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Summary
Continuous-variable quantum key distribution (CV-QKD) utilizes an ensemble of co-
herent states of light to distribute secret encryption keys between two parties. One of
the key challenges is the requirement of capacity-approaching error correcting codes
in the low signal-to-noise (SNR) regime (SNR < 0 dB). Multi-level coding (MLC)
combined with multi-stage decoding (MSD) can solve this challenge in combination
with multi-edge-type low-density parity-check (MET-LDPC) codes which are ideal
for low code rates in the low SNR regime due to degree-one variable nodes. How-
ever, designing such highly efficient codes remains an open issue. Here, we introduce
the concept of generalized extrinsic-information transfer (G-EXIT) charts for MET-
LDPC codes and demonstrate how this tool can be used to analyze their convergence
behavior. We calculate the capacity for each level in the MLC-MSD scheme and use
G-EXIT charts to exemplary find codes for some given rates which provide a better
decoding threshold compared to previously reported codes. In comparison to the tra-
ditional density evolution method, G-EXIT charts offer a simple and fast asymptotic
analysis tool for MET-LDPC codes.

A linear optimization approach to design highly efficient MET-LDPC codes at
very low SNR, which is highly required by certain applications like CV-QKD will be
discussed. The cascade structure is introduced in terms of three disjoint submatrices
and a convex optimization problem is proposed to design highly efficient MET-LDPC
codes based on cascade structure. Simulation results show that the proposed algo-
rithm is able to design MET-LDPC codes with efficiency higher than 95%, especially
at very low SNR.
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Abstrakt
Kontinuert variable kvante-nøgledistribution (CV-QKD) bruger et ensemble af ko-
hærent lysttilstande til at distribuere hemmelige krypteringsnøgler mellem to parter.
Én af udfordringerne er kravet om fejlkorrektionskoder der nærmere sig Shannon-
kapaciteten i detlave signal-til-støj (SNR) regime (SNR < 0 dB). Flerniveaus-kodning
(MLC) kombineret med flerstadie-afkodning (MSD) kan løse denne udfordring i kom-
bination med flerkants-type lavdensitetsparitetscheck (MET-LDPC) koder, som er
ideel for lave koderater i det lave SNR-regime pga. grad-1 variable knuder. Imidler-
tid er design af sådanne effektive koder stadig etåbent problem. Her introducerer
vi konceptet af diagrammer for generaliseret overførelse af udefrakommende informa-
tion (G-EXIT) for MET-LDPC-koder og demonstrerer, hvordan dette værktøj kan
bruges til at analysere deres konvergensadfærd. Vi beregner kapaciteten for hvert
niveau i MLC-MSD-ordningen og bruger G-EXIT-diagrammer i eksempler på at finde
koder til givet rater, der giver en bedre afkodningstærskel sammenlignet med tidligere
rapporterede koder. Sammenlignet med den traditionelle tæthedsudviklingsmetode
(density evolution method)tilbyder G-EXIT-diagrammer et simpelt og hurtigt asymp-
totisk analyseværktøj til MET-LDPC-koder.

En lineær optimeringsmetode til at designe meget effektive MET-LDPC-koder ved
meget lav SNR, hvilket kræves af visse applikationer som CV-QKD, bliver diskuteret.
Kaskadestrukturenintroduceres i form af tre usammenhængende undermatricer, og
der foreslås et konveks optimeringsproblem til at designe effektive MET-LDPC-koder
baseret på kaskadestruktur. Simuleringsresultater viser, at den foreslåede algoritme
er i stand til at designe MET-LDPC-koder med effektivitet højere end 95%, især ved
meget lav SNR.
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Acronyms
In this thesis we also use standard terminology and acronyms. Here we present list
of acronyms.

ADC Analog-to-Digital Converter

AES Advanced Encryption Standard

AWGN Additive White Gaussian Noise

BEC Binary Erasure Channel

BER Bit Error Rate

BF Bit-Flipping

BI-AWGN Binary-Input Additive White Gaussian Noise

BIOSM Binary-Input Output-Symmetric Memoryless

BP Belief Propagation

BPSK Binary Phase Shift Keying

BSC Binary Symmetric Channel

CN Check-Node

CSI Channel Side Information

CV Continuous Variable

CV-QKD Continuous-Variable Quantum Key Distribution

DAC Digital-to-Analog Converter

DE Density Evolution

DES Data Encryption Standard

DV-QKD Discrete-Variable Quantum Key Distribution



x Acronyms

EB Entanglement Based

EXIT Extrinsic-Information Transfer

FER Frame Error Rate

FR Forward Reconciliation

G-EXIT Generalized Extrinsic-Information Transfer

i.i.d Independent and identically distributed

KL Kullback-Leibler

LDPC Low-Density Parity-Check

LLR Log-Likelihood Ratio

LSB Least-Significant Bit

MET Multi-Edge-Type

MET-LDPC Multi-Edge-Type Low-Density Parity-Check

MLC Multi-Level-Coding

MLC-MSD Multi-Level-Coding Multi-Stage-Decoding

MP Message Passing

MS Min-Sum

MSB Most-Significant Bit

MSD Multi-Stage-Decoding

PC Polarization Controller

PDF Probability Density Function

P&M Prepare and Measure

QC-LDPC Quaci-Cyclic LDPC

QKD Quantum Key Distribution

QRNG Quantum Random Number Generator

RR Reverse Reconciliation

RSA Rivest Shamir Adleman

SCA Stochastic Chase Algorithm



Acronyms xi

SCE Socket Count Equality

SNR Signal to Noise Ratio

SNU Shot-Noise Unit

TMSVS Two-Mode-Squeezed Vacuum State

VN Variable-Node
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CHAPTER1
Introduction

1.1 Cryptography: History, Present, Future
Historically, cryptography was used mainly for military purposes. The famous Caesar
cipher or scytale of Sparta in ancient Greece are examples of historical cryptography
systems. For encryption the Caesar cipher substitutes each letter in the message
(plain-text) by another letter shifted by some fixed number (key). Decryption is the
reverse operation which is applied to the encrypted message (cipher-text) to recover
the plain-text. The number of fixed shifts for the Caesar cipher was allegedly 3. It is
clear that the number of possible keys for this cipher is 26. Thus, one unauthorized
person can test all the possible keys in a brute-force attack to recover the plain-
text. In addition, some efficient attacks also exist based on frequency analysis of the
cipher-text. The academic research in the field of cryptography was started in late
1970s. Today, the cryptography is an integral part of everyday life. It is impossible
to imagine an internet based activity without cryptography. It can be a simple Web
browsing, sending email or a money transfer in a bank system.

The science of cryptography and the science of cryptanalysis are considered with
each other as the filed of cryptology. Classical cryptography after the computer age
consists of two main categories, symmetric and asymmetric cryptography.

In symmetric cryptography two legitimate parties perform encryption and decryp-
tion with a shared secret key. The Data Encryption Standard (DES) is an example
of symmetric cryptography, created by IBM in early 1970s. In 1977 with modifi-
cations from the United States National Security Agency (NSA) it was used as a
government standard suitable for commercial applications. The private key of DES
is 56-bit which makes it vulnerable for brute-force attack. In 1997 the United States’
National Institute of Standards (NIST) organized an open competition and in 2000
they announced the Advanced Encryption Standard (AES) as a block cipher with
three different key sizes 128, 192 and 256. Regardless of encryption standard the pro-
cedure to share the secret key plays an important role in the security of the system.
One practical method to share the secret key is the use of smart cards which is not
very promising and cost efficient solution in large scale networks. Another solution is
the use of asymmetric or public key cryptography. Public key cryptography uses two
different keys for encryption and decryption. The public key is used for encryption
and the private key remains secret for decryption. In public key cryptography the
encryption procedure corresponds to a public key and should be a simple task. The
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decryption task should be easy for everyone who has the private key, but should
be very complicated for someone who does not have the private key. In principle,
asymmetric cryptography algorithms like Rivest Shamir Adleman (RSA), Elgamal
and ECDSA are based on mathematical problems (integer factorization, discrete log-
arithm and Elliptic curves). It implies that the security of these algorithms depends
on the eavesdropper computational power.

In practice, if two parties want to send each other a long message, they use a
hybrid encryption system. First they use an asymmetric cipher to share key between
each other and then use a symmetric cipher to transmit the actual data. It is due
to the fact that for large amounts of data the symmetric ciphers are faster than the
asymmetric ciphers.

The security of today’s asymmetric cryptography, e.g. the RSA protocol and the
Diffie-Hellman key-exchange protocol, is based on mathematical complexity assump-
tions of basic problems like the discrete log problem and the factorization of large
numbers [1]. These classical algorithms provide computational security. The advent
of the quantum computer or an unexpected algorithmic innovation can compromise
their security with drastic consequences for the internet.

One possible solution is quantum key distribution (QKD) [2, 3] which provides
information theoretical secure cryptographic key exchange for two parties, Alice and
Bob, based on the properties of quantum mechanics (no cloning theorem, superposi-
tion, entanglement and nonlocality). The idea of using quantum physics for cryptog-
raphy was first introduced in the 1983. The idea was taken from the fact that in a
quantum system cannot be measured without perturbing the system. Thus Alice and
Bob can share a key based on transmission and measurement of quantum states and
Eve cannot extract any information about the communication without introducing
perturbations. Thus, thanks to the fundamental principles of quantum physics the
QKD makes us able to detect illegitimate parties and provide a secure communication
link.

1.2 Important challenges in post-processing of QKD
Several commercial QKD implementations have already exists worldwide. Apart from
different variations of QKD systems which are based on discrete-variable (DV) or
continuous-variable (CV) the post-processing of QKD protocols still remained chal-
lenging for long distance. Recent results show that for continuous-variable quan-
tum key distribution (CV-QKD) using optical fibers the longest possible distance is
202.81 km with output key rate of 6.24 bits/s [4]. For discrete-variable quantum key
distribution (DV-QKD) the maximum reported distance is 307 km with output key
rate of 3.18 bits/s [5]. The motivation of this thesis is to address two of the key
challenges that exists in post-processing of QKD system by focusing on CV-QKD:

1. High throughput reconciliation for CV-QKD: In the case of CV-QKD two dif-
ferent approaches can be used to extract binary information from Gaussian
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variables. Currently the best known reconciliation method for CV-QKD uses
a multi-dimensional reconciliation [6]. Though this method denotes high effi-
ciency specifically at very low SNRs it is limited to extract just one bit from the
Gaussian symbols. In principle for the CV-QKD in contrast to DV-QKD it is
possible to extract more than one bit from Gaussian symbols. One of the best
known methods to extract more than one bits from Gaussian symbols is multi-
level-coding multi-stage-decoding (MLC-MSD) [7]. The MLC-MSD method has
been used for reconciliation but particular advantage of MLC-MSD reconcilia-
tions remained unclear due to lack of study [8, 9].

• In this thesis we provide a detailed analysis of the MLC-MSD scheme
and denote that it is possible to extract two-bits from Gaussian symbols.
Specifically, we calculate the soft information for two levels which then can
be used by soft decoders.

• We will show that the MLC-MSD scheme requires multiple encoders and
decoders each working at specific rate. In addition we provide both an-
alytical and numerical methods to calculate the code rates for each level.
Details are provided in Section 3.2.5.

• In this thesis also we introduce the concept of randomized reconciliation
which can be used to increase the throughput of the reconciliation task
by sacrificing the frame error rate performance. The idea of randomized
reconciliation is to use a fast hard-decoder instead of complicated soft-
decoder and feed different error patterns to the hard-decoder. The error
patterns should be generated randomly using the soft information that we
extracted from the channel. More details about randomized reconciliation
is provided in Section 3.4.

2. Long distance CV-QKD: Current implementations of CV-QKD shows that for
efficient reconciliation an error correction task is required at very low signal-to-
noise ratio (SNR). For instance in [10] an SNR of −15.37 dB was reported for
a transmission distance of 80 km and in [11] an SNR of −16.198 dB for 100 km.
Designing highly efficient forward error correction codes (FECs) at such a low
SNR is one of the core problems. Though multi-edge-type low-density parity-
check (MET-LDPC) codes have been widely applied to QKD for error correc-
tion the characteristics of these codes and their design procedure are not widely
understood. Few researchers have addressed the problem of designing highly ef-
ficient degree-distribution (DD) for MET-LDPC codes but unfortunately their
works are limited to high SNR regime (SNR > 0) and require high computa-
tional complexity for their optimization algorithm [12, 13, 14]. To the best
of our knowledge the only available DD for a rate 0.02 MET-LDPC code was
presented in [10] and has an asymptotic efficiency of 98%.

• In this thesis we analyse the charactristics of the MET-LDPC codes and
focuse on MET-LDPC codes with cascade structure. More details about
the cascade strucures and MET-LDPC codes can be found in Section 4.1.
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• We propose a new approximation method for density evoution (DE) of
MET-LDPC codes called semi-Gaussian approximation.

• In addition the concept of extrinsic-infromation transfer chart (EXIT) and
generalized-EXIT (G-EXIT) chart are introduced for MET-LDPC codes.
Then we will show how these tools can be used to analyse the performance
of the MET-LDPC codes.

• Furthermore, in this thesis we provide an algorithmic approach to design
highly efficient DD for MET-LDPC codes for low SNR.

• Using our proposed algorithm we design some new highly efficient DDs
for MET-LDPC codes. For example we designed a new DD for rate 0.02
which has an asymptotic efficiency of 99.2%. Also we designed a new code
for rate 0.01 which can works at SNR −18.48 dB.

.

1.3 Thesis outline
This thesis is divided into five chapters. Chapter 2, gives a brief overview of the
CV-QKD. Some important steps in CV-QKD protocols are explained. Also we talk
about the secure key rate and some of the important factors for long distance CV-
QKD. Finally our the experimental setup is presented.

Chapter 3, focuses on the reconciliation process of CV-QKD. First, a brief overview
of multi-dimensional reconciliation is represented. Secondly, we focus on reconcilia-
tion based on MLC-MSD and a detailed analysis is presented. We calculate the soft
information for deocders at each level and denote how to find the optimum code rate
in MLC-MSD scheme. Then, we propose a new reconciliation scheme called Random-
ized Reconciliation to increase the throughput of the reconciliation scheme. Finally
we talk about existing tools and methods to provide a robust reconciliation for a wide
range of SNRs.

In Chapter 4, a detailed analysis of MET-LDPC codes is presented. First, it
starts by defining this class of error correction codes. Secondly, we talk about DE
and other asymptotic analysis tools for MET-LDPC codes. We also propose our semi-
Gaussian approximation method. Thirdly, we introduce the concept of generalized
extrinsic-information transfer (G-EXIT) chart and explain how we can develop this
concept for MET-LDPC codes. In addition we explain how the convergence behavior
of MET-LDPC codes can be described by G-EXIT charts. Fourthly, we propose our
new algorithmic optimization process to design highly efficient MET-LDPC codes.
Then we present for the first time some new DDs for MET-LDPC codes designed by
our new algorithm. These codes are specifically designed for low rate applications
like CV-QKD. Finally we show the performance of the rate 0.02 code.

In Chapter 5 we conclude the thesis. In addition this thesis contains three ap-
pendices. In Appendix A, we explain requirements related to the LDPC codes. In
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addition the definition of EXIT and G-EXIT functions for irregulr LDPC codes are
presented. In Appendix B, useful information can be found about our software tools
related to the reconciliation of the CV-QKD. Appendix C explains how to use the
software tools to design new degree distributions for MET-LDPC codes.

1.4 Academic publications
The results of this thesis have been presented in posters and presentations at the
conferences [15, 16, 17] and also some of the results are submitted to peer-reviewed
journals where the arXived version are also available [18]. Here is the list of our
publications:

1. H. Mani, T. Gehring, C. Pacher, and U. L. Andersen, “Multi-edge-type LDPC
code design with G-EXIT charts for continuous-variable quantum key distribu-
tion,”ArXiv, vol. abs/1812.05867, 2018. [Online]. Available: https://arxiv.
org/pdf/1812.05867.pdf

2. H. Mani, T. Gehring, C. Pacher, and U. L. Andersen, “An approximation method
for analysis and design of multi-edge type LDPC codes,” 2018. [Online]. Avail-
able: http://2018.qcrypt.net/others/accepted-posters/

3. H. Mani, T. Gehring, C. Pacher, and U. L. Andersen, “Algorithmic approach to
design highly efficient MET-LDPC codes with cascade structure,” 2019. [Online].
Available: http://2019.qcrypt.net/scientific-program/posters/

4. H. Mani, B. Ömer, U. L. Andersen, T. Gehring, and C. Pacher, “Two MET-
LDPC codes designed for long distance CV-QKD,” 2020.[Online]. Available:
https://2020.qcrypt.net/accepted-papers/#list-of-accepted-posters
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CHAPTER2
Quantum Key

Distribution with
Continuous Variables

This chapter is about the principles of the QKD. After a short introduction, Sec-
tion 2.2 talks about the basic steps of CV-QKD. In addition important steps in QKD
protocols will be discussed. In Section 2.3, we will talk about the security analysis
and different attacks in CV-QKD. Finally, the experimental setup of our CV-QKD
is presented in Section 2.4.

2.1 Introduction
Similar to classical information, quantum information uses two types of variables:
discrete-variables and continuous-variables. One example of a discrete quantum vari-
able is two polarization states of a single photon and the best-known example of con-
tinuous quantum information [19, 20] is the quantized harmonic oscillator described
by continuous variables such as position and momentum. In this thesis, we tried to
focus on the quantum information processing specifically for QKD using continuous
variables. It means that instead of working with the properties of the single photons,
the quadratures of the electromagnetic field can be used as continuous variables.

The first DV-QKD protocol was investigated by Bennet and Brassard in 1984,
known as BB84 [21]. The main limitation of DV-QKD is the requirement of single-
photon counting technology. In a major advance, almost fifteen years later, Grosshans
and Grangier proposed the first and simplest CV-QKD protocol known as GG02 [22].
Nowadays, CV-QKD is attracting considerable interest due to its simpler practical
implementation, thanks to the existence of many electro-optical components devel-
oped for optical telecommunication. For instance, the alternative of the single-photon
counting technology for CV-QKD is coherent detection techniques, which are widely
used in classical optical communications. Though, CV-QKD provides a convenient
practical implementation, its security proofs are still not mature in comparison with
DV-QKD protocol. Two important factors to evaluate practical performance of QKD
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systems are secure key rate and transmission distance. Table 2.1 briefly compares the
recent results related to these two families of the protocols and some of their basic
differences.

DV-QKD CV-QKD
Year 2019 2019
Light Discrete Photon Continuous Wave

Information carrier Photon polarization/phase Field phase or amplitude
State representation Density matrix Wigner function

Detector single-photon detector Homodyne/Heterodyne
Practical maximum range 104 km (307 km) 202.81 km

Output key rate 12.7 kbps (3.18 bps) 6.24 bps

Table 2.1: Respective comparison of DV-QKD and CV-QKD protocols. The results
are taken from [5, 4].

This chapter aims to provide a short review of CV-QKD protocols focusing in
particular on protocols using Gaussian modulation (GM) of coherent states. Gaussian
states are continuous variable states that have a representation in terms of Gaussian
functions. A very comprehensive collection of literature about the Gaussian quantum
information plus topics related to CV-QKD can be found in [20, 22, 23, 24, 25, 26,
27, 28].

2.2 CV-QKD with Gaussian modulation
There are different types of CV-QKD protocols where the simplest class are one-way
protocols with Gaussian modulation. Other variants like two-way protocols [29, 30]
or non-Gaussian modulation [31] fall outside the scope of this thesis. In general,
the state-of-the-art in GM CV-QKD has two possible implementations: prepare and
measure (P&M) and entanglement based (EB). In the P&M based protocol, Bob
measures the quadrature components of the displaced coherent states where generated
by Alice and transmitted through a Gaussian channel. In the case of EB protocol,
Alice generates a two-mode squeezed state in her lab, performs the measurement
on one mode, and sends the other mode to Bob. It has been proven [26] that for
Gaussian protocols, as long as Alice’s lab is trusted, these two implementations are
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equivalent. Thus, providing a security proof for the EB protocol is equivalent to the
security proof of the P&M protocol which has simpler implementation.

A CV-QKD protocol contains multiple steps including:

• State preparation and measurement

• Information reconciliation

• Parameter estimation

• Privacy amplification.

These are the basic steps of any QKD protocol and different implementation
choices for these steps provide a variety of different protocols. For example, using
single-mode or two-mode states for state preparation, using homodyne or heterodyne
detection, forward or reverse reconciliation would cause different implementations and
protocols. There are different reasons for choosing different protocols, for instance,
some of the protocols have simpler implementations, some of those are better for
long distance transmission and some of those have better security proofs. In [28] a
comprehensive comparison is done for variety of CV-QKD protocols including the
final status of their security proofs.

Additionally, it is important to notice that the CV-QKD protocol consists of two
different phases. The first phase is related to the transmission of the quantum states
in a quantum channel and the second phase is related to the classical post-processing
tasks. Thus, it is convenient to consider two types of channels including quantum
channel and classical channel for these two phases.

Finally, the goal of the whole system is to generate a secure shared key between
two distant parties using transmission of quantum states on an untrusted quantum
channel and later by exchanging classical data through an authenticated classical
channel as presented in Figure 2.1. The following subsections briefly describe each
steps of a CV-QKD protocol.

2.2.1 State preparation and measurement
2.2.1.1 Quadrature operators

The definition of the electric field using the annihilation and creation operators (â, â†)
can be written for a single mode as:

E⃗(r⃗, t) = E0 e⃗ [q̂ cos(k⃗ · r⃗ − ω t) + p̂ sin(k⃗ · r⃗ − ω t)] , (2.1)

where ω is the angular frequency, e⃗ is the polarization vector and operators q̂ and p̂
are called quadratures of the electromagnetic field

q̂ = â† + â , (2.2)
p̂ = i(â† − â) . (2.3)
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Figure 2.1: Simple illustration of the QKD system with two channels. The quantum
channel and the classical channel.

These dimensionless operators are then measurable and satisfy the commutation re-
lation

[q̂, p̂] = 2i , (2.4)

which then gives the Heisenberg uncertainty relation

δq̂ δp̂ ≥ 1 . (2.5)

Finally, the photon number operator is defined as:

n̂ = 1
4

(q̂2 + p̂2) − 1
2
, (2.6)

and all the above formulations are in shot-noise units (SNU).

2.2.1.2 Gaussian modulation

Let us consider a Gaussian modulated scenario. In this case, Alice prepares a sequence
of coherent states |α1⟩ , · · · , |αj⟩ , · · · , |αN ⟩ where

|αj⟩ = |qj + ipj⟩ . (2.7)

Then, the two quadrature components q and p can be considered as real valued out-
comes of two independent and identically distributed (i.i.d) normal random variables
Q and P with zero mean and variance

Vmod
4 ,

Q ∼ P ∼ N (0,
Vmod

4
). (2.8)
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Since, coherent states |αj⟩ are eigenstates of the annihilation operator, thus

â |αj⟩ =αj |αj⟩ , (2.9)
1
2

(q̂ + p̂) |αj⟩ =(qj + ipj) |αj⟩ . (2.10)

Furthermore, the corresponding variance for the quadrature operators are equal and
related to the modulation variance by

Var(q̂) = Var(p̂) = V = Vmod + 1 . (2.11)

It is clear that even with Vmod = 0, the modulation variance of quadrature operators
equal to V0 = 1, which is referred to as shot-noise. In addition, the corresponding
phase-space representation of a coherent state |αj⟩ can be visualized by using the
Wigner function, which serves as a quasi-probability distribution in phase space. The
marginal probability distribution of a quadrature measurement can be obtained from
the Wigner function by integration over the other conjugate quadrature as presented
in Figure 2.2. More details about the continuous variables and phase-space represen-
tation can be found in [19, 20, 23, 24].

2.2.1.3 The covariance matrix

After Alice’s preparation of coherent states |αj⟩, she sends them through a quantum
channel to Bob. Then, Bob uses a homodyne or heterodyne detection to measure the
eigenvalues of one or both quadrature operators (P&M protocol). It has been shown
that for Gaussian modulation, this is equivalent to the case when Alice generates a
two-mode-squeezed vacuum state (TMSVS), performs a measurement on one mode,
and sends the other mode to the Bob (EB protocols). The covariance matrix of this
two mode bosonic system can be described as:

ΣA,B =


V 0

√
V 2 − 1 0

0 V 0 −
√
V 2 − 1√

V 2 − 1 0 V 0
0 −

√
V 2 − 1 0 V

 , (2.12)

where V = Vmod + 1 denotes the variance of the quadrature operators. It can be
written in a more compact form by considering the Pauli matrix σZ =

( 1 0
0 −1

)
ΣA,B =

(
V I2

√
V 2 − 1 σZ√

V 2 − 1 σZ V I2

)
, (2.13)

where I2 is the identity matrix with dimension 2. In terms of the Vmod the covariance
matrix is:

ΣA,B =

 (Vmod + 1) I2
√
V 2

mod + 2Vmod σZ√
V 2

mod + 2Vmod σZ (Vmod + 1) I2

 . (2.14)
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Figure 2.2: Phase-space representation of a coherent state |αj⟩. For any coherent
state, the quadratures have the same variance.

Finally, according to [32] the corresponding covariance matrix after transmission
through a Gaussian channel and Bob’s homodyne detection is:

ΣA,B =

 (Vmod + 1) I2
√
T (V 2

mod + 2Vmod) σZ√
T (V 2

mod + 2Vmod) σZ (TVmod + 1 + ξ) I2

 . (2.15)

where T stands for the transmittance and ξ denotes the total excess noise which is
the combination of the excess noise, electric noise etc. A comprehensive calculation
of the covariance matrix and the relation between the P&M based protocol and EB
protocol can be found in [32].

2.2.1.4 Homodyne detection

As shown in Figure 2.3, one of the quadratures of an electromagnetic field can be
measured using an ideal balanced homodyne detector. It contains a local oscillator
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and a balanced beamsplitter. The input mode is combined with the local oscillator
and then the intensity of the outgoing modes are measured using two photodiodes.
Let us denote the quadratures of the local oscillator by (xLO , 0) where for each mode

BS

θ

–

Input mode

LO

mode 2

m
o
d
e
1

Figure 2.3: Simple block diagram of ideal homodyne detector.

Ii = k

2
(q̂2

i + p̂2
i − 1) , for i = 1, 2 , (2.16)

where k is a prefactor contains all the dimensional, and

q̂1 =
q̂in + xLO√

2
, (2.17)

p̂1 =
p̂in√

2
, (2.18)

q̂2 =
q̂in − xLO√

2
, (2.19)

p̂2 =
p̂in√

2
. (2.20)

Then, to obtain an estimation of the q̂, one can write

I1 − I2 = k

2
(
(q̂in + xLO)2 − (q̂in − xLO)2) = k q̂inxLO . (2.21)

To measure the other quadrature, it is enough to apply a phase shift of π
2 to the

local oscillator and then, follow the same procedure. The realistic implementation of
the homodyne detection is not addressed here. Detailed and relevant information for
homodyne and heterodyne detection can be found in [23, 32].

2.2.2 Post-processing
This section gives a brief overview of how Alice and Bob can generate a secure key
from their raw data. There are three main tasks during the post-processing, but the
order of these steps might be different according to the protocol.
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2.2.2.1 Information reconciliation

After state preparation and measurement, it can be assumed that Alice and Bob have
access to their list of real-valued data. If Bob uses heterodyne detection, then he has
a list of n = 2N real valued data denoted by X⃗B = (XB,i)n−1

i=0 and Alice has access
to her own list of data denoted by X⃗A = (XA,i)n−1

i=0 . If Bob uses homodyne detection,
then n = N and he informs Alice about the choice of his quadratures and Alice then
ignores half of her data accordingly. If Alice and Bob agree to remove all uncorrelated
data before starting post-processing, an extra step known as sifting is necessary. For
the case of heterodyne detection no sifting is required.

In Chapter 3, a detailed description of different reconciliation schemes are pre-
sented. Two possible options for the reconciliation are forward reconciliation (direct
reconciliation) and reverse reconciliation. In forward reconciliation (FR), Bob cor-
rects his data according to Alice’s data and in reverse reconciliation (RR), Alice
tries to correct her data to estimate the Bob’s data. In general, RR provides better
performance in comparison to FR [25].

2.2.2.2 Parameter estimation

The goal of this step is to obtain an upper bound on Eve’s information. This can
be done by accurate estimation of the covariance matrix. Considering RR, the upper
bound for Eve’s possible information about the Bob’s key is denoted by XEB . A more
detailed description about the Holevo information and the security of the CV-QKD
are presented in Section 2.3. In general, in the case of ideal post processing, it is
possible to extract a secure key, if the mutual information between Alice and Bob
I(A;B) (sometimes shown as IAB) is higher than the Holevo bound between Eve and
Bob, which is known as Devetak-Winter formula [33].

2.2.2.3 Privacy amplification

Finally, Alice and Bob have access to a same bit string which they can use as a
secret key, but it might be possible that Eve also has some correlation with this data.
Thus, Alice and Bob extract a shorter string from their common string by applying
a hashing function.

2.3 Security Analysis and Secure Key Rate
There are three kind of attacks in the CV-QKD:

• Individual attack,

• Collective attack,

• Coherent attack.
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In all of these attacksit is assumed that Eve has full access to the quantum channel,
but in the case of classical channel she is not able to manipulate the classical channel.
In another words, it is assumed that the protocol has an authenticated classical channel
to exchange some classical information between Alice and Bob. All the information
transferred in this classical channel is considered available to Eve.

In the case of individual attack, Eve performs her measurement right after Bob
reveals his quadrature before doing reconciliation. In this case, Eve’s information
is limited by the Shannon information and it has been shown in [34] that the raw
Shannon key rate is:

KRaw
ind, RR = IAB − IBE , (2.22)

which is secure for Gaussian and non-Gaussian individual attacks, even with finite
size length for reverse reconciliation. IAB is the mutual information between Alice
and Bob, and IBE is the classical mutual information between Eve and Bob’s data.

For collective attack, it has been shown that the asymptotic secret key rate for
reverse reconciliation is:

KAsymp
coll, RR ≥ (1 − FER)(1 − ν)(βIAB − XEB) , (2.23)

where XEB is upper bound for the Eve’s information on the Bob’s data, FER ∈ [0, 1]
is the frame error rate of the reconciliation, β ∈ [0, 1] denotes the efficiency of the
reconciliation process, and ν denotes the fraction of the data used for the estimation
of the covariance matrix [35, 36, 37].

If fXB
(xB), denotes the probability distribution of the Bob’s measured outcomes,

then the value of the Holevo quantity XEB can be calculated as

XEB = S(ρE) −
∫
fXB

(xB)S(ρxB

E ) dxB , (2.24)

where S(ρ) denotes the von Neumann entropy of the quantum state ρ. For the n-mode
Gaussian state ρ, the von Neumann entropy is

S(ρ) =
n∑
i

G

(
λi − 1

2

)
, (2.25)

where G(x) = (x + 1) log2(x + 1) − x log2(x), and λi denote the eigenvalues of the
covariance matrix related to the ρ. A more detailed calculation of asymptotic secure
key rate for collective attack can be found in [23, 35, 36]. To read more about von
Neumann entropy and smooth min and max entropy see [38].

Here, we quickly provide a short calculation of the secure key rate for a reverse
reconciliation CV-QKD with homodyne detection. All the parameters are in SNU,
specifically ξch denotes the excess channel noise, vel denotes the electronic noise and η
denotes the efficiency of the homodyne detection. Assuming a single-mode fiber with
transmission loss α = 0.2 dB/km, the transmittance of such channel is Tch = 10−αd/10,
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where d denotes the distance between the two parties. As presented in [35], total noise
between Alice and Bob is:

ξtotal = ξline + ξhom
Tch

,

where ξhom = 1 + vel

η
− 1 is the homodyne detector noise and ξline = ( 1

Tch
− 1) + ξch.

Then, according to [35] and as presented in (2.15), the variance of Bob’s data after
homodyne detection, in SNU is:

VB = ηTch(V + ξtotal) = ηTch

(
V + ξline + ξhom

Tch

)

= ηTch

V + ( 1
Tch

− 1) + ξch +

1 + vel

η
− 1

Tch


= ηTchV − ηTch + ηTchξch + 1 + vel

= T (V − 1) + Tξch + 1 + vel

= TVmod + 1 + ξ ,

where T = ηTch, V = Vmod + 1 and ξ = Tchξch + vel as shown in (2.15). In addition,
the mutual information between Alice and Bob is:

IAB = 1
2

log2(1 + SNR) = 1
2

log2

(
1 + V + ξtot

1 + ξtot

)
. (2.26)

According to [35], Eve’s classical mutual information from Bob’s data is:

IBE = 1
2

log2
VB

VB|E
, (2.27)

where VB|E = η

[
1

T (1/V ) + ξline
+ ξhom

]
. Finally, Holevo bound XEB is calculated

as:

XEB = G

(
λ1 − 1

2

)
+G

(
λ2 − 1

2

)
−G

(
λ3 − 1

2

)
−G

(
λ4 − 1

2

)
, (2.28)

where the eigenvalues are calculated from:

λ1,2 =
√

1
2

(
A±

√
A2 − 4B

)
,

λ3,4 =
√

1
2

(
C ±

√
C2 − 4D

)
,
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where

A = V 2(1 − 2T ) + 2T + T 2(V + ξline)2,

B = T 2(V ξline + 1)2,

C = V
√
B + T (V + ξline) +A ξhom

T (V + ξtot)
,

D =
√
B
V +

√
Bξhom

T (V + ξtot)
.

From this we can plot the the asymptotic secret key rate for reverse reconciliation.
In Figure 2.4, the asymptotic secure key rate is plotted against distance for different
reconciliation efficiencies where all other parameters are assumed to be fixed. It can
be observed that the overall transmittable distance between the two parties depends
significantly on the reconciliation efficiency.
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Figure 2.4: Effective asymptotic secure key rates against collective attack. The
reconciliation efficiency β = {0.7, 0.8, 0.9, 0.95, 1.00}. The parameters
used in the calculations are Vmod = 8.5, ξch = 0.015, η = 0.6, vel =
0.041, and the fiber loss is assumed to be 0.2 dB/km.

To read more about the security proof of the CV-QKD for finite length and most
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general coherent attack see [39, 40]. Let us repeat a similar simulation by considering
the finite size effects. It is assumed that the length of the data for the privacy
amplification is nprivacy = 1010 bits. The number of the quantum symbols used for
reconciliation is nquantum = 2 × nprivacy (ν = 0.5). We assumed that the security
parameter ϵsecurity = 10−10. From [39], the secure key rate considering the finite-size
effect is:

KFinite
coll, RR ≥ (1 − FER)(1 − ν)(βIAB − XEB − ∆(nprivacy)) , (2.29)

where ∆(nprivacy) is the finite-size offset factor and for nprivacy > 104 can be approxi-
mated by:

∆(nprivacy) ≈ 7

√
log2(2/ϵsecurity)

nprivacy
.
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Figure 2.5: Effective finite secure key rate against collective attack. The reconcilia-
tion efficiency β = {0.7, 0.8, 0.9, 0.95, 1.00}. The parameters used in the
calculations are Vmod = 8.5 , ξch = 0.015, η = 0.6, vel = 0.041, ν = 0.5,
nprivacy = 1010, ϵsecurity = 10−10, and the fiber loss is assumed to be 0.2
dB/km.

Finally, a very comprehensive comparison for the CV-QKD protocols and their
best available security proof until 2015 is available in [28]. In this thesis we focus
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on the reconciliation protocols for the CV-QKD and represent how it is possible to
design highly efficient reconciliation scheme with lowest FER. A detailed description
of different reconciliation schemes will be discussed in Chapter 3.

2.4 Experimental setup

Figure 2.6: The experimental setup of our CV-QKD. The schematic was generated
by Dr. Nitin Jain.

The experimental setup for the Gaussian modulated CV-QKD that we have es-
tablished in our lab is shown in Figure 2.6. It has a continuous-wave laser (Tx laser)
operating at 1550 nm and contains standard fiber optics and telecommunication com-
ponents. On the transmitter side, an in-phase and quadrature (I-Q) electro-optical
modulator is driven by Tx laser. It produces coherent states at a single side-band
of the optical field at a rate of 100 MSymbols/s. In addition, to generate a com-
plex coherent state amplitudes of the quantum signal, a quantum random number
generator (QRNG) with a security parameter ϵqrng = 10−10 is used. The QRNG
delivered Gaussian distributed symbols for discrete Gaussian modulation of coherent
states. After attenuation to the desired mean photon number count, the coherent
states were transmitted through a 20 km standard single mode fiber. The receiver
side contains a frequency detuned laser (local oscillator) of the same type (Rx laser),
a balanced beam splitter and a balanced receiver for radio-frequency heterodyne de-
tection. As shown in Figure 2.6, a polarization controller (PC) is used to manually
tune the polarization to match with Rx laser’s polarization. Then, the signal and
the local oscillator were interfered on a balanced beam splitter and detected by a bal-
anced receiver. In addition, the I-Q-modulator was driven by two digital-to-analog
converters (DACs) with 16 bit precision and 1 GSample/s and the receiver’s output
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was sampled by a 16 bit analog-to-digital converter(ADC) at 1 GSample/s. Finally,
the data was stored on a hard drive for offline post processing. For more details about
our experimental setup, machine learning based approach for carrier phase recovery
and the QRNG see [41, 42].

The secret key was established by the following protocol:

1. Gaussian distributed random numbers were generated by the random number
generator and stored in a file.

2. The transmitter and receiver were calibrated.

3. Using the 20 km fiber, we transmitted the coherent states using frames prere-
corded in a file and played out using the arbitrary waveform generator.

4. After the experiment was conducted, digital-signal-processing was performed
offline to obtain the raw key.

5. Information reconciliation was performed using a multi-level coding, multi-stage
decoding scheme by using multi-edge-type low-density-parity-check codes. More
details about the reconciliation scheme, will be discussed in Chapter 3.

6. After error correction the entropy of the received symbols was estimated as well
as the channel parameters for bounding the Holevo information.

7. By using a randomly chosen Toeplitz hash function for privacy amplification
the final secret key is generated.



CHAPTER3
Information

Reconciliation of
CV-QKD

Information reconciliation is a method by which two parties, each possessing a se-
quence of numbers, agree on a common sequence of bits by exchanging one or more
messages. In CV-QKD with Gaussian modulation, the two sequences of numbers are
joint instances of a bi-variate random variable that follows a bi-variate normal dis-
tribution. Physically, in a prepare-and-measure CV-QKD setup, these sequences are
generated by one party modulating coherent states and the other party, measuring
these states. The amplitude of each modulated coherent state, which can be visu-
alized by a point in the quadrature-phase space, is determined by the values in the
sequence. In other words, in QKD, two parties share correlated random variables and
wish to agree on a common bit sequence. However, imperfect correlations introduced
by the inherent shot noise of coherent states and noise in the quantum channel and
the receiver, give rise to discrepancies in the two sequences of numbers which have to
be corrected by exchanging additional information. As discussed in Section 2.3, the
efficiency and performance of the error correction codes for reconciliation strongly
affects the secure key rate of CV-QKD, which makes it one of the most crucial stages
in the protocol (See Figure 2.4 and Figure 2.5).

This chapter is about the problem of reconciliation of Gaussian variables for CV-
QKD. Two different reconciliation methods will be discussed. First, in Section 3.1, the
multi-dimensional reconciliation will be introduced. Then, Section 3.2, talks about
the reconciliation based on multi-level-coding multi-stage-decoding (MLC-MSD) and
different variations of the method will be discussed (See also our arXived article [18]).
In Section 3.4, the randomized reconciliation scheme, which is a modified version
of the MLC-MSD approach for high throughput reconciliation will be introduced.
Finally, Section 3.5 talks about reconciliation for a continuous range of SNRs.
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3.1 Multidimensional Reconciliation

The idea of multidimensional reconciliation was first introduced in [6]. The authors
apply a d-dimensional rotation to the Gaussian data from the physical additive white
Gaussian noise (AWGN) channel, to convert the reconciliation problem to an equiva-
lent channel coding problem, on a virtual binary-input AWGN (BI-AWGN) channel.
As presented in [6], the quality of this approximation increases with d, but it is not
possible to increase d arbitrarily. Practical values are d ∈ {1, 2, 4, 8}.

More precisely, by applying a d-dimensional rotation, a nonuniform Gaussian dis-
tribution on Rd transforms into a uniform distribution on the unit sphere Sd−1 of
Rd. Then, it is possible to apply the same reconciliation scheme as in DV-QKD pro-
tocols. In DV-QKD, the reconciliation problem is based on the coset coding. The
coset coding method was first introduced for wiretap channels in [43]. In this scheme,
Alice and Bob agree to use a linear code C with parity check matrix H. Then, after
the quantum phase, where Alice and Bob have access to two correlated strings X⃗A

and X⃗B , Alice sends the syndrome s⃗ = X⃗A × H to Bob through the authenticated
classical channel. Then, Bob can apply decoding to this information using a coset
code. The difference in this scheme to a channel coding problem is that Alice’s data
can generate a non-zero syndrome. In another words, Alice cannot restrict her data
to only valid codewords. But as long as she transmits the syndrome s⃗ to Bob, the
reconciliation problem with a coset coder is feasible. Another equivalent solution is
that Alice randomly selects a codeword u⃗, and shares r⃗ = u⃗ ⊕ X⃗A with Bob, using
an authenticated classical channel. Then, Bob does the same action and calculates
r⃗ ⊕ X⃗B , then, he can apply this data to a decoder to estimate u⃗.

As presented in [6], binary codes designed for DV-QKD can be converted to a
binary spherical code with the following mapping :

Fd
2 → Sd−1 ⊂ Rd, (b1, · · · , bd) →

(
(−1)b1

√
d

, · · · , (−1)bd

√
d

)
. (3.1)

The noise analysis of the multi-dimensional reconciliation scheme is important. It
shows that the virtual channel obtained by suitable mapping can be approximated
by a BI-AWGN channel. Assume that after the quantum phase, Alice and Bob have
shared two n-dimensional real valued correlated data X⃗A and X⃗B . In addition, let
us denote by x⃗ and y⃗, two d-uplets corresponding to correlated Gaussian vectors X⃗A

and X⃗B , respectively. Then, as presented in [6], y⃗ = x⃗ + z⃗ with x⃗ ∼ N (0, 1)d, z⃗ ∼
N (0, σ2)d.

In the case of FR, Alice generates a uniform random vector u⃗ and sends r⃗ = u⃗.x⃗−1

to Bob. Then Bob computes v⃗ = r⃗.y⃗. The analysis of the noise for the virtual channel
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(w⃗ = v⃗ − u⃗) shows that:

w⃗ = v⃗ − u⃗

= r⃗.y⃗ − u⃗

= u⃗.x⃗−1(x⃗+ z⃗) − u⃗

= u⃗
z⃗

x⃗
∼ u⃗

z⃗

||x⃗||
,

where as presented in [6, 10], the last equality holds due to the fact that x⃗ and z⃗ are
independent. It means that the virtual channel can be considered as a Fading channel
with known channel side information (CSI) [44]. The fading coefficient is the norm
of x⃗. When d goes to infinity, the distribution of the norm of x⃗ becomes closer to a
Dirac distribution, and the virtual channel becomes closer to a BI-AWGN channel.
The maximum possible value for d is 8, because the division operator does not exists
for d > 8.

Now, let us consider the case of RR. In this case, x⃗ = y⃗ − z⃗ with y⃗ ∼ N (0, 1 +
σ2)d, z⃗ ∼ N (0, σ2)d. It is important to notice that in RR, y⃗ and z⃗ are not independent
(actually, they are highly correlated). Thus, accurate noise analysis is necessary to
obtain the distribution of the virtual channel. More precisely, in RR, Bob sends
r⃗ = u⃗.y⃗−1, and Alice calculates v⃗ = r⃗.x⃗. Thus, the noise of the virtual channel is

w⃗ = v⃗ − u⃗

= r⃗.x⃗− u⃗

= u⃗.y⃗−1(y⃗ − z⃗) − u⃗

= −u⃗ z⃗
y⃗
,

where in the last equation z⃗ and y⃗ are not independent. It shows that there is still
a need for discussion on the precise definition of the virtual channel in the RR case.
Despite of the lack of understanding (only in the case of RR), this method has been
widely used in CV-QKD, and most studies tend to focus on the high reconciliation
efficiency for this algorithm [4, 45, 46]. There is still significant concern over the
security of RR.

Finally, let us consider the practical implementation of the multi-dimensional rec-
onciliation. First, Alice and Bob normalize their data to have a uniform distribution
on the unit sphere Sn−1 of Rn. Then, Bob generates a binary sequence u⃗ of length k
with uniform distribution using a quantum random number generator (QRNG) [47],
and uses a linear code to generate a codeword c⃗ of length n. In the next step, this
binary code is mapped to a binary spherical code c⃗′ using (3.1). Then Bob calculates
a mapping function M(X⃗ ′

B , c⃗′) and sends it back to Alice. The mapping function
M(X⃗ ′

B , c⃗′) should satisfy
M(X⃗ ′

B , c⃗′).X⃗ ′
B = c⃗′ ,
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where X⃗ ′
B denotes the normalized data of Bob. Then, Alice can use the mapping

function and calculate a new sequence of e⃗ = M(X⃗ ′
B , c⃗′).X⃗ ′

A. Alice is allowed to use a
decoder designed for an BI-AWGN channel to recover estimation of u⃗. The following
block diagram shows the RR protocol, using the multi-dimensional reconciliation
approach.

Alice

~XA ∈ Rn

Normalization

~X ′
A ∈ Rn

Mapping function

~e ∈ Fn
2

Decoder

~u′ ∈ Fn
2

Estimated bits

Bob

~XB ∈ Rn

Normalization

~X ′
B ∈ Rn

Mapping function

~c ∈ Fn
2

Encoder

~u ∈ Fn
2

QRNG

M( ~X ′
B ,

~c′)

Syndrome check

Figure 3.1: RR using multidimensional reconciliation scheme. X⃗ ′
A and X⃗ ′

B are two
correlated sequences of real valued data. X⃗ ′

A and X⃗ ′
B denote the cor-

responding normalized sequences. M(X⃗ ′
B , c⃗′) represents the mapping

function. The raw key is generated by a QRNG is denoted by u⃗. The
encoded key using a linear code is denoted by c⃗ .
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3.2 Multi-Level-Coding Multi-Stage-Decoding
This Section introduces a reconciliation scheme based on MLC-MSD scheme. In the
following, we start by representing the block diagram of RR protocol based on MLC-
MSD scheme. Then we talk about digitization of continuous sources and try to show
the effect of digitization levels. Then we talk with more details about the MLC-
MSD scheme for RR. Starting with the one-level reconciliation method, which is a
specific type when just the most-significant bit (MSB) is used for the reconciliation,
we define and calculate the soft information for decoders. Then, the extension for two-
level reconciliation and multi-level will also be explained. In addition, we determine
how to calculate the code rates for individual levels. We represent both analytical
and numerical methods to calculate the individual rates and mutual information.
Finally, a comprehensive comparison for FR and RR is presented for the MLC-MSD
reconciliation.

It is assumed that readers are familiar with the concept of error correction codes
and low density parity check (LDPC) codes. Details about the definition of LDPC
codes, their parity check matrix and their standard decoder can be found in Ap-
pendix A. For a more detailed introduction into these concepts see [44].

Through this thesis we denote a vector with real valued symbols of length n by
x⃗ = (xi)n

i=1 = (x1, · · · , xn), where xi ∈ R. In addition a m-bit digitization of a real
valued symbol at jth index is denoted by Q(xj) = (xi

j)m−1
i=0 = (x0

j , x
1
j , · · · , xm−1

j ).
For example, a vector of Bob’s real valued symbols is denoted by x⃗B = (xB,i)n

i=1 =
(xB,1, · · · , xB,n) and the quantized version of its jth symbol is Q(xB,j) = (xi

B,j)m−1
i=0 =

(x0
B,j , x

1
B,j , · · · , xm−1

B,j ). Sometimes, it is more convenient to consider Bob as a con-
tinuous Gaussian source denoted by a random variable XB and its instant value is
then denoted by xB . Then the discretized source is denoted by Q(XB) = (Xi

B)m−1
i=0 .

In addition I(X;Y ) denotes the mutual information between two random variables
X and Y , where X and Y could be continuous or discrete random variables. Besides
H(X) denotes the entropy of secrete random variable and h(X) denotes the differen-
tial entropy for a continuous random variable. Sometimes we are interested to find
the entropy or mutual information at specific SNR s, then Is(X;Y ) = I(X;Y )|s,
Hs(X) = H(X)|s.

3.2.1 Introduction and system model
In general, multi-level reconciliation using error correction codes can be described
in two steps. The first step is digitization, which transforms the continuous Gaus-
sian source XB , into an m bit source Q(XB), with its binary representation vectors
(Xi

B)m−1
i=0 = (Xm−1

B , . . . , X1
B , X

0
B). There is an inherent information loss due to the

digitization process of the source. The second step can be modeled as source cod-
ing with side information on the MLC-MSD scheme. In RR Bob sends an encoding
(compressed version) of Q(X⃗B) to Alice, such that she can infer Q(X⃗B) with high
probability, using her own source X⃗A as side information. Let us define the efficiency
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β as

β = H(Q(XB)) −RSource

I(XB ;XA)
, (3.2)

where I(XB ;XA) is the mutual information and H(Q(XB))−RSource is the net shared
information between two parties, resp. per symbol, [48, 49] with H(·) being Shannon
entropy and RSource the source coding rate. Thus, the efficiency of reconciliation
depends on the ability to design very good digitizers and highly efficient compression
codes with minimum possible source coding rate (RSource). Slepian and Wolf [50]
have shown that H(Y |Z) is the lower bound to the source coding rate when decoding
Y given side information Z. Therefore, Rs ≥ H(Q(XB)|XA).

A detailed schematic representation for the MLC-MSD scheme is presented in Fig-
ure 3.2, where Bob encodes his data onto m different individual levels. Let us denote
by RSource

i the corresponding source coding rate for each sub-level i in the MLC-MSD
scheme. Then using the Slepian-Wolf theorem, all RSource

i are lower bounded by the
conditional entropy of the ith bit of Q(XB), given side information XA and all the
remaining least significant bits (LSBs) of Q(XB):

RSource
i ≥ H(Xi

B |XA, X
i−1
B , . . . , X0

B) . (3.3)

The total source coding rate is given by summing over the individual source code
rates RSource

i :

RSource =
m−1∑
i=0

RSource
i ,

which resembles the Slepian-Wolf theorem:

RSource ≥
m−1∑
i=0

H(Xi
B |XA, X

i−1
B , . . . , X0

B) = H(Q(XB)|XA) .

The detailed block diagram for the MLC-MSD scheme is depicted in Figure 3.2.
We consider a digitization scheme with M = 2m, m > 1, signal points in a D-
dimensional real signal space, with signal points taken from the signal set S =
{a0, a1, . . . , aM−1}, with probabilities Pr{ak}. Each signal point has its equivalent bi-
nary form defined by a bijective mapping a = M(x⃗) of binary representation vectors
x⃗ = (xm−1

B , . . . , x0
B) to signal points a ∈ S. Two well defined mappings are binary and

Gray mapping. As an example, for m = 3 levels, in one-dimensional signal space (D =
1), the M = 23 signal points are taken from S = {−7,−5,−3,−1,+1,+3,+5,+7}.
Fixing the values of co-ordinates i to 0, i.e. xi

B , . . . , x
0
B , we obtain subsets of the signal

set S by defining:

S(xi
B , . . . , x

0
B) = {a⃗ = M(x⃗) | x⃗ = (bm−1, . . . , bi+1, xi

B , . . . , x
0
B), bj ∈ {0, 1},

j = i+ 1, . . . ,m− 1} . (3.4)
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Bob’s Side Alice’s Side

~xB = (xB,1, . . . , xB,n) ~xA = (xA,1, . . . , xA,n)

Quantizer Q(·)

QUANTUM CHANNEL

Q
u
a
n
ti
ze
r
Q
(·)

xm−1
B,1 , . . . , xm−1

B,n
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B,1, . . . , x

i
B,n

Enc m− 1

Enc i

pm−1
1 , . . . , pm−1

n(1−Rch
m )

pi1, . . . , p
i
n(1−Rch

i )

Dec i

Dec m− 1
x̂m−1
B,1 , . . . , x̂m−1

B,n

x̂i
B,1, . . . , x̂

i
B,n

// //

x̂0
B,1, . . . , x̂
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B,nx0

B,1, . . . , x
0
B,n

...
...

...
... · · · · · ·

Figure 3.2: The MLC-MSD scenario for RR. First the input is quantized into an
m-bit source. Then each of the m sources is encoded and sent to Alice.
The decoder has the side information from its own source and with
the m encoded sources produces an estimate of the quantized source.
Usually we transmit the least significant bits as plain-texts..

For more details about set partitioning and mapping see [7]. For the above mentioned
constellation points, with M = 8 and binary partitioning:

S(x0
B = 0) = {a⃗ = M(x⃗)|x⃗ = {000, 010, 100, 110}} = {−7,−3,+1,+5} ,

S(x1
Bx

0
B = 10) = {a⃗ = M(x⃗)|x⃗ = {010, 110}} = {−3,+5} ,

S(x2
Bx

1
Bx

0
B = 010) = {a⃗ = M(x⃗)|x⃗ = {010}} = {−3} .

Figure 3.3 illustrates the schematic representation of the binary set partitioning for
the above constellation points. In Section 3.2.2 we talk with more details about the
digitization effect.

S

S(0) S(1)

S(11)S(01)S(10)S(00)

S(000) S(100) S(010) S(110) S(001) S(101) S(011) S(111)

Figure 3.3: The binary set partitioning and the corresponding mapping.
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In addition Figure 3.2 contains m individual levels. Some of the levels are trans-
mitted as plain-text and some of the levels contain encoder and decoder blocks. In Sec-
tion 3.2.5 we propose both analytical and numerical methods to calculate the code
rates for individual levels. In addition, in Section 3.2.3 we explain with more de-
tails how encode the corresponding binary data in each level and how to use soft
information for decoding purpose. Also we assume that LDPC codes are used for
decoding.

3.2.2 Digitization effect
A digitizer converts continuous values to some discrete levels, characterized by a
range R and number of output bits m. It is assumed that the digitizer uses the the
following signal values: {−(M − 1), . . . ,−3,−1, 1, 3, . . . , (M − 1)}, where M = 2m.
The constellation symbols are normalized so that the average energy is equal to 1.
Usually, R = 6σ is enough for the range of the digitizer. The digitizer provides a set
of M = 2m non-overlapping intervals with equal length δ = 2R

M − 2
as follows:

Ij =


(−∞,−R] if j = 0 ,
(−R+ (j − 1)δ,−R+ (j)δ] if 0 < j < M − 1 ,
[R,+∞) if j = M − 1 .

(3.5)

Let us denote by Q(xB) the m-bit quantized version of xB with its binary repre-
sentation vector (xm−1

B , . . . , x1
B , x

0
B). Also, it is possible to assign different mappings

to the output of the digitizer. For example, as depicted in Figure 3.4, an m = 4
bit digitizer with range R is considered. Some possible mappings for the output are
also presented. Considering a fixed step size δ for digitization, the entropy of the
quantized source can be approximated by

H(Q(XB)) ≈ h(XB) − log2 δ ,

where h(XB) is the differential entropy defined for continuous variable XB . A similar
digitization can be applied on the Alice’s side to get Q(XA). This also holds for the
conditional entropy:

H(Q(XB)|Q(XA)) ≈ h(XB |XA) − log2 δ .

For the mutual information, if m is large enough:

I(Q(XB);Q(XA)) ≈ I(Q(XB);XA) ≈ I(XB ;XA) ,

where the equality holds when δ → 0.

Example 3.2.1. The m-bit digitizer
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-R +Rδ

Qp(xB)−Qn(xB) = −8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 3 2 7 6 4 5 15 14 12 13 8 9 11 10

+0 -0+1 -1+2 -2+3 -3+4 -4+5 -5+6 -6+7 -7

Figure 3.4: A digitizer with 4 bits. It provides 16 non-overlapping intervals. The
binary, Gray and sign-magnitude mappings are also considered. It is
clear that the distance between two points with equal least-significant
bits (LSB)s is always fixed and it is equal to 8. Two quantized points
Qp(xB) and Qn(xB) have equal LSBs, but their MSBs are assigned to
0 and 1, respectively.

As an example, consider a case when the covariance matrix of a bi-variate normal
distribution is:

Σ =
[

1 0.9
0.9 4

]
.

Then, the theoretical value for the differential entropy, can be calculated as:

h(X,Y ) = 0.5 log2
(
(2πe)2 det(Σ)

)
,

where det(Σ) denotes the determinant of the covariance matrix and the correspond-
ing mutual information is equal to I(X;Y ) = h(X) + h(Y ) − h(X,Y ), as presented
in Table 3.1. In addition, using a Monte-Carlo simulation, numerical estimations
are calculated for m ∈ {3, 4, 5, 6}, where m denotes the m-bit digitizer. Also, the
corresponding histograms are plotted in Figure 3.5 for marginal and the joint distri-
butions. It is clear that for the m = 3, the estimated values are not accurate, but for
the m ≥ 4, the numerical calculations are close to the theoretical values.
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Theoretical values
I(XA;XB) h(XA) h(XB)

– 0.1632 2.0471 3.0471
Numerical estimations

m I(Q(XA);Q(XB)) H(Q(XA)) H(Q(XB))
3 0.136293 2.103829 3.103865
4 0.155513 3.061083 4.061103
5 0.160985 4.050079 5.049973
6 0.162606 5.047190 6.047170

Table 3.1: The theoretical values and the numerical estimations for m-bit digitizer
with δ = 23−m.
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Figure 3.5: The digitization effect on the 1-D histogram (related to XA) and corre-
sponding 2-D histogram of the normalized quantized data.
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3.2.3 MLC-MSD reconciliation with one-level coding

Now let us discuss the reconciliation process using MLC-MSD scheme. Also consider
RR, where Alice reconciles her values to match Bob’s. In this case, the reconciliation
process can be fully described as a conventional communication theory problem. We
start with the case when just the MSB of the Bob’s data is used to generate the key
(see Figure 3.6). Then we extend for two-levels and multi-levels. This problem was
first addressed in [50] as source coding with side information. Assume that Alice and
Bob have access to two correlated information sources XA and XB which follow a joint
probability distribution pXAXB

(xA, xB). The two parties wish to distill a common
binary string from blocks of length n, x⃗A = (xA,i)n

i=1, x⃗B = (xB,i)n
i=1, by exchanging

information as shown in Figure 3.6. In this configuration, Bob sends to Alice an
encoded (compressed) version of his MSB (xm−1

B,i )n
i=1 =

(
xm−1

B,1 , · · · , xm−1
B,n

)
and all

the other LSBs are transmitted as plain-text. Then Alice uses her side information
x⃗A = (xA,i)n

i=1 and Bob’s LSBs to estimate (xm−1
B,i )n

i=1 from s⃗.

~xB = (xB,j)
n
j=1

Q(·)

Q(xB,j) = (xi
B,j)

m−1
i=0

~xm−1
B~x0

B ~xm−2
B

Bob’s E

Alice

Bob

~s

Alice’s D
~xA = (xA,j)

n
j=1 Q(xA,j) ~̂xm−1

B

Q(·)

Figure 3.6: Reverse reconciliation scheme when just the most significant bit en-
coded. The remaining m− 1 bits are transmitted as plain-text.

Here, the operation of each block is described with more details. Specifically, we
describe the operation of Bob’s encoder and the corresponding decoder on Alice’s
sides. In addition, we demonstrate how to calculate the soft information at the input
of the Alice’s decoder.
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3.2.3.1 Bob’s encoder

Let us denote by s⃗ the syndrome generated by Bob. For a given parity check matrix
H(n−k) n and a bit string x⃗m−1

B = (xm−1
B,i )n−1

i=0 of length n, the syndrome s⃗ is calculated
as:

s⃗ = x⃗m−1
B HT , (3.6)

where HT denotes the transpose of the parity check matrix of the LDPC code (see Ap-
pendix A). Bob’s encoder is actually a hash function, which compresses the data of
length n to a syndrome of length n − k. Some other important facts, regarding the
syndrome and Bob’s encoder are the following:

• The syndrome is a vector of length n− k.

• The syndrome can be a non-zero vector depending on the Bob’s received se-
quence.

• Each 0 value in s⃗ denotes that the corresponding parity equation is satisfied for
X⃗m−1

B .

• Each 1 value in s⃗ denotes that the corresponding parity equation is not satisfied
for X⃗m−1

B .

3.2.3.2 Calculation of the soft information

According to [44] the a-priori log-likelihood ratio (LLR) for a single bit is defined as:

λX = ln
(

Pr{x = 1}
Pr{x = 0}

)
= ln

(
p

1 − p

)
, (3.7)

where p = Pr{x = 1}. In a similar way, at the input of the decoder on Alice’s side,
the a-posteriori LLR for Bob’s MSB, given Alice’s quantized data and Bob’s LSBs
can be defined as:

λ
Xm−1

B
|Q(XA), (Xi

B)m−2
i=0

= ln

(
Pr{xm−1

B = 1|Q(xA),
(
xi

B

)m−2
i=0 }

Pr{xm−1
B = 0|Q(xA),

(
xi

B

)m−2
i=0 }

)
. (3.8)

In addition, using the rules of the conditional probabilities

Pr{X, Y |Z} = Pr{X|Z} Pr{Y |X, Z}, (3.9)

one can write

Pr{Xm−1
B |Q(XA),

(
Xi

B

)m−2
i=0 } =

Pr{Xm−1
B ,

(
Xi

B

)m−2
i=0 |Q(XA)}

Pr{
(
Xi

B

)m−2
i=0 |Q(XA)}

, (3.10)
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where (3.10) can be used to simplify both numerator and denominator of (3.8) as
follows:

λ
Xm−1

B
|Q(XA), (Xi

B)m−2
i=0

= ln

(
Pr{xm−1

B = 1,
(
xi

B

)m−2
i=0 |Q(xA)}

Pr{xm−1
B = 0,

(
xi

B

)m−2
i=0 |Q(xA)}

)
. (3.11)

Now, let us define two new random variables Qp(XB) and Qn(XB). Qp(XB) takes
the LSBs of Bob’s data and assumes the MSB is equal to 0 and Qn(XB) takes the
LSBs of Bob’s data and assumes the MSB is equal to 1. As depicted in Figure 3.4,
Qp(XB) belongs to the set of symbols on left hand side of the plane and Qn(XB)
belongs to the set of symbols on the right hand side.

Furthermore, it is clear that

Pr{Q(XB)|Q(XA)} ≈
exp

(
− (Q(xB) −Q(xA))2

2σ2

)
√

2πσ2
, (3.12)

where σ2 in (3.12) is the combination of the quantum channel noise and the digitizer
noise. Using (3.12), equation (3.11) can be simplified to:

λ
Xm−1

B
|Q(XA), (Xi

B)m−2
i=0

= ln


exp

(
− (Qn(xB) −Q(xA))2

2σ2

)

exp

(
− (Qp(xB) −Q(xA))2

2σ2

)


= (Qp(xB) −Q(xA))2 − (Qn(xB) −Q(xA))2

2σ2

= (Qp(xB) −Qn(xB)) (Qp(xB) +Qn(xB) − 2Q(xA))
2σ2

= −2m−1 (Qp(xB) +Qn(xB) − 2Q(xA))
2σ2 , (3.13)

where on the last equation, as depicted in Figure 3.4, for a digitizer with m-bits,
Qp(xB) −Qn(xB) = −2m−1. Thus

λ
Xm−1

B
|Q(XA), (Xi

B)m−2
i=0

=
−2m−1 (Qavg(xB) −Q(xA)

)
σ2 , (3.14)

where, Qavg(xB) = Qp(xB)+Qn(xB)
2 denotes the average. This soft information can

be used at the input of the LDPC decoder to estimate Xm
B .

3.2.3.3 Alice’s decoder

Let us describe Alice’s decoder. Here we show how Alice needs to modify her decoder
to use the non-zero syndrome s⃗. The conventional LDPC decoder [51, 52] accepts soft
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information, and tries to recover the codeword from noisy received data by applying
the message passing (MP) algorithm (See [44] and Appendix A). Let λ0

v denote Bob’s
MSB soft information as shown in (3.14) for variable-node (VN) v, on iteration 0. In
addition assume that λl

vc (µl
cv) denotes the message from variable-node to check-node

(from check-node to variable-node) after l iterations. The update equations for the
messages under belief propagation are:

λl
vc =


λ0

v if l = 0
λ0

v +
∑

c′∈Cv\c

µl
c′v if l ≥ 1

µl
cv = 2 tanh−1

 ∏
v′∈Vc\v

tanh

(
λl−1

v′c

2

) ,

where Cv\c denotes all the check-nodes (CN) connected to the VN v, except the
CN c and Vc\v is the set of VNs connected to CN c, except the VN v. The above
formulation is valid when the syndrome s⃗ is an all zero vector, or all the parity
equations are satisfied with zero parity.

In contrast to the conventional LDPC decoder, for the 1-level scheme the decoder
on the Alice’s side, as denoted in Figure 3.6, accepts one more additional input,
denoted by syndrome s⃗, which is the syndrome of Bob’s MSB which can be calculated
from (3.6). The syndrome s⃗ is in general, a non-zero vector. Thus, we need to change
the CN operation according to the received syndrome s⃗. The modified CN operation
then can be represented as:

µl
cv = (−1)Sc · 2 tanh−1

 ∏
v′∈Vc\v

tanh

(
λl−1

v′c

2

) , (3.15)

where Sc ∈ {0, 1} represents the parity value at index c. It is clear that for Sc = 0,
the CN operation remains the same as standard decoder, but for Sc = 1, the CN
operation would flip the sign of the outgoing message.

3.2.3.4 Noise estimation

Accurate estimation of noise variance plays an important role for the calculation of
the soft information. According to (3.14), incorrect estimation of the noise variance
can highly affect the reliability of the soft information. Here, we present a method to
obtain an accurate estimation of the noise variance. Under the assumption that the
channel variance is not changing very fast, one can use some portion of the quantized
data to estimate the noise variance.

Let us assume that we have sufficient samples of two jointly zero mean Gaussian
random variables XA and XB , with standard deviations σA and σB , respectively. The
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bi-variate normal distribution can be described by:

fXB ,XA
(xB , xA) = 1

2π
√

|Σ|
exp

(
−1

2
(xA, xB)Σ−1(xA, xB)T

)
, (3.16)

where the covariance matrix is equal to:

Σ =
[

σ2
A ρ σA σB

ρ σA σB σ2
B

]
, (3.17)

and
ρ = E{XAXB}

σAσB
, (3.18)

is the correlation coefficient between XA and XB . By normalizing Alice’s and Bob’s
data by their respective standard deviation, i.e.

xj
A → xj

A/σA ,

xj
B → xj

B/σB ,

the covariance matrix becomes

Σ → Σ =
[
1 ρ
ρ 1

]
. (3.19)

The conditional probability distribution describing Alice’s outcome conditioned on
Bob’s is given by:

fXA|XB
(xA|xB) = N (ρxB , (1 − ρ2)) . (3.20)

Using the given covariance matrix in (3.17), the mutual information of a bi-variate
normal distribution can be calculated as:

I(XA;XB) = −1
2

log2(1 − ρ2) . (3.21)

For prepare and measure protocols, another interpretation of the mutual information
is

I(XA;XB) = 1
2

log2(1 + SNR) = 1
2

log2(1 + σ2
A

σ2
N

) , (3.22)

where σ2
A denotes the variance of the Alice’s data and σ2

N denotes the variance of the
additive white Gaussian noise channel. Then,

SNR = ρ2

1 − ρ2 . (3.23)
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3.2.4 MLC-MSD reconciliation with two-level coding
Now let us extend the reconciliation scheme to a more general case when two levels
are encoded and the rest of the LSBs are transmitted as plain-text (See Figure 3.7).
In this case, the encoders and decoders work at two different code rates for each
individual level. We defer the calculation of the individual rates to Section 3.2.5. As
depicted in Figure 3.7, it is assumed that Bob sends m−2 LSBs directly to Alice and
for the two MSBs, syndromes are sent. Then, Alice first tries to estimate the LLR
of Xm−2

B and then estimates the Xm−1
B . The calculation of the soft information for

the MSB was discussed in Section 3.2.3.2 . Here, we calculate the soft information
on the Alice’s side for the 2nd level (Second most significant bit).

~xB = (xB,j)
n
j=1

Q(·)

Q(xB,j) = (xi
B,j)

m−1
i=0

~xm−2
B~xm−3

B~x0
B

~xm−1
B

E2 E3

Alice

Bob
~sm−2

Alice’s D2
~̂xm−2
B

~sm−1

Alice’s D3
~̂xm−1
B

~xA = (xA,j)
n
j=1 Q(xA,j)

Q(xA,j) = (xi
A,j)

m−1
i=0

Q(·)

Figure 3.7: Reverse reconciliation when two most significant bits are encoded.

At the input of decoder D2 on Alice’s side the LLR for Bob’s second MSB, given
Alice’s quantized data and Bob’s other remaining LSBs can be defined as:

λ
Xm−2

B
|Q(XA), (Xi

B)m−3
i=0

= ln

(
Pr{xm−2

B = 1|Q(xA),
(
xi

B

)m−3
i=0 }

Pr{xm−2
B = 0|Q(xA),

(
xi

B

)m−3
i=0 }

)
. (3.24)

Again, using (3.9), we can write

Pr{Xm−2
B |Q(XA),

(
Xi

B

)m−3
i=0 } =

Pr{Xm−2
B ,

(
Xi

B

)m−3
i=0 |Q(XA)}

Pr{
(
Xi

B

)m−3
i=0 |Q(XA)}

, (3.25)
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where (3.25) can be used to simplify both numerator and denominator of (3.24) as
follows:

λ
Xm−2

B
|Q(XA), (Xi

B)m−3
i=0

= ln

(
Pr{xm−2

B = 1,
(
xi

B

)m−3
i=0 |Q(xA)}

Pr{xm−2
B = 0,

(
xi

B

)m−3
i=0 |Q(xA)}

)
. (3.26)

In addition, let us define four new random variables Qpp(XB), Qpn(XB), Qnp(XB)
and Qnn(XB). Where, Qpp(XB) takes LSBs of Bob’s data and assumes that the two
MSBs are equal to 00 and so on. The numerator of (3.26) can be expanded as:

Pr{xm−2
B = 1,

(
xi

B

)m−3
i=0 |Q(xA)} = 1

2
Pr{xm−1

B = 0, xm−2
B = 1,

(
xi

B

)m−3
i=0 |Q(xA)}

+ 1
2

Pr{xm−1
B = 1, xm−2

B = 1,
(
xi

B

)m−3
i=0 |Q(xA)}

= Pr{Qpn(xB)|Q(xA)} + Pr{Qnn(xB)|Q(xA)}
2

,

where in the last equation, it is assumed that Pr{xm−1
B = 0|Q(xA)} = Pr{xm−1

B =
1|Q(xA)} = 1

2 . This assumption is valid, because at this step, decoder D2 does not
have any information about X3

B . In other words, it can take zero or one with equal
probability. Then, (3.26), can be simplified to:

λ
Xm−2

B
|Q(XA), (Xi

B)m−3
i=0

= ln

exp
(

−(Qnn(xB)−Q(xA))2

2σ2

)
+ exp

(
−(Qpn(xB)−Q(xA))2

2σ2

)
exp

(
−(Qnp(xB)−Q(xA))2

2σ2

)
+ exp

(
−(Qpp(xB)−Q(xA))2

2σ2

)
 ,

(3.27)
which is the soft information at the input of the decoder D2.

The generalization to the higher levels is straight forward but in practice just two
MSBs are encoded. In fact the channel coding rates for LSBs are very close to zero
and no practical error correction exists for LSBs. In Section 3.2.5 we calculate the
individual code rates for each level. Then it would be clear that just two MSBs are
enough for the reconciliation tasks and all the remaining LSBs are then transmitted
as plain-text.
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3.2.5 Calculation of the individual source coding rates
3.2.5.1 Analytical method

For an m-bit digitizer, the individual conditional mutual information for each level is
defined as:

Ii = I(XA;Xi
B |Xi−1

B , . . . , X0
B) ,

= H(Xi
B |Xi−1

B , . . . , X0
B) −H(Xi

B |XA, X
i−1
B , . . . , X0

B) . (3.28)

Thus, using (3.3) it is clear that:

RSource
i ≥ H(Xi

B |Xi−1
B , . . . , X0

B) − Ii . (3.29)

Equation (3.29) offers an analytical way to calculate the individual source rates for
each level and, the only non-trivial quantity is the individual conditional mutual
information Ii. To calculate Ii, the MLC-MSD approach is used [7]. Using the
chain rule, we can always describe the total mutual information as a summation of
conditional mutual information for individual levels

I(XA;Q(XB)) = I(XA;Xm−1
B , . . . , X0

B) = I(XA;X0
B) + I(XA;X1

B |X0
B)

+ . . .+ I(XA;Xi
B |Xi−1

B , . . . , X0
B) + . . .

+ I(XA;Xm−1
B |Xm−2

B , . . . , X0
B) , (3.30)

which motivates our definition of the individual conditional mutual information in (3.28).
According to [7], we can expand Ii as follows:

Ii = I(XA;Xi
B |Xi−1

B , . . . , X0
B) (3.31)

= I(XA;Xm−1
B , . . . , Xi

B |Xi−1
B , . . . , X0

B) − I(XA;Xm−1
B , . . . , Xi+1

B |Xi
B , . . . , X

0
B) ,

where each term on the right hand side can be calculated separately. More precisely,

I(XA;Xm−1
B , . . . , Xi

B |Xi−1
B , . . . , X0

B) =
Exi−1

B
,...,x0

B
∈ {0,1}i { I(XA;Xm−1

B , . . . , Xi
B |xi−1

B , . . . , x0
B)
}
,

where E denotes the expectation value and can be calculated by averaging over all
possible combinations of xi−1

B , . . . , x0
B . Finally, according to [7], the full character-

ization of Ii requires a set of probability density functions (PDF)s f XA|Xi
B

(xA|xi
B)

which can be defined as:{
fXA|XB

(
xA|xi

B , x
i−1
B , . . . , x0

B

)
|
(
xi−1

B , . . . , x0
B

)
∈ {0, 1}i

}
,

where,

fXA|XB
(xA|xi

B , x
i−1
B , . . . , x0

B) = Eb ∈ S(xi
B

,...,x0
B

)
{
fXA|XB

(xA|b)
}
,

where the signal point b is taken from the subset S(x0
B . . . x

i
B) and fXA|XB

(xA|b) is the
equivalent conditional quantized PDF of the continuous conditional PDF presented
on (3.20).
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Example 3.2.2. Simulation results for a 4-bit digitizer

As an example, we present simulation results for individual rates for 16 bins, when
Bob’s quantized data has a discrete Gaussian PDF. The results for individual channel
coding rates are presented in Figure 3.8. The equivalent channel coding rate is equal
to Rch

i = 1 − RSource
i . We assumed that Alice’s data has a continuous Gaussian

distribution with variance equal to 1 and both Alice and Bob use 4 level digitizers.
Also, a fixed step size δ = 0.32 is assumed for digitization of normalized continuous
variables.
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Figure 3.8: The equivalent channel coding rates (Rch
i = 1 − RSource

i ) for 4-levels
with binary partitioning versus SNR.

Figure 3.9 denotes the conditional mutual information for the ith individual chan-
nel (Ii) as a function of the SNR. It is clear that the summation of the all individual
conditional mutual information is very close to the Shannon capacity of the AWGN
channel, and the small difference is a results of the digitization effect.

By summing up over all the individual mutual information taken from (3.28) it is
clear that:

m−1∑
i=0

Ii = I(Q(XB);XA) ≤ I(XB ;XA) .
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Figure 3.9: The individual conditional mutual information for the 4-levels with bi-
nary partitioning versus SNR.

3.2.5.2 Numerical calculation method

In this part, I propose a numerical method to calculate the individual source coding
rates and individual mutual information between different levels. As long as we have
access to some portion of Alice’s and Bob’s data we can find the joint probability mass
function (PMF) and their marginal PMFs for Alice and Bob. For instance Figure 3.10
shows the numerical PMF extracted from the quantized data. To get the marginal
PMFs it is enough to sum over the rows or columns of the 2-D histogram. The color
map on 2-D histogram denotes the joint probability values. Since the normalized
data are used for the calculation both set of data related to Alice and Bob have the
same variance equal to one.

Let us remind the equation of individual mutual information for RR as presented
in (3.28)

Ii = I(Q(XA);Xi
B |Xi−1

B , . . . , X0
B) ,

= H(Xi
B |Xi−1

B , . . . , X0
B) −H(Xi

B |Q(XA), Xi−1
B , . . . , X0

B) . (3.32)

where we replaced XA by Q(XA) = Xi
AX

i−1
A · · ·X0

A and the assumption that the
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Figure 3.10: Numerical joint PMF for quantized bi-variate normally distributed
random variables and their marginal PMFs for a 4-bit digitizer at
SNR=−5 dB.

same digitizer is used on both sides. In the following we show how to calulate both
parts of the right hand side of the above equation by using joint and the marginal
PMFs.

For the first term, from the fact that H(X|Y ) = H(X,Y ) −H(Y ):

H(Xi
B |Xi−1

B , . . . , X0
B) = H(Xi

B , X
i−1
B , . . . , X0

B) −H(Xi−1
B , . . . , X0

B) .

Then, to calculate the term H(Xi
B , X

i−1
B , . . . , X0

B), we can directly apply the
definition of the entropy for discrete variables as follows:

H(Xi
B , . . . , X

0
B) = −

∑
Xi

B
,...,X0

B

Pr
Xi

B
,...,X0

B

{xi
B , . . . , x

0
B} log2

(
Pr

Xi
B

,...,X0
B

{xi
B , . . . , x

0
B}

)
.

All the probabilities can be calculated from Bob’s marginal PMF. For example
PrX0

B
{1} denotes the probability that the LSB of Bob is equal to 1. In a similar way,

PrX1
B

X0
B

{01}, denotes the probability that the two LSBs of Bob are 01.
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For the second term in (3.32) it is possible to write

H(Xi
B |Q(XA), Xi−1

B , . . . , X0
B) = H(Xi

B , . . . , X
0
B |Q(XA))

−H(Xi−1
B , . . . , X0

B |Q(XA)) .

And to calculate each term

H(Xi
B , . . . , X

0
B |Q(XA)) =

a2m−1∑
Q(XA)=a0

Pr
Q(XA)

{ai}H(Xi
B , . . . , X

0
B |ai) ,

where ai is a realization of Alice’s quantized data and H(Xi
B , . . . , X

0
B |Q(XA) = ai)

denotes the instant entropy value when Q(XA) = ai. The probability PrQ(XA){ai}
can be obtained by looking at Alice’s marginal PMF and H(Xi

B , . . . , X
0
B |Q(XA) = ai)

can be calculated as:

−
∑

Xi
B

,...,X0
B

Pr
Xi

B
,...,X0

B
|Q(xA)

{xi
B , . . . , x

0
B |ai} log2

(
Pr

Xi
B

,...,X0
B

|Q(xA)
{xi

B , . . . , x
0
B |ai}

)
,

where the probability values PrXi
B

,...,X0
B

|Q(xA){xi
B , . . . , x

0
B |ai} can be obtained from

the joint PMF of Alice and Bob. Our numerical calculations confirm the same theo-
retical values for individual rates and individual mutual information (See Figure 3.9
and Figure 3.8).
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3.3 Comparison between reverse and forward
reconciliation

In Section 3.1 the difference between FR and RR was discussed in the context of
multidimensional reconciliation. Here, we compare FR and RR for the MLC-MSD
scheme. As illustrated in Figure 3.11, Alice and Bob are connected through two
different channels (classical and quantum channels). First, Alice sends quantum states
to Bob through a noisy quantum channel and later, depending on the reconciliation
protocol, the two parties share some information on an authenticated classical channel.
In the case of FR, Alice encodes her data and sends it to Bob who would correct his
data according to syndromes generated by Alice, plus his own side information. On
the other hand, in the case of RR, Bob sends the data, and Alice corrects her data
according to his data (For detailed information see Figure 3.11).

Alice’s Side Bob’s Side

~xA = (xA,1, . . . , xA,n) ~xB = (xB,1, . . . , xB,n)

Quantizer Q(·)

QUANTUM CHANNEL

Q
u
an

ti
ze
r
Q
(·)

xm−1
A,1 , . . . , xm−1

A,n

xi
A,1, . . . , x

i
A,n

Enc m− 1

Enc i

pm−1
1 , . . . , pm−1

n(1−Rch
m )

pi1, . . . , p
i
n(1−Rch

i )

Dec i

Dec m− 1
x̂m−1
A,1 , . . . , x̂m−1

A,n

x̂i
A,1, . . . , x̂

i
A,n

// //

x̂0
A,1, . . . , x̂

0
A,nx0

A,1, . . . , x
0
A,n

...
...

...
... · · · · · ·

Bob’s Side Alice’s Side

~xB = (xB,1, . . . , xB,n) ~xA = (xA,1, . . . , xA,n)

Quantizer Q(·)

QUANTUM CHANNEL

Q
u
a
n
ti
ze
r
Q
(·)

xm−1
B,1 , . . . , xm−1

B,n

xi
B,1, . . . , x

i
B,n

Enc m− 1

Enc i

pm−1
1 , . . . , pm−1

n(1−Rch
m )

pi1, . . . , p
i
n(1−Rch

i )

Dec i

Dec m− 1
x̂m−1
B,1 , . . . , x̂m−1

B,n

x̂i
B,1, . . . , x̂

i
B,n

// //

x̂0
B,1, . . . , x̂

0
B,nx0

B,1, . . . , x
0
B,n

...
...

...
... · · · · · ·

Figure 3.11: The comparison of forward (upper) and reverse (lower) reconciliation.
Through the quantum channel Alice always sends quantum states of
light to Bob. In the classical channel the direction of the messages are
not the same and is determined by the protocol.

In both cases, the quantum channel can be described by XB = XA + N , where
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N is the additive white Gaussian noise with zero mean and variance σ2
N . Since, the

two quantities XA and N are independent, the following bounds are valid for the
continuous data:

H(XB) ≥ H(N) ,
H(XB) ≥ H(XA) ,

For the reconciliation, it can be assumed that Alice and Bob have access to pairs
of samples of a joint Gaussian distribution. Also, let us denote by H(Q(XA)) and
H(Q(XB)) the entropy of the quantized version of Alice and Bob’s data. According
to Table 3.1 and Figure 3.5, for an efficient digitizer

I(XB ;XA) ≈ I(Q(XB);Q(XA)) ,
H(Q(XB)) −H(Q(XB)|Q(XA)) ≈ H(Q(XA)) −H(Q(XA)|Q(XB)) ,
H(Q(XB)) +H(Q(XA)|Q(XB)) ≈ H(Q(XA)) +H(Q(XB)|Q(XA)) ,
H(Q(XA), Q(XB)) ≈ H(Q(XB), Q(XA)) .

According to the results presented in [50], and as depicted in Figure 3.12, in the
case of FR (RR), it is enough for Alice and Bob to shareH(Q(XA)|XB) (H(Q(XB)|XA))
information (bit/symbol) through the classical channel to achieve perfect reconcilia-
tion. In this case the corresponding mutual information is

FR: H(Q(XA)) −H(Q(XA)|XB)
RR: H(Q(XB)) −H(Q(XB)|XA).

The quantity H(Q(XA)|XB) (H(Q(XB)|XA)) is a lower bound on source coding
rate for FR (RR). For better understanding of the difference between these quantities
as a function of SNR, a comparison has been done for the continuous variables on
quantum channel using the differential entropy for Gaussian variables. The results
are shown in Figure 3.13.

Now, let us compare with more details the forward and reverse reconciliation
protocols. Also, let us denote by Is(X;Y ) = I(X;Y )|s and Hs(X) = H(X)|s, the
mutual information and the entropy at specific SNR s. The specific definition of
these quantities would be clear from the context. In addition, remember that RCh

i =
1−RSource

i . For simplicity, we denote here the channel coding rate at SNR s by Ri
RR |s

and Ri
FR |s for RR and FR, respectively.

3.3.1 Individual rates for reverse and forward reconciliations
It is known from (3.3) that for RR, the channel coding rate of the individual levels

Ri

RR |s ≤ 1 −Hs(Xi
B |XA, X

i−1
B , . . . , X0

B) ,
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Figure 3.12: Admissible Rate Region according to Slepian-Wolf method.
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Figure 3.13: The theoretical values for differential entropies for continuous data on
quantum channel.
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thus,

RRR |s =
∑

i

Ri

RR |s ≤ m−Hs(Q(XB)|XA) ,

Ii

RR |s = I(Xi
B ;XA|Xi−1

B , . . . , X0
B) ,

Ii

RR |s = Hs(Xi
B |Xi−1

B , . . . , X0
B) −Hs(Xi

B |XA, X
i−1
B , . . . , X0

B) .

In a similar way, for FR:

Ri

FR |s = 1 −Hs(Xi
A|XB , X

i−1
A , . . . , X0

A) ,

RFR |s =
∑

i

Ri

FR |s ≤ m−Hs(Q(XA)|XB) ,

Ii

FR |s = I(Xi
A;XB |Xi−1

A , . . . , X0
A) ,

Ii

FR |s = Hs(Xi
A|Xi−1

A , . . . , X0
A) −Hs(Xi

A|XB , X
i−1
A , . . . , X0

A) .

Finally, for both schemes

IRR =
m∑

i=1
Ii

RR = I(XA;Q(XB)) ≈ I(Q(XA);XB) =
m∑

i=1
Ii

FR = IFR , (3.33)

where in (3.33), it is assumed that the digitization error is small and I(XA;Q(XB)) ≈
I(Q(XA);XB) ≈ I(XA;XB).

3.3.2 Individual rates in terms of I i|∞ and I i|s
The rate of the error correction codes can be represented in terms of the mutual
information. In the case of FR:

Ii

FR |s = Hs(Xi
A|Xi−1

A , . . . , X0
A) −Hs(Xi

A|XB , X
i−1
A , . . . , X0

A) , (3.34)

and at s = ∞

Ii

FR |∞ = H∞(Xi
A|Xi−1

A , . . . , X0
A) −H∞(Xi

A|XB , X
i−1
A , . . . , X0

A) .

since, s → ∞ then, XB = XA and H∞(Xi
A|XB , X

i−1
A , . . . , X0

A) = 0, thus:

Ii

FR |∞ = H∞(Xi
A|Xi−1

A , . . . , X0
A) = Hs(Xi

A|Xi−1
A , . . . , X0

A) . (3.35)

The last equality is valid, because the Alice’s data is independent of the SNR. Then,
for the case of FR

Ri

FR |s = 1 − [Ii

FR |∞ − Ii

FR |s]. (3.36)

This can be checked by substituting (3.34) and (3.35) in (3.36), which is equivalent
to the results presented in [9].
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In a similar way for RR,

Ii

RR |s = Hs(Xi
B |Xi−1

B , . . . , X0
B) −Hs(Xi

B |XA, X
i−1
B , . . . , X0

B) , (3.37)

when s → ∞, again XA = XB and Xi
B = Xi

A for i = 1, . . . ,m, thus:

Ii

RR |∞ = H∞(Xi
B |Xi−1

B , . . . , X0
B) −H∞(Xi

B |XA, X
i−1
B , . . . , X0

B) ,

which can be simplified to

Ii

RR |∞ = H∞(Xi
B |Xi−1

B , . . . , X0
B)

= H∞(Xi
A|Xi−1

A , . . . , X0
A) = Hs(Xi

A|Xi−1
A , . . . , X0

A) . (3.38)

Finally, subtracting (3.37) from (3.38):

Ii

RR |∞ − Ii

RR |s = Hs(Xi
B |XA, X

i−1
B , . . . , X0

B)

+Hs(Xi
A|Xi−1

A , . . . , X0
A) −Hs(Xi

B |Xi−1
B , . . . , X0

B)︸ ︷︷ ︸
−∆s

i

,

or equivalently

Hs(Xi
B |XA, X

i−1
B , . . . , X0

B) = Ii

RR |∞ − Ii

RR |s + ∆s
i , (3.39)

where ∆s
i = Hs(Xi

B |Xi−1
B , . . . , X0

B) − Hs(Xi
A|Xi−1

A , . . . , X0
A). Thus, for RR, the

individual channel coding rate is:

Ri

RR |s = 1 −Hs(Xi
B |XA, X

i−1
B , . . . , X0

B) = 1 − [Ii

RR |∞ − Ii

RR |s] − ∆s
i , (3.40)

which is not completely similar to (3.36) for FR, and has a correction term ∆s
i .

Finally, it is clear that at s → ∞, the two quantities Ii
RR |∞ and Ii

FR |∞ are equal
(See (3.35) and (3.38)). By assuming that individual mutual information for FR and
RR are almost equal to each other, for all the SNR points1, i.e, Ii

FR |s ≈ Ii
RR |s then:

Ri

RR |s = 1− [Ii

RR |∞ −Ii

RR |s]−∆s
i ≈ 1− [Ii

FR |∞ −Ii

FR |s]−∆s
i ≈ Ri

FR |s −∆s
i . (3.41)

Finally, if we sum up over all individual channels

RRR |s ≈ RFR |s −
m∑

i=1
∆s

i = RFR |s +H(Q(XA)) −H(Q(XB)) . (3.42)

1This assumption could be valid with a good approximation. At least, it can be assumed that
the code rates are designed in such a way that the mutual information between the two scenarios
(FR and RR) be equal and the summation of the mutual information of the individual levels are
maximized on both cases.
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3.4 Randomized Reconciliation
The concept of randomized decoding was first introduced in [53]. The other related
algorithms in this family are known as list decoding and Chase algorithm [54, 55],
where they use the soft measurement information at the input of a hard decoder.
Specifically, the Chase algorithm uses a simple hard decoder and generates a list
of candidate test-codewords by flipping the least reliable positions in the received
sequence.

Before describing the algorithm for the randomized reconciliation, let us briefly
describe the concept of reconciliation using list decoding. The concept behind this
soft decoder is depicted in Figure 3.14. Here we assume that the core of the decoder is
a simple hard decoder with the capability to find a unique codeword, when the noisy
received sequence is surrounded by a sphere of radius ⌊ d−1

2 ⌋, where d is the mini-
mum distance of the error correction code. Also, we assume four possible codewords
C⃗1, C⃗2, C⃗3, C⃗4, and the received sequence y⃗H . Thus, in this case, a hard decision
decoder provides a unique codeword C⃗1, with its unique error pattern y⃗H ⊕ C⃗1. The
goal of the list decoding is to generate different error patterns, by changing the least
reliable positions in the received sequence y⃗H . For the new test-vector y⃗T , it is pos-
sible for our hard decoder to find a new codeword depending on whether or not y⃗T

falls into the sphere of a new codeword.

~Cy2 ~C3

~C1

~C4

~yH

r = d− 1

r = b(d− 1)/2c

~yT

Figure 3.14: Decoding using measured soft information and hard decoder. Taken
by some modification from [56] .

More specifically, in this section the same procedure is used for a reconciliation
scheme. For the reconciliation, a channel code induces a partitioning of the source
data space into cosets that can be indexed by their respective syndromes. Let C be
a (n, k)-linear block code. The problem of decoding reconciliation using the corre-
sponding channel code is to find the transmitted codeword, given the measured side
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information vectors X⃗A and S⃗B at the decoder. The encoder computes the syndrome
of the sequence y⃗H = (yH,i)n−1

i=0 by computing s⃗ = y⃗H × HT , where H is the parity
check matrix of the code. Then the decoding operation is equivalent to finding a
codeword with the same syndrome. By assuming that each coset contains only one
valid codeword this problem is equivalent to our channel coding problem.

Here, we propose a randomized reconciliation for CV-QKD using a modified ver-
sion of the Chase algorithm called stochastic Chase algorithm (SCA) [57, 56]. In the
SCA, the test-codewords are generated according to their reliability. Let us denote
by λ⃗ = (λi)n−1

i=0 the log likelihood of Bob’s soft information on Alice’s side which is a
vector of length n. It was shown in Section 3.2.3.2, how to calculate the soft measure-
ment information (See (3.14)). Equivalently, its hard decision value y⃗H = (yH,i)n−1

i=0
can be calculated as:

yH,i =

{
1 if λi ≥ 0
0 if λi < 0

.

Also, in the probability domain, the vector p⃗ = (pi)n−1
i=0 denotes the probability that

the corresponding bit at position i ∈ {0, . . . , n− 1} is equal to 1, where

pi = eλi

1 + eλi
.

It is clear that λi ∈ (−∞,∞), and pi ∈ (0, 1). When λi → ∞ the value of pi → 1,
and in similar way, when ri → −∞ the value of pi → 0, and for ri → 0 the value of
pi → 1

2 . This shows that the least reliable positions in a received codeword have LLR
values close to 0, which are most likely the error positions.

The algorithm for the randomized reconciliation can be found in Algorithm 1. In
the initialization, the algorithm extracts two kinds of information from r⃗. First, it
finds the first τ least reliable positions in the received codeword and finds its equivalent
hard decision y⃗H . Second, it finds the probability of being 1 for each unreliable index.
Then, in the main loop, the algorithm generates L different test-vectors. This can be
easily done by flipping the value of the index i in y⃗H based on its flipping probability
pi. Then for each test-vector y⃗T , the hard LDPC decoder finds the syndrome s⃗T

and compares it with the Bob’s syndrome s⃗. The algorithm ends when it finds a
test-codeword which has zero Hamming distance with Bob’s syndrome. Otherwise,
the algorithm looks among all the L test-codewords and finds the one with minimum
Hamming distance.

3.4.1 Complexity of the algorithm
Let us consider a reconciliation process based on MLC-MSD. The complexity of ran-
domized reconciliation using SCA is compared with the complexity of a soft LDPC
decoder. For the soft LDPC decoder a min-sum (MS) algorithm is used. The core
of the SCA is a hard decoder using a bit-flipping (BF) algorithm. Let us denote the
average number of VNs (CNs) by d̄v

(
d̄c

)
. For each iteration of the MS algorithm,
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Algorithm 1 Randomized Reconciliation
—————————— Initialize
Step 1) Find τ least reliable bits in r⃗
Step 2) j⃗ = (ji)τ

1 ▷ index of least reliable bits
Step 3) p⃗ = (pi)τ

1 ▷ probability of being one
Step 4) y⃗H ▷ equivalent hard decision vector
—————————— Main loop
l ⇐ 0 ▷ counter for test-codewords
L ▷ maximum number of test-codewords
while l ≤ L do

y⃗T = y⃗H

for i ∈ j⃗ do
yT,i = BSCpi

(0)
end for
Decode y⃗T , to get x⃗T and the syndrome s⃗T

Calculate the distance: Ds⃗T ,s⃗ =
m∑

i=1
Si

⊕
ST,i

l ⇐ l + 1
end while
—————————— Best codeword
The output codeword is the one with minimum Ds⃗T ,s⃗ .

the VN v sums over all the incoming messages. Thus in average n · d̄v summation
are required. On the other hand, for each CN c, assuming an average CN degree d̄c,
the output message is calculated by finding the minimum of all incoming messages.
Thus in general m · d̄c comparisons are necessary. Also, the same number of xor (⊕)
operations are required in order to find the sign of the output message.

In contrast, the BF algorithm just acts on the binary data and all the operations
are ⊕ operations. The algorithm at each iteration finds the syndrome, which requires
m · d̄c xor operations and then flips the position of some VNs when the specific bit
has a set of non-zero syndromes larger than specific threshold T . The summary of
our discussion can be found in Table 3.2.

Considering the fact that the complexity of bit-wise operations are negligible in
comparison with operations acting on real numbers, it is clear that the MS algorithm
has much higher complexity than BF algorithm.

Now, if we assume that the SCA uses L different codewords to find the best one,
we can compare the complexity of MS and SCA. The SCA can apply L completely
independent test-codewords and selects the best codeword by measuring the distance
of the final syndrome to Bob’s syndrome. Thus, the SCA requires L comparisons
to find the best codeword. It is clear that to have the same complexity on MS and
SCA L should be approximately very close to n2. For example, for a code of length
103 bits, the complexity of the SCA with 106 test-vectors would be the same as the
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Table 3.2: The complexity per iteration.

# of # of # of
additions comparison ⊕

MS algorithm n · d̄v m · d̄c m · d̄c

BF algorithm 0 0 m · d̄c

complexity of the MS algorithm.

3.5 Reconciliation for a wide range of SNRs
So far, we have described how to design different reconciliation schemes for CV-QKD
for a specific signal to noise ratio. The efficiency of these reconciliation schemes can be
defined as the ratio of the net shared information revealed for the reconciliation and
the mutual information. The precise definition depends on the reconciliation protocol,
for example in RR, in the case of multidimensional reconciliation, the efficiency can
be defined as:

βmulti-dimensional = RCh

IAWGN(XB ;XA)

= RCh

IBI-AWGN(XB ;XA)
· IBI-AWGN(XB ;XA)
IAWGN(XB ;XA)

= βCode · βMapping ,

where βCode denotes the efficiency of the error correction code on BI-AWGN channel,
and βMapping denotes the mapping efficiency between the AWGN channel and virtual
BI-AWGN channel. On the other hand, the efficiency of the MLC-MSD scheme, in
the case of RR, is defined as:

βMLC-MSD = H(Q(XB)) −RSource

I(XB ;XA)

= H(Q(XB)) −RSource

I(Q(XB);XA)
· I(Q(XB);XA)

I(XB ;XA)

= H(Q(XB)) −m+RCh

I(Q(XB);XA)
· I(Q(XB);XA)

I(XB ;XA)
= βCode · βDisc ,

where βCode denotes the code efficiency, and βDisc denotes the digitization efficiency.
The common issue in all the above reconciliation schemes is the fixed code rate. It

means that the code rate is designed for a certain SNR value for reliable reconciliation.
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Then, by moving forward from this value using the same code, the efficiency moves
down from the optimal value. On the other hand, by moving backward from this
point, higher efficiency can be obtained, with lower reliability or higher frame error
rate. One approach to solve this issue is to use multiple LDPC codes with different
code rates to cover a wide SNR range [58].
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Figure 3.15: Reconciliation efficiencies for different SNRs. The gray line denotes
the efficiency when a fixed code of rate 0.02 is used. The other curves
denote the cases when other LDPC codes are used for different SNR
ranges.

Designing multiple LDPC codes for each SNR is not an efficient solution since a
huge parity check matrix is required for each code rate. Two other techniques, widely
used to create rate adaptive codes, are puncturing and shortening. By using these
two techniques one can create new code rates from a code with a fixed code rate.
For instance, assuming that the original code rate is R = k

n , then the rate of the
punctured code is

RPunc = k

n− p
, (3.43)

where p denotes the length of the puncturing. Puncturing enables us to increase
the code rate. During the puncturing process, p symbols are eliminated from the
codeword. The punctured bits are not transmitted, and at the decoder they are
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replaced by least reliable bits. For example, in the case of a binary erasure channel
(BEC) they are considered as erasure and in the case of an AWGN channel they are
replaced with zero LLR values.

The second technique is known as shortening and the rate of the shortened code
is defined as

RShort = k − s

n− s
, (3.44)

where s denotes the length of the shortened symbols. Figure 3.16 demonstrates the
principle of shortening for standard error correction codes.

k − s
Insert

s known symbols

k
Encoder

R = k/n

n
Discard

s known symbols

n− s

k − s
discard

s known symbols

k
Decoder

R = k/n

n
Insert

s known symbols

n− s

Figure 3.16: The block diagram of the shortening process. The base code has rate
R = k

n
and the shortened code has the rate RShort = k − s

n− s
.

Rate adaptive techniques were developed for both DV-QKD and CV-QKD, where
they combine shortening and puncturing methods to design rate adaptive reconcili-
ation [58, 36]. Recently, a rate adaptive reconciliation technique was developed by
using Raptor codes [59], where authors combined a multi-dimensional reconciliation
scheme with Raptor codes to develop a rate-less reconciliation protocol. The main
issue of this scheme is that the two parties need extra communication to send an
additional check code to finish the reconciliation process [60].
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CHAPTER4
On the Design of

Highly Efficient
MET-LDPC codes

This chapter investigates how to design highly efficient multi-edge-type low-density
parity-check (MET-LDPC) codes for CV-QKD. The readers are invited to see our
arXived article [18]. It is assumed that readers are familiar with Irregular LDPC
codes. For the readers, who are not familiar with this class of error correction codes,
more details are provided in Appendix A.

Section 4.1 introduces the MET-LDPC codes and provides all the requirements
for understanding the code structure. In Section 4.2, we describe the density evolu-
tion (DE) for the MET-LDPC codes and some of its approximations are presented.
In Section 4.3, we propose the concept of G-EXIT charts for MET-LDPC codes.
In Section 4.4, the code design optimization problem is defined and we talk more
about the structure of these codes. Our new proposed optimization algorithm is
presented in Section 4.5 and some examples codes designed with the optimization
algorithm are presented in Section 4.6. Finally, Section 4.7 provides some simulation
results to show the finite size performance of our designed codes.

4.1 Multi-Edge-Type LDPC codes
MET-LDPC codes are a generalization of the concept of irregular LDPC codes [44,
61]. These codes provide improvements in performance and complexity by giving
more flexibility over different edge types. In this structure each node is characterized
by the number of connections (sockets) to edges of each edge-type. An irregular LDPC
code can be considered as a single-edge-type LDPC (SET-LDPC) code in this context.
Using MET-LDPC codes we are able to design capacity achieving codes without using
VNs with very high degree which provides a less complex implementation. Also, it
exploits the advantage of using degree one VNs, which are very useful for designing
LDPC codes at low rate and low SNR[61]. It is important to recall that in the case
of irregular LDPC codes the minimum usable VN degree is 2.
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It is very convenient to begin with a comprehensible table format representation
of MET-LDPC codes as presented in Table 4.1. The left side of the table corresponds
to the VNs and the right side describes the CN structures.

Table 4.1: Table presentation of a MET-LDPC code with ne edge types.
variable-node check-node

νbd b dv µd dc

ν1
ν2
...
νi

...
νQ

b0,1 b1,1
b0,2 b1,2

...
...

b0,i b1,i

...
...

b0,Q b1,Q

dv
1,1 dv

2,1 · · · dv
ne,1

dv
1,2 dv

2,2 · · · dv
ne,2

...
... . . . ...

dv
1,i dv

2,i · · · dv
ne,i

...
... . . . ...

dv
1,Q dv

2,Q · · · dv
ne,Q

µ1
µ2
...
µi

...
µP

dc
1,1 dc

2,1 · · · dc
ne,1

dc
1,2 dc

2,2 · · · dc
ne,2

...
... . . . ...

dc
1,i dc

2,i · · · dc
ne,i

...
... . . . ...

dc
1,P dc

2,P · · · dc
ne,P

For instance, the ith row at the CN side corresponds to a CN of type dc,i =
(dc

1,i, d
c
2,i, · · · , dc

ne,i) where each element dc
j,i in dc,i describes the degree of the CN i

along jth edge type. ne denotes the total number of edge-types. Then, the matrix

dc =

( dc,1

...
dc,P

)
describes the edge distribution of the CN side. In addition, the vector

µd = (µ1, . . . , µi, . . . , µP ) describes the node distribution of the CN side, where P

is the number of different CN types. Similarly, dv =

( dv,1

...
dv,Q

)
describes the edge

distribution of the VNs, where each row vector dv,i = (dv
1,i, d

v
2,i, · · · , dv

ne,i) describes
a specific VN type. The node distribution on the VN side is denoted by νbd =
(ν1, . . . , νi, . . . , νQ), where Q is the number of VN types. Finally, the vectors bi =
(b0,i, b1,i) describes the channel to be punctured or not. Here, in this article, we denote
a non-punctured node by bi = (0, 1). In addition, it is noteworthy to mention that
the elements of the vectors νbd and µd are non-negative fractional numbers and the
elements of the matrices dv and dc are non-negative integer numbers. For example,
let N be the length of the code-word, then for each CN of type i the quantity µiN is
the number of constraint-nodes of type i in the graph. Similarly, the quantity νjN is
the number of VNs of type j in the graph.

Furthermore, the code ensemble for a MET-LDPC code can be specified by
two multi-variable-polynomials, one associated to VNs and the other associated to
CNs (constraint-nodes). The node-perspective representation of these multi-variable-
polynomials are:

ν(r,x) =
Q∑

i=1
νirbixdv,i , µ(x) =

P∑
i=1

µixdc,i , (4.1)

respectively. In (4.1), x := (x1, · · · , xne
) and r := (r0, · · · , rnr

), where nr is the
number of different channels. In this thesis it is assumed that, nr = 2. r0 stands
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for punctured channel and r1 is the channel parameter for te code. Finally, xdc,i :=∏ne

j=1 x
dc

j,i

j , xdv,i :=
∏ne

j=1 x
dv

j,i

j and rbi :=
∏nr

j=1 r
bj,i

j .
In addition, the edge perspective degree distribution can be described as a vector

of multi-variable polynomials, for VNs and CNs, respectively,

λ(r,x) =
(
νx1(r,x)
νx1(1,1)

,
νx2(r,x)
νx2(1,1)

, . . . ,
νxne

(r,x)
νxne

(1,1)

)
,

ρ(x) =
(
µx1(x)
µx1(1)

,
µx2(x)
µx2(1)

, . . . ,
µxne

(x)
µxne

(1)

)
, (4.2)

where,
νxi

(r,x) = ∂

∂xi
ν(r,x) , µxi

(x) = ∂

∂xi
µ(x) ,

and 1 denotes a vector of all 1’s where the length being determined by context. The
coefficients of ν and µ are constrained to ensure that the number of sockets of each
type is the same on both sides (variable and check) of the graph. This gives rise to
ne linear conditions on the coefficients of ν and µ as follows:

νxi(1,1) = µxi(1), i = 1, · · · , ne .

Finally, the nominal code rate for non-punctured codes is given by

R = ν(1,1) − µ(1) .

Example 4.1.1. A MET-LDPC code with rate 0.02

Consider a MET-LDPC code ensemble with rate 0.02, with the following structure
as presented in Table 4.2:

Table 4.2: Rate 0.02 MET-LDPC code with 3 edge types.

νbd b d µd d

0.02
0.02
0.96

[0 1]
2 51 0
3 60 0
0 0 1

0.016
0.004
0.30
0.66

4 0 0
9 0 0
0 3 1
0 2 1

BI-AWGN: σ∗
DE = 5.94

The corresponding polynomial representation for this code is:

ν(r,x) = 0.02 r1x
2
1x

51
2 + 0.02 r1x

3
1x

60
2 + 0.96 r1x3 ,

µ(x) = 0.016x4
1 + 0.004x9

1 + 0.30x3
2x

1
3 + 0.66x2

2x
1
3 .

The code has ne = 3 edge types, Q = 3 types of VNs and P = 4 types of CNs. The
corresponding Tanner graph, for this code is shown in Figure 4.1.
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Edge 1

Edge 2

Edge 3

0.02 N

0.02 N

0.96 N

0.016 N

0.004 N

0.30 N

0.66 N

2

51

4

93

60

1

1

1

3

2

Figure 4.1: Graphical representation of a three-edge type-LDPC code presented in
Table 4.2, where ⃝ represents the VNs and □ represents the CNs. In
addition different node types have different colors. The percentage of
node types are shown as fractions of the code length N , where N is the
number of transmitted code-word bits. This code consists of 3 different
types of VNs and 4 types of CNs. It is composed of 3 different edge-
types.

4.1.1 MET-LDPC codes with the cascade structure

In this subsection we exploit the advantages of the cascade structure [61] for MET-
LDPC codes. First, we introduce the structure and then an optimization method to
design highly efficient cascade structures. The main advantage of the cascade struc-
ture is its simple edge distribution, which means that many of the elements of the
matrices dv and dc are zero. This useful feature provides considerable reduction in
search space when designing degree distributions. An example of schematic represen-
tation of the cascade structure for the MET-LDPC codes is depicted in Figure 4.1.
It is clear that the structure of the whole graph is a combination of three connected
sub-graphs. The first part belongs to an irregular base code (red color). The second
part belongs to VNs and CNs of degree one (black color). Finally, the last part, which
we call connector part, connects these two sub-graphs to each other (blue color). The
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corresponding parity check matrix for this code has the following structure

H =
(

I C
0 B

)
. (4.3)

These three disjoint sub-matrices should be optimized to generate the overall code
with rate R. The sub-matrix B, is related to an irregular LDPC code with rate rb

(base code). The sub-matrix I corresponds to degree one VNs and CNs and the sub-
matrix C corresponds to the connection part which connects the base code to nodes
with degree one. The connector part could contain just one edge type (as presented
on Figure 4.1) or it can contains more than one edge type (Fig. 5.a [14]). Thus, this
class of codes can contain different edge numbers.

Now, consider a cascade structure with ne = 3 edge types. The overall degree
distribution and its table format representation are as follows:

ν(r,x) =
Q−1∑
i=1

νi x
dv

1,i

1 x
dv

2,i

2 + ν3 x3 ,

µ(x) =
P −2∑
i=1

µi x
dc

1,i

1 + µP −1 x
dc

2,P −1
2 x3 + µPx

dc
2,P

2 x3 .

Table 4.3: MET-LDPC code with cascade structure and 3 edge types.
νbd b dv µd dc

ν1
ν2
...

νQ−1
νQ

0 1
0 1
...

...
0 1
0 1

dv
1,1 dv

2,1 0
dv

1,2 dv
2,2 0

...
...

...
dv

1,Q−1 dv
2,Q−1 0

0 0 1

µ1
...

µP −2
µP −1
µP

dc
1,1 0 0
...

...
...

dc
1,P −2 0 0

0 dc
2,P −1 1

0 dc
2,P 1

Each column in the dv and dc matrices corresponds to one of the 3 different edge
types highlighted by different colors. For instance, the edge-type one corresponds
to the sub-matrix B and is presented in column one (red color), the edge-type two
corresponds to sub-matrix C and is presented in column two (blue color) and the
sub-matrix I corresponds to the edge-type three and degree one nodes (black color).
The schematic of the Tanner graph of the cascade code is similar to Figure 4.1. In Ex-
ample 4.1.1, it is assumed that the VN and CN degree distributions have three and
four terms, but in general they could have Q and P terms.
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4.2 Density evolution and other asymptotic analysis
tools

Now, let us describe how the belief-propagation (BP) algorithm works in the MET
framework, and how the intermediate densities are defined. Assume that ml

vc(e)
(respectively, ml

cv(e)) denotes the LLR message from VN to CN (respectively, CN to
VN) along edge-type e at iteration l. Similarly, assume that, f(ml

vc(e)) (respectively,
f(ml

cv(e))) denotes the probability density function (PDF) of the messages from VN
to CN along edge-type e, (respectively, CN to VN), and f(m0) denotes the PDF of
channel LLR. Then the PDF at the output of a VN of type dv,i along edge-type e is:

f(ml
vc(e)) = f(m0) ⊗

[
f(ml−1

cv(e))
]⊗(dv

e,i−1) ne⊗
j=1,j ̸=e

[
f(ml−1

cv(j))
]⊗dv

j,i

, (4.4)

where just messages which belong to specific edge-type e are assumed to be indepen-
dent and identically distributed. Similarly, the PDF of the message at the output of
a CN of type dc,i along edge-type e is equal to

f(ml
cv(e)) =

[
f(ml

vc(e))
]⊠(dc

e,i−1)
ne⊠

j=1,j ̸=e

[
f(ml

vc(j))
]⊠dc

j,i

. (4.5)

Also, we use ⊗ and ⊠ to denote the convolution for VNs and CNs respectively. More
details about the BP algorithm for MET-LDPC codes can be found in [44, 61, 13].

In addition, assume that, a⃗l
v = (al

v,1, · · · , al
v,ne

)1 and a⃗l
c = (al

c,1, · · · , al
c,ne

) denote
the vector of L-densities at the output of VNs and CNs after l ≥ 1 iterations. Then,
the density evolution (DE) for the L-densities can be written as:

a⃗l+1
v = λ(⃗aBIOSMC, a⃗l+1

c ) , (4.6)
a⃗l+1

c = ρ(⃗al
v) , (4.7)

where, ρ(x) and λ(r,x) are presented in (4.2) and a⃗BIOSMC is the L-density of the
binary-input output symmetric memory-less (BIOSM) channel. The initial L-density
vector is a⃗0

v = ∆⃗0. ∆⃗0 is a vector of densities, where each density is δ0, which
is equivalent to erasure with probability 1. In the following some approximation
methods for density evolution for MET-LDPC codes are discussed, including:

1. Gaussian approximation,

2. Hybrid-density evolution,

3. Semi-Gaussian approximation,

4. Generalized extrinsic-information transfer (G-EXIT) chart.
1a⃗l

v denotes a vector of L-densities and al
v,i corresponds to the L-density along the ith edge. The

deffinition of the L-densities can be found in Appendix A.
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4.2.1 The Gaussian approximation
The Gaussian assumption is the easiest approximation (in terms of computational
complexity) for the density evolution (DE). Here we discuss about the accuracy of
this approximation of DE. In [44], it has been shown that for irregular-LDPC codes
for a BI-AWGN channel the channel densities CN to VN and VN to CN can be esti-
mated by symmetric Gaussian distribution. This approximation is valid because the
intermediate densities during the belief propagation algorithm remain symmetric [44].
As long as the CN degrees are small, the VN degrees are large and the code rate is
in typical range, the Gaussian approximation for irregular-LDPC codes can be accu-
rate [13]. Unfortunately most of above mentioned assumptions are not satisfied in the
case of MET-LDPC codes, where degree one VNs exist and the codes are designed
for applications with low code rate and very low SNR. To see if Gaussian assumption
remains accurate during the BP, we have to consider three types of densities including
the channel density, the density of messages at the output of VNs and at the output
of CNs. In the following these three types of densities are discussed separately.

4.2.1.1 Accuracy of Gaussian assumption for channel densities

First, let us discuss the channel densities. Assume that a binary codeword C =
(c1, · · · , cn) is transmitted on a BI-AWGN channel with Binary Phase Shift Keying
(BPSK) transmission (0 → +1, and 1 → −1). The received symbol can be modeled
as yi = xi +ni, where xi ∈ {±1}, and ni is white Gaussian noise with zero mean and
variance σ2

n. In the LLR domain we can write for the a-posteriori probability:

m0 = ln
(

Pr(xi = +1|yi)
Pr(xi = −1|yi)

)
= ln

(
Pr(xi = +1)
Pr(xi = −1)

)
+ ln

(
Pr(yi|xi = +1)
Pr(yi|xi = −1)

)
,

where for equally likely inputs it can be simplified to:

m0 = ln
(

Pr(xi = +1|yi)
Pr(xi = −1|yi)

)
= ln

(
Pr(yi|xi = +1)
Pr(yi|xi = −1)

)
= 2
σ2

n

yi .

Assuming that the all-zero codeword is sent, the channel LLR for MET-LDPC codes is
a Gaussian random variable with mean 2/σ2

n and variance 4/σ2
n. Thus, the symmetric

Gaussian assumption is valid for channel densities in the LLR domain.

4.2.1.2 Accuracy of Gaussian assumption for variable-node densities

Now, let us discuss the validity of the Gaussian approximation at the output of the
VNs. According to (4.4), and the VN operation during the BP algorithm, the PDF
of the message from a VN to CN along edge e is equal to the convolution of PDFs
for m0 and independent messages from its neighbor CNs. Since the channel density
is Gaussian the output density is Gaussian if and only if all the other independent
incoming messages from the other CNs are Gaussian. On the other hand, if the
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incoming messages from CNs are not Gaussian it can be observed that as long as the
number of terms are large enough (for VNs with high degree) the output density can
be approximated by a Gaussian distribution, which is a consequence of the central
limit theorem.

4.2.1.3 Accuracy of Gaussian assumption for check-node densities

Finally, consider the Gaussian approximation for the densities at the output of CNs.
It has been shown in [62] that by treating the signs and magnitudes of the LLRs
separately, the CN update rule can be expressed as:

ml
cv(e) =

∏
j ̸=e

sign
(
ml

vc(j)

)
ψ

∑
j ̸=e

ψ
(∣∣∣ml

vc(j)

∣∣∣)
 , (4.8)

where | · | denotes the magnitude of the LLRs which determines the certainty of the
message. The function ψ(·) is a decreasing function for positive real numbers with
self inverse as follows:

ψ(x) = ψ−1(x) = ln
(
ex + 1
ex − 1

)
·

Now assume that in (4.8) just one of the inputs has LLR close to zero, then ψ would
be close to ∞ and that specific term would be dominant in the summation. It follows
that the final value of (4.8) would be 0. On the other hand, assuming a high value for
input LLR, ψ would be close to zero and thus it does not have significant effect on
the summation of the LLRs. Thus one can interpret the CN operation as a soft-min
operation. It means that there is no guaranty that the output of the CN would be
Gaussian.

Example 4.2.1. Inaccuracy at CNs

As an example, in Figure 4.2 we show the Kullback-Leibler (KL) divergence [63]
between CN to VN messages and their corresponding symmetric Gaussian PDFs at
Eb

N0
= −1.0 dB for rate 0.1 MET-LDPC code with the following degree distribution,

ν(r,x) = 0.1 r1x
3
1x

20
2 + 0.0025 r1x

3
1x

25
2 + 0.875 r1x3 ,

µ(x) = 0.025 x15
1 + 0.875 x3

2x
1
3 .

Small value for the KL divergence means that the two PDFs are similar to each
other, and large values means that the divergence is high. As depicted in Figure 4.2
the Gaussian approximation is only accurate after many decoding iterations. Specif-
ically, for edge-type one, which has a CN of degree 15, the Gaussian approximation
does not follow a predictable pattern.

It is also possible to see the effect of SNR and number of iteration on the Gaus-
sian approximation. Specifically, as depicted in Figure 4.3 and Figure 4.4, the KL
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Figure 4.2: The KL divergence between messages from CN to VN and their equiv-
alent symmetric Gaussian PDFs for all edge-types for rate 0.1 MET-
LDPC code at Eb

N0
= −1.00 dB. The iteration number increased gradu-

ally until we achieve error probability less than 10−11.

divergence has smaller values only at high SNRs and after some decoding iterations,
which shows that the validity of the Gaussian approximation is not assured at low
SNRs. Also it is clear that at very low SNRs the KL divergence can not reach zero,
even after many iterations. Besides, even at high SNRs, at the very beginnings the
Gaussian approximation is not accurate.

4.2.2 Hybrid density evolution
As discussed in Section 4.2.1, the Gaussian approximation is not accurate because it
cannot be assured that the PDF at the output of CNs can be estimated by a symmetric
Gaussian distribution. According to our the simulation results it is clear that the
Gaussian approximation is not accurate at very low SNRs and for MET-LDPC codes
with large CN degrees. Even if we use a Gaussian approximation and wish to obtain an
accurate Gaussian estimation at later iteration, it is not an accurate estimation for the
true distribution of the messages. The reason is that the Gaussian assumption at very
early iterations will cause an unexpected error between the Gaussian estimation and
the expected true distribution. Thus using the Gaussian approximation for designing
MET-LDPC codes would not provide highly efficient codes.

In [13] the authors introduced a new approximation method called hybrid density
evolution (hybrid-DE). In their proposed algorithm they used a combination of the
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Figure 4.3: The KL divergence between output PDF of the CN to VN for edge-type
two of rate 0.1 MET-LDPC code and the symmetric Gaussian PDF of
the same mean. The iteration number increased gradually until we
achieve error probability less than 10−11.
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Figure 4.4: The KL divergence between output PDF of the CN to VN for edge-type
three of rate 0.1 MET-LDPC code and the symmetric Gaussian PDF
of the same mean. The iteration number increased gradually until we
achieve error probability less than 10−11.
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full density evolution and a Gaussian approximation. The reason is that making
the assumption of a symmetric Gaussian distribution at later decoding iterations is
reasonable (See Figure 4.2). The hybrid-DE starts with the full density evolution
and then switches to the Gaussian approximation. In addition, they introduced two
hard and soft switching approaches. In the hard approach a fixed value was assumed
for the maximum number of iterations, and in soft method the KL divergence was
used to decide when the output PDFs can be estimated by a symmetric Gaussian
distribution. If α ∈ [0, 1] denotes the portion of algorithm when full DE is used, then
(1 − α) of the algorithm would be based on Gaussian approximation. A large value
of α means that the complexity of the hybrid-DE would be similar to full-DE and
a small value of α means that the complexity of algorithm should be similar to the
Gaussian approximation method. When working at very low SNRs and for codes
with high CN degrees which is the case of interest for quantum key distribution, the
value of α should be high in order to get an accurate threshold estimation.

4.2.3 Semi-Gaussian approximation
The idea of Semi-Gaussian approximation was first introduced in [64] for irregular
LDPC codes. Here we present a modified version of this algorithm for MET-LDPC
codes on BI-AWGN channel. This analysis tool is significantly more accurate than
the conventional Gaussian approximation. For simplicity assume that there are no
punctured VN in the MET-LDPC code. Thus, as discussed in Section 4.2.1.2 the
assumption of a symmetric Gaussian approximation for the PDFs at the output of
VNs is always accurate and valid. This was also shown in [13] and was confirmed
by our simulation results. For the CNs the true CN operation is used to find the
output densities and we assume that the input densities are Gaussian. Since the
Gaussian assumption is just used on the VN side, this algorithm is called the Semi-
Gaussian approximation. The key idea in Semi-Gaussian approximation is that a
Gaussian approximation is not used for the densities at the output of CNs but only
for messages from VNs to CNs.

Table 4.4: Average number of operations per iteration. The average degree of VN
is denoted by d̄v and the average degree of CN is d̄c .

Full-DE Gaussian Hybrid-DE Semi-Gaussian

VN CN VN CN VN CN VN CN
Sums - - d̄v d̄c (1 − α) d̄v (1 − α) d̄c d̄v -

Lookup-tables - - - d̄c - (1 − α) d̄c - -
Exponentials - - - d̄c-1 - (1 − α) (d̄c − 1) - -
Convolution d̄v d̄c − 1 - - α d̄v α (d̄c − 1) - d̄c − 1

The semi-Gaussian approach starts with a symmetric Gaussian distribution at
the input of CNs and calculates the output densities using a single step density
evolution. Then for the next iteration the output density is estimated by a symmetric
Gaussian PDF. Thus, there is no need to convolve the input messages to calculate the
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PDF at the output of VN. Table 4.4 compares the number of average operations per
decoding iteration for density evolution and some approximation algorithms including
Gaussian approximation, Hybrid-DE and our semi-Gaussian algorithm. The number
of operations are compared for one iteration. The full-DE requires convolution at
both VNs and CNs. The results for hybrid-DE with parameter α is taken from [13].

The overall complexity of the semi-Gaussian algorithm is significantly less than
Hybrid-DE and density evolution. In density evolution and hybrid-DE we need to wait
for the PDF of former iterations in order to analyze the next iteration. In contrast,
for the semi-Gaussian approximation it is possible to start from any arbitrary point.
This amazing fact gives us the possibility to use the semi-Gaussian approach for
calculation of EXIT or G-EXIT chart as introduced later in this chapter. One can
calculate some points of the G-EXIT chart and interpolate the remaining points. It
is also possible to focus on points very close to the threshold to increase the number
of analysis points. Simulation results show that our proposed method provides an
accurate estimate of convergence behavior and threshold of the MET-LDPC codes.

4.2.4 Generalized Extrinsic-Information Transfer (G-EXIT) Charts
The EXIT charts [65] and G-EXIT charts [66, 67] play a remarkable role in analysis
and design of LDPC codes [67]. For the sake of simplicity detailed definitions of the
EXIT and G-EXIT functions are provided in Appendix A. In addition, for a detailed
review on this analysis tool for irregular LDPC codes see [44, 66, 68, 69].

4.3 G-EXIT charts for MET-LDPC codes
The EXIT and G-EXIT charts are widely used to design irregular LDPC codes [65,
67]. Despite their powerful advantages this tool has not been used to design MET-
LDPC codes and the characteristics of these tools for designing MET-LDPC codes are
not well understood. In this section, we first review the concept of G-EXIT charts for
a simple irregular LDPC code by an example. Then, we describe our novel method
to introduce and plot the G-EXIT charts for the MET-LDPC codes. For simplicity
the BE channel is considered here, because the EXIT charts and G-EXIT charts are
equivalent in the BE channel [66, 67]. However all the results can be extended to other
BIOSM channels (For more details about different BIOSM channels see Appendix A).

Consider an irregular LDPC code (the definition of the irregular LDPC codes and
their degree distribution can be found in Appendix A) with edge perspective degree
distribution λ(x) and ρ(x). On a binary erasure channel with parameter q (BEC(q)),
the density evolution can be described as:

ϵl+1
v = q λ

(
1 − ρ

(
1 − ϵlv

))
, (4.9)

where ϵlv denotes the erasure probability after l iterations at the output of VN. The
iterative density evolution in (4.9) means that the erasure probability at the output of
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VN is considered as the erasure probability at the input of CN for the next iteration.
This iterative equation can be represented as:

ϵlv = q λ(ϵl−1
c ) , ϵlc = 1 − ρ(1 − ϵlv) ,

where ϵ0c = 1.
To plot the EXIT (G-EXIT) curves one can use the parametric form of the EXIT

curves for VNs and CNs as presented in Table A.2. In the case of BEC this can be
simplified because h = H(ϵ) = ϵ. Thus, the parametric form of the CN EXIT curve
is {ϵlv, ϵlc = F(ϵlv)} and the parametric form for the inverse of the VN EXIT curve is{
ϵlv = G(ϵl−1

c ), ϵl−1
c

}
. The EXIT (G-EXIT) function for the CN is denoted by F(·),

and G(·) denotes the EXIT (G-EXIT) function for the VN. It can be shown that for
the BEC(q), the EXIT functions for the VN and CN are

G(x) = qλ(x) , (4.10)
F(x) = 1 − ρ(1 − x) . (4.11)

In addition, the convergence behavior of this code can be simply explained by the
G-EXIT chart on a BE channel. One can plot two curves as presented in Table A.2.
In Example 4.3.1 we plotted the G-EXIT chart for an irregular-LDPC code on a BE
channel.

Example 4.3.1. G-EXIT chart for irregular-LDPC codes on BEC

Consider a simple irregular LDPC code with node perspective degree distributions

ν(q, x) = 0.5 q x2 + 0.5 q x3 , µ(x) = 0.4 x4 + 0.1 x9 .

The corresponding edge perspective degree distribution is

λ(q, x) = 0.4 q x+ 0.6 q x2 , ρ(x) = 0.64 x3 + 0.36 x8 .

The G-EXIT chart for this code on BEC(q) is shown in Figure 4.5, where q takes
three different values q ∈ {0.2, 0.4, 0.6}. The threshold of this code on BEC is q∗ = 0.4.
For channel parameters q ≤ q∗ the two curves do not cross, which determines that
the density evolution converges with error probability goes to zero, but for q > q∗

the two curves cross each other which means that the density evolution stops at a
non-zero error probability.
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Figure 4.5: The dashed lines are for VN with different channel parameters and the
solid line is for the CN. The curves belong to a code with rate 0.5 with
maximum VN degree 3 and maximum CN degree 9.

4.3.1 MET-LDPC codes on BEC

Consider a MET-LDPC code with cascade structure and ne = 3 edge types. The
degree distribution of this code on a binary erasure channel with parameter q is:

ν(q,x) = q

Q−1∑
i=1

νi x
dv

1,i

1 x
dv

2,i

2 + q ν3 x3 ,

µ(x) =
P −2∑
i=1

µi x
dc

1,i

1 + µP −1 x
dc

2,P −1
2 x3 + µP x

dc
2,P

2 x3 .

To analyze the density evolution for MET-LDPC codes the edge perspective degree
distribution is required. For MET-LDPC codes the edge perspective distribution can
be obtained from (4.2). For the VNs

λ(q,x) =
(
λ1(q,x), λ2(q,x), λ3(q,x)

)
,
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where

λ1(q,x) = q

Q−1∑
i=1

νi d
v
1,i x

dv
1,i−1

1 x
dv

2,i

2

Q−1∑
i=1

νi dv
1,i

= λ1(q, x1, x2) ,

λ2(q,x) = q

Q−1∑
i=1

νi d
v
2,i x

dv
1,i

1 x
dv

2,i−1
2

Q−1∑
i=1

νi dv
2,i

= λ2(q, x1, x2) ,

λ3(q,x) = q = λ3(q) .

For the CNs
ρ(x) =

(
ρ1(x), ρ3(x), ρ3(x)

)
,

where

ρ1(x) =

P −2∑
i=1

µi d
c
1,i x

dc
1,i−1

1

P −2∑
i=1

µi dc
1,i

= ρ1(x1) ,

ρ2(x) =
µP −1 d

c
2,P −1 x

dc
2,P −1−1

2 x3 + µP dc
2,P x

dc
2,P −1

2 x3

µP −1 dc
2,P −1 + µP dc

2,P

= ρ2(x2, x3) ,

ρ3(x) = µP −1 x
dc

2,P −1
2 + µP x

dc
2,P

2
µP −1 + µP

= ρ3(x2) .

To investigate the convergence behavior of this code the vectors of erasure probabil-
ities at the output of VNs and CNs along different edge types has to be considered,
which is denoted by ϵ⃗lv = [ϵlv,1, ϵ

l
v,2, ϵ

l
v,3] and ϵ⃗lc = [ϵlc,1, ϵ

l
c,2, ϵ

l
c,3]. Then, at iteration l,

the update rule for the VNs are:

ϵlv,1 = G1(q, ϵl−1
c,1 , ϵ

l−1
c,2 ) = λ1(q, ϵl−1

c,1 , ϵ
l−1
c,2 ) ,

ϵlv,2 = G2(q, ϵl−1
c,1 , ϵ

l−1
c,2 ) = λ2(q, ϵl−1

c,1 , ϵ
l−1
c,2 ) ,

ϵlv,3 = G3(q) = q .

For the CN the update rules are:

ϵlc,1 = F1(ϵlv,1) = 1 − ρ1(1 − ϵlv,1) ,
ϵlc,2 = F2(ϵlv,2, ϵ

l
v,3) = 1 − ρ2(1 − ϵlv,2, 1 − ϵlv,3) ,

ϵlc,3 = F3(ϵlv,2) = 1 − ρ3(1 − ϵlv,2) .
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The initial erasure values at the starting point are ϵ⃗0c = [1, 1, 1]. Table 4.5 shows the
parametric form of the G-EXIT curves for individual edges. For edge type 1 the CN
curve (F1) is a function of erasure probability at the output of VN on edge 1 (ϵlv,1).
The CN curve along edge type 2, (F2), is a function of the erasure probabilities at
the output of VNs along edge types 2 and 3 (ϵlv,2 and ϵlv,3). We can be simplify this
because ϵlv,3 = q and thus, F2 is a function of ϵlv,2, and q. Finally, for edge type 3 the
G-EXIT curve is a vertical line at point ϵlv,3 = q.

On the other hand, the VN curve along edge type 1 (G1) and edge type 2 (G2) are
both functions of erasure probabilities at the output of CNs along edges 1 and 2 (ϵlc,1
and ϵlc,2). For edge type 3 just after one iteration all the erasure probabilities reach
a fixed value q and the two curves for VNs and CNs are two completely matching
vertical lines.

Table 4.5: The parametric representation of EXIT (G-EXIT) charts for MET-LDPC
codes on BEC(q).

EXIT curve of CN Inverse of EXIT curve of VN
Edge 1

{
ϵlv,1, F1(ϵlv,1)

} {
G1(q, ϵl−1

c,1 , ϵ
l−1
c,2 ), ϵl−1

c,1
}

Edge 2
{
ϵlv,2, F2(ϵlv,2, q)

} {
G2(q, ϵl−1

c,1 , ϵ
l−1
c,2 ), ϵl−1

c,2
}

Edge 3
{
ϵlv,3, F3(ϵlv,2)

} {
G3(q), ϵl−1

c,3
}

As an example, consider the MET-LDPC code with cascade structure represented
in Table 4.2. The corresponding G-EXIT charts on a BE channel are presented
in Figure 4.6.

In addition, the overall convergence of the code depends on the combination of
the densities along different edge types. For example, the convergence behavior of
this code is depicted in Figure 4.7 for different channel parameters. It is clear that
the threshold of this code on BEC is q∗ = 0.97505. For the channel parameters
q > q∗, the code does not converge and for the q < q∗ the code converges to zero
error probability after 200 iterations.

4.3.2 MET-LDPC codes on a BIOSM channel
As discussed above, in the case of a BEC we are able to plot the G-EXIT charts along
each edge type by knowing the L-densities. Here, we introduce G-EXIT charts for
the BIOSM channel. Assume that a⃗l

v = (al
v,1, · · · , al

v,ne
) and a⃗l

c = (al
c,1, · · · , al

c,ne
)

denote the vector of L-densities at the output of VNs and CNs after l ≥ 1 iterations.
Then the density evolution for the L-densities as presented in (4.6) and (4.7) can be
written as:

a⃗l+1
v = λ(⃗aBIOSMC, a⃗l+1

c ) ,
a⃗l+1

c = ρ(⃗al
v) ,
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Figure 4.6: The G-EXIT charts for separate edges for the rate 0.02 MET-LDPC
code detailed in Table 4.2. The threshold of this code on a BEC is
0.97505, the Shannon limit on binary erasure channel for rate 0.02 is
0.98.
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Figure 4.7: The convergence behavior of a MET-LDPC code on a BEC channel.

where ρ(x) and λ(r,x) are presented in (4.2) and a⃗BIOSMC is the L-density of the
BIOSM channel. The initial L-density vector is a⃗0

v = ∆⃗0. By ∆⃗0 we mean a vector of
densities, where each density is δ0, which is equivalent to erasure with probability 1.
Similar to the case of BEC we consider the MET-LDPC codes with cascade structure
and three edge types. Then the density evolution can be written as:

al
v,1 = λ1(aBIOSMC, al−1

c,1 , a
l−1
c,2 ) ,

al
v,2 = λ2(aBIOSMC, al−1

c,1 , a
l−1
c,2 ) ,

al
v,3 = aBIOSMC .

For the CN the update rules are:

al
c,1 = ρ1(al

v,1) ,
al

c,2 = ρ2(al
v,2, a

l
v,3) ,

al
c,3 = ρ3(al

v,2) .

In contrast to the case of a BEC the intermediate L-densities a⃗l for general BIOSM
channel do no have a simple description. However we can estimate them with some
equivalent density families and then apply the EXIT functional (G-EXIT functional)
to obtain the EXIT (G-EXIT) charts. As presented in [44] the most faithful equiv-
alence rule is to choose the element of the channel family which has equal entropy.
In Appendix A the entropy functional is defined for the L-densities. In addition, it
is shown how to apply the EXIT and G-EXIT functionals to the L-densities.

Let us assume that for a pair of (λi, ρi) we are able to guess the true intermediate
L-densities. We denote by al

v,i (al
c,i) the densities emitted at the VNs (CNs) at
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iteration l along edge type i. The parametric forms for the EXIT curves can then be
displayed in Table 4.6.

Table 4.6: The parametric representation of the EXIT chart for MET-LDPC codes
on a BIOSM channel.

EXIT curve of CN Inverse of EXIT curve of VN
Edge i

{
hl

v,i, hl
c,i

} {
hl

v,i, hl−1
c,i

}
In Table 4.6 the entropy functional2 for the L-densities are defined as

hl
c,i = H(ρ(al−1

v,i )) , hl
v,i = H(aBIOSMC ⊗ λ(al

c,i)) .

and for the G-EXIT curves the parametric forms are displayed in Table 4.7.

Table 4.7: The parametric representation of G-EXIT chart for MET-LDPC codes
on BIOSM channel.

Inverse of
G-EXIT curve of CN Dual G-EXIT curve of VN

Edge i
{

hl
v,i, G(al

v,i, a
l
c,i)
} {

hl
v,i, G(al

v,i, a
l−1
c,i )

}
In the following example we show how to plot the G-EXIT curve for a MET-LDPC

code on a BI-AWGN channel.

Example 4.3.2. G-EXIT chart for MET-LDPC codes on a BI-AWGN

In this example we show how the G-EXIT charts can be used for MET-LDPC
codes on a BI-AWGN channel. Consider the MET-LDPC code with rate 0.02 in
Table 4.2. The Shannon limit for rate 0.02 is equal to Eb/N0 = −1.53 dB (σ∗

Sh
= 5.96)

and our proposed code has a threshold equal to −1.5 dB (σ∗
DE = 5.94) which is just

0.03 dB away from capacity. With Eb being the energy per bit and N0 being the
energy of the noise, the relation between Eb/N0, the SNR and σ for an AWGN
channel with binary transmission is given by (linear scale)

SNR = 2Rch Eb

N0
,

σ = 1√
SNR

.

Using (4.2) the edge perspective degree distribution of this code can be written as

λ(r,x) =
[
0.6 r1x

2
1x

60
2 + 0.4 r1x1x

51
2 , 0.54505 r1x

3
1x

59
2 + 0.4595 r1x

2
1x

50
2 , r1

]
,

ρ(x) =
[
0.64x3

1 + 0.36x8
1, 0.4054x2

2x3 + 0.5946x2x3, 0.3125x3
2 + 0.6875x2

2
]
,

2The definition of the entropy functional, EXIT and G-EXIT functionals are presented in Ap-
pendix A.
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where for the VNs

λ1(r1, x1, x2) = 0.6 r1x
2
1x

60
2 + 0.4 r1x1x

51
2 ,

λ2(r1, x1, x2) = 0.54505 r1x
3
1x

59
2 + 0.4595 r1x

2
1x

50
2 ,

λ3(r1) = r1 ,

and for the CNs

ρ1(x1) = 0.64x3
1 + 0.36x8

1 ,

ρ2(x2, x3) = 0.4054x2
2x3 + 0.5946x2x3,

ρ3(x2) = 0.3125x3
2 + 0.6875x2

2 .

Then, for the density evolution the intermediate densities on the VN side are

al
v,1 = aBIOSMC ⊗

[
0.6

(
al−1

c,1
)⊗2 ⊗

(
al−1

c,2
)⊗60 + 0.4 al−1

c,1 ⊗
(
al−1

c,2
)⊗51 ]

,

al
v,2 = aBIOSMC ⊗

[
0.54505

(
al−1

c,1
)⊗3 ⊗

(
al−1

c,2
)⊗59 + 0.4595

(
al−1

c,1
)⊗2 ⊗

(
al−1

c,2
)⊗50]

,

al
v,3 = aBIOSMC ,

where ⊗ denotes the convolution of VNs, and for the CNs

al
c,1 = 0.64

(
al

v,1
)⊠3 + 0.36

(
al

v,1
)⊠8

,

al
c,2 = aBIOSMC ⊠

[
0.4054

(
al

v,2
)⊠2 + 0.5946 al

v,2

]
,

al
c,3 = 0.3125

(
al

v,2
)⊠3 + 0.6875

(
al

v,2
)⊠2

,

where ⊠ denotes the convolution of CNs. Figure 4.8 shows the convergence behavior
of each edge for the above mentioned code.

4.4 Code design optimization problem
Let us denote the decoding threshold of a MET-LDPC code by θ. The parameter
θ describes the maximum noise level in which the decoder can provide a reliable
transmission. For a BI-AWGN channel the parameter θ = σ, which is standard
deviation of the noise. For the BE channel θ = q, which is the erasure probability.
The parameter θ is related to the code structure and can be written as θ (ν(r,x), µ(x)).
Thus, for a given rate, the code design problem can be written as an optimization
problem with cost function θ as follows:

θ∗ = argmax.
ν(r,x), µ(x)

θ (4.12)

s.t.
{
νxi

(1,1) = µxi
(1), i = 1, · · · , ne .

R = ν(1,1) − µ(1) .
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Figure 4.8: The G-EXIT charts for the three edge types for the rate 0.02 MET-
LDPC code for a BI-AWGN channel. The detailed code structure can
be found in Table 4.2.
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This means that the optimization problem looks among all valid degree distribu-
tions and finds the code with maximum threshold. The precise calculation of the
threshold can be done using density evolution. Using the density evolution this prob-
lem is an optimization problem with non-linear cost function. Though the constraints
of this optimization problem can be simplified to a convex set, solving (4.12) is com-
plicated due to the non-linearity of the objective function even in the case of irregular
LDPC codes.

4.4.1 Constraint sets
Let us consider the constraint sets of the original optimization problem in (4.12) for
a MET-LDPC code with degree distribution as presented in Table 4.1. The ne linear
constraints for the socket count equalities (SCEs) imply that the weighted sum of the
VNs and CNs for each edge type should be equal. For the jth constraint it can be
written as

Q∑
i=1

νid
v
j,i =

P∑
i=1

µid
c
j,i ,

where 1 ≤ j ≤ ne. Its matrix representation is

dv
1,1 dv

1,2 · · · dv
1,Q

...
... . . . ...

dv
j,1 dv

j,2 · · · dv
j,Q

...
... . . . ...

dv
ne,1 dv

ne,2 · · · dv
ne,Q




ν1
ν2
...
νQ

 =



dc
1,1 dc

1,2 · · · dc
1,P

...
... . . . ...

dc
j,1 dc

j,2 · · · dc
j,P

...
... . . . ...

dc
ne,1 dc

ne,2 · · · dc
ne,P




µ1
µ2
...
µP

 . (4.13)

By calling the above matrices Dv = dT
v , ν⃗, Dc = dT

c and µ⃗ respectively, we have

Dvν⃗ = Dcµ⃗ . (4.14)

If a nonsingular matrix Dv exists the vector ν⃗ can be calculated by solving

ν⃗ = (Dv)−1Dcµ⃗ . (4.15)

Thus, by considering Dv, Dc and µ⃗ as independent variables the vector ν⃗ is a
the dependent variable and (4.15) satisfies the validity. This means that to find
the best degree distribution it is possible to reduce the dimension of the search space.
Furthermore, there is no need for joint optimization of CN and VN coefficients because
of their linear dependency. Hence (4.15) introduce a linear dependency for node
distribution of the VNs.

In addition, the second constraint is related to the code rate R. Since we assume
that there are no puncture nodes,

∑Q
1 νj = 1 and

∑P
1 µi = 1 − R, where R is the

rate of the code. In total the optimization algorithm therefore needs to find P − 1
fractional parameters and ne(P +Q) integer parameters.
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Example 4.4.1. Linear dependency

As an example, Table 4.8 describes a rate 0.02 MET-LDPC ensemble presented
in [10]. Using (4.14) the matrix form representation for the socket count equality is

Table 4.8: Table presentation of Rate 0.02 degree structure for a MET-LDPC code
with 3 edge-types.

νbd b dv µd dc

0.0225
0.0175
0.96

[0 1]
2 57 0
3 57 0
0 0 1

0.010625
0.009375

0.6
0.36

3 0 0
7 0 0
0 2 1
0 3 1

BIAWGN: σ∗
DE = 5.93

given by

 2 3 0
57 57 0
0 0 1

 ν1
ν2
ν3

 =

 3 7 0 0
0 0 2 3
0 0 1 1




0.0106
0.0094

0.6
0.36

 .

Solving this equation for ν by using (4.15) we obtain ν1
ν2
ν3

 =

 0.0225
0.0175
0.9600

 ,

which are exactly the same result as obtained by an optimization method in [10] (c.f.
Table 4.8).

4.4.2 Cost function for irregular LDPC codes
On a binary erasure channel and for irregular-LDPC codes, i.e. ne = 1, the density
evolution is equivalent to monitoring scalar value erasure probability. Thus, the
EXIT chart can be used to convert this optimization problem to a linear curve fitting
optimization problem on a convex set [65, 67, 69, 70]. Remember that the EXIT chart
provides two curves related to the CNs and the inverse of VNs. For any converged
code these two curves do not cross each other and the VN curve is always on top of
the CN curve. Then, using the Area theorem [68, 66], the best code can be obtained
by matching these two curves. If A denotes the area between these two curves the
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(4.12) can be simplified to

argmin.
ν(q,x), µ(x)

A (4.16)

s.t.
{
νx(1, 1) = µx(1),
R = ν(1, 1) − µ(1) .

This simplified optimization problem presented in (4.16) looks for an ensemble
of irregular-LDPC codes where the area between the two curves related to VNs and
CNs is minimal. This can be done by starting with a simple CN polynomial and then
use curve fitting using Taylor series [65].

4.4.3 Cost function for MET-LDPC codes
In the case of a MET-LDPC code the optimization problem is not always straight for-
ward. Here we propose a design approach by using the concept of EXIT charts along
different edge types. Let us denote by Ai the area between the curves of EXIT charts
along ith edge. Then, for the MET-LDPC codes the optimization problem (4.12) can
be simplified to

argmin.
ν(q,x), µ(x)

ne∑
i

Ai (4.17)

s.t.
{
νxi

(1,1) = µxi
(1), i = 1, · · · , ne .

R = ν(1,1) − µ(1) .

This problem is a generalization of the curve fitting problem for irregular-LDPC
codes. Here we jointly optimize the EXIT curves for all edges. Luckily, in the
cascade structure the EXIT curves for the thirs edge are vertical lines related to the
degree one nodes. Tthe area between the two curves is allways zero (See Figure 4.6
and Figure 4.8). Thus the optimization problem simplified to jointly optimize the
EXIT curves for edges 1 and 2. Since the EXIT curves for CN sides along edge 1 and
edge 2 are independent, we can start by designing two EXIT curves for CNs and then
fit two VN curves jointly to these CN curves.

4.5 Optimization for cascade structure
After having defined the optimization problem in the las section, we now focus on
solving it. The design of MET-LDPC codes is still a challenging problem. Just
very recently some optimization algorithms were developed for designing MET-LDPC
codes [14, 13, 12]. In general all the design approaches solve the non-linear optimiza-
tion problem as presented in (4.12). Usually a brute-force search is running on a set
of valid degree distributions to find the best ensemble. The density evolution (DE)
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or one of its approximations [13, 14] are used to check the performance of the codes.
For example, the author in [13] used a hybrid-Gaussian approximation to reduce the
complexity of DE for MET-LDPC codes. Recently a joint optimization was developed
by [12], where two complicated inner and outer optimizations were conducted to find
the node and edge distributions. The major disadvantage of [13, 12] is that they are
limited to code rates higher than 0.1. Our proposed algorithm can however design
highly efficient codes at low rate. In Section 4.2, we proposed a new semi-Gaussian
approximation as to reduce the complexity of the DE for MET-LDPC codes. In addi-
tion, we denoted in Section 4.4 that a linear dependency exists between the CNs and
VNs in terms of code rate, which greatly reduces the search space for valid structures.
In this section, for the case of MET-LDPC codes with cascade structure, we propose
a novel optimization algorithm to design highly efficient codes. We use the concepts
of EXIT chart and semi-Gaussian approximation to design the codes.

Remember from Section 4.1.1 that the MET-LDPC codes with cascade structure
can be described by three sub-graphs as presented in Figure 4.1. In cascade structure
the red part of the graph can be considered as an irregular LDPC code with rate rb

which we call the base code (See Figure 4.1, and delete all the other blue and black
edges and all other connected nodes). Later in this section we will see how to design
an appropriate base code using the EXIT charts for the cascade structures. It is
important to mention that designing good base codes is not equivalent to designing
good irregular LDPC codes for BIOSM channels. For the moment, assume that a
base code with rate rb exists. In the following theorem we will prove that the portion
of the degree one nodes in the overall cascade structure is determined b knowing the
degree distribution of the base code (red part).

Theorem 4.5.1. Consider a MET-LDPC code with rate R in cascade structure. The
portion of degree one VNs is equal to 1 − R

rb
, where rb is the rate of the base code.

Proof. Let us assume that the base code has the following degree distribution :

ν(x) =
Q−1∑
i=1

ν′
i x

dv
1,i , (4.18)

µ(x) =
P −2∑
i=1

µ′
i x

dc
1,i . (4.19)

where
Q−1∑
i=1

ν′
i = 1 and

P −2∑
i=1

µ′
i = 1 − rb. The socket count equality for the base code is

Q−1∑
i=1

ν′
i d

v
1,i =

P −2∑
i=1

µ′
i x

dc
1,i . (4.20)

In addition, assume that the degree distribution of the overall cascade structure
is according to Table 4.3 and the socket count equality for edge-type 1 of the overall
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cascade structure is given by

Q−1∑
i=1

νi d
v
1,i =

P −2∑
i=1

µi x
dc

1,i . (4.21)

It is clear that (4.20) and (4.21) are scaled versions of each other. Let us denote
the scale factor by s. This yields

Q−1∑
i=1

νi =

Q−1∑
i=1

ν′
i

s
= 1
s
, (4.22)

P −2∑
i=1

µi =

P −2∑
i=1

µ′
i

s
= 1 − rb

s
. (4.23)

(4.24)

In addition, for the overall cascade structure

ν(1,1) =
Q−1∑
i=1

νi + νQ = 1 , (4.25)

µ(1) =
P −2∑
i=1

µi + µP −1 + µP = 1 −R , (4.26)

νQ = µP −1 + µP . (4.27)

Thus, (4.25) and (4.26) can be simplified to

ν(1,1) = 1
s

+ νQ = 1 ,

µ(1) = 1 − rb

s
+ νQ = 1 −R .

Finally, solving this equation for s yields

s = rb

R
, (4.28)

which implies that νQ = 1 − 1
s = 1 − R

rb
.

The main practical result of Theorem 4.5.1 is that if we use an irregular base code
with rate rb to design a cascade structure of rate R, the scale factor s = rb

R
and the

scaled-down version of the designed base code with rate rb can be considered as red
part in overall cascade structure.
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4.5.1 Design of good base codes using EXIT charts
To design highly ??? MET-LDPC codes in cascade structure a good irregular LDPC
base code is required. However the procedure of designing an optimal base code differs
from the procedure of designing conventional irregular-LDPC codes (See Section 4.4.2)
because the noise model is different. As discussed in Section 4.4.2, designing an
irregular LDPC code for a given channel parameter is a curve fitting problem and we
have to minimize the area between the EXIT curves as the gap between the two EXIT
curves determines the distance to capacity. The design procedure for the base code,
however, has to take into account the additional noise comming from edge type 2. For
example, consider the Irregular code presented in Figure 4.5. The modified version
of this code showing the effect of edge type 2 has the following degree distribution

ν(q, x1, x2) = q (0.5 x2
1x

dv
2,1

2 + 0.5 x3
1x

dv
2,2

2 ) , (4.29)
µ(x) = 0.4 x4

1 + 0.1 x9
1 . (4.30)
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Figure 4.9: The EXIT chart for base code by considering the effect of additional
noise coming from edge type 2. The channel parameter is q = 0.975.
The code rate is 0.5 and the maximum degree of VN along edge type
one is 3 and the maximum VN degree along edge type two is 60.

The corresponding EXIT chart which considers the effect of the additional noise
coming from the output of CNs along edge type 2 is presented in Figure 4.9. The
corresponding curves are plotted for dv

2,1 = 50 and dv
2,2 = 60. Comparing Figure 4.5

and Figure 4.9 demonstrates that the base code designed for MET-LDPC codess is
not always the optimal irregular LDPC code for the BE channel. More precisely, if
the additional noise along edge type 2 is just considered as pure noise (equivalently,
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ϵlc,2 = 1) the EXIT chart in Figure 4.9 would be the same as the EXIT chart in
Figure 4.5.

4.5.2 Optimization for the connector part
After designing the base code with rate rb and determining the portion of the degree
one nodes according to Theorem 4.5.1 the final step is to find the best connector part
to build an overall MET-LDPC code with rate R. Thus, as presented in Table 4.3,
just the parameters related to edge type 2 remain unknown (blue part). The SCEs
for edge type 2 and edge type 3 readd

c
2,P −1 µP −1 + dc

2,P µP =
∑Q−1

i=1 dv
2,i νi ,

µP −1 + µP = νQ = 1 − 1
s
.

(4.31)

In (4.31) the parameters νi for i ∈ {1, · · · , Q} and s are known. The unknown
parameters are µP −1, µP , dc

2,P −1, dc
2,P and dv

2,i for i ∈ {1, · · · , Q − 1}. We note
that dv

2,i are integers. Solving this set of equations for µP −1 and µP gives us the
parametric solution for connector parts satisfying the SCE. The parametric forms for
the CN coefficients µP −1 and µP are

µP −1 =
dc

2,P νQ −
∑Q−1

i=1 dv
2,i νi

dc
2,P − dc

2,P −1
, (4.32)

µP = νQ − µP −1 , (4.33)

where µP −1 and µP should be between 0 and νQ.
In addition, the schematic representation for the solutions of this set of equations

for µP −1 and µP are presented in Figure 4.10 which is the cross point of the following
lines {

y = −m x+ b ,

y = −x+ νQ ,

where

m =
dc

2,P −1

dc
2,P

, b =
∑Q−1

i=1 dv
2,i νi

dc
2,P

.

It is clear from Figure 4.10 that by changing the unknown integer parameters (dv
2,i),

we can change the slope (m) and y-intercept (b) to find different pairs of (µP −1, µP ).
It it important to mention that each point determines a new connector part for the
overall MET-LDPC code. Finally to find the best connector part for the overall code
we can use the semi-Gaussian approximation (or any other approximation of DE) to
find the best threshold for the overall code. This can be done by testing different
pairs of (µP −1, µP ) according to (4.32) and (4.33).
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y

0

Figure 4.10: The inner optimization problem finds sets of points (µP −1, µP ) satis-
fying µP + µP −1 = νQ .

The flowchart for the code design procedure is presented in Figure 4.11. In the
first step a base code with rate rb is designed according to Section 4.5.1. Then, in
the second step the scaling parameter s is found from Theorem 4.5.1. Putting the
scaled-down version of the base code in the cascade structure determines the fraction
of degree one VNs and CNs. In the next step a new connector part is tested to build
the overall MET-LDPC code with rate R. This procedure continues until we find a
set of highly efficient codes or until all the unique connector parts have been tested.
If for all the created connector parts the efficiency of the overall code was not good
enough a new base code has to be considered with different rate rb.

In Section 4.6 some examples of highly efficient MET-LDPC codes with cascade
structure are represented, where we used our new optimization algorithm for the
design.

4.6 Highly efficient codes
In this section we propose some of our highly efficient MET-LDPC codes. To compare
the performance of these codes we define the asymptotic efficiency of each code as
βDE = R

C(pDE) , where R is the code rate and C(pDE) is the capacity of the binary-
input output symmetric memory-less (BIOSM) channel with parameter p = pDE. pDE

is the threshold of the code obtained by running full density evolution and pSh is the
Shannon threshold. To see how we calculate the capacity of BIOSM channels see
Appendix A.
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Design degree one nodes

Create a connector part

Find the efficiency βDE

Design base code using 

EXIT chart

Set base code rate (rb)

No

No

Yes

Save the code

Unique

> 0.98

Figure 4.11: The block diagram for the optimization algorithm of a rate R MET-
LDPC code with cascade structure using a base code of rate rb.

Example 4.6.1. MET-LDPC code with rate 0.01.

The degree distribution of the code is

Table 4.9: Rate 0.01 MET-LDPC code.
νbd b dv µd dc

0.01
0.01
0.98

[0 1]
2 103 0
3 125 0
0 0 1

0.008
0.002
0.32
0.66

4 0 0
9 0 0
0 3 1
0 2 1

σ∗
Sh

= 8.46 σ∗
DE = 8.41 βDE = 98.7%

Based on our knowledge, there is no MET-LDPC code in other literature specifi-
cally designed for rate 0.01. A rate 0.01 code can be obtained by augmenting a rate
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0.02 MET-LDPC code with a length 2 repetition code.

Example 4.6.2. MET-LDPC code with rate 0.02.

We propose two MET-LDPC codes with rate 0.02. The first code was represented
before in Table 4.2. Here we present the second code with rate 0.02 with the following
degree distribution in table format

Table 4.10: Rate 0.02 MET-LDPC code.
νbd b dv µd dc

0.024
0.016
0.96

[0 1]
2 43 0
3 61 0
0 0 1

0.002
0.018
0.088
0.872

3 0 0
5 0 0
0 3 1
0 2 1

σ∗
Sh

= 5.96 σ∗
DE = 5.94 βDE = 99.2%

The only existing MET-LDPC code with rate 0.02 was designed by [10] with the
following degree distribution

ν(r,x) = 0.0225 r1x
2
1x

57
2 + 0.0175 r1x

3
1x

57
2 + 0.96 r1x

1
3 ,

µ(x) = 0.010625 x3
1 + 0.009375 x7

1 + 0.6 x2
2x

1
3 + 0.36 x3

2x
1
3 .

The threshold of this code in BI-AWGN channel is σ∗
DE = 5.91 with asymptotic

efficiency of βDE = 98.22%.

Example 4.6.3. MET-LDPC code with rate 0.05.

Table 4.11 shows the degree structure of a rate 0.05 MET-LDPC code. The
threshold of this code using DE on BI-AWGN channel is equal to σ∗

DE = 3.68 ( Eb

N0
=

−1.32 dB). The theoretical Shannon limit for a code of rate 0.05 is equal to σ∗
Sh

= 3.73
(−1.44 dB) and this code is just 0.12 dB away from capacity. Another code designed

Table 4.11: Rate 0.05 MET-LDPC code.
νbd b dv µd dc

0.054
0.046
0.90

[0 1]
2 22 0
3 22 0
0 0 1

0.026
0.024
0.40
0.50

3 0 0
7 0 0
0 3 1
0 2 1

σ∗
Sh

= 3.73 σ∗
DE = 3.68 βDE = 97.36%

for rate 0.05 was presented in [45] and has the following degree distribution

ν(r,x) = 0.04 r1x
2
1x

34
2 + 0.03 r1x

3
1x

34
2 + 0.93 r1x

1
3 ,

µ(x) = 0.01 x8
1 + 0.01 x9

1 + 0.41 x2
2x

1
3 + 0.52 x3

2x
1
3 .
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The threshold of this code in BI-AWGN channel is σ∗
DE = 3.67 with asymptotic

efficiency of βDE = 96.78%.

Example 4.6.4. MET-LDPC code with rate 0.10.

Table 4.12 shows a code with ne = 3 edge type and the threshold of this code
in a BI-AWGN channel using DE is equal to σ∗

DE = 2.57 ( Eb

N0
= −1.22 dB). The

theoretical Shannon limit is equal to σ∗
Sh

= 2.6 (−1.28 dB) and this code is just 0.06
dB away from capacity.

Table 4.12: Rate 0.10 MET-LDPC code.
νbd b dv µd dc

0.075
0.050
0.875

[0 1]
2 23 0
3 18 0
0 0 1

0.025
0.875

12 0 0
0 3 1

σ∗
Sh

= 2.6 σ∗
DE = 2.57 βDE = 98.33%

For comparison another code with rate 0.1 designed by [14] has the degree distri-
bution

ν(r,x) = 0.0775 r1x
1
1x

1
2x

21
3 + 0.0477 r1x

2
1x

1
2x

20
3 + 0.8747 r1x

1
4 ,

µ(x) = 0.0011 x6
1x

4
2 + 0.0028 x6

1x
5
2 + 0.0214 x7

1x
5
2 + 0.0412 x2

3x4 + 0.8335 x3
3x4 .

The threshold of this code in BI-AWGN channel is σ∗
DE = 2.54 with asymptotic

efficiency of βDE = 96.37%.

Example 4.6.5. MET-LDPC code with rate 0.25.

The corresponding polynomial representation for this code is:

ν(r,x) = 0.1875 r1x
2
1x

12
2 + 0.125 r1x

3
1x

4
2 + 0.6875 r1x

1
3 ,

µ(x) = 0.0625 x12
1 + 0.6875 x4

2x
1
3 .

The corresponding table representation is also presented in Table 4.13.

Table 4.13: Rate 0.25 MET-LDPC code.
νbd b dv µd dc

0.1875
0.125
0.6875

[0 1]
2 12 0
3 4 0
0 0 1

0.0625
0.6875

12 0 0
0 4 1

σ∗
Sh

= 1.55 σ∗
DE = 1.50 βDE = 95.07%
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Now let us compare the threshold of our designed code with some other codes
with rate 0.25 designed in [14] and [12]. For example in [14] the authors designed
another non-punctured code with rate 0.25 with the following degree distribution

ν(r,x) = 0.1512 r1x
3
1 + 0.006 r1x

4
1 + 0.0928 r1x

12
1 + 0.75 r1x

2
2 ,

µ(x) = 0.6588 x2
1x

2
2 + 0.0912 x3

1x
2
2 .

The threshold of this code in BI-AWGN channel is σ∗
DE = 1.48 with asymptotic

efficiency of βDE = 93.08%.
The second code is a punctured code with rate 0.25 designed in [12] with the

following degree distribution

ν(r,x) = 0.1563 r0x
4
1x

4
3x

1
4 + 0.0938 r1x

2
3x

1
4 + 0.9062 r1x

1
2x

1
4 ,

µ(x) = 0.3125 x2
1x

1
2 + 0.1875 x1

2x
4
4 + 0.4063 x1

2x
2
3x

1
4 .

The threshold of this code in BI-AWGN channel is σ∗
DE = 1.49 with asymptotic

efficiency of βDE = 93.65%.

4.7 Simulation Results
Finally, to evaluate the performance of our codes, Figure 4.12 shows the simulated
frame error rate (FER) of our rate 0.02 MET-LDPC code, represented in Table 4.2,
with finite block length. We compare our results with the simulated FER of a rate
0.02 code designed by [10] and used in Ref. [71] for multi-dimensional reconciliation
for CV-QKD.

As can be seen in Figure 4.12 our proposed code outperforms the code published
in [10] even with a shorter block length of n = 1.5 × 106 bits. For both codes
the progressive edge growth (PEG) algorithm [72] was used to construct quasi-cyclic
MET-LDPC codes with Z ×Z circulant permutation matrices. Based on our simula-
tion results it is clear that by increasing the length of the code to n = 1.5 × 106 bits,
0.1 dB additional gain can be obtained at FER = 0.1. In addition, in Figure 4.12 the
vertical dashed lines respectively show the Shannon asymptotic threshold for rate 0.02
on a BIAWGN channel and the asymptotic threshold obtained by density evolution
for our code and the code of [10].

The efficiencies of the two codes versus the FER are compared in Fig. 4.13. It
can be observed that for all FERs the efficiency of our code is higher than the code
of [10]. For instance, for an efficiency of 95% the code in [71, 10] has a FER of 0.6
but our code is able to provide the same efficiency with a FER of as low as 0.3.



88 4 On the Design of Highly Efficient MET-LDPC codes

15.6 15.5 15.4 15.3 15.2 15.1 15.0
SNR (dB)

10 3

10 2

10 1

100

Av
er

ag
e 

Fr
am

e 
E

rr
or

 R
at

e 
(F

E
R

)

Shannon capacity
[33, Appendix A], Asym.
Table I, Asym.
[33, Appendix A], n = 1.6e06
Table I, n = 3.8e05
Table I, n = 1.5e06

Figure 4.12: The frame error rate vs SNR for rate 0.02 MET-LDPC code. To plot
the FER curves we set the maximum number of iterations to 500 and
for each point 100 frames of errors were counted. We used Z = 256 for
the solid orange curve and Z = 1024 for the solid red and blue curves.
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Figure 4.13: The efficiency vs frame error rate for rate 0.02 MET-LDPC code. To
plot the FER curves we set the maximum number of iterations to 500
and for each point 100 frames of errors are counted..
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CHAPTER5
Conclusion and Future

Directions
This thesis addressed some of the important topics in the post-processing of the CV-
QKD to provide long distance secure key rate. More specifically, for the reconciliation
schemes in CV-QKD some of the ubiquitous reconciliation schemes were discussed in
details. Some of the major contributions in Chapter 3 are

• Numerical and analytical methods to precisely calculate the individual channel
coding rates for MLC-MSD reconciliation.

• Calculation of soft information at the input of the soft decoder for one-level
decoding and two-level decoding for MLC-MSD reconciliation.

• Detailed comparison between forward and reverse reconciliation.

• Randomized reconciliation scheme was introduced to increase the throughput
of the system. In randomized reconciliation a high throughput hard decoder
were used instead of complicated soft decoder.

Another important topic which was addressed in this thesis is the major need to
design highly efficient codes for low rate regime in applications like QKD. In Chapter 4,
we focused on MET-LDPC codes. A new precise approximation method for DE,
called semi-Gaussian approximation was proposed for the MET-LDPC codes. In
addition, we developed the concept of EXIT charts for the MET-LDPC codes. The
EXIT chart is one of the powerful tools for designing the codes. A new algorithmic
approach was proposed to design highly efficient MET-LDPC codes. Then some
new highly efficient MET-LDPC codes were designed using the proposed algorithm.
The application of these MET-LDPC codes are not limited to the CV-QKD and
many of the published codes can be used also in other applications including satellite
communication, wireless communication and optical communication. More precisely
some of the major contributions of Chapter 4 can be summarized as follows:

• A new approximation for DE of the MET-LDPC codes called semi-Gaussian
approximation. In this method the Gaussian approximation is applied just to
VN operations and the CN operations are calculated precisely. This method
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can help us to plot the EXIT charts without running the full DE. More details
can be found in Section 4.2.3.

• Developed the concept of EXIT and generalized EXIT (G-EXIT) charts for
MET-LDPC codes. EXIT and G-EXIT charts are very useful tools to analysis
and design of irregular LDPC codes. These concepts where never developed
for the case of MET-LDPC codes. In Section 4.3 we denoted how it is possible
to define and plot the EXIT and GEXIT charts for MET-LDPC codes. We
started with BE channel and then the general formulation for BIOSM channel
was presented.

• Developed a new algorithmic approach to design highly efficient MET-LDPC
codes. The optimization problem for MET-LDPC codes is presented in Sec-
tion 4.4. Then an algorithmic approach is introduced to design highly efficient
MET-LDPC codes. For more details about our design procedure see Section 4.5.

• Published a set of new high efficient MET-LDPC codes for reconciliation process.
These codes were optimized to have maximum threshold. A comparison of the
asymptotic efficiency of our designed codes and some the best codes available
in literature are presented in Table 5.1.

Table 5.1: Degree distribution for some MET-LDPC code ensembles designed by
our proposed algorithm and comparison with other existing codes.

BIAWGN channel, R = 0.01, σ∗
Sh = 8.46

Ref ν(r,x) µ(x) σ∗
DE Efficiency

0.01 r1x
2
1x

103
2 + 0.01 r1x

3
1x

125
2 + 0.98 r1x

1
3 0.008 x4

1 + 0.002 x9
1 + 0.32 x3

2x
1
3+ 8.41 98.70%

0.66 x2
2x

1
3

BIAWGN channel, R = 0.02, σ∗
Sh = 5.96

Ref ν(r,x) µ(x) σ∗
DE Efficiency

0.02 r1x
2
1x

51
2 + 0.02 r1x

3
1x

60
2 + 0.96 r1x

1
3 0.016 x4

1 + 0.004 x9
1 + 0.3 x3

2x
1
3+ 5.94 99.20%

0.66 x2
2x

1
3

0.024 r1x
2
1x

43
2 + 0.016 r1x

3
1x

61
2 + 0.96 r1x

1
3 0.002 x3

1 + 0.018 x5
1 + 0.088 x3

2x
1
3+ 5.82 95.52%

0.872 x2
2x

1
3

[10] 0.0225 r1x
2
1x

57
2 + 0.0175 r1x

3
1x

57
2 + 0.96 r1x

1
3 0.010625 x3

1 + 0.009375 x7
1 + 0.6 x2

2x
1
3+ 5.91 98.22%

0.36 x3
2x

1
3

BIAWGN channel, R = 0.05, σ∗
Sh = 3.73

0.054 r1x
2
1x

22
2 + 0.046 r1x

3
1x

22
2 + 0.90 r1x

1
3 0.026 x3

1 + 0.024 x7
1 + 0.40 x3

2x
1
3+ 3.68 97.36%

0.50 x2
2x

1
3

[45] 0.04 r1x
2
1x

34
2 + 0.03 r1x

3
1x

34
2 + 0.93 r1x

1
3 0.01 x8

1 + 0.01 x9
1 + 0.41 x2

2x
1
3+ 3.67 96.78%

0.52 x3
2x

1
3

BIAWGN channel, R = 0.1, σ∗
Sh = 2.6

0.075 r1x
2
1x

23
2 + 0.05 r1x

3
1x

18
2 + 0.875 r1x

1
3 0.025 x12

1 + 0.875 x3
2x

1
3 2.57 98.37%

[12] 0.1063 r1x
3
1x

23
2 + 0.0216 r1x

2
1x

8
2 + 0.8722 r1x

1
3 0.0278 x13

1 + 0.8722 x3
2x

1
3 2.55 96.95%

[13] 0.0775 r1x
1
1x

1
2x

21
3 + 0.0477 r1x

2
1x

1
2x

20
3 + 0.8747 r1x

1
4 0.0011 x6

1x
4
2 + 0.0028 x6

1x
5
2 + 0.0214 x7

1x
5
2+ 2.5424 96.41%

0.0412 x2
3x4 + 0.8335 x3

3x4

BIAWGN channel, R = 0.25, σ∗
Sh = 1.55

0.1875 r1x
2
1x

12
2 + 0.125 r1x

3
1x

4
2 + 0.6875 r1x

1
3 0.0625 x12

1 + 0.6875 x4
2x

1
3 1.5031 95.07%

[14] 0.1512 r1x
3
1 + 0.006 r1x

4
1 + 0.0928 r1x

12
1 + 0.6588 x2

1x
2
2 + 0.0912 x3

1x
2
2 1.4839 93.08%

0.75 r1x
2
2

[12] 0.1563 r0x
4
1x

4
3x

1
4 + 0.0938 r1x

2
3x

1
4 + 0.9062 r1x

1
2x

1
4 0.3125 x2

1x
1
2 + 0.1875 x1

2x
4
4 + 0.4063 x1

2x
2
3x

1
4 1.4894 93.65%

• Developed a set of c++ tools for analyzing and designing MET-LDPC codes.
The details of these tools can be found in Appendix B and Appendix C.
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• Implemented the reconciliation scheme for CV-QKD based on MLC-MSD method,
in c++. More details can be found in Appendix B.

Findings of this research have considerable applications for long distance QKD.
To further our research we are planning to investigate the potential advantages of
MLC-MSD reconciliation and resolve some of the existing limitations in both multi-
dimensional reconciliation and MLC-MSD scheme. In addition, further studies which
take high-throughput reconciliation into account will need to be considered. We
are currently in the process of investigating high throughput reconciliation scheme,
with two possible options. First, we are trying to implement an efficient decoder
which is specifically designed for the MET-LDPC codes. Since, a big portion of the
MET-LDPC codes are degree one nodes, it can be very useful to tailor a decoding
algorithm specifically for MET-LDPC codes instead of using min-sum algorithm or
other variants of decoding algorithm which is typically used for the irregular LDPC
codes. In addition, graphics processing unit (GPU) or Field Programmable Gate
Arrays (FPGA) implementations should be considered in future. Second, we are
investigating to design new reconciliation methods with higher number of bits per
symbol. For example, the multi-dimensional reconciliation scheme extracts one bit
per symbol, but in contrast the MLC-MSD scheme in principle is able to extract
more than one bit per symbol. Also, other variants of the reconciliation algorithms
are considered. For example, our new proposed stochastic reconciliation scheme can
be used to increase the throughput while decreasing the complexity of the decoding.

Besides, the code design algorithm can be developed to optimize different cost
functions. Our current algorithm optimizes the codes to have the best asymptotic
thresholds. In practice the best MET-LDPC codes with finite block length can be
considered to have the best decoding performance with minimum decoding iteration.
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APPENDIXA
Introduction to LDPC

codes
A.1 Preliminaries
This section is technical and some basic definitions and examples are used to describe
the basic concepts. We advise to quickly skim it to see what materials are discussed
but a detailed study is not recommended. At any later point when needed, you can
return and find the specific materials. For a more detailed introduction into these
concepts we refer reader to [44].

A.1.1 Channel model
Let us denote by X the channel input alphabet and Y the channel output alphabet.
Then the conditional density fY |X(y|x) completely describes the channel model with
random variables X and Y . For discrete channel models we simply replace the condi-
tional density by the conditional discrete probability PrY |X(y|x). In addition let us
clarify that the lower case letter x ∈ X denotes a specific outcome with probability
fX(x) of random variable X. If |X | = 2 the channel is known as binary input channel.
Conventionally the binary input alphabets are X = {−1,+1} or X = {1, 0}.

Binary erasure channel (BEC) The binary erasure channel with parameter ϵ is
denoted as BEC(ϵ). The random variable X at the input can take values x ∈ X =
{−1, +1} and the output random variable can take values from the output alphabet
Y = {−1, ?, + 1}. The transition probability is discrete and equal to

Pr
Y |X

(y|x) =


1 − ϵ , y = x ,

ϵ , y =? ,
0 , otherwise .

Binary symmetric channel (BSC) The binary symmetric channel with param-
eter δ is denoted as BSC(δ). The random variable X at input can take values
x ∈ X = {−1, + 1} and the output random variable can take values from the
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same alphabet Y = {−1, + 1}. The transition probability is discrete and equal to

Pr
Y |X

(y|x) =

{
1 − δ , y = x ,

δ , otherwise .

Binary input additive white Gaussian noise channel (BI-AWGN) The bi-
nary input additive white Gaussian noise channel with parameter σ is denoted as
BI-AWGN(σ). The channel noise model is described by Gaussian noise with zero
mean and standard deviation σ. The random variable X at input can take values
x ∈ X = {−1, + 1} and the output random variable can take values from the
real-valued numbers Y = R. The transition probability density function is equal to

fY |X(y|x) = e
−

(y − x)2

2σ2
√

2πσ2
.

+1

-1

+1

-1

?

1 − ϵ

1 − ϵ

ϵ
ϵ

+1

-1

+1

-1

1 − δ

1 − δ

δ

δ
x

Z

Y+

x yPrY |X(y|x)

BEC(ϵ)

x yPrY |X(y|x)

BSC(δ)

fY |X(y|x) = fZ(z) =
e

−
(z)2

2σ2
√

2πσ2

BI-AWGN(σ)

Figure A.1: The schematic representation of standard BIOSM channels.

Binary-input output-symmetric memory-less channels A channel is said to
be output-symmetric if and only if fY |X(y|x) = fY |X(−y|−x). It can be easily shown
that all the channels introduced above are output-symmetric. It is convenient to
call this family of channels the binary-input output-symmetric memory-less (BIOSM)
channels.

In addition, the channel parameter p can be defined for all of the above mentioned
BIOSM(p) channels. For example the channels parameters for BEC, BSC and BI-
AWGN channels are ϵ ∈ [0, 1], δ ∈ [0, 0.5] and σ ∈ [0, ∞]. Later we demonstrate
how the channel parameters can be used to calculate the channel entropy H(X|Y ).

Log-Likelihood Ratio (LLR) Consider a BIOSM channel with transition proba-
bility PrY |X(y|x). The log-likelihood ratio (LLR) function l(y) is defined as

l(y) = ln
PrY |X(y|1)

PrY |X(y| − 1)
.
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The log-likelihood ratio associated to the random variable Y is defined as L = l(Y ).
l(y) is said to be the output of the channel in the L-domain. It is important to notice
that L is a random variable itself.

In [44] the authors demonstrated that L is a sufficient statistic for decoding. It
means that an optimal decoder can be based on the LLR l(y) instead of y itself.

Definition of the L-Density a(y) The distribution of the log-likelihood ratios
L = l(Y ) of the BIOSM channels conditioned on X = 1 is defined as the L-density.
Here we represent the L-densities for all the BIOSM channels

Table A.1: The distribution of the L conditioned on the X = 1.
BIOSM(p) L-Density a(y) Description

BEC(ϵ) a(y) = ϵ ∆0(y) + ϵ̄ ∆∞(y) ϵ̄ = 1 − ϵ

BSC(δ) a(y) = δ ∆ δ
δ̄
(y) + δ̄ ∆ δ̄

δ
(y) δ̄ = 1 − δ

BI-AWGNC(σ) a(y) =
√
σ2

8π
e

−
(y − 2

σ2 )2σ2

8

The symmetry of the probability density function Let f(x) be a probability
density function over R. The density is said to be symmetric if f(−x) = e−xf(x).
All the L-densities in Table A.1 are symmetric.

A.2 Channel entropy and channel capacity
Consider a BIOSM channel with input alphabet X , output alphabet Y and transition
probability PrY |X(y|x). Also assume that a(y) denotes the L-density of this channel.
Then according to [44]-Lemma 4.36 the capacity of this channel is a linear functional
of its L-Density and can be represented as

C(a) =
∫

a(y)(1 − log2(1 + e−y)) dy , (A.1)

where C(a) is the capacity functional of the BIOSM channels in bits. Using the
fact that for symmetric channels the optimal input distribution is uniform and the
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input alphabet has equal prior probability PrX(x) = 1
2

, for x ∈ {−1,+1} then the
conditional entropy H(X|Y ) can be defined as

H(X|Y ) = H(X) − I(X;Y ) = H(X) − C(a) =
∫

a(y) log2(1 + e−y) dy . (A.2)

In addition let us call h = H(aBIOSMC) the entropy functional for a BIOSMC.
Later in this chapter we will see how these functions can play an important role in
the definition of the extrinsic-information transfer (EXIT) function and how we use
those to design highly efficient degree distribution for multi-edge-type low-density
parity-check (MET-LDPC) codes.

Example A.2.1. Capacity functional for BSC and BEC

Here we use (A.1) to find the capacity of the BEC(ϵ) and BSC(δ) channels. For
BEC(ϵ) we have

C(aBEC(ϵ)) = 1 −
∫ ∞

−∞
[ϵ ∆0(y) + (1 − ϵ) ∆∞(y)](log2(1 + e−y)) dy = 1 − ϵ .

In similar way for the BSC(δ)

C(aBSC(δ)) = 1 −
∫ ∞

−∞
[δ ∆ δ

1−δ
(y) + (1 − δ) ∆ 1−δ

δ
(y)](log2(1 + e−y)) dy = 1 − h2(δ),

where h2(δ) = −δ log2(δ) − (1 − δ) log2(1 − δ).

Example A.2.2. Capacity functional for BI-AWGNC

To calculate the capacity for the BI-AWGNC the following integral has to be
solved numerically:

C(aBI-AWGN(σ)) = 1 −
∫ ∞

−∞

√
σ2

8π
e

−
(y − 2

σ2 )2σ2

8 (log2(1 + e−y)) dy ,

In Figure A.3 the capacity of the BI-AWGN channel is compared with the capacity
of the AWGN channel with real-valued inputs.

A.3 Low-density parity-check (LDPC) codes
The LDPC codes are linear codes with a sparse parity check matrix H. Assuming H
has dimensions m × n then it is possible to assign a bipartite graph to this matrix,
named Tanner graph. The associated Tanner graph for this H has n variable nodes
corresponding to the codeword of length n (columns of H) and m = n−k check-nodes
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Figure A.2: The capacity of the BEC and BSC channels.
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corresponding to the set of n−k parity constraints (row of H). k shows the number of
information bits. The check-node j is connected to the variable-node i if H(j, i) = 1.

LDPC codes can be represented by their degree distribution. The node perspective
degree distribution of the LDPC code is given by

ν(x) =
∑
i=1

νi x
i, µ(x) =

∑
i=1

µi x
i ,

where νi is the portion of the variable-nodes of degree i and the µi is the portion of
check-nodes of degree i in the Tanner graph. Considering this definition the following
relations are valid

ν(1) = 1 , µ(1) = 1 − r , ν′(1) = µ′(1) .

The corresponding edge-perspective degree distribution of this code is

λ(x) =
∑
i=1

λi x
i−1 = ν′(x)

ν′(1)
, ρ(x) =

∑
i=1

ρi x
i−1 = µ′(x)

µ′(1)
,

where λi (ρi) shows the fraction of edges that are connected to the variable-node
(check-node) of degree i. The node perspective representation can be obtained from
edge perspective representation as follows:

ν(x) =
∫ x

0 λ(z)dz∫ 1
0 λ(z)dz

, µ(x) =
∫ x

0 ρ(z)dz∫ 1
0 λ(z)dz

,

Furthermore, the following relation holds

r = ν(1) − µ(1) = 1 −
∫ 1

0 ρ(z)dz∫ 1
0 λ(z)dz

.

A.4 Belief Propagation
Consider a LDPC code with degree distribution (λ, ρ) on a BIOSM channel. In
addition assume that a0 = aBIOSMC denotes the corresponding L-density at iteration
0. Then for iteration l ≥ 1

al = a0 ⊗ λ
(
ρ
(
al−1)) , (A.3)

where
λ(a) =

∑
i=1

λi a⊗(i−1) , ρ(a) =
∑
i=1

ρi a⊠(i−1) .

Sometimes it is convenient to write the densities in terms of variable nodes and check
nodes:

al
v = a0 ⊗ λ(al−1

c ) , al
c = ρ(al

v) . (A.4)
For more details about BP please see [44]-Section 2.5.
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A.5 EXIT and G-EXIT charts
Before introducing EXIT charts we present some useful definitions and then show
how we can exploit those for plotting EXIT and G-EXIT charts.

EXIT functional According to [44]-DEFINITION 4.43 the EXIT functional is
defined as the entropy functional, see (A.2). The associated EXIT kernel in L-domain
is l(y) = log2(1 + e−y).

G-EXIT functional Again according to [44]-DEFINITION 4.44 the Generalized
EXIT (G-EXIT) functional for a BIOSM(h) applied to a symmetric L-density b is
defined as

G(aBIOSMC(h), b) = d

dh
H(aBIOSMC(h) ⊗ b) ,

and the corresponding G-EXIT kernel is defined as

l(y) =
∫

daBIOSMC(h)

dh
log2(1 + e−z−y)dz .

Sometimes it is convenient to consider a family of BIOSMC with parameter h.
It means that we parameterize the channel with the entropy. For example for BEC
h = ϵ, for BSC h = h2(δ) and and for BI-AWGNC h = H(aBI-AWGNC(σ)).

EXIT function According to [44]-DEFINITION 4.131, let X be a vector of length
n chosen uniformly at random from a binary code C, and Y be the transmitted
version of X over the BIOSMC(h). Then the individual and average EXIT functions
are

hi(h) = H(Xi|Y∼i(h)) ,

h(h) = 1
n

n∑
i=1

H(Xi|Y∼i(h)) = 1
n

n∑
i=1

hi(h) .

G-EXIT function According to [44]-DEFINITION 4.154, let X be a vector of
length n chosen uniformly at random from a binary code C and Y be the transmit-
ted version of X over the BIOSMC(h). Then the individual and average G-EXIT
functions are

gi(h) = gi(h1, · · · , hn) = ∂H(Xi|Y (h1, · · · , hn))
∂hi

,

g(h) = 1
n

n∑
i=1

gi(h1, · · · , hn) .

Now, in the following, we show how it is possible to calculate the EXIT and G-
EXIT functions for LDPC codes. First we need to find the L-density of the extrinsic
maximum a-posteriori (MAP) estimator.
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Extrinsic MAP estimator Let X be a vector of length n chosen uniformly at
random from a binary code C and let Y be the transmitted version of X over the
BIOSMC(h). Then the extrinsic MAP estimator of Xi is

ϕi(y∼i) = ln
PrXi|Y∼i

(+1|y∼i)
PrXi|Y∼i

(−1|y∼i)
,

and Φi = ϕi(Y∼i). Φi is a sufficient statistics for Xi given Y∼i. H(Xi|Y∼i(h)) =
H(Xi|Φi).

We now calculate the EXIT function for linear codes using the EXIT functional
of the extrinsic MAP estimator. Let ai denotes the L-density of Φi and assume that
an all-one-codeword was transmitted. With a = 1

n

∑n
i=1 ai

hi(h) = H(ai) , h(h) = H(a) .

and for the G-EXIT functional

gi(h1 · · · , hn) =
∂H(aBIOSMC(hi) ⊗ ai)

∂hi

= G(aBIOSMC(hi), ai) =
∫

ai(y) laBIOSMC(hi)(y)dy .

where
laBIOSMC(h)(y) =

∫
daBIOSMC(h)(z)

dh
log2(1 + e−z−y)dz .

A.6 Plotting EXIT and G-EXIT Charts
As presented in (A.3), a0 = aBIOSMC and after l ≥ 1, al = aBIOSMC ⊗ λ(ρ(al−1)).
Unfortunately the intermediate L-densities al do no have simple descriptions, but
estimating them with some equivalent density families, we can apply the EXIT func-
tional (G-EXIT functional) to obtain the EXIT (G-EXIT) chart. As presented in [44]
the most faithful equivalence rule is to choose the element of the channel family which
has equal entropy.

Now, assume that for a pair of (λ, ρ), we were able to guess the true intermediate
L-densities. As presented in (A.4), al

v (al
c) is the density emitted at the variable-node

(check-node) at iteration l. Then, using the entropy functional

hl
c = H(ρ(al

v)) , hl
v = H(aBIOSMC ⊗ λ(al−1

c )) .

The EXIT curves can be obtained by plotting the entropy values for the input-
output of the variable nodes and check nodes. The EXIT chart for a given pair of
(λ, ρ) is realized by plotting the EXIT curve of a variable-node against the inverse of
a check-node. The parametric form of the EXIT curve for the check-node is given
by {hl

v, hl
c}, and the inverse of the EXIT curve for the variable-node is {hl

v, hl−1
c }.

Finally, the EXIT chart is then given by
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Table A.2: The parametric representation of an EXIT chart.
EXIT curve of check-node

{
hl

v = H(al
v), hl

c = H(al
c)
}

Inverse of EXIT curve of variable-node
{

hl
v = H(al

v), hl−1
c = H(al−1

c )
}

A similar concept can be used for G-EXIT curves. In particular, in [66] the G-
EXIT chart is realized by plotting the inverse of the dual G-EXIT curve of a variable-
node against the G-EXIT curve of a check-node. For a pair of densities the G-EXIT
curve of the check-node can be given in the parametric form by

{
hl

v = H(al
v), G(al

v, al
c)
}

.
Similarly the dual G-EXIT for the variable-node can be written in parametric form
as
{
G(al

v, al−1
c ), hl

v = H(al
v)
}

and the inverse of the dual G-EXIT curve is then{
hl

v = H(al
v), G(al

v, al−1
c )

}
. Thus, the G-EXIT chart is given by

Table A.3: The parametric representation of G-EXIT chart.
G-EXIT curve of check-node

{
hl

v = H(al
v), G(al

v, al
c)
}

Inverse of the dual G-EXIT curve of variable-node
{

hl
v = H(al

v), G(al
v, al−1

c )
}
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APPENDIXB
Reconciliation

software for CV-QKD
In this appendix you will find some useful information about the tools related to the
reconciliation of the CV-QKD. All the codes are available on a private git repository.
If you need to get access to the repository you can send email to Prof. Tobias
Gehring. All the tools have a shell script which helps you to start the simulation. For
any technical help regarding the software contact me.

B.1 About the Software
The repository contains different tools required for the reconciliation process of CV-
QKD. It it not limited to but contains the following folders:

MET-DE The density evolution for MET-LDPC codes.

Gen-LDPC Generates the parity check matrix for a MET-LDPC code.

Sim-LDPC Checks the performance of the MET-LDPC codes on BI-AWGN chan-
nel.

MLC-MSD The reconciliation for the MLC-MSD scheme.

Stochastic Chase Reconciliation using the stochastic Chase algorithm.

MET-DE: Density evolution for the MET-LDPC codes. The density evolution is
an asymptotic analysis tool for the LDPC codes. Here we developed a shared library
named “libmetawgnde.so”. This library is designed for MET-LDPC codes which
are a generalized version of the irregular LDPC codes. The algorithm is based on an
efficient implementation of the variable nodes and check nodes operations according
to [44]. For the variable node operations we use a fast Fourier Transform using the
“fftw3” library and for the fast implementation of the check node operations the
Table-method is used according to [44].

tobias.gehring@fysik.dtu.dk
tobias.gehring@fysik.dtu.dk
hosma@fysik.dtu.dk
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This tool is able to read the structure of an MET-LDPC code and checks the
asymptotic error probability after l iterations on a BI-AWGN channel under the as-
sumption of a all-zero codeword transmission. The software accepts a “structure.txt”
file which is equivalent to the table format representation of a MET-LDPC code
(See Table 4.8) and contains :

1 3 # ne : The number of edges
2 2 # nr : The number of channels
3 12 # number of bits for digitization
4 25 # max LLR
5 1500 # maximum number of iterations
6 -1.1 # SNR value : Eb/N0
7 3 # the length of v_bd vector
8 4 # the length of mu_d vector
9 0.010625 0.009375 0.6 0.36 # The mu_d vector

10 0.0225 0.0175 0.96 # The v_bd vector
11 # The variable node degrees matrix in vector format :
12 2 57 0 3 57 0 0 0 1
13 # The Check node degrees matrix in vector format :
14 3 0 0 7 0 0 0 2 1 0 3 1
15 # The channel node degrees matrix in vector format
16 0 1 0 1 0 1
17 1e-10 # minimum error probability

Listing B.1: The input file for the code structure.

Gen-LDPC This tool generates a codec file “codec.it” which can be used for
decoding. It accepts a description of LDPC codes as an input file and generates
a codec file. Two common input formats are “*.alist” and “*.peg”. The first is
usually used for the description of an irregular LDPC code and the second is used to
describe Quaci-cyclic LDPC (QC-LDPC) codes.

Basically the “*.alist” file describes a parity check matrix. To read more about
the sparse codes and the alist format see http://www.inference.org.uk/mackay/
codes/data.html.

Sim-LDPC After generating a codec file this tool simulates the performance of
the code on BI-AWGN channel by plotting the bit-error-rate (BER) and frame-error-
rate (FER) of an arbitrary MET-LDPC code. The performance of the code can
be simulated for a single specific signal-to-noise (SNR) or for a range of SNRs. By
default it counts 100 frame of errors for each single SNR value and the default iteration
number is 25.

MLC-MSD The reconciliation of a CV-QKD system based on multi-level-coding
multi-stage-decoding method using MET-LDPC codes. It contains two different im-
plementations including single-level reconciliation and two-levels reconciliation. The
corresponding software accepts a set of real valued data corresponding to Alice’s and
Bob’s data after the quantum phase. Then an appropriate code rate will be chosen

http://www.inference.org.uk/mackay/codes/data.html
http://www.inference.org.uk/mackay/codes/data.html
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according to the SNR of the raw data for each level. The calculation of the individual
code rates are discussed in Chapter 3.

Stochastic Chase Stochastic Chase decoder for reverse reconciliation. As ex-
plained in Chapter 3 a hard LDPC decoder can be used instead of a soft decoder
for the reconciliation purpose with the goal of obtaining performance close to the
soft decoder but with higher throughput. The implementation of this tool is not
completely finished yet.

B.2 How to install the software
To be able to work with the above tools the IT++ library is required. IT++ is an open
source c++ library for signal processing and communication. It includes an efficient
implementation of the forward error correction codes. For more information see :

http://itpp.sourceforge.net/4.3.1/.

Before installing the IT++ make sure that LAPACK and BLAS are available on your system.
1 # First, you have to install BLAS before LAPACK, because LAPACK needs it.
2 # Download BLAS and Extract it
3 wget http://www.netlib.org/blas/blas -3.8.0.tgz
4 tar jxf blas -3.8.0.tgz
5 cd blas -3.8.0
6 make
7 # Rename the library to libblas.a and copy it to your local library
8 mv blas_UNIX.a libblas.a
9 sudo cp libblas.a /usr/local/lib/

10 # Now we have installed the BLAS package. Let's get LAPACK
11 wget https://github.com/Reference -LAPACK/lapack/archive/v3.9.0.tar.gz
12 tar jxf lapack -3.9.0.tar.gz
13 cd lapack -3.9.0
14 # Adjust the file “make.inc.”example to address the BLAS. Find the line

that reads
15 BLASLIB = ../../librefblas.a
16 # and change it to :
17 BLASLIB = /usr/local/lib/libblas.a
18 # Save this file as "make.inc" and
19 make
20 sudo cp ./liblapack.a /usr/local/lib/

Listing B.2: LAPACK and BLAS liraries.

The official installation guide for IT++ is not friendly. Here is a simpler way to
install it:

1 # Download itpp and extract the file
2 wget https://netcologne.dl.sourceforge.net/project/itpp/itpp/4.3.1/itpp

-4.3.1.tar.bz2
3 tar jxf itpp -4.3.1.tar.bz2

 http://itpp.sourceforge.net/4.3.1/
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4 cd itpp -4.3.1
5 # clean it before install
6 rm cmake/Modules/FindBLAS.cmake cmake/Modules/FindLAPACK.cmake
7 # make a directory at your desired destination
8 mkdir $HOME/itpp -4.3.1
9 mkdir build && cd build

10 BLA_VENDOR=OpenBLAS CC=gcc CXX=g++
11 # cmake version at least 3.16.5
12 cmake -DCMAKE_INSTALL_PREFIX=$HOME/itpp -4.3.1 ..
13 make
14 make install

Listing B.3: Installation of IT++.
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highly efficient
MET-LDPC codes

C.1 About the software
This tool helps to optimize a degree distribution for MET-LDPC codes with cascade
structure. Details of the optimization problem for cascade structures is described
in Chapter 4. The goal is to design a MET-LDPC code with rate R when a base
code with rate r is available. The optimization of the base code with rate r was
described in Section 4.4. Here we assume that a base code is available and the goal of
the optimization problem is then to find the best degree distribution for the cascade
structure. The optimization software consists of three different tools:

EXIT-Chart Plots the EXIT chart for the base code.

Connector Generates a list of all possible connector parts in the cascade structure.

Find best Finds the best degree distribution by testing different connector parts.

EXIT-Chart This tool provides a quick pictorial representation for the base code.
For a given base code with rate rb it generates a EXIT.txt file which can be used
by a python script (plotEXIT.py) to generate the EXIT chart. The code is designed
for the BEC(q) channel. For example, for a base code of rate 0.8, the corresponding
EXIT chart for BEC(0.15) is plotted in Figure C.1. The node perspective degree
distribution of this code is

ν(q, x) = 0.6 q x2 + 0.4 q x3 , µ(x) = 0.2 x12 .

The corresponding edge perspective degree distribution is

λ(q, x) = 0.5 q x+ 0.5 q x2 , ρ(x) = x11 .
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Figure C.1: The output of the EXIT tool for a base code of rate 0.8 on BEC(0.15).

Connector This tool generates a DEGREE-x.txt file which contains different code
structures (See Listing B.1) for a MET-LDPC code with base code of rate rb and
overall code of rate R. If the number of candidate codewords is more than 1000 a
new file with appropriate numbering will be generated.

As input it accepts the structure of the base code in the node perspective mode and
the overall code rate of the MET-LDPC code. It also accepts some further information
required for the density evolution. The parameters are presented in Listing B.1.

This tool checks the constraint sets for the candidate codes and only generates
codes with the accepted structures. For more details to see how the candidate codes
are generated based on a base code see Section 4.4.

Find Best This tool accepts DEGREE-x.txt as the input and then checks the per-
formance of the codes to find the best code in forms of the threshold. It runs DE for
all the candidate codes and from all codes which converged with a specified number
of iterations, it selects the best code.
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