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Abstract Network monitoring has been traditionally conducted using Simple
Network Management Protocol (SNMP): a network monitoring protocol that
allows network administrators to keep track of every node in the network and
ensure that it behaves correctly. This paper presents the Constrained Moni-
tored Protocol (CoMP): a lightweight resource-efficient alternative to SNMP
that targets the low-end devices of the Internet of Things (IoT). These devices
are characterised by severe resource constraints in terms of memory, process-
ing power, and bandwidth. Moreover, they are often energy-constrained as
well, powered either by small batteries or energy harvesting. While SNMP
does work with these devices, it has an unnecessary overhead resulting in a
waste of resources that could otherwise be used for some other task, or to
save energy. Furthermore, this paper proposes a cross-protocol CoMP-SNMP
proxy that operates at the border router of the resource-constrained network
and enables the efficient monitoring of resource-constrained IoT devices using
CoMP from existing SNMP-based network monitoring infrastructures.

Keywords Network Monitoring · Wireless Sensor Networks · Resource-
Constrained Devices · Internet of Things

1 Introduction

With the emerging Internet of Things (IoT) billions connected devices support
a wide variety applications in the industry and in the society in general. Man-
aging such a high volume of devices is a challenge. To make matters worse,
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the edge of the IoT is composed of networks of severely resource-constrained
sensors, namely Wireless Sensor Networks (WSN). Monitoring these resource-
constrained IoT device is of critical importance, particularly when the network
supports safety critical applications, such as, for example, a train scheduling
and signaling system. A simple failure in such networks can cause anything
from mild degradation in user experience (e.g. train delay) to catastrophic
outcomes (e.g. train crash).

The standard protocol for network monitoring is the Simple Network Man-
agement Protocol (SNMP), which was developed in the 1980s. The main issue
with SNMP is that it was not designed for resource-constrained networks, such
as the low-end wireless sensor networks of the IoT. Whilst SNMP does work
on resource-constrained IoT devices, it imposes unnecessary overhead that
degrades their performance. For example, it uses a relatively old and heavy
encoding technique where to encode the number 4 would be 0216, 0116, 0416. It
also reserves an entire 32-bit integer to address the nodes, which is not sensible
in WSN. Instead, there is a need for a lightweight alternative to SNMP that
is suitable for low-power IoT networks.

To that end, we introduce the Constrained Monitoring Protocol (CoMP).
CoMP provides the same functionality as the current state-of-the-art monitor-
ing protocols, yet in a much more resource-efficient manner. We have imple-
mented CoMP for the Contiki-NG1 operating system and compared it against
monitoring standards, including SNMP [9] and CoAP (Constrained Applica-
tion Protocol) [35]. Specifically, we compare the protocols in terms of (i) code
footprint, (ii) application-layer overhead, (iii) over-the-air bytes, (iv) radio
energy usage, (v) delay, and (vi) jitter. An early version of CoMP appears
in [13]. This paper extends [13] with a cross-protocol proxy for CoMP and
SNMP that runs at the border router of the sensor network. This extension
substantially improves the applicability of CoMP in existing networks. In prac-
tical terms, the proxy enables existing monitoring applications that use SNMP
to efficiently collect data from constrained nodes that use CoMP. Moreover,
it enables the monitoring of hybrid IoT networks that consist of resource-
constrained 6LoWPAN networks and traditional unconstrained IPv4/IPv6
networks. Additionally, two new experiments were done to extend the eval-
uation of CoMP. In the first experiment, we count the transmitted frames and
fragments and demonstrate the impact of 6LoWPAN fragmentation. In the
second experiment, we measure the delay and jitter. These additional experi-
ments confirm that CoMP uses less resources than SNMP and CoAP.

The rest of this paper is structured as follows. Section 2 presents some
related work on monitoring WSNs. Section 3 briefly introduces SNMP. Sec-
tion 4 presents our proposed monitoring protocol CoMP. Section 5 presents
the CoMP-SNMP border router proxy. Section 6 provides experiments that
evaluate and compare CoMP against SNMP and CoAP. The same section also
evaluates the border router proxy. Finally, Section 7 concludes the paper.

1 www.contiki-ng.org

www.contiki-ng.org
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2 Related Work

Since it is clear that there has not been defined a standard way of monitoring
resources on embedded systems, several papers have proposed either new pro-
tocols or adaptation of the current protocols to have a good way to perform
this action.

On [29] a new protocol for monitoring IoT devices is proposed. The LoW-
PAN Network Management Protocol (LNMP) targets two problems faced in
these networks, Network Discovery and Device Monitoring. Since the deploy-
ment is usually done in an ad hoc fashion, a normal problem when monitoring
IoT devices is to keep track of which nodes are present on the network. This
could be done manually, but in a very dense network, this would be a mas-
sive task and very prone to errors. To target this issue, a Network Discovery
proposal was done. In this, the end devices report to a coordinator their sta-
tus periodically. This is done recursively until it reaches the gateway. During
normal operations only the changes on the state table are reported upwards,
reducing the traffic. The gateway likewise has a state table, like any other
device in the network. However, its table is available in a Management Infor-
mation Base (MIB), this way management systems can be aware of the devices
available in the network. To target the resource monitoring problem an adap-
tation layer is proposed. A conversion between the SNMP Object Identifier
(OID) to a 6LoWPAN OID is the only modification proposed. Another pro-
posed improvement is caching in the gateway where if a value is constant for
the entire network the gateway replies instantly without sending the request
to the end device. The Network Discovery solution is really solid since it tar-
gets a real issue in dense networks, however, the only compression proposed
in the SNMP was a conversion between OIDs which is good, but not enough.
In CoMP, the OID system is kept but compression is applied to it. However,
it does not address the Network Discovery problem because this can be solved
using the Physical Topology MIB proposed on [4]. This MIB was designed
to be used with the Link Layer Discovery Protocol (LLDP) which was pro-
posed on [38]. But this can also be filled in with the RPL Neighbors Table
information.

On [11], the SNMP for 6LoWPAN (6LoWPAN-SNMP) was proposed. The
same principle behind the 6LoWPAN was used. The SNMP headers were an-
alyzed and compressed as much as possible. Some fields are way too large,
only a small fraction of it is usually used. For example, the header version
field which is a 4-byte integer can easily be compressed into 3-bit since he
proposes 4 new versions. This limits the number of new versions since all 3
bits are used. Other fields like the Request ID can be limited too, there is no
need to use 4 bytes in total for this. The main reason for this identification is
to avoid duplicate messages, but it is almost impossible to have 4294967296
messages being handled at the same time, especially in a WSN context. For
this reason, it proposed to limit it to 255 which only requires 1 byte. No de-
tails on the encoding were given, so it is possible to assume that the same
BER (Basic Encoding Rules) encoding was used. The OID system was kept
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and no compression was suggested for it. Lastly, the same proxy technique as
before was used in the border gateway to convert the messages from SNMP to
6LoWPAN-SNMP and vice versa. CoMP uses a different encoding which tar-
gets both key requirements for constrained devices, namely the code footprint
and and the encoded buffer size. Also, an OID compression technique is used.

On [10], the EmNetS Network Management Protocol (EMP) is proposed.
Just like the LNMP, it tackles two problems of the WSN, Network Discovery
and Monitoring. To solve the first, it uses a similar approach. There are Coor-
dinators and End Devices, the coordinators are responsible for keeping track
of its end devices. This is done recursively until the Gateway is reached. On
the gateway a table with all the devices and the last time its entry was up-
dated are kept, this can be used to create several statistics. To solve the second
problem and keep this solution SNMP compliant, a new MIB structure was
proposed that will be maintained only for WSN devices. Currently, the MIB
scope is huge, meaning that many of those entries are either deprecated, not
used or will never be used in the WSN context. This way only the MIBs that
are used in this context will be considered, reducing the depth of the tree. In
the gateway, a conversion table is available where the OIDs can be converted
into an equivalent EMP OIDs. Another trick used to reduce the bandwidth
is to keep all constant values in a cache on the border gateway. This way the
gateway can respond to the request without forwarding this request into the
WSN. A good example of which variable is always constant in a system until
it is updated is the system description (sysDescr). In this work, the Network
Discovery problem is not tackled, but to solve the Monitoring problem better
techniques to reduce the Network usage are used and the OID is kept, no new
MIBs are introduced.

On [41], a new architecture is proposed using Blockchain and Fog Comput-
ing which will deliver a more stable and secure monitoring system. Defining
an entire architecture allows for a more target solution where it is possible to
define all the layers accordingly to the needs. It can be both good and bad
since the solution will be designed to work in the use-cases it was thought for,
however, an extremely optimized solution will make it less reusable. Addition-
ally, this comes with a heavy price. The first downside is the high complexity
since it requires sensor nodes, gateway nodes, aggregator nodes, sink nodes,
and the Blockchain network as main components. Another caveat is that this
solution is an entire architecture that imposes the challenge of an entirely
new infrastructure being required. CoMP doesn’t propose a new architecture
instead it’s designed to work with the current architectures available at the
moment. It’s planned to work in any IP-based network, 6LoWPAN or not. The
outline targets IoT networks but it also carefully ensures seamless integration
with already deployed monitoring systems to reduce cost and complexity.

On [42], another protocol for monitoring IoT devices was proposed and
also based on SNMP. However, it was done as a simple prototype to show that
it’s possible to use the same model used by SNMP to also monitor constrained
devices. It did not define key elements of the proposed protocol such as packet
structure, encoding, resource identification, monitored values. It did show that
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by changing the SNMP and making it more compact yields less traffic, CPU
and memory usage. CoMP is proposed in more details where all elements were
defined and the design decisions were justified. Additionally, a proxy between
SNMP and CoMP is also introduced which has the goal of allowing a seamless
integration of CoMP into current monitoring system that support SNMP.

On [24], a completely different solution was proposed where the resources
that are allocated and are not used to it’s fully extension are used to transmit
monitoring data. An In-Band Network Telemetry (INT) proposal designed for
WSN is described. It leverages the 6TiSCH architectural flexibility. It delivered
very good results in term of performance since it uses a resource that would
we lost. It enabled the network to be used to it’s truly full extent. However,
It can be considered a layer violation because the MAC layer is being used to
control the transmission of application data. Additionally, If an application is
using all or almost all network resources, INT will deliver poor results because
it relies on non used resources. Furthermore, in it’s current state, it’s a TSCH
tailed solution which can make integration with current monitoring solutions
harder.

On [18], multiple use cases of constrained devices networks monitoring are
presented. Two examples proves how different these networks can be: First,
it can be used for environmental monitoring, which due to it’s deployment
location and conditions are expected to have small failures. Therefore, in some
cases, hours of failure are required in order to trigger a maintenance. Secondly,
it can be used for medical monitoring, which can be a simple routine checkup
metrics or critical metrics. In the first case, failures can be accepted and several
minutes of failure would require intervention. However, on the second case,
failures are likely not acceptable and a few seconds of non operation are enough
to trigger maintenance.

On [37] and [36], the state-of-the-art protocols and frameworks that can
be used for IoT monitoring were listed and compared. It also mentions several
challenges that these face. First, taxonomy, there is no unified taxonomy there-
fore each protocol and framework defines its own. Additionally, the maturity
is also another challenge, a newly proposed protocol needs to be deployed in
real scenarios in order to mature and became more stable. Moreover, with ma-
turity the tools and libraries will follow, which enables easy integration and
deployment of those. The lack of agreement on the first, makes the second
difficult because an agreed taxonomy will enable protocols and frameworks to
target a specific groups which have similar requirements. Therefore, protocols
can be proposed for a single group of IoT devices and not for all enabling a
more targeted solution.

These approaches tried to follow the same principle used by the 6LoWPAN
when an adaptation layer was proposed. This ensures the interoperability be-
tween these protocols. This approach ensures seamless integration of WSNs
into existing ecosystems. It is fairly simple to use the same monitoring system,
like PRTG2, that currently monitors all networks of a ISP to additionally mon-

2 https://www.paessler.com/prtg

https://www.paessler.com/prtg
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Identifier Length Contents

(Type) (Length) (Value)

Fig. 1: BER Encoding Structure

itor the WSN that this company has. In this work a new protocol is proposed,
CoMP, which is a standalone protocol, like CoAP.

3 Background: SNMP

3.1 Encoding

The SNMP only uses a subset of the ASN.1 which was proposed in 1987 on
[22]. A defined encoding technique is used to make it easy to implement this
protocol in any language because an object will have the same encoding when
it is sent over the wire. In Figure 1 it is possible to see how an object can
be encoded with this technique. The Content can be another object which is
recursively encoded. This is exactly how the SNMP packet is encoded.

3.2 Messaging Pattern, Resource Identification and Monitored Values

SNMP’s main operations follow a request-reply pattern where some entity re-
quests the server which receives it, processes it accordingly and replies. SNMP
additionally supports the publish-subscribe pattern, however, this is only pos-
sible in the Trap. This type of request is mainly used when events occur on
the network, such as a DSP card going up or down. No setup in which this
was used to send scheduled monitoring data was found during this research.

SNMP uses the OID, proposed in 1994 on [23], to identify the resources
available. It is an array of numbers which are allocated hierarchically. For
example, only the authority for the 1.2.3 can determine what 1.2.3.4 is.

This identification method requires a centralized entity that is responsible
for allocating the resources since they are supposed to be globally unique and
not only locally. This furthermore implies a huge overhead. For example, to re-
quest the system description, or sysDescr, from a device, the 1.3.6.1.2.1.1.1
OID has to be requested. But if the server only knows the sysDescr variable
there is a tree of depth 8 with one node at each level.

The SNMP uses the MIB, proposed in 1988 on [27], as a database for
its entities. This hierarchical organization is great for huge environments like
the internet. A network usually contains multiple heterogeneous resources, for
example in an office’s network, not all routers will be from the same brand.
Using a MIB to find which resources a specific brand has made available for
the system administrator is easier. Another plus is the fact that all devices
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from the same brand, technically, replies to the same MIBs. Networks are in
constant change, different devices are joining and leaving a network all the
time.

3.3 Operations

SNMP supports several operations: Get, Get-Next, Get-Bulk, and Set. The
Set operation is irrelevant for monitoring, it can be used to change the proper-
ties of a device. Therefore it is only relevant for managing. In the Get request,
the client sends a single OID, or a list of OIDs, with the value field empty. The
server only gets this request, sets the values accordingly and replies. Addition-
ally in the Get-Next operation, the client sends an OID and the server replies
with the OID that is after the requested OID in the tree. The entire MIB of
the server can be walked interactively if the first Get-Next OID is the 1 and
for each response, the next of that is requested again, this is known as SNMP
Walk. Lastly, the Get-Bulk was introduced in the SNMPv2 which is a better
version of the Get-Next. Instead of only returning the next OID it returns the
next X OIDs. This amount of variables is defined either by the server or the
client. The one that supports the fewer wins. In the same way that it is pos-
sible to traverse an entire MIB with the Get-Next, it is also possible with the
Get-Bulk, with the advantage that fewer packets are exchanged since multiple
variables are sent at once.

3.4 Packet Structure

On Figure 2 the SNMPv1 and SNMPv2 message format is shown. The first
data in the message is the SNMP version, followed by the community string
subsequently there is the SNMP PDU. Additionally, the SNMPv3 has a com-
pletely different packet structure, Figure 3. It also starts with the version field
however, it is followed by new fields. The ID, which is a unique identifier for
this message, note that this ID is different from the Request ID from the SNMP
PDU. The Max Size indicates the requester buffer max size. Flags represent
the message security level. A Security Model that contains the model used to
generate the message. The Engine fields that are the ID which represents the
SNMP entity that is participating in the transaction, the Boots which contains
the SNMP entity boots and the Time which has the Engine Time of the SNMP
entity. These are followed by the User Name which represents the conceiver
of the request. Additionally, there are the security parameters which has the
parameters that the model depends, the context engine ID which identifies
uniquely a SNMP entity and the context name which is likewise unique for
a SNMP entity. In the end it contains the SNMP PDU, like SNMPv1 and
SNMPv2.

On Figure 4 the SNMP PDU which is the same for SNMPv1, SNMPv2 and
SNMPv3 is shown. The first information is the PDU type, which can be Get,
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SNMP Version Community String SNMP PDU

Fig. 2: SNMPv1 & SNMPv2 Packet Structure

SNMP Version ID Max Size Flags Security Model

Engine ID Engine Boots Engine Time User Name

Security Parameters Context Engine ID Context Name

SNMP PDU

Fig. 3: SNMPv3 Packet Structure

PDU Type Request ID Error Status Error Index

Variable Binding 1 Variable Binding 2 ... Variable Binding n

Fig. 4: SNMP PDU Structure

PDU Type Request ID Non Repeaters Max Repetitions

Variable Binding 1 Variable Binding 2 ... Variable Binding n

Fig. 5: SNMP Get-Bulk PDU Structure

Get-Next, Set, Response, Trap and Inform. Afterward, there is the Request
ID which is the identifier to relate a request with a response. Additionally,
there are two error fields which are only set in the response PDU. The error
status contains an error code and the error index indicates in which varbind
this error occurred. Lastly, there are the varbinds that associate an object to
value, on the Get requests the values are ignored.

On Figure 5 the SNMP PDU for Get-Next requests can be seen. This type
is only available on SNMPv2 and SNMPv3, the structure is almost the same
except for the fact that there are no error fields. Instead, there are the Non-
Repeaters which defines the number of objects that should be retrieved no
more than once and the Max Repetitions which specifies the number of times
that other variables should be retrieved.
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0 2 3 7

Major type Additional Information

Fig. 6: CBOR tiny field encoding.

4 Constrained Monitoring Protocol (CoMP)

In this section, we introduce CoMP. Its goal is to be a very lightweight monitor-
ing protocol to be used in a WSN context. Additionally, it has the objective to
be SNMP compliant, therefore it should be possible to convert SNMP requests
into CoMP requests. However, in this paper, the focus area is the monitoring
requests from SNMP (i.e. Get, Get-Next, Get-Bulk, and Response). The Set,
Trap and Inform requests are not covered but the proposed structure should
cover these requests out-of-the-box.

In this regard, CoMP offers resource-efficient equivalents to SNMPv1 and
SNMPv2 [39], which are referred to as CoMPv1 and CoMPv2 respectively.

4.1 Encoding

Following the CoAP’s encoding proposal. All the CoMP headers are binary
encoded and using the network byte order, however in the current proposal
there is no 16-bit or higher integer, therefore, the byte order is irrelevant. All
the PDU variables, values or the pair variable and value, were encoded using
the CBOR (Concise Binary Object Representation) encoding. Proposed on [7]
in 2013, it targets constrained devices since one of its goals is to allow a small
code footprint, very small messages and to allow extensions without the need
for new versions.

The CBOR encoding has a data item header that contains a major type
and additional information. For each major type, the additional information
contains different information that can be used to process the rest of the data.
A good example is the text string major type. It is represented by the integer
3, 01112. The additional information meaning varies, from 0, 000002, to 23,
101112, it is used as the byte count composing a short field encoding, Figure
7, where the byte count is used to know the length of the value. If 24, 110002,
the next byte is an unsigned 8-bit integer with the byte count, thus composing
a long field encoding, Figure 8. If 25, 110012, the next 2 bytes is an unsigned
16-bit integer with the byte count, also a long field encoding. If 26, 110102, the
next 4 bytes is an unsigned 32-bit integer with the byte count, likewise a long
field encoding. If 27, 110112, the next 8 bytes is an unsigned 64-bit integer
with the byte count, once again a long field encoding. From 28 to 30 remains
unsigned. If 31, 111112, it means that this is an indefinite string, each byte
has to be read until a Break, 0xFF, 111111112, is encountered, therefore this
composes a tiny field encoding, Figure 6.
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0 2 3 7

Major type Additional Information

Value

... × Byte Count ...

Fig. 7: CBOR short field encoding.

0 2 3 7

Major type Additional Information

Payload length

... × Byte Count ...

Value

... × Payload length ...

Fig. 8: CBOR long field encoding.

One known issue in the CBOR encoding is the OID encoding. There no
specific tag for this type, therefore, it is treated as a normal array of items,
which implies that each item of the array can have a different type. In the OID
scenario, all items inside the array have the same type. On [5] a very generic
approach for typed arrays is proposed. In this solution, the type of the array is
determined by the tag, which implies a smaller overhead in each item. On [8]
a more specific solution for OID encoding is proposed, which in its core is the
same as the one before, but the author focus on the OID problem, however,
the solution is to too have a typed array.

The OID compression from [33] was used in all OIDs. It works in a very
simple way, but efficient. The first OID in the list is used as the base and all
the others are compressed using its common prefix with the base. This way
most of the common prefixes are not repeated and little overhead is introduced
in the protocol.

4.2 Messaging Pattern, Resource Identification and Monitored Values

Similarly to SNMP and CoAP, CoMP supports the Request–Response message
pattern.

Since the CoMP is designed to be SNMP compliant, it employs the same
resource identification technique. Even though this constitutes protocol over-
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0 3 4 7

Version Operation

Fig. 9: CoMPv1 and CoMPv2 header structure.

0 7 8 12 13 15

Request ID EC EI

Fig. 10: CoMPv1 and CoMPv2, Get and Get-Next extra header.

0 7 8 11 12 15

Request ID NR MR

Fig. 11: CoMPv2, Get-Bulk extra header.

head, the OID is very good for large networks, but this implies a huge depth in
the OID size and requires a centralized institution to manages this. Since the
centralized institution never became a problem in all these years and the OIDs
can be compressed, it is feasible to use this mechanism in in WSN context.

The monitored values are organized the same way as the SNMP, again to
be compliant. Therefore the MIB structure is used. Even though MIBs are
defined using the ASN.1 specification this does not affect the protocol itself.
This is only a standardized way to write MIBs and share them between systems
or from a manufacturer to a client.

4.3 Packet Structure

The CoMP packet is defined by a header, an extra header, and a PDU (Pro-
tocol Data Unit). The header is shared by CoMPv1 and CoMPv2, shown in
Figure 9. It is pretty simple, the first information in it is the protocol version
which is an unsigned 4-bit integer and it is followed by the operation which is
too an unsigned 4-bit integer.

If the operation is a Get or Get-Next the extra header will look like in
Figure 10, which has a Request ID (unsigned 8-bit integer), followed by the
Error Code (unsigned 5-bit integer), and lastly the Error Index (unsigned 3-bit
integer).

However, if the version is CoMPv2 and the operation is the Get-Bulk a
different extra header is used (Figure 11). The first element is a Request ID
(unsigned 8-bit integer), yet it is followed by the Non-Repeaters (unsigned
4-bit integer), and finally the Max Repeaters (unsigned 4-bit integer).

Depending on the operation the CoMP PDU carries different information.
In any request, Get, Get-Next or Get-Bulk, the PDU is a list of OIDs that
the client is requesting the server, as shown in Figure 12.
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OID 1

OID 2

...

OID n

Fig. 12: CoMP PDU variables on request packet.

Value 1

Value 2

...

Value n

Fig. 13: CoMP PDU values on response packet.

[OID 1, Value 1]

[OID 2, Value 2]

...

[OID n, Value n]

Fig. 14: CoMP PDU variable names and values on response packet.

If the CoMP operation is a Get, the response is a list of Values, as shown
in Figure 13. This list is indexed using the same position as the OID in the
request. For example, if the client requests the list [1.3.6.1.2.1.1.1.0,

1.3.6.1.2.1.1.3.0], the server would reply ["sysDescr", sysUpTime].

However, the same method to reduce the message size cannot be used in
the Get-Next or Get-Bulk operation, since the server replies with the first
OID after the requested one. The next OID is unknown to the client, so the
server has to reply with the OID and the corresponding value. For this, a
simple array is used where the first element is the OID and the second is the
value, as shown in Figure 14.
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Fig. 15: Normal Border Router Protocol Stack

5 Border Router Proxy

The IEEE 802.15.4 networks are always separated from the IP networks by
a border gateway. The key reason for this gateway is to translate IP packets
from and to these networks, however, the payload of the IP packet is kept in-
tact, only the header is compressed. But some protocols are too troublesome,
with overheads in the application layer. One good example is the HTTP, this
is why the CoAP was proposed. They have the same characteristics and ba-
sic functions. Meaning that it is possible to map every HTTP request into
a CoAP, as shown in [26]. The opposite is not always possible, since CoAP
has the Observer extension, for example. As proposed in [12], to make the
interoperability easier it is possible to have the border gateway to translate
the protocol from the IP networks that have a matching protocol in the IEEE
802.15.4 networks. This makes implementation easier because it is not neces-
sary to change all HTTP requests into CoAP ones, on the client level. It does
not solve the problem of having different standards for these networks, but
sometimes it is necessary to create a new protocol that is more efficient for
the WSN context.

As explained in [21], common border router implementations only open
the packet until the Network Layer to convert it, Figure 15. By doing so, it
allows the communication between an IP network with a 6LoWPAN network,
by adding the adaptation layer between the Network Layer and the Data Link
Layer. It likewise needs to change the Data Link Layer and the Physical Layer
from the Ethernet standard, for example, to the IEEE 802.15.4 standard.

A border router that can unpack the packet until its last layer (Application
layer) enables the application protocol to be converted too. . This would allow
interoperability between different protocols, increasing the WSN performance.
A good example is the possibility to map HTTP requests into CoAP ones.
According to [25] the throughput can be increased up to 55% in the same
situation when comparing HTTP with CoAP and the latency is reduced up
to 55% too in the same comparison. Assuming that the physical conditions
were the same in all the experiments, the only variables that justify the better
performance from CoAP over HTTP is the change in the transport protocol
from TCP to UDP which reduces the transport reliability but it too reduces
the complexity and size in this layer. The other change is in the application
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Fig. 16: Application Border Router Protocol Stack

CoMP Get Request

CoMP Get Response

SNMP get-request

SNMP get-response

Client: Proxy: Sensor:

Fig. 17: Sequence diagram of SNMP to CoMP Cross-Protocol Proxy

protocol itself, the CoAP was remodeled to have a more concise header. In
[26] it is explained that CoAP contains a subset of the HTTP methods, the
ones that are compliant with the REST architectural style. Therefore, it is
possible to match some HTTP methods into CoAP doing what they called
a cross-protocol proxying. This allows seamless integration of WSN networks
into an already working network that uses HTTP to perform some task.

5.1 A CoMP-SNMP Cross-Protocol Proxy

The same concept of cross-protocol proxying proposed for CoAP and HTTP
can be applied for CoMP and SNMP, Figure 16. CoMP implements a subset
of SNMP’s operations, Get, Get-Next, Get-Bulk, and Response, therefore it
is possible to proxy these operations. Since SNMP does not have an unimple-
mented error, the only workaround is to send a genError error (i.e. a general
failure occurred), when an operation that cannot be proxied is sent to a 6LoW-
PAN node.

This technique would allow several applications that already use SNMP
to collect monitoring data, to work on constrained nodes inside a WSN. This
would make integration seamless because of the monitoring server it will be
monitoring using SNMP, no change in the server has to be done. And the same
features available for SNMP devices will be available for the ones with CoMP
inside the WSN. In Figure 17 a sequence diagram better illustrates the idea.
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SNMP CoMP
INTEGER Unsigned/Negative Integer

OCTET STRING Text String
OBJECT IDENTIFIER Array of Data Items

NULL Null
SEQUENCE Array of Data Items

SEQUENCE OF Array of Data Items
NetworkAddress cbor-network

IpAddress cbor-network
Counter Unsigned Integer
Gauge Unsigned Integer

TimeTicks Unsigned Integer
Opaque Map of Pairs of Data Items

Table 1: SNMP to CoMP Types

5.2 Types

In this proxying all the types defined in the RFC1155 [31] are handled as shown
in Table 1. All types have a corresponding type defined in the RFC8949 [7].
The only exceptions are the NetworkAddress and IpAddress, however, there
is a reserved CBOR Tag[6] that covers these types.

The challenge faced here is the ambiguity, which can be seen in Table 1
where multiple SNMP types are mapped to the same CoMP type. An SNMP
request has an OID and the Null value. Therefore the request does not contain
the response data type so the proxy cannot use it to know which data type
the SNMP response should contain. For example, an SNMP Get request on
the sysUpTime OID will contain the OID and the value Null. The proxy will
forward the OID only and will receive an unsigned integer in the response. Now
the proxy does not know which SNMP type is the correct, there are multiple
mappings (Counter, Gauge, TimeTicks). One way to solve this challenge is to
load all the MIBs that the proxy will be capable of handling. This approach
will solve the problem by introducing a limited scope of OIDs.

5.3 Caching

SNMP does not provide a standardized caching mechanism therefore the same
process responsible for proxying SNMP-CoMP can also perform caching. In
the initial proposal only caching static was considered, values which should
already reduce the network bandwidth. Some monitored values are static dur-
ing a life cycle, they can only change in a system reboot. A good example is
the sysDescr3, 1.3.6.1.2.1.1.1, which is a textual description of the net-
work entity. This information will only be changed when the system is updated,
therefore there is no point in forwarding these OID’s request to the constrained
node every time a request comes into the proxy. However, this is not a simple

3 http://oidref.com/1.3.6.1.2.1.1.1

http://oidref.com/1.3.6.1.2.1.1.1
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A B

(a) Topology 1: One server (B) and one border router (A).

A B C

(b) Topology 2: Two servers (B, C) and one border router (A).

A B C D E F

(c) Topology 3: Five servers (B-F) and one border router (A) in a line topology.

A

B C

D E F

(d) Topology 4: Five servers (B-F) and one border router (A) in a tree topology.

Fig. 18: Topologies simulated in Cooja.

task because SNMP and CoMP have the Get-Next operation where the OID
requested is not the one that will be responded, therefore the proxy needs to
know which OID comes before the static OID to cache it. The normal Get
request caching is straight forward, however, it is possible to request multiple
OIDs in the same Get request, therefore, the OIDs that are not cached have
to be requested to the WSN node, but this already reduces the network trans-
mission. In a simple implementation, all statics OIDs are defined on compile
time.

There are other caching mechanisms, in [20] time to live cache is analyzed,
this caching technique is widely used on HTTP requests especially of resources
like style sheets, JavaScript files or images. When data is transmitted through
the proxy, it is cached for a certain amount of time. If this caching approach
is used in the proxy, it would reduce a lot the network overhead if multiple
servers are requesting the same OID in the same device. However, further
study is necessary to determine which caching mechanism works better in the
use cases of a WSN. If CoMP is used to extract live sensor readings, a caching
mechanism could affect the metrics quality.

6 Evaluation

6.1 Experiments

We conduct three experiments to evaluate CoMP and compare it against
SNMP and CoAP. The experiments are based on a proof-of-concept implemen-
tation of CoMP for Contiki-NG4. For the purposes of this work, we also de-

4 https://github.com/Yagoor/contiki-ng/tree/comp

https://github.com/Yagoor/contiki-ng/tree/comp
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A

C DB E

Fig. 19: FIT IoT-LAB Topology: four servers (B-E) and one border router
(A). The DODAG was built with a directly link from the border router to the
servers

RAM ROM Total
SNMP 1120 (+1.82%) 3140 (-2.67%) 4260 (-1.29%)
CoAP 1986 (+80.55%) 9724 (+202%) 11710 (+173%)
CoMP 1100 3216 4316

Table 2: Code Footprint on cc26x0-cc13x0 [Bytes]

veloped and contributed to the Contiki-NG source code a standard-compliant
implementation of SNMPv1 and SNMPv25.

SNMP and CoMP have a well defined way to store the monitored values
and a defined resource identification method. However, CoAP is more generic.
In order to make it suitable for this experiment a standardized way of map-
ping CoAP resources to monitored values was defined. To use the CoAP as
a monitoring protocol the approach was to have the path to have the same
SNMP MIB and to use a query named info with the value of the element, that
was the same name used in the SNMP. If no query is sent to the endpoint a
list with all the available monitored values are sent as a response, this method
can be used to act similar to the SNMP Walk. Since the key argumentation
to use CoAP as a monitoring protocol is because it is human-friendly, a very
descriptive method was utilized and the JSON encoding was used.

The first experiment evaluates the code footprint (ROM and RAM) of each
protocol. To this end, a compilation of a Contiki-NG server example for the
cc26x0-cc13x0 target was done. The goal is to see how much memory resources
a module uses on a typical IoT device.

The second series of experiments assesses the network usage using the
Cooja Simulator[30]. The Cooja simulations were used to analyze and evaluate
many 6LoWPAN protocols like it was done for RPL [1] and for CoAP [3].
Figure 18 shows the four topologies that we considered. For the remainder of
this section we refer to these four topologies as Topology 1-4 respectively. We
evaluate the network usage in these scenarios for various reasons. The first one
is the resource limitation, the least data is transferred the better. Moreover,
the physical service data unit is limited to 127 bytes therefore, it is a good idea
to have a protocol that fits inside of it, avoiding the expensive fragmentation.
Hence the key value that has to be analyzed is the transferred data size.
Anything under the application layer is out of the protocol’s control because

5 https://github.com/contiki-ng/contiki-ng/pull/1020

https://github.com/contiki-ng/contiki-ng/pull/1020
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Fig. 20: Relative application-layer overhead of request packets relative to
CoMP.

all the protocols used in this project are within this layer but it is furthermore
necessary to analyze the bytes over the air because this determines the energy
usage.

In each topology, four use cases are studied. Every node, except the border
router, is requested by a client outside the WSN. First, a Walk where all the
monitored values available on the server are requested one by one. Secondly,
a Bulk Walk where all the monitored values are requests, two at a time. Only
two were used because this increases the packet size and a balance has to be
found between these two attributes. Thirdly, a system description (sysDescr)
is asked, in this case, it is the operating system name and version tag. Lastly,
the system uptime is asked. The two last cases are used to analyze how much
data each protocol uses to transmit a string and an integer.

The third experiment evaluates the radio activity time of each protocol
in a test-bed environment. For these experiments, the TSCH (Time-Slotted,
Channel Hopping) protocol is used because it has a good overall performance
in terms of energy and reliability [16,17]. The scheduler used is the Orches-
tra [14]. The RPL’s and TSCH’s probing interval was tuned using the five
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Table 3: Application Layer Network Usage [Bytes]

Walk Bulk Walk sysDescr uptime
RES REQ RES REQ RES REQ RES REQ

SNMP 468 337 352 165 85 43 45 43
CoAP 407 307 371 218 68 39 29 40
CoMP 258 104 216 48 48 14 7 14

Fig. 21: Relative application-layer overhead of response packets relative to
CoMP.

nines reliability proposed on [15], which reduces the impact of the beacons
on the experiments. The experiment was conducted on the FIT IoT-LAB[2]
located in Grenoble, France. This laboratory is composed of several micro-
controllers of different architectures. In this paper, the M3 nodes were used
since they represent the state-of-the-art WSN devices. This testbed was used
in several papers to evaluate protocols in real-life scenarios like on [28] and
[34]. To estimate the radio activity time the Energest Module was used which
is a software-based online mechanism for energy estimation. It simply counts
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the number of ticks spent in different states. Energest has been used to track
the energy consumption of IoT devices in real-world deployments [19]. In this
evaluation, we focus on the radio duty cycle (Radio TX and Radio RX states).
The decision to use of Energest instead of the FIT IoT-LAB current measure-
ment was based on the high accuracy that Energest has [32]. It also provides
empirical values that can be used to calculate current measurements in other
boards, not only the M3 nodes.

The goal of this experiment is to prove that by reducing the bytes over
the air in a protocol will impact positively the energy consumption which is
still the biggest constraint in the WSN environment. The topology used in
this experiment can be seen in Figure 19. In these tests it is mostly interesting
to look into the Radio Activity Time during transmission (TX) because the
receiving (RX) is controlled by the scheduler of the MAC protocol, therefore
the only radio activity time where the application-layer protocol can influence
positively or negatively is the TX cycle. Additionally, the DODAG was built
in a way that the border router has a direct route to every server, which in
this scenario is good because to analyze the radio activity time of an appli-
cation layer protocol is necessary to run the same experiment multiple times
and get the smallest value generated by it. This is necessary because a syn-
chronization beacon from the MAC protocol can be sent during the execution
of the protocol and it will taint the evaluation. Another unwanted behavior is
retransmission that can be caused by some external interference like a packet
collision. In this experiment the medium is totally out of control and collisions
are likely to happen, this would too affect the evaluation. Instead of running
the same experiment multiple times to get the smallest value, which is the
one with the least probability of external interference, it is possible to get the
smallest activity time from the four nodes either in transmission and recep-
tion. Therefore in this experiment, every node, except the border router, is
requested by a client outside the WSN.

6.2 Results

Table 2 summarizes the code footprint information of the three protocols. It
is evident that CoAP performs the worst, whilst SNMP has a slightly better
performance than CoMP on ROM usage. CoMP is slightly better than SNMP
on RAM usage. The table also shows the overhead relative to CoMP. SNMP is
a really simple protocol in terms of functionality which explains its extremely
low ROM and RAM usage. In terms of functionality, CoMP has the same with
the addition of the OID compression which explains the more ROM usage
because two extra functions are needed for compression and decompression.
The real improvement is on the network aspects where CoMP focuses on the
payload size more than SNMP.

Next, we present the results of the Cooja simulations. Table 3 summarizes
the application-layer network usage information of the three protocols in all
four cases. In particular, the table reports the total number of application-
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Table 4: Bytes over the air in Topology 1

Walk Bulk Walk sysDescr uptime
RES REQ RES REQ RES REQ RES REQ

SNMP 874 761 562 377 141 96 94 96
CoAP 813 731 637 483 117 92 78 93
CoMP 650 528 412 260 97 67 56 67

layer bytes transmitted in requests packets (REQ) and response packets (RES)
respectively. It is clear that CoMP offers a significant improvement. Figure 20
and Figure 21 present the relative overhead of the request and response packets
with respect to CoMP for each case. In all cases, CoMP performed much better
than the other protocols in all cases.

Table 4 shows the total bytes transmitted over the air in request (REQ) and
response (RES) packets respectively for Topology 1. Similarly, Table 5, Table 6
and Table 7 summarize the total bytes over the air for Topology 2, Topology
3 and Topology 4 respectively. Table 8 shows the total Fragments/Frames
transmitted and received for Topology 1. If more fragments than frames were
transmitted, it implies that 6LowPAN fragmentation occurred. Similarly, Ta-
ble 9, Table 10 and Table 11 summarize the fragments and frames for Topology
2, Topology 3 and Topology 4 respectively. Table 12 shows the Jitter and De-
lay for Topology 1. Similarly, Table 13, Table 14 and Table 15 summarize the
Jitter and Delay for Topology 2, Topology 3 and Topology 4 respectively. In all
topologies and cases, CoMP outperforms the other protocols in terms of bytes
over the air and Fragments/Frames. In terms of Jitter and Delay, CoMP also
deliver better overall results, however, these two metrics are heavily influenced
by the MAC protocol.

The biggest downside of CoAP is in Walk and Bulk Walk where it is first
necessary to request a list of all monitored values that are available before
starting the walk request. This disadvantage cannot be seen in Walk because
on a traditional walk the client requests the next value after the one he is
sending, therefore it does not know beforehand which is the last one available.
It keeps asking until it is replied with the End of View message. In CoAP it
asks for all monitored values available, so it knows the last one beforehand.
The number of requests is the same because both have an extra request. But
in Bulk Walk, the SNMP sends the End of View message together with the
last value eliminating the extra request.

Finally, we summarize the results of the test-bed experiments in the FIT
IoT-Lab in Table 16. In particular, the table shows the total radio activity
time (in ms) for transmitting request and response packets respectively. Sim-
ilarly, Figure 22 and Figure 23 illustrate the relative overhead of transmitting
request and response packets with respect to the best performing protocol re-
spectively. In all cases, CoMP consumes less energy than the other protocols.
More specifically, SNMP slightly outperforms CoMP in the response packets
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Table 5: Bytes over the air bytes in Topology 2

Walk Bulk Walk sysDescr uptime
RES REQ RES REQ RES REQ RES REQ

SNMP 2676 2411 1702 1195 423 304 291 304
CoAP 2499 2321 1935 1529 360 292 246 295
CoMP 2022 1712 1268 844 300 217 177 217

Table 6: Bytes over the air bytes in Topology 3

Walk Bulk Walk sysDescr uptime
RES REQ RES REQ RES REQ RES REQ

SNMP 13650 14080 8590 6980 2115 1775 1500 1775
CoAP 12765 13525 9765 8914 1845 1700 1275 1715
CoMP 10470 10480 6500 5180 1545 1325 930 1325

Table 7: Bytes over the air in Topology 4

Walk Bulk Walk sysDescr uptime
RES REQ RES REQ RES REQ RES REQ

SNMP 7154 6472 4544 3208 1128 816 779 816
CoAP 6666 6232 5158 4104 963 784 659 792
CoMP 5416 4608 3392 2272 803 584 475 584

Table 8: Fragments/Frames transmitted in Topology 1

Walk Bulk Walk sysDescr uptime
Fragments Frames Fragments Frames Fragments Frames Fragments Frames

SNMP 18 16 10 8 3 2 2 2
CoAP 18 16 13 8 2 2 2 2
CoMP 16 16 8 8 2 2 2 2

of Walk and uptime, yet the improvements in the request packets are much
larger, making CoMP more energy-efficient in total. As mentioned before, the
receiving (RX) cycle is controlled by the scheduler and the network is prone
to external interference which may cause a different number of retransmis-
sions in each case. Therefore, the small difference between SNMP and CoMP
in the response packets are due to the MAC protocol and not because the
application-layer protocol is better.
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Table 9: Fragments/Frames transmitted in Topology 2

Walk Bulk Walk sysDescr uptime
Fragments Frames Fragments Frames Fragments Frames Fragments Frames

SNMP 54 48 31 24 9 6 6 6
CoAP 54 48 39 30 6 6 6 6
CoMP 48 48 26 24 6 6 6 6

Table 10: Fragments/Frames transmitted in Topology 3

Walk Bulk Walk sysDescr uptime
Fragments Frames Fragments Frames Fragments Frames Fragments Frames

SNMP 306 240 175 120 50 30 35 30
CoAP 270 240 218 150 30 30 30 30
CoMP 240 240 140 120 30 30 30 30

Table 11: Fragments/Frames transmitted in Topology 4

Walk Bulk Walk sysDescr uptime
Fragments Frames Fragments Frames Fragments Frames Fragments Frames

SNMP 144 128 83 64 24 16 16 16
CoAP 144 128 104 80 16 16 16 16
CoMP 128 128 70 64 16 16 16 16

Table 12: Jitter and Delay in Topology 1 (in ms)

Walk Bulk Walk sysDescr uptime
Jitter Delay Jitter Delay Jitter Delay Jitter Delay

SNMP 169 2540 169 1180 170 170 160 160
CoAP 169 2540 169 1520 160 160 160 160
CoMP 169 2540 169 1180 160 160 160 160

6.3 Evaluation of CoMP-SNMP Border Router Proxy

To simulate this scenario application level and to evaluate the viability of
this cross-protocol proxying three python scripts were used. One performs the
same operations as a SNMP client would and it represents the Host Controller.
The next script performs the proxying where the SNMP request is converted
into a CoMP requests and the CoMP response is converted into a SNMP
response and it represents the WSN Gateway. The last script simulates a
CoMP server where a request is received, processed and the response is created,
and it represents the WSN Measurement Nodes. This evaluation was done with
python scripts for simplicity since the goal was to analyze if the protocols are
compliant with each other and not to evaluate the performance.

In Figures 24, 25, 26 and 27 it is possible to see the Wireshark output in
each case. This proves that cross-protocol proxying is possible using the same
scenarios used to evaluate the performance of the protocols.
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Table 13: Jitter and Delay in Topology 2 (in ms)

Walk Bulk Walk sysDescr uptime
Jitter Delay Jitter Delay Jitter Delay Jitter Delay

SNMP 147 3210 145 1510 135 245 128 235
CoAP 147 3210 146 1935 128 235 128 235
CoMP 147 3210 145 1510 128 235 128 235

Table 14: Jitter and Delay in Topology 3 (in ms)

Walk Bulk Walk sysDescr uptime
Jitter Delay Jitter Delay Jitter Delay Jitter Delay

SNMP 141 9213 136 4325 139 1026 137 1016
CoAP 109 6705 136 5398 100 681 100 681
CoMP 109 6705 109 3305 100 681 100 681

Table 15: Jitter and Delay in Topology 4 (in ms)

Walk Bulk Walk sysDescr uptime
Jitter Delay Jitter Delay Jitter Delay Jitter Delay

SNMP 132 3767 129 1769 118 313 114 303
CoAP 131 3724 143 2513 114 303 114 303
CoMP 131 3722 131 1778 113 301 113 301

Table 16: Radio Activity Time in FIT IoT-Lab [ms]

Walk Bulk Walk sysDescr uptime
RES REQ RES REQ RES REQ RES REQ

SNMP 56.79 41.93 34.17 27.80 11.65 10.19 10.55 7.69
CoAP 61.49 40.49 43.51 32.80 13.82 8.42 14 7.20
CoMP 58.83 32.74 32.98 20.99 10.77 7.78 10.77 6.43

7 Conclusion

This paper analyzes SNMP and CoAP, and proposes a new protocol that offers
the same functionality as the former whilst having a constrained design like
the latter.

SNMP proved to be extremely structured when used for network moni-
toring, hence why it is still the most used protocol for this purpose since the
1980s. It also has a small code footprint due to its simplicity. However, the
amount of bytes transmitted in the application layer is massive, due to its
encoding technique and because the request is like a questionnaire that the
server fills in with the answers.
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Fig. 22: Relative radio activity time (ms) for transmitting request packets with
respect to CoMP in FIT IoT-Lab test-bed experiments.

CoAP is very human-friendly in its design mainly because it was designed
to be the HTTP for constrained devices. It has a very small header which
considerably reduces the number of bytes in the application layer but it uses
the URI for identification which means strings and consequentially a significant
amount of bytes for resource identification. Additionally, it implements all the
REST functionalities which are not necessary for network monitoring since
the only method necessary would be the Get. This increases the code footprint
significantly.

Instead, CoMP was designed to have the best of both worlds. It incorpo-
rates the messaging pattern, Request-Response, resource identification, OID,
monitored values, MIB, and operations, Get, Get-Next and Get-Bulk, from
SNMP. It uses the binary encoding for the header and the CBOR encoding
for the body just like it can be done with CoAP. This design proved to have a
really good code footprint, equivalent to SNMP. The difference was minimum
and it was in favor of SNMP because CoMP implements an OID compression
which increases the code footprint but it reduces the bytes transmitted when
multiple OIDs are present. The bytes transmitted in the application layer were



26 Yago Fontoura do Rosário, Xenofon Fafoutis

Fig. 23: Relative radio activity time (ms) for transmitting response packets
with respect to the best performing protocol in FIT IoT-Lab test-bed experi-
ments.

reduced significantly, up to 85% in some cases. This reduction reflected in the
bytes over the air which, in turn, affects the radio duty cycle that is directly
tied to energy consumption.

This paper also designed and evaluated a cross-protocol proxy that runs at
the border router of the WSN and provides a translation layer between CoMP
and SNMP. The experiments show that seamless cross-protocol proxying is
possible, enabling the integration of CoMP to existing SNMP-based network
monitoring infrastructures.

A future extension of CoMP could incorporate a security layer, adopting
elements of SNMPv3 [40].
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