study we learned
that the design freedoms depends on the electrode pitch,
with significant differences between cases σ < 2

√
2 and

where σ > 2
√

2. Thus two procedures for optimizing the
vibration tolerance were developed.

Optimization of the vibration tolerance of a cantilever
when σ < 2

√
2 involves the following steps. First the width

of both beams (W1 andW2) are minimized. The two angles,
θ and η are then maximized. Finally the lengths of the
beams (L1 and L2) as well as the height (H) is adjusted
to achieve the target stiffness. In the adjustment, it can be
utilized that C−1

zz ∝ H4/L3
1.
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Figure 4: The maximum achievable vibration tolerance for a can-
tilever, with an engage stiffness of C−1

zz = 13.1 N/m, a minimum
feature size of 0.5 µm and a total length of LT = 12.2 µm, as a
function of the electrode pitch in units of minimum feature size.
The gray dotted lines are at σ = 2

√
2 and σ = 6.7.

If σ > 2
√

2 the optimization process is different. In
this case the first step is still to minimize the width of
the second beam (W2). Afterwards, find the width of the
first beam (W1) and angle to the probe body θ that re-
sults in the largest vibration tolerance, utilizing that θ =
arccos([W1/d+ 1]/σ) and that η = arccos(2/σ) + θ. Simul-
taneously the beam lengths (L1 and L2) and height (H) is
adjusted to achieve the target stiffness.
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Appendix I
In this appendix the derivation of the compliance matrix is
shown in detail. It is assumed that both beams follow the
Euler-Bernoulli beam differential equations (EB-equation),
and elongation and compression are included. In order to
derive the Compliance elements four moments of inertia are
needed. For the rotation of beam 1 (B1) and beam 2 (B2)
around the z′′-axis, the rotation of B1 around the y′′-axis

Figure 5: The angles θ and η as a function of the electrode pitch,
for the cantilever designs with the largest vibration tolerance.
The cantilevers have an engage stiffness of C−1

zz = 13.1 N/m, a
minimum feature size of 0.5 µm and a total length of LT = 12.2
µm. The gray dotted lines are at σ = 2

√
2 and σ = 6.7.

and lastly the rotation of B2 around an axis orthogonal to
B2 that lies in the x′′y′′-plane.

Iz′′1 = W 3
1H

12 , Iz′′2 = W 3
2H

12

I1 = W1H
3

12 , I2 = W2H
3

12

Force in the x′′-direction

A force applied in the x′′-direction will give rise to a constant
shear force in B2, V2 = Fx′′ sin η. This shear force will result
in a constant bending moment M1 = Fx′′L2 sin η in B1 and
the linear bending moment M2 = Fx′′(L2 − `) sin η in B2,
where ` indicates position on B2.

The EB-equation is first solved for B1,

d2

dx′′2 δ
′′(x′′) = − M1

EIz′′1

BC: δ′′(0) = 0
d

dx′′ δ
′′(0) = 0

giving the deflection and slope of the beam at point B.

δ′′yx1 = −Fx′′L2
1L2

2EIz′′1
sin η

Under the small angle assumption the angle of the deflection
is equal to the slope of the beam.

θx′′ = −Fx′′L1L2
EIz′′1

sin η
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The EB-equation is then solved for B2, in a (`,m)-
coordinate system that is rotated with the angle η compared
to the standard (x′′, y′′)-coordinate system.

d2

d`2 δ
′′(`) = − M2

EIz′′2

BC: δ′′(0) = 0
d
d`δ
′′(0) = θx′′

Solving this gives a deflection in the m-direction (δ`x′′),
that can then be translated into a deflection in the x′′− and
y′′−direction. The total deflection due to bending in x′′ and
y′′ becomes:

δ′′xx = −δ′′`x sin η = 4Fx′′

EH

[
L3

2
W 3

2
+ 3L1L

2
2

W 3
1

]
sin2 η

δ′′yx = δ′′`x cos η + δ′′yx1

= −4Fx′′

EH

[
L3

2
W 3

2
+ 3L1L

2
2

W 3
1

+ 3
2

L2
1L2

W 3
1 cos η

]
cos η sin η

A force in the x′′-direction would also lead to an elonga-
tion or compression of the beams

δ′′xxE = Fx′′

EH

[
L1
W1

+ L2
W2

cos2 η

]

δ′′yxE = Fx′′

EH

L2
W2

cos η sin η

The compliance matrix elements is then found by the
sum of the deflections divided by the force and results in
the following elements.

C ′′11 = 4L3
1

EH4

[
γ3

α3 + 3β
3

α2

]
sin2 η

+ L1
EH2

[
β + γ

α
cos2 η

]
(14)

C ′′21 = − 4L3
1

EH4

[
γ3

α3 + 3β
3

α2 + 3
2

β3

α cos η

]
cos η sin η

+ L1
EH2

γ

α
cos η sin η (15)

Force in the y′′-direction

The bending moment for the two beams can be found to be
M1 = −Fy′′(L1+L2 cos η−x′′) andM2 = −Fy′′(L2−`) cos η.

Solving the EB-equation for B1 gives the deflection and
slope of B1 at point B. The equation and boundary con-
ditions looks similar to the equation for a force in the x′′-
direction.

δ′′yy1 = Fy′′

EIz′′1

[
1
3L

3
1 + 1

2L
2
1L2 cos η

]

θy′′ = Fy′′

EIz′′1

[
1
2L

2
1 + L1L2 cos η

]

The EB-equation for B2 can now be solved in the (`,m)-
coordinate system, using similar boundary conditions as for
the force pointing in the x′′-direction, afterwards the deflec-
tion is translated back to x′′ and y′′ components. The total
deflection becomes due to bending becomes:

δ′′xy = −δ′′`y sin η

= −4Fy′′

EH

[
L3

2
W 3

2
+ 3

2
L2

1L2
W 3

1 cos η + 3L1L
2
2

W 3
1

]
cos η sin η

δ′′yy = δ′′`y cos η + δ′′yy1

= 4Fy′′

EH

[
L3

1
W 3

1

1
cos2 η

+ L3
2

W 3
2

+ 3 L2
1L2

W 3
1 cos η + 3L1L

2
2

W 3
1

]
cos2 η

A force in the y′′-direction would also give rise to an
elongation or compression of the beams

δ′′xyE =
F ′′y
EH

L2
W2

cos η sin η

δ′′yyE =
F ′′y
EH

L2
W2

sin2 η

Using the (α, β, γ)-notation the compliance matrix ele-
ments becomes:

C ′′12 = − 4L3
1

EH4

[
γ3

α3 + 3
2

β3

α cos η + 3β
3

α2

]
cos η sin η

+ L1
EH2

γ

α
cos η sin η (16)

C ′′22 = 4L3
1

EH4

[
β3

cos2 η
+ γ3

α3 + 3 β3

α cos η + 3β
3

α2

]
cos2 η

+ L1
EH2

γ

α
sin2 η (17)

Force in the z′′-direction

The bending moment for the two beams due to a force in
z is M1 = Fz′′(L1 + L2 cos η − x′′) and M2 = Fz′′(L2 − `).
Using the same procedure as for the x′′- and y′′-direction, it
can be shown that the displacement due to bending is given
by:

δ′′zz = 4Fz′′

EH3

[
L3

1
W1

+ L3
2

W2
+ 3L

2
1L2
W1

cos η + 3L1L
2
2

W1
cos2 η

]

Since a force is applied orthogonal to the bend on the can-
tilever, a torsion is introduced. The angle of this torsion is
directly proportional with the arm of the force multiplied
with the length of the twisted beam.

ϕz′′ = Fz′′L1L2
GJ

sin η
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Where G is the shear modulus and J is the torsion constant.

G = 1
2

E

1 + ν

J = HW 3
1

(
1
3 −

64W1
π5H

∞∑

n=1,3,5

1
n5 tanh nπH2W1

)

Where ν is Poisson’s ratio and O is the set of all odd natural
numbers.
When calculating the displacement it is important to re-
member the to take the angle of the second beam into ac-
count again.

δ′′zzT = ϕz′′L2 sin η = Fz′′L1L
2
2

GJ
sin2 η

Combining these and using the (α, β, γ)-notation the com-
pliance matrix element becomes

C ′′33 = 4L3
1

EH4

[
β + γ

α3 + 3β
α

cos η + 3 β
α2 cos2 η

+ β3

α2
1 + ν

2kβ
sin2 η

]
(18)

Where kβ is a function of β and is given by

kβ = 1
3 −

64
π5β

∞∑

n=1,3,5

1
n5 tanh nπβ2

Due to the assumption of small angles, and the 1D
model used, there are no contributions to the x′′- and
y′′-displacements as a result of a force in the z′′-direction
and vice versa.

Appendix II
Three macroscopic cantilevers were printed in Polylactic
Acid (PLA) (E = 2.347 GPa [33] and ν = 0.33 [34]) using an
Ultimaker 2 3D-printer. The dimensions of the cantilevers
are shown in Table 1. A cantilever was secured on a vertical
post mounted on a z-stage (resolution 5 µm) so that the can-
tilever tip was resting in near-contact with a high precision
scale (resolution 0.1 N). While the cantilever was engaged
on the scale and then disengaged, the resulting force was
measured. The results are summarized in Figure 6.

Initially during engagement, the straight cantilever width
sliding contact (Figure 6 a) follows the theoretical line for
C−1
zz , which is indicative of sliding contact. The small dis-

continuities in the force-deflection curve is likely related to a

Cantilever contact type
Dimension Unit Sliding Stick-slip Static
L1 (mm) 60 60 60
L2 (mm) 30 30 30
W1 (mm) 3.9 1.9 1.9
W2 (mm) 3.9 1.9 1.9
H (mm) 4.1 5.1 5.1
η (deg) 0 90 140
θ (deg) 0 45 70

Table 1: Dimensions of the straight cantilever, expected to form
a sliding contact, and the two bent cantilevers, expected to form
stick-slip and static contact respectively, used in the experiment.

stick-slip phenomenon caused by the macroscopic roughness
of the surface. As the engage depth increases the cantilever
starts to plastically deform, resulting in the contact force
tapering off. The disengage shows a large hysteresis, some
of which is likely caused by plastic deformation, while the
rest is most likely caused by some phenomena not treated
here. The stick-slip effect is not visible during disengage
where the force deflection curve resembles a pure sliding for
engage depth less than 3 mm.

The bent cantilever with static contact (Figure 6 c) shows
a very similar behaviour, where the contact force increases
almost linearly with the engage depth. Similar to the sliding
contact some plastic deformation seems to occur. Unlike the
sliding contact case, there are no sign of the scale roughness,
supporting the notion that this contact is indeed static. The
hysteresis observed for the static contact is reduced to only
the apparent plastic deformation.

The bent cantilever with stick-slip (Figure 6 b) shows a
more pronounced “sawtooth” like behaviour, where the con-
tact force increases linearly in phases, with a partial release
of tension in between. The tension is released as the trans-
verse force exceeds the friction force and the cantilever tip
slides on the surface. Each build-up follows the slope of Kzz

(static contact), but with each release the force drops to the
slope of C−1

zz (sliding contact).
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Figure 6: Normal force as a function of engage depth for macro-
scopic 3D printed cantilevers made of Polylactic Acid (PLA). A
picture of the cantilever is shown in each plot. The full and dot-
ted lines show the expected force if the stiffness is given byKzz or
C−1
zz respectively. Both Kzz and C−1

zz are calculated analytically.
The red and blue dots indicate measured force during engagement
and disengagement respectively. a) Straight cantilever expected
to form a sliding contact. Kzz is so large that the corresponding
line is on top of the y-axis. b) Bent cantilever expected to form
a stick-slip contact. c) Bent cantilever expected to form a static
contact.

Appendix III
In the calculations for Section 4 and 5 the following param-
eter design space was considered:

θ ∈ [0◦, arccos(2/σ)] ∆θ = 1◦

η ∈ [0◦, arccos(2/σ) + θ] ∆η = 1◦

α ∈ [1.5, 2.5] with 41 steps
H ∈ [2, 12]× d with 51 steps
W1 ∈ [1, σ cos θ − 1]× d with 51 steps

In the case where arccos(2/σ) > 75◦, the upper bounds on
the angles θ and η were replaced with 75◦ and 75◦+θ respec-
tively. Variable limits on the parameters ensured that calcu-
lations on physically unfeasible designs were avoided, which
drastically reduced the number of calculations at small val-
ues of σ. The following parameters were kept constant dur-
ing the calculations:

W2 = d

LT = 12.2 µm
φ = 30◦

C−1
zz = 13.1 N/m

For every permutation of α, θ and η, the engage stiffness
and the vibration tolerance were calculated for all combina-
tions of W1 and H. Values of W1 and H resulting in 13.1
N/m engage stiffness were identified using linear interpola-
tion between neighboring grid points.

The optimization runs through all parameters by going
through nested for-loops in the order θ, η and α going from
outer to inner for-loop. Thus for any combination of θ and
η, all values of α are visited before η is incremented by one
step. This repeats until all values of η have been visited, at
which point θ is incremented by one step.

Based on the results in Section 5.1, we know the highest
vibration tolerances are found at large angles. Assuming the
global maximum of the vibration tolerance is also the only
maximum, a large run-time improvement can be achieved
by looping through the angles in decreasing order and ter-
minating the for-loop if the vibration tolerance in a step is
lower than in the preceding step.
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