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Abstract

In this thesis we investigate two aspects of quantum information processing with
continuous variables in networks. Quantum physics is currently undergoing its
second revolution, in which the unique properties of quantum superpositions and
non-classical entanglement are harnessed and engineered to improve technologies
across a wide range of �elds. One particular area of interest is the connection
of di�erent quantum devices across a shared network, where the scale can range
from a single room to the size of a university or company campus. An obvious
choice of channels for networks of this size is optical �bers and so the faithful
transfer of quantum states of light across the channels of the network becomes
an integral challenge.

Firstly, we generate a continuous variable non-Gaussian state, namely the single
photon subtracted squeezed vacuum state (1-PSSqV), and use it as a probe of
the transmission e�ciency across three di�erent network channels. For the �rst
channel, a 1m single mode �ber (SMF) on the same optical table of the state
generation setup, we measure a Wigner negativities of −0.206 ± 0.001π of the
received state. For the second channel, a 60 m SMF connection between the
state generation lab and an adjacent lab, we measure −0.104± 0.001π. For the
third channel, a 400 m connection across 3 nodes of the DTU campus �ber-
optic network to a separate building, we unfortunately could not measure any
Wigner negativity. Here the main problem was optical loss of the channel. The
presence of Wigner negativity con�rms the survival of the highly non-classical
correlations of the transmitted state.

Secondly, we implement a sensing protocol on a small on-table free-space net-
work consisting of four nodes. In the protocol a continuous variable multi-partite
entangled state is used to measure the average of individual phase shifts at each
node. Here we show an increased sensitivity to the phase shift, as a ∼ 20%
reduction in the root-mean-square estimation error, compared to the sensitivity
possible for any measurement protocol not using an entangled probe state.
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Resumé

I denne afhandling undersøger vi to aspekter af kvanteinformations behandling
med kontinuerlige variable i netværk. Kvantefysik gennemgår i øjeblikket sin an-
den revolution, hvor de unikke egenskaber ved kvantemekanisk superposition og
ikke-klassisk sammen�ltring udnyttes og controlleres til at forbedre teknologier
på tværs af en lang række felter. Et særligt interessant område er forbindelsen
mellem forskellige kvanteenheder på tværs af et fælles netværk, hvor størrelsen
kan være fra et enkelt rum til et universitet eller en virksomhedscampus. Et
åbenlyst valg af kanaler til et netværk af denne størrelse er optiske �bre, hvorved
pålidelig overførsel af kvantetilstande i laserlys over netværkets kanaler bliver
en central udfordring.

Først, genererer vi en kontinuerlig variabel ikke-Gaussisk tilstand, navnlig den
enkelt fotonfratrukket klemte vakuumtilstand og bruger den som en sonde for
transmissionse�ektiviteten på tværs af tre forskellige netværkskanaler. For den
første kanal, en 1m single-mode optisk �ber (SMF) placeret på det samme op-
tiske bord som tilstandsgenerationsopsætningen, måler vi en Wigner-negativitet
på −0.206 ± 0.001π af den modtagne tilstand. For den anden kanal, en 60 m
SMF-forbindelse mellem tilstandsgenerationslaboratoriet og et tilstødende lab-
oratorie, måler vi −0.104 ± 0.001π. For den tredje kanal, en 400 m forbindelse
på tværs af 3 krydsnoder i DTU campus �beroptiske netværk til en separat
bygning, kunne vi desværre ikke måle nogen Wigner-negativitet. Problemet var
her hovedesageligt optisk tab undervejs. Tilstedeværelsen af Wigner-negativitet
bekræfter overlevelsen af de stærke ikke-klassiske korrelationer i den transmit-
terede tilstand.

Efter, implementerer vi en måleprotokol på et lille bordbegrænset fritlufts netværk
bestående af �re knudepunkter. I protokollen anvendes en kontinuerligt variabel
�erdelt sammen�ltret sondetilstand til at måle gennemsnittet af individuelle
faseforskydninger ved hvert knudepunkt. Her viser vi en øget følsomhed over for
faseforskydningen, som en∼ 20% reduktion i rod-middel-kvadrat måleafvigelsen,
sammenlignet med den følsomhed der er mulig for enhver måleprotokol der ikke
bruger en sammen�ltret sondetilstand.



iv



Acknowledgements

I will start from the beginning and so should start by thanking ass. prof. Alexan-
der Huck for giving my lab partner, Kristo�er Joanesarson, and I the oppor-
tunity to do our bachelors project at the QPIT section of DTU Physics. This
marked my �rst encounter with experimental quantum physics. Later during
my masters, with the help of prof. Ulrik L. Andersen, I arranged to take a
semester abroad in Japan at the University of Tokyo. Here i joined the group of
prof. Akira Furusawa and worked together with his student Okada Masanori.
This was my baptism by �re in the arts of experimental quantum optics and i
owe a great deal to Okada for holding my hand, his patience and for teaching
me all the tricks of the trade. I would also like to thank Akira for hosting me,
the secretary Yumiko Yoshikawa for all the paperwork and the rest of group for
welcoming me and making my stay i Japan an unforgeable experience.

After returning to Denmark I joined the QPIT group to do my masters project
and eventually my PhD project, both with Jonas S. Neergaard-Niesen and Ulrik
has supervisors. I would like to thank them both greatly for giving me those
opportunities. During my PhD I once again went to Japan to stay at the Fur-
sawa group for a 6 week external stay. I would like to thank Akira for giving my
the opportunity to come back, Mamoru Endo for letting me join his project and
and the rest of the group for welcoming me back and taking care of me during
my stay. At QPIT I would like to thank all my fellow PhD student through my
time for great camaraderie and for always being there to provide reassurance
when things in were not working. I have also great appreciated the help with
paperwork and annoying DTU systems of our secretary Tine Klitmøller.



vi

I would especially like to thank my o�ce and lab partners Xueshi Guo, Shuro
Izumi and Mikkel V. Larsen for making my time at QPIT truly special. I con-
sider you my friends and I don't think I could have managed these years without
you. Besides the tremendous help you have given me in the lab and in the o�ce,
I thank you for all the ramen / burger nights, dice games, Friday bar beers and
fun times we have had. Our team leader, Jonas, also deserved high praise for
providing a fun and engaging atmosphere and for always being ready to help
and provide assistance, be it physics or life en general. I would also like to
thank Jens Arnbak for being an all round outstanding guy and excellent PhD
colleague. I hope all of us will continue to stay in touch. At DTU I would also
like to thank my classmates Kristo�er, Emil Denning, Mads G. Senstius and
Søren K. Hansen for our time in Klub 47. For our lengthy, heated and, perhaps
drunken, discussions of everything physics and more.

But most of all I need to thank my beautiful �ancée, Annemette Isager Ahl,
for keeping up with me during my studies the past 6 years and for providing
eternal support and comfort during the hard times. And to our son, August
Ahl Breum, for providing me some much needed re�ection in what is important
in life. It broke my heart having to spend so many late nights in lab and so
much time away from you both during the �nal months of my PhD and I am
forever grateful for the incredible strength you showed during that time. Cele-
brating Augusts 6 months on the day I handed in my thesis was both properly
the biggest relief i have ever felt and one of the happiest days of my life.

Kgs. Lyngby, November 2020
Casper R. Breum



Declaration

I, Casper R. Breum, declare that this thesis and the work presented here is
my own and has not previously been submitted for award at this or any other
institution. The work of others shown here is appropriately referenced. Parts
of this thesis are based upon published articles or manuscripts in preparation
for publication in peer-reviewed physics journals. Below is a list of the work I
contributed to during my Ph.D. project.

Journal publication contributions

Mikkel V. Larsen, Xueshi Guo, Casper R. Breum, Jonas S. Neergaard-
Nielsen, Ulrik L. Andersen, Fiber-coupled EPR-state generation using a
single temporally multiplexed squeezed light source, npj Quantum Informa-
tion 5 (1), 46 (2019)

Mikkel V. Larsen, Xueshi Guo, Casper R. Breum, Jonas S. Neergaard-
Nielsen, Ulrik L. Andersen, Deterministic generation of a two-dimensional
cluster state for universal quantum computing, Science 366, 6463 369-372
(2019)

Xueshi Guo, Casper R. Breum, Johannes Borregaard, Shuro Izumi, Mikkel
V. Larsen, Matthias Christandl, Jonas S. Neergaard-Nielsen, Ulrik L. An-
dersen, Distributed quantum sensing in a continuous variable entangled
network, Nature Physics 16, 281-284 (2020)

Mikkel V. Larsen, Xueshi Guo, Casper R. Breum, Jonas S. Neergaard-
Nielsen and Ulrik L. Andersen, Deterministic multi-mode gates on a scal-
able photonic quantum computing platform, arXiv:2010.14422 [quant-ph]
(2020)



viii

School, conference and workshop contributions

� Summer School on Quantum and Nonlinear Optics, Talk: Towards exper-
imental realization of High-Fidelity Teleportation of Continuous-Variable
Quantum States in the telecom band, PhD school, Gilleje, Denmark June
2017

� 24th Central European Workshop on Quantum Optics, Poster: Towards
experimental realization of High-Fidelity Teleportation of Continuous-Variable
Quantum States in the telecom band, conference, Technical university of
Denmark, Denmark June 2017

� VI Quantum Information Workshop and School, Poster: Towards exper-
imental realization of High-Fidelity Teleportation of Continuous-Variable
Quantum States in the telecom band, PhD school and workshop, Paraty,
Brazil August 2017

� Annual Meeting of Danish Physical Society, Poster: Distributed sensing
using Squeezed States of Light, workshop, Middelfart, Denmark June 2018

� Quantum Technology International Conference, Poster: Distributed phase
sensing using four-mode entanglement, conference, Paris, France Septem-
ber 2018

� QMATHMasterclass on Quantum Communication and Computation with
Continuous Variables, Poster: Towards a optical quantum state synthe-
sizer using novel photon-number resolving detector, workshop, University
of Copenhagen, Denmark June 2019

� QuantumDTU Summer School on Quantum Technology 2019, Poster: To-
wards a optical quantum state synthesizer using novel photon-number re-
solving detector, PhD school, Gilleje, Denmark August 2019



ix



x Contents



Contents

Abstract i

Resumé iii

Acknowledgements v

Declaration vii

1 Introduction 1

2 Continuous Variable Quantum Optics 5

2.1 Representation of quantum states of light . . . . . . . . . . . . . 5

2.1.1 Density matrix . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Phase space and the Wigner function . . . . . . . . . . . 7

2.1.3 Fidelity and trace distance . . . . . . . . . . . . . . . . . 10

2.1.4 Loss model . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Squeezed light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Optical parametric oscillator . . . . . . . . . . . . . . . . 13

2.2.2 As a resource for non-Gaussian state generation . . . . . . 17

2.3 Photon subtracted squeezed vacuum . . . . . . . . . . . . . . . . 17

2.3.1 Single mode with number-resolved detection . . . . . . . . 18

2.3.2 Conditioned multi-mode model . . . . . . . . . . . . . . . 19

2.4 Homodyne detection . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1 Imperfect homodyne detection . . . . . . . . . . . . . . . 27

2.5 Quantum state reconstruction . . . . . . . . . . . . . . . . . . . . 28

2.5.1 Tomography from homodyne data . . . . . . . . . . . . . 29

2.5.2 Implementation of MaxLik . . . . . . . . . . . . . . . . . 31



xii CONTENTS

3 Experimental Methods 37

3.1 Squeezed resource generation . . . . . . . . . . . . . . . . . . . . 38

3.1.1 Key features of non-Gaussian state generation setup . . . 39

3.1.2 SHG and OPO design . . . . . . . . . . . . . . . . . . . . 44

3.1.3 SHG performance . . . . . . . . . . . . . . . . . . . . . . 48

3.1.4 OPO performance . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Trigger channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.1 Frequency �ltering . . . . . . . . . . . . . . . . . . . . . . 54

3.2.2 Superconducting single photon detector . . . . . . . . . . 56

3.3 Signal channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.1 Homodyne measurement station . . . . . . . . . . . . . . 59

3.3.2 Measurement con�gurations . . . . . . . . . . . . . . . . . 61

3.4 Experimental control . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4.1 Red Pitaya and PyRPL . . . . . . . . . . . . . . . . . . . 64

3.4.2 Cavity and phase locks . . . . . . . . . . . . . . . . . . . . 65

3.4.3 Sample-hold scheme . . . . . . . . . . . . . . . . . . . . . 68

4 Non-Gaussian State Transmission 71

4.1 Experimental run and data collection . . . . . . . . . . . . . . . . 71

4.2 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.1 Fitting of unconditioned squeezed vacuum . . . . . . . . . 73

4.2.2 Choice of signal temporal mode function . . . . . . . . . . 76

4.3 Inspection of reconstruction process . . . . . . . . . . . . . . . . 79

4.3.1 Con�guration (1) . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.2 Con�guration (2) . . . . . . . . . . . . . . . . . . . . . . . 81

4.3.3 Con�guration (3) . . . . . . . . . . . . . . . . . . . . . . . 84

5 Distributed Quantum Sensing 89

5.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6 Outlook 99

A An Appendix 103

A.1 Homodyne tomography plots . . . . . . . . . . . . . . . . . . . . 104

A.2 Cavity design guide . . . . . . . . . . . . . . . . . . . . . . . . . . 108

A.2.1 Ray transfer matrix analysis . . . . . . . . . . . . . . . . 108

A.2.2 Mechanical designs . . . . . . . . . . . . . . . . . . . . . . 110

A.2.3 Boyd-Kleinmann parameteres . . . . . . . . . . . . . . . . 111

A.3 Measurement con�gurations . . . . . . . . . . . . . . . . . . . . . 112

A.4 Lab infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . 114

A.4.1 Red Pitaya . . . . . . . . . . . . . . . . . . . . . . . . . . 114

A.4.2 Homebuild feedback components . . . . . . . . . . . . . . 115

A.5 Supplementary material to Chap. 4 . . . . . . . . . . . . . . . . . 116



CONTENTS xiii

Bibliography 133



xiv CONTENTS



Chapter 1

Introduction

When the �rst few bits of data were transmitted between the computers at the
University of California and Stanford Research Institute in 1969, on a precursor
network to today's internet, it is not hard to imagine that the researchers in-
volved never could have dreamed of the endless possibilities this technology one
day would allow. Similarly it is doubtful that Bardeen, Brattain and Shockley
could have fully grasped the potential of their invention and the scope of the
ensuring digital revolution. What might seem like fundamental research today,
far removed from any practical importance, can in time prove to lay the foun-
dation of technical advances of great importance. It is in this fog of possible
direction to pursue, not knowing which direction is correct (if any direction will
turn out to be?), that much of current quantum information research plays out.

The �rst quantum revolution was a revolution of atomic and subatomic physics,
which among many things leads to the aforementioned invention of the tran-
sistor, which in turn lead to the construction of the computers at UCLA and
SRI and to the internet. We are now in the middle of the second quantum
revolution. Its beginning was marked by the application of quantum mechanics
to information theory and is now concerned with the application of this new
theory to the development of new and improved technology. These e�orts can
be divided into three distinct, but interlinked �elds, as exempli�ed by the pillars
of the ongoing European Quantum Flagship program [1]; Quantum Computing
/ Simulation, Quantum Communication and Quantum Sensing / Metrology. It
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is believed that all of these �elds will see technology improved by quantum me-
chanics in the coming decades [2].

A central concept in the development of such improved technologies is the
threshold, called quantum advantage, at which a quantum improved technol-
ogy does something (anything) that a similar technology based on classical
physics can not do. This threshold was claimed passed last year by Google
in the context of quantum computation [3], where they showed that using a 53
qubit processor they could sample distributions of the 253 dimensional compu-
tation state space exponentially faster than the best known classical algorithms,
though their claim was later refuted by IBM [4]. Recently quantum advantage
as also been demonstrated for quantum communication [5] and metrology proto-
cols [6]. While these milestones help to strengthen our belief in the course of the
di�erent research direction, they are themselves only stepping stones towards
bigger goals. For quantum communication one such goal is the construction of a
quantum internet. A network capable of transmitting quantum protected clas-
sical information and quantum information encoded in quantum states between
distant parties, as well as entangling them, can be used for all three of the main
quantum information �elds [7]. In the context of quantum communication the
obvious candidate for the physical platform on which to build such a network is
optics. The main advantage is that quantum information encoded in the elec-
tromagnetic �eld readily can be transmitted through free space and, thanks to
the extensive development of telecom technology, through optical �bers.

Tremendous e�ort has been made in the development of the techniques needed to
realise the long distance connections required of a quantum internet [8]. Without
resorting to satellite relayed connections, the main obstacle here is the inherent
transmission loss of optical �bers and the corresponding primary solution is to
rely on quantum repeaters to overcome the loss [9] [10]. On the other hand,
for short distance networks, the optical losses might be low enough to allow for
direct transmission of simple quantum states. But in a short network it might
be more likely that e.g. two quantum computers or several sensing nodes are
connected and that more fragile highly non-classical states have to be trans-
mitted. In such a scenario a combination of advanced repeater schemes and
error detection and correction codes will eventually be necessary to properly
link the nodes [11]. Networks also play an important role for quantum sensing,
where an increased interested over the last few years has been given to use of
entanglement across network modes as means of improving multi- or distributed
parameter estimation protocols [12�14].

The work of this thesis is towards both of these ends and is divided into two
projects. In the �rst project we consider, as a �rst step, the direct transmission
of a continuous variable non-Gaussian state through network channels of various
sizes. The state of choice is the photon subtracted squeezed vacuum state, as it
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can be reliably produced and serves well as probe of the limits of direct trans-
mission in such conditions. The preservation of measurable Wigner negativity
after transmission will serve as the overarching goal and require both low opti-
cal loss and stable phase control of the network channel. In the second project
we perform a proof-of-principle experimental realization of a distributed sensing
protocol, in which an entangled probe state is used to measure the average phase
shift of nodes in a small scale network.

The thesis consists of an four main chapters followed by an outlook.

1. Theory Here a basic introduction to continuous variable quantum op-
tics is given with a focus on squeezed light and relevant equations used
through the thesis presented. A model describing the experimental pro-
cedure of creating a 1-PSSqV state is presented together with the theory
of tomographic reconstruction from homodyne measurement data, which
will be used to analyse experimental results. We also provide a quick
walkthrough of the implementation of the maximum likelihood algorithm
for the reconstruction process.

2. Experimental Methods Here we give a detailed description of the ex-
perimental framework for the generation of 1-PSSqV states. We construct
a setup to produce continuous wave squeezed light at 1550 nm via para-
metric down-conversion of a second harmonic �eld in an OPO cavity. We
then tap a small part of the squeezed vacuum �eld into a trigger channel
and frequency �lter it to select only the central frequency mode of the
OPO output to be measured by a single-photon detector. A click of the
single-photon detector then then heralds the creating of the 1-PSSqV state
in the signal channel. We also describe the di�erent network con�gurations
the state was transmitted trough.

3. Non-Gaussian State TransmissionHere the results of the non-Gaussian
state transmission project are presented. We analyse the results obtained
from three di�erent measurement con�gurations and compare them to the
results expected from our theoretical mode.

4. Distributed Quantum Sensing Here the results of the distributed sens-
ing project are presented in the form of the published work together with
a short introduction.

5. Outlook Concludes on the presented results of the two projects and dis-
cusses possible paths forwards.
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Chapter 2

Continuous Variable

Quantum Optics

In this chapter a basic introduction to continuous variable (CV) quantum optics
is given. In sec. 2.1 the two main representations of a quantum state of light,
the density matrix and the Wigner function, is presented and in sec. 2.2 the
properties and generation of one of the the most basic ingredients in any quan-
tum enhanced optical communication, sensing or computational protocol - the
squeezed vacuum state - is explored. In sec. 2.3.2 a theoretical model describing
an experimentally relevant scheme for producing a non-Gaussian state is derived.
The scheme details how the non-Gaussian operation of single photon detection
can be used to transform a squeezed vacuum state into a non-Gaussian state -
the photon subtracted squeezed vacuum state. Finally in sec. 2.4 the homodyne
detection scheme and its use in quantum state tomography presented.

2.1 Representation of quantum states of light

Quantum mechanics is usually explained as the laws of nature at the atomic
level. For light this picture translates to quantum optics being the laws of elec-
tromagnetism at the single photon level. To unfold them the generic approach
is to quantize the electromagnetic �eld to obtain the Hamiltonian of a harmonic



6 Continuous Variable Quantum Optics

oscillator, where the electric and magnetic �eld take on the usual role of position
and momentum. A single mode of the electromagnetic �eld is then described
by the Hamiltonian

Ĥ = ~ω
(
â†â+

1

2

)
(2.1)

where â and â† are the the non-Hermitian non-commuting annihilation and
creation operators with the commutation [â, â†] = 1, ~ is Plancks constant and
ω the angular frequency of the electromagnetic �eld. The eigenstate of the
quantum harmonic oscillator Ĥ is then called the energy eigenstates or Fock
states |n〉 and have the eigenvalues En = ~ω(n + 1/2), corresponding to the
state |n〉 consisting of n photons i.e. excitation of the electromagnetic �eld
mode. From the de�nition â |n〉 =

√
n |n− 1〉 and â† |n〉 =

√
n+ 1 |n+ 1〉 the

photon number operator n̂ = â†â also shows this n̂ |n〉 = n |n〉. For |n = 0〉 the
state is called the vacuum state or energy ground state corresponding to zero
photons. Curiously the nonzero energy of the ground state E0 = ~ω/2 is the
�rst hint the non classical nature of quantum description of light.

2.1.1 Density matrix

The energy eigenstates are conveniently used to span the Hilbert space, as they
form a complete set due to the Hermitity of Ĥ. They are then used as the basis
to describe any quantum state by its density matrix

ρ̂ =
∑

i

ki |ψi〉 〈ψi| (2.2)

This basis is called the number state basis or Fock basis. The density matrix
of a pure quantum state |ψ〉 is then written as ρ̂ = |ψ〉 〈ψ|, where ψ can be any
superposition of photon number states. The diagonal of the density matrix is
then the photon number distribution pr(n) = ρnn of that state, where ρmn =
〈m| ρ̂ |n〉. Without further introduction we here present the density matrix
representation of the most commonly encountered quantum states as they will
be useful to have at hand for later calculations. Their de�nition and derivation
can be found in almost any quantum optics text book [15][16].
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State |ψ〉 Number state expansion

Vacuum |0〉
∞∑
n=0

δ0n |n〉

Coherent |α〉 = D̂(α) |0〉 e
−|α|2

2
∞∑
n=0

αn√
n!
|n〉

Sqz. vac. |ζ〉 = Ŝ(ζ) |0〉 1√
cosh r

∞∑
n=0

√
n!

(n/2)!

(
eiφ tanh r

2

)n
2
δ

[2]
0n |n〉

Fock |m〉
∞∑
n=0

δmn |n〉

Odd cat |cat−〉 1√
sinh |α|2

∞∑
n=0

δ
[2]
1n

αn√
n!
|n〉

Even cat |cat+〉 1√
cosh |α|2

∞∑
n=0

δ
[2]
0n

αn√
n!
|n〉

Table 2.1: Typical optical quantum states and their number state expansion
coe�cients

2.1.2 Phase space and the Wigner function

From the annihilation and creation operators we can de�ne quadrature operators
closely resembling the canonical position and momentum operators of a classical
harmonic oscillator

x̂ =
1√
2

(
â† + â

)
, p̂ =

i√
2

(
â† − â

)
(2.3)

Using these quadrature operators the Hamiltonian of the quantum harmonic os-
cillator from eq. 2.1 can be written as Ĥ = ~ω

2

(
x̂2 + p̂2

)
. Note that while the an-

nihilation and creation operators were non-Hermitian1 the quadrature operators
are and have the commutation relation [x̂, p̂] = i corresponding to them being
conjugate variables and therefore not precisely measurable at the same time.
Instead they must obey the Heisenberg uncertainty principle 〈∆x̂2〉〈∆p̂2〉 ≥
|[x̂, p̂]|/4 = 1/4. This can also be seen from that fact that while the quadrature
expectation values of the number states are zero 〈x̂〉 = 〈p̂〉 = 0 their variance is

1Non-Hermition operators are not observables, meaning they do not correspond to a mea-

surable quantity



8 Continuous Variable Quantum Optics

non-zero even for the vacuum state 〈∆x̂2〉 = 〈∆p̂2〉 = n+ 1/2.

The quadrature operators can be combined to represent the quadrature q̂θ along
any axis in the phase space spanned by the x- and p-axis. We call this quadra-
ture the rotated quadrature

q̂θ = cos θ x̂+ sin θ p̂ = 1√
2
(â†eiθ + âe−iθ) (2.4)

Here θ is the angle to x-axis and so we consider q̂0 = x̂ and q̂π/2 = p̂. The
eigenstates and eigenvalues of the rotated quadrature operator is then written
as |qθ〉 and q respectively. The wave function of a pure quantum state |ψ〉 can
then be calculated as the overlap with the quadrature operator ψ(q) = 〈qθ|ψ〉
and the corresponding quadrature probability function as Prθ = | 〈qθ|ψ〉 |2. If the
state is mixed the quadrature probability has to be calculated using the states
density matrix Prθ = 〈qθ| ρ̂ |qθ〉. For the number states the explicit expression
for the wave function is

〈qθ|n〉 =
e−inθ√
2nn!
√
π
Hn(q)e−q

2/2 (2.5)

As we shall see in sec. 2.5.1 this equation will be useful when calculating projec-
tion operators in the number state basis. A useful way of visualizing a quantum
state in the x-p phase space is using the Wigner function [17]. The Wigner
function of a quantum state, de�ned by its density matrix ρ̂, is given de�ned as

W (x, p) =
1

2π

∫ ∞

−∞
eiyp

〈
x− y

2

∣∣ ρ̂
∣∣x+ y

2

〉
dy (2.6)

In general the Wigner function of any operator Â is de�ned in the same way
WA(x, p) = 1

2π

∫∞
−∞ eiyp

〈
x− y

2

∣∣ Â
∣∣x+ y

2

〉
dy. Using the overlap formula tr[ÂB̂] =

2π
∫ ∫

WA(x, p)WB(x, p) dxdy the expectation value of the operator, calculated

as 〈Â〉 = tr[ρ̂Â], can then be calculated from Wigner function in a similar fash-
ion: 〈

Â
〉

= Tr
[
ρ̂Â
]

= 2π

∫ ∞

−∞

∫ ∞

−∞
W (x, p)WA(x, p) dxdy (2.7)

Similar to number state representation we here present, without derivation, the
Wigner functions of the same quantum states [15][16]: From the Wigner function
it is clear to see that the vacuum state is a Gaussian distribution in the center
of phase space with the variance 1/2, meaning that is a minimum uncertainty
state. The coherent state is then simply a vacuum state displaced in phase
space, while the squeezed vacuum state is a vacuum state with unequal variances
along the p- and x-axis, making it non-classical. Here the variance along the
x-axis is reduced below the classical 1/2 limit but with the variance along the
p-axis increased accordingly to satisfy the Heisenberg uncertainty relation. The
Fock states are even more non-classical, except for the vacuum state, they all
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State W (x, p) phase space distribution

Vacuum W0
1
π exp

(
−x2 − p2

)

Coherent Wα W0(x− xα, p− pα)

Sqz. vac. Wsqv W0(xe−r, per)

Fock Wn (−1)nL0
n(2x2 + 2p2)W0(x, p)

Odd cat W+
1

2+2e−2α2

[
W0(x−

√
2α, p) +W0(x+

√
2α, p)

+2W0(x, p) cos
(
2
√

2pα
)]

Even cat W− 1
2−2e−2α2

[
W0(x−

√
2α, p) +W0(x+

√
2α, p)

−2W0(x, p) cos
(
2
√

2pα
)]

Table 2.2: Wigner functions for typical optical quantum states

have non-Gaussian Wigner functions and have regions in phase space where it
is negative. This feature is clear sign of the quantum nature of those states
and since their photon number, and thereby energy, is precisely de�ned they
have a completely unde�ned phase corresponding to rotation symmetry in phase
space. But not only the number states can be non-Gaussian, the even and odd
Schrödinger's cat states, de�ned as even N+(|α〉 + |−α〉) and odd N−(|α〉 −
|−α〉) super positions of coherent states opposite in phase space, have regions of
negative Wigner function. These states contain either only even or odd photon
number contributions.

Conversion to number state basis

From eq. 2.6 we know in principle how to calculate the Wigner function of a
quantum state given its density matrix. As we shall see later it will be equally
useful to be able to calculate the density matrix given the Wigner function
of a state. This can be done by considering that in the number state basis,
each matrix element of ρ̂ is equal to the expectation value of the corresponding
number state projection operator. Using eq.2.7 we can therefore write

ρmn = Tr [ρ̂ |m〉 〈n|] = 2π

∫ ∞

−∞
W (x, p)Wmn(x, p) dxdy (2.8)
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where Wmn(x, p) then is the Wigner function of the projection operator |m〉 〈n|,
which has the analytical form

Wmn(x, p) =
1

π
e−x

2−p2(−1)n(x− ip)m−n
√

2m
n!

m!
L(m−n)
n (2x2 + 2p2) (2.9)

where L
(α)
n is the generalized Laguerre polynomials and the expression being

valid form ≥ n, withWmn(x, p) = W ∗nm(x, p) symmetry form < n. If we on the
other hand are in possession of the density matrix, expressed in the number state
basis, we can calculate the Wigner function by inserting ρ̂ =

∑
m,n ρmn |m〉 〈n|

directly into eq. 2.6 to get

W (x, p) =
∑

m,n

ρmnWmn(x, p) (2.10)

As we shall see later in sec. 2.5, this will be the case when we perform quantum
state reconstruction using the maximum likelihood algorithm, where the out-
come is exactly the density matrix in the number state basis and so we will ap-
ply eq. 2.10 to obtain the Wigner function of the reconstructed state. Knowing
that the o�-diagonal elements of a density matrix contains the phase informa-
tion about the state and that the center of the Wigner function has unde�ned
phase, we expect that W (0, 0) should only depend on the diagonal elements of
the density matrix. This is exactly the case, since Wmn(0, 0) = 1

π δmn(−1)m so
that W (0, 0) = 1

π

∑
n(−1)nρnn and, as we shall see in sec. 4.2.2, this expression

can be useful when performing optimizing of a parameter in the reconstruction
process using the resulting Wigner negativity as a benchmark.

2.1.3 Fidelity and trace distance

The �delity F between two quantum states ρ̂1 and ρ̂2 is a measure of their
closeness in the Hilbert space and takes the value 0 ≤ F (ρ̂1, ρ̂2) ≤ 1. A �delity
of either 0 or 1 corresponds to ρ̂1 and ρ̂2 being either orthogonal or identical
states respectively. If ρ̂1 = |ψ1〉 〈ψ1| and ρ̂2 = |ψ2〉 〈ψ2| are both pure states,
the �delity is de�ned as F (ψ1, ψ2) = | 〈ψ1|ψ2〉 |2. This de�nition generalizes
to the case of either state being impure, so that if ρ̂2 is an impure state the
�delity can be calculated as F (ψ1, ρ̂2) = 〈ψ1| ρ̂′2 |ψ1〉. For both cases the �delity
can equivalently be written as F = Tr [ρ̂1ρ̂2]. If both states are impure the
generalization does not hold and instead a more general expression must be
used. In [18] Jozsa de�nes the necessary conditions for such an expression and
then proves that the 'transition probability' formula from [19] satisfy them. The
formula is written as

F (ρ̂1, ρ̂2) = Tr

[√√
ρ̂1ρ̂2

√
ρ̂1

]2

(2.11)
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where
√
M is the matrix square root de�ned as

√
M
√
M = M . From the Wigner

functions the �delity between a pure |ψ1〉 and impure ρ̂2 state can be calculated
in the same way using eq. 2.7

F (ψ1, ρ2) = Tr [|ψ1〉 〈ψ1| ρ̂2] = 2π

∫ ∞

−∞

∫ ∞

−∞
W1(x, p)W2(x, p) dxdy (2.12)

where W1 and W2 are the Wigner functions of the states.

Trace distance

Another useful metric for comparing two quantum states is the trace distance
T, which similar to the �delity, is a measure of the distinguishably of between
two quantum states and takes the value 0 ≤ T (ρ̂1, ρ̂2) ≤ 1. Compared to the
�delity of the interpretation of the trace distance is reversed, so that a value of
0 or 1 corresponds to identical or orthogonal states respectively. It is de�ned as
half of the trace distance between the two states [20] T (ρ̂1, ρ̂2) = 1

2 ||ρ̂1 − ρ̂2||tr,
which for hermitian matrices reduces to

T (ρ̂1, ρ̂2) = 1
2Tr

[√
(ρ̂1 − ρ̂2)2

]
(2.13)

Here ||M ||tr is the trace norm de�ned as ||M ||tr =
√
M†M . The trace dis-

tance is connected to the �delity through the Fuchs-van de Graaf inequality
1 −

√
F (ρ̂1, ρ̂2) ≤ T (ρ̂1, ρ̂2) ≤

√
1− F (ρ̂1, ρ̂2), where it provides useful upper

and lower bounds of the �delity. For the case of either states being pure, the
inequality reduces to 1− F (ψ1, ρ̂2) ≤ T (ψ1, ρ̂2) [21].

2.1.4 Loss model

Most linear loss mechanisms acting on a signal state is modelled as state ρ̂
being transmitted through a beamsplitter with vacuum as its other input and a
transmittance T = η corresponding to the loss. The result is that the signal state
intensity is reduced by η while the signal mode is admixed with 1− η vacuum.
The e�ect of interfering two mode operators â1 and â2 on a beamsplitter is
typically written as

(
b̂1
b̂2

)
=

( √
T

√
1− T

−
√

1− T
√
T

)(
â1

â2

)
or (2.14)

= B̂†(T )

(
â1

â2

)
B̂(T ) (2.15)
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with B̂(T ) = exp
[
arccos

(√
T
)

(â1â
†
2 − â†1â2)

]
being the beamsplitter operator.

In the density matrix picture the loss is then considered as the partial trace over
the transmitted vacuum mode v′ after transformation by the beamsplitter

ρ̂′s′ = Trv′
[
B̂†(η)ρ̂s ⊗ |0〉v 〈0|v B̂(η)

]
(2.16)

The matrix elements of ρ̂′ can be calculated using the generalized Bernoulli
transformation [22]

(ρ̂′)mn = 〈m| ρ̂′s |n〉 =

∞∑

k=0

Bm+k,m(η)Bn+k,n(η) 〈m+ k| ρ̂s |n+ k〉 (2.17)

where Bm+k,m(η) =
√(

n+k
k

)
ηn(1− η)k is the binomial distribution. In the

Wigner function picture linear loss η can be modelled as the convolution of the
state with a complex Gaussian Gσ with variance σ =

√
(1− η)/2η

W ′s(x, p) =
1

η
(Ws ◦Gσ)

(
x√
η ,

p√
η

)
(2.18)

2.2 Squeezed light

First observed by Slusher et al. in 1985, squeezed light is perhaps the most
fundamental resource for CV quantum information processing (CVQIP) and
have been used to facilitate quantum improved protocols across all three �elds
of quantum computation, sensing and communication. For a detailed review
of the history of squeezed light and its importance, see the excellent review by
Andersen et al. [23]. Mathematically squeezing is expressed by the squeezing
operator

Ŝ(ξ) = exp
(
ξ
2 â
†2 − ξ∗

2 â
2
)

(2.19)

A squeezed vacuum state, |ξ〉 = Ŝ(ξ) |0〉, is a common starting point of many
CVQIP protocols, including our non-Gaussian state and distributed sensing
projects, since it can readily be generated experimentally. It has the properties
of the expectation value of the quadrature operator being zero ∆q̂θ = 0 for any
squeezing rate and along any quadrature angle, similar to the vacuum state,
while the variance is "squeezed"

〈
∆x̂2

〉
= 1

2e
−2r and "antisqueezed"

〈
∆p̂2

〉
=

1
2e

2r along orthogonal quadrature angles as compared to the vacuum state.
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Generation

The mathematical squeezing operator can be implemented through a type-0
degenerate parametric down-conversion process [15]. Such a process can be
physically realized by transmitting a pump �eld at frequency 2ω through a
second-order nonlinear medium, in order to down-convert a photon from the
pump �eld into a photon pair in a signal �eld at frequency ω. The Hamiltonian
for such a process is

Ĥ = ~ω0â
†â+ 2~ω0b̂

†b̂+ i~χ(2)
(
â2b̂† − â†2b̂

)
(2.20)

where a and b denotes the signal and pump �eld modes respectively and χ(2)

is the second-order nonlinear susceptibility coe�cient of the medium along the
direction of pump �eld propagation, often simply called the nonlinearity. It is
assumed that the pump �eld is a strong coherent �eld, so that it can be described
classically as βe−i2ωt. One can then write the Hamiltonian in the interaction
picture as Ĥint = i~χ(2)

(
β∗â2 − βâ†2

)
so that the evolution operator Û(t) takes

the form of the squeezing operator

Û(t) = e−iĤintt/~ = eχ
(2)(β∗â2−βâ†2)t = Ŝ(ξ) (2.21)

with ξ = 2χ(2)βt. Here the interaction time t is equivalent to the interaction
length, that is the physical length of the nonlinear medium. It is therefore clear
that in order to generate strong squeezing, one needs to maintain a strong pump
�eld through a long piece of material with high nonlinearity.

2.2.1 Optical parametric oscillator

Since χ(2) is small for most optical materials the squeezing levels obtainable
by a simple single-pass setup of the pump �eld through the nonlinear material
very is low. Pulsed light can be used to circumvent this issue, but to generate
a continuous wave squeezed �eld, the dominant solution has been to place the
nonlinear material inside an optical cavity at resonance with the down-converted
�elds.
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Figure 2.1: Schematic of OPO model parameters

For an optical cavity the resonance spectrum consist of a comb of Lorentzian
shaped resonance peaks, centred at the fundamental frequency ω0 and with spac-
ing ∆ω = 2π/tcav called the free spectral range of the cavity, where tcav = lcav/c
is the round-trip time and lcav is optical cavity round-trip length. The half-width
at half-maximum (HWHM) of the resonance peaks is called the bandwidth of
the cavity and is equivalent to the decay rate γ of the circulating �eld and is pro-
portional to the total round-trip loss r. The two main contributing factors can
be thought of as the output coupler transmittance T1 and the intra-cavity losses
L, so that r =

√
1− T1

√
1− L. Each loss factor contributes to the bandwidth

as γ1 = (1 −√1− T1)/tcav ≈ T1/2tcav and γ2 = (1 −
√

1− L)/tcav ≈ L/2tcav,
for T1,L � 1, so that the total decay rate γ = γ1 + γ2 is the HWHM bandwith
of the cavity.

To model the OPO behaviour we use the �eld operators in both time and fre-
quency domain. In a frame rotating with the central frequency ω0 the two
domains are connected by the symmetric Fourier transformation as

â(ω) =
1√
2π

∫ ∞

−∞
eiωtâ(t) dt (2.22)

â(t) =
1√
2π

∫ ∞

−∞
e−iωtω̂(t) dω (2.23)

Using the equation of motion of the intra-cavity �eld âcav as an ansatz we can
derive the correlation functions of the cavity output mode âout, from which we
can derive the quadrature correlation functions. In the following only the main
results will be presented, while the full derivation can be followed in [24] and
originally in [25]. Using the parameters shown in �g. 2.1 the equation of motion
in the Heisenberg picture is

dâcav(t)

dt
= εeiφâ†cav(t)− γâcav(t) +

√
2γ1âin(t) +

√
2γ1âvac(t) (2.24)
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where ε = χ(2)|β| = γ
√
Pp/Pthr is the pump rate and φ is the pump phase

o�set. The OPO threshold condition is then ε = γ corresponding to the cavity
�eld building faster then it decays. Above threshold (ε > γ) the cavity output
�eld will have a coherent amplitude and show simple Poissonian statistics, while
if the OPO is pumped below its threshold (ε < γ) the output �eld will show
sub-Poissonian statistics, allowing for squeezing to be observed. Using that
âin + âout =

√
2γ1âcav the equation of motion can be solved, yielding the time

domain correlation functions of the output �eld operator

〈â(t)â(t′)〉 =
εγ1e

iφ

2

(
e−(γ−ε)|t−t′|

γ − ε +
e−(γ+ε)|t−t′|

γ + ε

)
(2.25)

〈
â†(t)â(t′)

〉
=
εγ1

2

(
e−(γ−ε)|t−t′|

γ − ε − e−(γ+ε)|t−t′|

γ + ε

)
(2.26)

Here the output mode subscript has been dropped for simplicity. Using the
de�nition of the x and p quadrature operators from eq. 2.3 their time domain
correlation functions can be found using the �eld correlation functions above.
Setting φ = π/2 for simplicity, corresponding to an amplitude squeezed state,
we �nd that

〈x̂(t)x̂(t′)〉 =
δ(t− t′)

2
− 〈â(t)â(t′)〉+

〈
â†(t)â(t′)

〉

=
δ(t− t′)

2
+

γ1ε

γ + ε
e−(γ+ε)|t−t′| (2.27)

=
δ(t− t′)

2
+ 〈: x̂(t)x̂(t′) :〉

〈p̂(t)p̂(t′)〉 =
δ(t− t′)

2
+ 〈â(t)â(t′)〉+

〈
â†(t)â(t′)

〉

=
δ(t− t′)

2
+

γ1ε

γ − εe
−(γ−ε)|t−t′| (2.28)

=
δ(t− t′)

2
+ 〈: p̂(t)p̂(t′) :〉

Here : . : denotes the normal-ordered form, which is useful to work with since it

does not include the δ(t−t′)
2 vacuum term. Using the Wiener-Khintchine theorem

we can obtain the quadrature power spectrum S(ω) as the Fourier transform of
the quadrature auto-correlation function Sq(ω) =

∫∞
∞ 〈q̂(τ)q̂(0)〉 eiωt dτ , where

〈q̂(τ)q̂(0)〉 is simply 〈q̂(t)q̂(t′)〉 for τ = t− t′ corresponding to the correlations of
the continuous OPO output �eld being independent on the time of day. Inserting
eq. 2.27 and 2.28 we obtain the spectral densities of the quadrature operators
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of the OPO output �eld

Sx(ω) =
1

2
− 2εγ1

(γ + ε)2 + ω2
=

1

2
− 2ηεγ

(γ + ε)2 + ω2
(2.29)

Sp(ω) =
1

2
+

2εγ1

(γ − ε)2 + ω2
=

1

2
+

2ηεγ

(γ − ε)2 + ω2
(2.30)

In the �nal form the output coupler term γ1 have been replaced by an e�ciency
term η and the total OPO decay rate. From there it is easy to see that when η =
1 the output state is pure since the product SxSp = 1/4 saturates the Heisenberg
uncertainty. These spectral densities are very useful, as they are proportional
to the spectral densities of the photocurrents produced by homodyne detection
when locked to the corresponding quadrature phase and so can be used to �t
experimental data in order to extract model parameters. If a quadrature other
than x or p is measured the spectral density is given by a geometric combination
of the x- and p-spectra

Sqθ (ω) = Sx(ω) cos2 θ + Sp(ω) sin2 θ (2.31)

corresponding to the de�nition of q̂θ, so that θ = 0 becomes the angle where
we will measure squeezing (x quadrature) due to our choice of squeezing angle
(φ = π/2). Plots showing the e�ect of pump rate and loss on the generated
squeezing and anti-squeezed levels as well as the frequency and phase dependence
of the power spectrum are shown in �g. 2.2.
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Figure 2.2: Contour plots of eq. 2.29, 2.30 and 2.31 in dB scale, showing the
behaviour of the power spectrum for squeezed vacuum. Dotted lines show the
vacuum noise crossing

From �g. 2.2(left+middle) we see that the squeezing level is more sensitive to
loss than the anti-squeezing and that the observed squeezing is highly reduced
for for non-zero loss even for high pump rates. From �g. 2.2(right) we see the
typical "McDonalds" squeezing curves when looking across the detection angle
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at a �xed frequency and that a larger part of the phase space (quadrature angles)
is anti-squeezed then squeezed. This fact will be relevant when we want to use
a single temporal mode function to encompass a non-Gaussian state generated
from squeezed vacuum.

2.2.2 As a resource for non-Gaussian state generation

Squeezed light can be used as a resource for the conditional generation of non-
Gaussian state, by relying on the highly non-Gaussian nature of photon detec-
tion. This concept was concretized in 1997 by Dakna et al., when they proposed
a simple scheme to generate a state similar to a small amplitude Schrödinger's
cat state by subtracting photons from a squeezed vacuum using a beamsplit-
ter and counting them [26]. We call these states photon subtracted squeezed
vacuum states; PSSqV. The �rst experimental demonstrations with pulsed light
were realized in 2004 [27] and 2006 [28] and using using continuous wave light
in 2006 [29] and 2007 [30]. Many more advanced schemes have later followed,
such as the �rst demonstrations of two photon subtraction [31] and three pho-
ton subtraction [32]. Proposals have also been made on how to generate state
similar to larger amplitude Schrödinger's cat states [33, 34] as well as experimen-
tal demonstrations [35�37]. Relevant to us is the �rst demonstrations of non-
Gaussian states at the telecom wavelength showing Wigner negativity [38, 39].
Highly pure PSSqV states have also been generated by tight optical �ltering of
the subtracted squeezed vacuum mode [40]. Recently the generation of optical
Schrödinger's cat like states have also been proposed for a generalized photon
subtraction scheme [41]. For further details on the various production schemes
and possible applications of non-Gaussian states see the 2020 review by Lvovsky
et al.

In the following section we will, in short, present two models of the single PSSqV
state (1-PPSqV), as this will be the state we generate experimentally in cha. 5.

2.3 Photon subtracted squeezed vacuum

Here we �rst brie�y introduce, as a reference, the idealized representation of
the photon subtracted squeezed vacuum state as a single mode state generated
from a number resolving detector. Afterwards a more realistic model of the
procedure required to experimentally generate the photon subtracted squeezed
vacuum state is presented. The model was developed by Mølmer in 2006 [42] in
connection to the �rst experimental demonstration of the procedure the same
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year [43] and is based on the multi-mode description of the OPO output �eld.
A more detailed walkthrough of the model, included derivation of many inter-
mediary terms, is given in the thesis of Neergaard-Nielsen[24].

The basic principle of the generation scheme is to transmit a squeezed vac-
uum state through a weakly re�ective beamsplitter and then detect one or more
photons in the re�ected trigger path, thereby collapsing the state into a photon
subtracted squeeed vacuum state.

2.3.1 Single mode with number-resolved detection

In the single mode picture the state incident on the beamsplitter is written as
|ψin〉 = |ξ〉s |0〉t and the output state calculated as |ψbs〉 = B̂(T ) |ψin〉, with
the beamsplitter operator of eq. 2.15 and using the formula B̂(T ) |n, 0〉 =∑n
k=0

√
Bnk (T ) |k, n− k〉 [22]. By conditioning this two-mode state on the de-

tection of m photons in the trigger mode the state in the signal subspace will
collapse into

|ψm〉s =
t 〈m|ψbs〉√
Prt(m)

=
1√

Prt(m)

∞∑

n=0

〈n+m|ξ〉
√
Bn+m
n (T ) |n〉s (2.32)

where Prt(m) =
∑
n | 〈n,m|ψbs〉 |2 is the probability of detecting the m photons

in the trigger mode. We see that depending on the parity of m the 1-PSSqV
state will be a super position of either even or odd photon numbers. For the
case of subtracting a single photon the state becomes equivalent to a slightly
less squeezed single photon state [44]

|ψ1〉s =
1

sinh s
âŜ(s) |0〉 = Ŝ(s) |1〉 (2.33)

where s = arctanh(T tanh r) ≤ r is a modi�ed squeezing parameter owing to the
admixing of vacuum through the unused port of the beamsplitter used to sub-
tract the single photon. That is a 1-PSSqV state generated from initial squeezing
parameter r and beamspliter transmittance T corresponds to a squeezed single
photon with squeezing parameter s. We also note that s → r as t → 1. The
number state expansion and Wigner function of the 1-PSSqV state is summa-
rized below, where ksqv(r, φ, n + 1) is the coe�cient of the squeezed vacuum
state from tab. 2.1.
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State |ψ〉 Number state expansion

1-PSSqV |sqv-1〉 = âŜ(ξ) |0〉
√

1+n
sinh r ksqv(r, φ, n+ 1)

W (x, p) Phase space distribution

Wsqv−1 W1(xe−r, per)

2.3.2 Conditioned multi-mode model

The multi-mode model is based on the covariance matrix formalism. Here a two
mode Gaussian state can always be rotated such that its covariance matrix has
the generic form

Γ =

(
ΓAA ΓAB
ΓAB ΓBB

)
=




Γ11 0 Γ13 0
0 Γ22 0 Γ24

Γ13 0 Γ33 0
0 Γ24 0 Γ44


 (2.34)

corresponding to no x-p correlations in either subsystem. While building our
model we utilize that the vacuum noise term of the auto-correlation functions
does not in�uence the transformation of the autocovariance. We therefore con-
veniently choose the normal-ordered form of the auto-correlations and simply
add the vacuum term in the end to obtain the full covariance matrix expression
of the �nal two mode state. A schematic of the sequential steps involved in
building the model is shown in �g. 2.3.

Figure 2.3: Outline of multi mode model structure

1. OPO output The initial uncorrelated two-mode state is then the squeezed
vacuum state in the signal mode (AA) and vacuum in the trigger mode
(BB), with the signal subspace having the entries : Γi11(t−t′) := 2 〈: x̂(t)x̂(t′) :〉
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and : Γi22(t− t′) := 2 〈: p̂(t)p̂(t′) :〉 from eq. 2.27 and 2.27 respectively.

: Γi :=

(
: ΓiAA(t− t′) : 0

0 0

)
(2.35)

2. Tapping Part of the signal mode is then coupled to the trigger mode by
a beamsplitter interaction. The two-mode state after the beamsplitter is
calculated as : Γi :→: Γbs := B(T ) : Γi : B(T )T with the B(T ) matrix
similar to the one used in eq. 2.14:

: Γbs :=





: ΓbsAA : = T : ΓiAA :

: ΓbsAB : = −
√
T (1− T ) : ΓiAA :

: ΓbsBB : = (1− T ) : ΓiAA :

(2.36)

3. Trigger �ltering The trigger mode is then frequency �ltered to select only
the central frequency resonance mode of the OPO output. The transfor-
mation : Γbs : → : Γtf : is calculated as the convolution of the covariance
matrix elements with the trigger �lter function. We use a single-sided
exponential function as the �lter function, corresponding to the tempo-
ral response of a physical �lter cavity as used in our experimental setup
(optical lowpass �lter). The trigger mode subspace (BB) is �ltered twice,
while the covariance subspace (AB) only once, with the integrations from
] −∞, t′] for AB and from ] −∞, t] and ] −∞, t′] for BB, corresponding
to the output �eld of the frequency �lter at time t not being a�ected by
the input �eld at some later time:

: Γtf :=





: ΓtfAA : =: ΓbsAA :

: ΓtfAB : = κ
∫

: ΓbsAB(t− τ) : e−κ(t′−τ) dτ

: ΓtfBB : = κ2
∫ ∫

: ΓbsBB(τ − τ ′) : e−κ(t+t′−τ−τ ′) dτdτ ′
(2.37)

4. Temporal mode selection The subtraction and detection of a photon
from the OPO output �eld, leads to the conditioned state existing as
altered temporal correlations within a distinct a temporal mode around the
trigger time. By temporally �ltering the mode operator of the otherwise
stationary OPO output �eld we can de�ne an operator for the temporal
mode as

∫
fs(t)âs(t)dt, where fs(t) is a �lter function corresponding to

the desired temporal mode. Since we are �ltering the mode operator, the
temporal mode function (TMF) is an amplitude �lter and should therefore
be normalized as

∫
|fs(t)|2dt = 1. Intuitively the temporal mode of the

1-PSSqV should resemble the autocovariance function (eq. 2.27 and 2.28)
of the OPO output �eld around the trigger time, since it is only within
these correlations that entanglement between the trigger and signal mode
can lead to the signal mode being a�ected by the photon subtraction
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in the trigger mode. In practice the TMF is applied to the recorded
time traces during data analysis, though it can be applied directly in the
experiment by shaping the amplitude of the LO according to the TMF
or by �ltering the homodyne photocurrent if the conditioned state has
been �ltered to have a TMF resembling the electrical �lter response as in
[40]. An advantage of applying the TMF in post, is that its shape can
be optimized to maximize e.g. the Wigner negativity of the reconstructed
state. This is important as choosing a wrong TMF can lead to either not
including the full correlations of the conditioned state or including some
of the background squeezed vacuum. To this end we therefore choose
not to explicitly choose the TMF in our model. The transformation of
the state after the trigger �ltering : Γtf → : Γtms : into the temporal
mode selected state is then calculated by the integration of the temporal
correlations around the trigger time weighted by the TMF and so here the
all integrations are from ]−∞,∞[.

: Γtms :=





: ΓtmsAA : =
∫ ∫

fs(t)fs(t
′) : ΓtfAA : dtdt′

: ΓtmsAB : =
∫ ∫

fs(t)ft(t
′) : ΓtfAB : dtdt′

: ΓtmsBB : =
∫ ∫

ft(t)ft(t
′) : ΓtfBB : dtdt′

(2.38)

5. Channel loss The loss of the trigger and signal channel transform the
state as : Γtms : → : Γf := η : Γtms : η where η is a two-mode diagonal
matrix with

√
ηs and

√
ηt entries corresponding to mixing the signal and

trigger modes with auxiliary vacuum modes using beamsplitter matricies
B(ηs) and B(ηt) as in step 2. The full covariance matrix of the �nal two-
mode state just before detection in trigger channel is then obtained by
adding back the vacuum noise as : Γf :→ Γf = 1̂+ : Γf ::

Γf =





ΓfAA = ηs : ΓtmsAA : +1

ΓfAB =
√
ηsηt : ΓtmsAB :

ΓfBB = ηt : ΓtmsBB : +1

(2.39)

Having already chosen the mode function of the trigger �lter we are free to
choose the temporal mode functions ft(t) and fs(t) of the trigger and signal
modes respectively. For the trigger mode we choose a delta function ft(t) = δ(t),
corresponding to a very narrow timing resolution of the photon detector com-
pared to the length of the correlations of the detected �eld, which is reasonable
for a our setup with a timing resolution of 70 ps and a OPO bandwith of
8 MHz ∝ 125 ns. For the signal mode we choose a double exponential function
fs(t) =

√
γse
−γst of width γs, which should be a reasonable guess since the

ideal mode function for low gain and no trigger �ltering have been found to be
a double exponential of width equal to the OPO bandwidth [45]. With these
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choices of mode functions and following the approach outlined above, analytical
expressions for the entries of Γf was obtained by Neergaard-Nielsen [24]:

Γf11 = 1 + TηsΓ
(−)
AA Γf22 = 1 + TηsΓ

(+)
AA

Γf33 = 1 + (1− T )ηtΓ
(−)
BB Γf44 = 1 + (1− T )ηtΓ

(+)
BB (2.40)

Γf13 =
√
T (1− T )

√
ηsηtΓ

(−)
AB Γf24 =

√
T (1− T )

√
ηsηtΓ

(+)
AB

with

Γ
(±)
AA =

±4γε(γ ∓ ε+ 2γs)

(γ ∓ ε)(γ ∓ ε+ γs)

Γ
(±)
BB =

±2γεκ

(γ ∓ ε)(γ ∓ ε+ γs)
(2.41)

Γ
(±)
AB =

∓4γεκ(γ ∓ ε+ κ+ γs)

(γ ∓ ε)(γ ∓ ε+ κ)(γ ∓ ε+ γs)(κ+ γs)

We note that the x and p correlations between the two modes remain symmetri-
cal with respect to the sign change of ε. With the covariance matrix of the two
mode system just before a trigger click in hand, we now turn our attention to
the calculation of the resulting state conditioned on a click in the trigger mode.
The Wigner function of an arbitrary N-mode Gaussian state, described by its

covariance matrix Γ, can be calculated asWΓ(ξ) = [πN
√
detΓ]−1e−ξ

TΓξ and the
Wigner function of the conditioned state as

Wcond(ξs) =
2π
∫ ∫

WΓ(ξ)WE(ξt) dξ
2
t

2π
∫
WΓ(ξ)WE(ξt) dξ4

(2.42)

where ξs = (xs, ps), ξt = (xt, pt) and ξ = (xs, ps, xt, pt) is the signal, trigger and

two mode coordinates and WE(x, p) = 1
2π − 1

π e
−x2−p2 is the Wigner function of

the trigger mode on-POVM Êont = 1̂t + |0〉t 〈0|, calculated in similar fashion as
eq. 2.6. The form of eq. 2.42 can be understood by looking at the equivalent
expression for density matrices ρ̂ons = trt[Ê

on
t ρ̂Γ]/trs,t[Ê

on
t ρ̂Γ] [24], where the

traces can be evaluated using eq. 2.7. Here it is more clear that the conditioned
state ρ̂ons is obtained by operating on the state ρ̂Γ with the on-POVM and tracing
out the trigger mode corresponding to integrating the product of the state and
on-POVM Wigner functions across the trigger mode. Using the generic form of
a covariance matrix of a (properly rotated) two mode Gaussian state (eq. 2.34)
an analytical expressions for eq. 2.42 can be found as

Wcond(ξs) =




exp
(
− x2

s

Γ11
− p2s

Γ22

)

π
√

Γ11Γ22

−
2 exp

(
− (1+Γ33)x2

s

Γ11(1+Γ33)−Γ2
13
− (1+Γ44)p2s

Γ22(1+Γ44)−Γ2
24

)

π
√

(Γ11(1 + Γ33)− Γ2
13)(Γ22(1 + Γ44)− Γ2

24)




×
[

1− 2√
(1 + Γ33)(1 + Γ44)

]−1

(2.43)
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Here the �rst term in the numerator is the unconditioned state Wuncond(ξs) =

[π
√

Γ11Γ22]−1e−x
2
s/Γ11−p2s/Γ22 corresponding to having simply traced out the

trigger mode and the denominator term is the probability of a trigger click
pron = 1− 2[

√
(1 + Γ33)(1 + Γ44)]−1.

A parameter accounting for the e�ect of fake counts can be included in the model
as a mixing of the conditioned state with the unconditioned state by a factor
Ξ, called the modal purity, which is the fraction of true to total (true+fake)
counts:

Wcond(ξs,Ξ) = ΞWcond(ξs) + (1− Ξ)Wuncond(ξs) (2.44)

In this perspective fake counts are any clicks from the SSPD not originating
from the detection of a subtracted photon. These are typically the detector
dark counts and counts from scattered light, mainly the control beams used for
locking and phase control of the experiment. Our full model is then obtained by
inserting the covariance matrix entries of eq. 2.40 into eq. 2.44. The parameters
of the model are summarized in tab. 2.3.

γ Total OPO decay rate, OPO bandwidth

ε Pump rate, γ
√
P/Pthr

T Tapping ratio, beamsplitter transmittance
κ Trigger �lter width, FC bandwidth
γs Signal temporal mode width
ηs Total signal channel e�ciency
ηt Total trigger channel e�ciency
Ξ Modal purity

Table 2.3: Parameters of the multi mode model with on/o� detection for
photon-subtracted squeezed vacuum generation.

Optimal �lter and mode functions

Here we investigate the e�ects of the widths of the signal TMF and the trigger
�lter in our model on the Wigner negativity of the heralded state. We set all
e�ciencies to unity and use a beamsplitter ratio of T ≈ 1. First we see the
e�ect of TMF width by setting the trigger �lter width to in�nity. This is of
course nonsensical in the real experiment, but will allow us to isolate the e�ect.
We then see if the trigger width a�ects the optimal TMF width and �nally use
the optimal TMF width to see the e�ect of the trigger width. The results are
shown in �g. 2.4.
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Figure 2.4: E�ect of signal TMF width and trigger �lter width on the Wigner
negativity predicted by the model.

For the isolated TMF width we see that as the pump rate increases the optimal
�lter width decreases as well as the obtainedWigner negativity. The reduction in
Wigner negativity can be understood as the bandwidth of the x and p quadrature
being pushed apart by the epsilon term in the denominator of eq.2.29 and 2.30.
The larger the pump rate is the more the temporal mode of the state is skewed
and the less a single temporal mode function can encompass it. The shortening
of the optimal TMF width can then be attributed to the shortening of the
anti-squeezed bandwidth weighing heavier than the lengthening of the squeezed
bandwith, since more of the phase space is anti-squeezed than squeezed. We
then see that the trigger �lter width should at least be 8 times larger than the
OPO bandwidth to not cause the optimal TMF width to decrease and thereby
decreasing the Wigner negativity. Though here we have to keep in mind that we
are using a sharp double exponential function as our TMF and that the e�ect
of the trigger �lter is to smoothen out the temporal correlations and so using a
di�erent TMF shape could negate this e�ect. It is also worth keeping in mind
that while the TMF is applied in the data analysis and therefore easily can be
varied, the trigger �lter width κ is set by the bandwidth of the physical �ltering
system and so might not be easy adjust or even possible to adjust.
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Figure 2.5: Wigner negativity as a function of pump rate for various values of
T , ηt, ηs and Ξ. Values a unity unless otherwise.

Here we investigate the e�ect of the remaining parameters of the model; T , ηs,
ηt and Ξ. If we disregard their e�ect on the modal impurity their behaviour is
straight forward; if they are decreased so is the Wigner negativity as is seen from
the solid lines of �g. 2.5. The reduction is worst for the signal channel e�ciency
and modal impurity, who essentially describe the same mechanism of mixing
the signal state with vacuum. We see that the reduction is linear and that a
decrease from 99% to 90% results in a roughly 2̃0% reduction of the Wigner
negativity across the pump range. The dashed lines include the coupling of the
modal impurity to the other parameter and is modelled as

Ξ(ε, T, ηt) =
〈n̂tc〉 − 〈n̂dc〉
〈n̂tc〉

=
〈n̂〉 (1− T )ηt

〈n̂〉 (1− T )ηt − 〈n̂dc〉
(2.45)

where 〈n̂tc〉 and 〈ndc〉 is the total and dark count rates, respectively, observed
from the SSPD when running the experiment and 〈n̂〉 =

〈
â†(t)â(t)

〉
= γ1ε

2/(γ2−
ε2) is the photon number expectation value of the OPO output mode, which cor-
responds to the photon production rate in Hz. For the calculation of the dashed
lines in �g. 2.5 zero internal loss is assumed (γ2 = 0 → γ = γ1) and typical
experimental parameters are used to set 〈ndc〉 = (1−Ξ′) 〈n̂′〉 (1−T ′)η′t/Ξ′ with
ε′/γ = 0.4, T ′ = 0.97, η′t = 0.1, Ξ′ = 0.995. The prime denotes the speci�c value
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since the dark count rate should ideally not depend on any model parameters.
In a real experiment the photon detector will unfortunately not only see dark
counts but also counts from scattered light or unattenuated light from control
beams and their relation to the di�erent loss mechanism depends on the speci�c
layout of the experimental setup.

Fidelity

Finally we investigate the �delity between our model and a real odd cat state
and the single mode 1-PSSqV. We use the Wigner function from our model and
the Wigner functions from tab. 2.2 and 2.3.1 and calculate the �delity using eq.
2.12 for various pump rates and amplitude or squeezing parameters. The result
is shown in �g. 2.6. In general we see that the �delity decreases with increasing
pump rate, as we would expect from the decreased Wigner negativity and that
to obtain a �delity above 0.9 the pump rate has to be ε/γ < 0.4. We also note
that the �delity to the single-mode 1-PSSqV is slightly higher than to the real
odd cat state, while both a signi�cantly higher than to the single photon fock
state.
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Figure 2.6: Fidelity between the conditioned multi-mode 1-PSSqV state and
the real odd cat state and single-mode 1-PPSqV. All e�ciencies of the model is
set to unity with T ≈ 1 and κ ≈ ∞ and for each pump rate the optimal TMF
width is used. Dotted lines indicate the maximal �delity trajectory.

2.4 Homodyne detection

To characterize a continuous variable state a phase sensitive measurement of the
light �eld is needed, though unfortunately there exists no current detector tech-
nology that can direly measure the phase of an incoming electromagnetic �eld at
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optical frequencies. Instead interference can be used to reveal the desired phase
information about a state. A measurement technique that does this is the bal-
anced homodyne detection. Proposed in 1989 by Vogel [46] and experimentally
demonstrated four years later [47], homodyne detection is a phase-sensitive mea-
surement of the quantum noise of the electric �eld de�ned by an optical mode.
From a practical point of view the homodyne measurement allows us to mea-
sure the quadrature values qθ of a state along any angle in phase space. The
measurement consists of interfering the signal �eld with a strong local oscillator
(LO) �eld on a balanced (50:50) beamsplitter and measuring the two output
modes with photodetectors. The resulting photocurrents are then subtracted to
remove the classical noise of the LO �eld and amplify the phase sensitive noise
of the signal �eld. To see how the scheme works we consider the �eld operators
â1 and â2 of the two incoming �elds

b̂1 =
1√
2

(â2 + â1) ⇒ n̂b,1 = b̂†1b̂1 =
1

2

(
n̂a,2 + n̂a,1 + â†2â1 + â†1â2

)

b̂2 =
1√
2

(â2 − â1) ⇒ n̂b,2 = b̂†2b̂2 =
1

2

(
n̂a,2 + n̂a,1 − â†2â1 − â†1â2

)

In the classical picture the photocurrent i produces by a diode is proportional
to the absorbed �eld intensity i ∝ |E|2, while in the quantum regime its the
photon number of the mode â, so that i ∝ n̂. The subtracted photocurrent from
the homodyne detector ihd is then

ihd = i1 − i2 ∝ n̂b,1 − n̂b,2 = â†2â1 + â†1â2 (2.46)

Setting â1 = âs as our input signal state to be measured and â2 = |αlo|eiθ as
the local oscillator �eld, we get

ihd ∝ |αlo|
(
âse
−iθ + â†se

iθ
)

=
√

2|αlo|q̂s,θ (2.47)

2.4.1 Imperfect homodyne detection

Optical loss

Any loss, both before and during, the homodyne measurement can be modelled
as the input signal state having been transmitted through a beamsplitter with
transmission η, so that â1 =

√
ηâs +

√
1− ηâv. Inserting this expression into

eq. 2.46 gives

ihd ∝|αlo|
[
(
√
ηâs +

√
1− ηâv)e−iθ + (

√
ηâ†s +

√
1− ηâ†v)eiθ

]

=
√

2|αlo|(
√
ηq̂s,θ +

√
1− ηq̂v) (2.48)
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Unbalanced

If the detection is unbalanced (T 6= 1
2 ) we cannot use eq. 2.46. Instead we have

that

b̂1 =
√

1− T â2 +
√
T â1 ⇒ n̂b,1 = (1− T )n̂a,2 + T n̂a,1 +

√
T − T 2(â†2â1 + â†1â2)

b̂2 =
√
T â2 −

√
1− T â1 ⇒ n̂b,2 = T n̂a,2 + (1− T )n̂a,1 −

√
T − T 2(â†2â1 + â†1â2)

which leads to the homodyne photocurrent containing the uncorrelated photon
number operators

ihd = i1 − i2 ∝ n̂b,1 − n̂b,2 (2.49)

=(1− 2T )(n̂a,2 − n̂a,1) + 2
√
T − T 2(â†2â1 + â†1â2) (2.50)

If we assume that the mode â2 contains the strong local oscillator �eld and that
T = 1

2 + k, where k is some small fraction (k � 1) symbolizing the unbalance,

it is possible to obtain a balanced photocurrent by attenuating the b̂2 mode by
an amount 1 − η2 that compensates for the larger portion of the â2 mode. In
[48] it was found that for small imbalances this compensation leads to a loss of
the homodyne signal corresponding to the imbalance, i.e. for a 4% imbalance
(T = 48/52) the compensation needed to balance the homodyne photocurrent
results in a loss, equivalent to eq. 2.48, of 4%.

2.5 Quantum state reconstruction

We will now consider the essential task of estimating what quantum state we
have measured, based on collected experimental data. If we imagine {|j〉} as
the set of all possible outcomes of our measurement, we can write our dataset
{fj} as the frequency fj of each outcome. In general if one has a model of
a system it is possible to calculate the probability prj of having measured |j〉
given some speci�c model parameters. In our case of trying to estimate an
unknown quantum state, the elements of its density matrix play the role of
model parameters and our job is to �nd the density matrix ρ̂0 that maximizes
the likelihood of providing our dataset. To do this we use a likelihood function
de�ned as

L(ρ̂) =
∏

j

pr
fj
j (2.51)

where prj = 〈j| ρ̂ |j〉 = Tr
[
Π̂j ρ̂

]
is the probability of measuring |j〉 given ρ̂. We

immediately see that L if maximized when ρ̂ = ρ̂0, since the probabilities will
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then exactly match the data (prj = fj). In [49] Lvovsky presents an iterative
method for maximizing this likelihood which is suitable for homodyne data. The
approach is to introduce the operator

R̂(ρ̂) =
∑

j

fj
prj

Π̂j (2.52)

where Π̂j = |j〉 〈j| is the projection operator. Noticing that as ρ̂ → ρ̂0 we get

prj → fj which leads to R̂(ρ̂) → 1̂ since {|j〉} is assumed to be a complete set

so that
∑
j Π̂j = 1̂. In the limit we then have R̂(ρ̂)ρ̂R̂(ρ̂) = ρ̂, which forms the

basis of an iterative process

ρ(k+1) = N
[
R̂(ρ̂(k))ρ̂(k)R̂(ρ̂(k))

]
(2.53)

in which an initial ρ̂(0) is asymptotically transformed towards the maximum-
likelihood estimator ρ̂0 so that the likelihood monotonically increases. Each step
of the iteration is normalized to unity trace by N . We call this reconstruction
approach the MaxLik algorithm, short for maximum likelihood.

2.5.1 Tomography from homodyne data

We now consider the special case that the data set {fj} is from a series of
homodyne measurements of a single mode quantum state. We imagine our
dataset as consisting of a total of Nf quadrature values, corresponding to the LO
having been locked at di�erent phase angles, while Nθ quadrature values where
recorded at each angle. Since the eigenstates of the homodyne measurement,
which are the quadratures states |qθ〉, are continuous valued, the set {|qθ〉} has to
be binned for the probability prθ to be �nite. We therefore de�ne the probability
of observing the quadrature variable q̂θ within a bin spanning ]ql; ql+1[ as

prθ,l =

∫ ql+1

ql

prθ(q) dq =

∫ ql+1

ql

〈qθ| ρ̂ |qθ〉 dq = Tr
[
Π̂θ,lρ̂

]
(2.54)

with Π̂θ,l =
∫ ql+1

ql
|qθ〉 〈qθ| dq being the projection operator for the lth bin at

the phase θ. The integration is across the bin width dq. We then denote the
number of observations in the lth bin as Nθ,l so that Nθ =

∑
j Nθ,l. As we are

now using two indices θ and j to index our dataset {fθ,j} we can modify eq.
2.52 to re�ect it

R̂(ρ̂) =
∑

θ

Nθ
Nf

∑

l

fθ,l
prθ,l

Π̂θ,l (2.55)

Here
∑
θ is the sum over the LO angles and the factor Nθ/Nf ensures that the

contribution to the sum from each angle is correctly weighted if Nθ is not equal
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for all angles. We also note that the bins have to cover the entire range of quadra-
ture values, so that we ful�l the completeness requirements of

∑
l prθ,l = 1 and∑

l Π̂θ,l = 1̂, but as we will see in the section below, this is of course not feasible
in a real world implementation of the algorithm. The derivation here only con-
sidered a single mode state, but it can readily be extended to multi-mode states,
though the measurement data requires increases exponentialy with the number
of modes the states occupies. Newer methods relying on neural Networks have
therefore been developed for circumvent this di�culty [50]. Using the MakLik
algorithm we reconstruct the density matrix, but to only observe Wigner nega-
tivity data obtain from photon-number-resolving measurements have been used
to directly reconstruct the Wigner Function [51].

Loss compensated reconstruction

One of the advantages of this implementation of the MaxLik algorithm is the
possibility of directly including and compensating for any detection ine�ciencies
in the reconstruction procedure. This is done by exchanging the projection
operator Π̂θ,l with the POVM [52]

Êθ,l =
∑

m,n,k

√
Bm+k
m (η)Bn+k

n (η)

∫ ql+1

ql

〈m|qθ〉 〈qθ|n〉 dq |n+ k〉 〈m+ k| (2.56)

which corresponds to measuring with a detector of η e�ciency. The MaxLik
algorithm will then directly reconstruct a state, where the loss from the detection
have been compensated. For m and n the summation is from 0 to the eventual
truncation of the photon number state space (explained below), and for k its
from 0 to largest of m or n.

Uncertainty of MaxLik reconstruction

To estimate the uncertainty of the MaxLik reconstruction process we will use
the bootstrap method. Here the density matrix reconstructed from experimental
data is used to generate several sets of simulated data corresponding to having
measured that reconstructed state with homodyne detection. Using the MaxLik
algorthim on the simulated sets then provides a series of simulated density ma-
trices. From these statistical uncertainties can be derived, such as the average
distance to the original density matrix or the standard deviation of the resulting
Wigner negativity.
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2.5.2 Implementation of MaxLik

When implementing the MaxLik algorithm we choose to use the number state
basis. In it we can directly use eq. 2.5 to calculate the matrix elements of the
projection operator as

(Π̂θ,l)mn =

∫ ql+1

ql

〈m|qθ〉 〈qθ|n〉 dq (2.57)

But since the Hilbert space is in�nite dimensional, we need to choose a highest
photon number state N to include as the truncation point of our resulting N+1
dimensional space. This space of course has to be large enough so that the
state ρ̂ we are trying to reconstruct can be fully expressed, meaning that the
largest photon number component of ρ̂ should be much smaller than N. This
truncation also in�uences how large a range of quadrature values our binning
needs to cover in order for the completeness requirements to be met. Since we
already assumed that N is the largest photon number component in our space,
we need to choose the starting ql=0 and ending ql=Nb point of our binning,

such that
∫ qNb
q0
〈qθ|N〉 dq = 1 =

∑
i,l Tr

[
Π̂θ,l

]
/N , where q0 and qL is the This

is is especially important to note for small amplitude quantum states such as
PSSqV, since one could, from just observing the recorded quadrature values,
make a choice of ql=0 and ql=Nb large enough to not truncate {fθ,l}, but too
small to not truncate the largest photon number component of Π̂θ,l.
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This issue is illustrated in �g. 2.7 and 2.8 and from them we see that a sensible
choice could be N = 30 and −q0 = qNb = 10, which is indeed what we will
use for the simulated data and analysis of the experimental data presented in
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chap. 4. Using the approach outlined below we also investigate the e�ect of the
number of phase angles and the number of bins on reconstruction process. We
use the �delity and trace distance as metric and the results of this analysis is
shown in sec. A.1. The conclusion is that using a azimuthal resolution of 30o

and a bin range of 200, should suitable for a 1-PSSqV state.

Walkthrough of implementation

To see how to implement the MaxLik algorithm on experimental data collected
by homodyne detection, we start by building a simulated dataset. With the ex-
pression for an odd cat state from tab. 2.1 we generate a N = 30 (31x31) density
matrix of a state with mean photon number 2, rotate it 90◦ and subject it to
20% loss. We then generate simulated datasets of 20000 points by sampling
from the inverted cumulative distribution at 30o phase intervals. From these
datasets we build quadrature histograms by binning the data in the range −10
to 10 with 200 bins, giving a quadrature resolution of 0.1. Finally we combine
all histograms into a single vector for convenience. By combining the data to a
single vector the frequency reduces to a single subscript j and we avoid the sum
over the phase angles.

These steps are shown in �g. 2.9. The MaxLik algorithm (eq. 2.53) is then
run for 1000 iterations using eq. 2.52 and the identity matrix as ρ(0) and the
result is shown in �g. 2.10. Here we see that already after 100 runs there is
excellent agreement between the probability vector and the input data vector
fj . To check that the MaxLik algorithm really did construct our input state
we use eq. 2.11 and 2.13 to calculate the �delity and trace distance. Here we
see that around 100 steps are needed for the direct reconstruction process to
reach > 0.99 �delity to the lossy input state, while the loss compensated recon-
struction needs more than 10000 steps to reach > 0.99 �delity to the pure state.
We conclude the walktrough of our implementation of the MaxLik algorithm
by inspecting the evolution of the state during the reconstruction process. We
do this by looking at both the R operator, density matrix and corresponding
Wigner function. This is shown in �g. 2.12 and 2.13.
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Figure 2.9: Preparation of simulated data for the MaxLik algorithm.
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Chapter 3

Experimental Methods

A schematic overview of the experimental setup used for non-Gaussian state
generation is shown in �g. 3.1. The key features of the setup will be be out-
lined below while a more in depth description of the three stages is given in the
following sections. A detailed description of the setup used for the distributed
sensing project can be found in the sec. A.5 of the appendix.

Coherent laser light at the fundamental frequency ω from a master laser source
is split into a fundamental pump �eld α, to be frequency up-converted by a
second-harmonic generation (SHG) cavity, and a local oscillator (LO) �eld αlo,
to function as a phase reference for homodyne measurement. The up-converted
�eld β is then used to pump an optical parametric oscillator (OPO) cavity below
its threshold with vacuum as its input, in order to generate a squeezed vacuum
�eld by spontaneous parametric down-conversion. The squeezed vacuum �eld is
then transmitted through a very weakly re�ecting beamsplitter, in order to tap
a small portion of the �eld into a trigger channel, while the rest of the squeezed
vacuum �eld continues into a signal channel. In the trigger channel a �ltering
cavity (FC) system ensures that only the central frequency mode of the squeezed
vacuum �eld is being transmitted to a single photon counting module (SPCM).
In the signal channel the main part of the vacuum �eld is mixed with the strong
LO �eld on a balanced beamsplitter for its quadrature values to be recorded
by homodyne detection (HD). A single photon detection in the trigger channel
then heralds that a photon was subtracted from the central frequency mode of
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the squeezed vacuum �eld in the signal channel. Using the trigger signal the
quadrature values of the photon-subtracted squeezed vacuum state is recorded
by the HD and the non-Gaussian features of the state can be uncovered.

Figure 3.1: Simpli�ed overview of the experimental setup.

3.1 Squeezed resource generation

For both the non-Gaussian state transmission and distributed sensing projects
a squeezed vacuum �eld is used as the initial quantum resource. To generate
the continuous squeezed vacuum �eld we design and build a free space optical
setup. As mentioned in the chapter introduction the setup follows the conven-
tional technique of generating squeezed vacuum from spontaneous parametric
down-conversion in an OPO cavity pumped below threshold. The pump �eld
is likewise generated by second-harmonic generation in a cavity from the same
master laser �eld supplying the LO �eld, used for homodyne detection, to ensure
good phase coherence. A schematic of the setup is shown in �g. 3.2

The setup can be divided into seven key features; [1] The master laser source, [2]
�ber coupling of the local oscillator �eld, [3] beam chopping stage to implement
a sample-hold measuring scheme, [4] �ber coupling of the �lter cavity locking
beam, [5] second harmonic generation cavity, [6] Optical parametric oscillator
cavity, [7] splitting of OPO output into signal and idler beam and gain locking
of the OPO.
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Figure 3.2: Schematic overview of the setup for squeezed vacuum generation.

3.1.1 Key features of non-Gaussian state generation setup

[1] Master laser

Since the motivation for our experiments are proof-of-principle implementations
of quantum communication protocols for short distance networks we naturally
want to work in the telecom band in order to utilize existing optical �bercom-
ponents and infrastructure. We speci�cally chose to work at 1550 nm as this
wavelength in general provides the lowest loss optical �bers and components. For
our experiment we use a Erbium-doped �ber laser from NKT (KOHERAS BASIK

X15) as the main laser. The X15 model has a linewidth of < 0.1kHz, typical
phase noise below −120dB/Rad/

√
Hz at 1 Hz and up and coherence length of

10s of kilometres. We then use an erbium-doped �ber ampli�er (EDFA) from
NKT to amplify the optical power from 40mW to a maximum of 2W. The laser
light is guided by a single-mode �ber (SMF) and coupled out onto the optical
table through a �berport.

Unfortunately the output �ber of the EDFA is not polarization maintaining
(PM) and we therefore observe some small drift of the polarization of the main
laser output in range of a few Hz. This polarization drift in turn leads to drift
of the optical power as we use polarization beamsplitters (PBS) to divide the
beam to di�erent parts of the setup. To mitigate this problem we use a simple
polarization stabilizer (PS) consisting of a motorized half-wave plate (HWP),
PBS, photo-detector, ADC and PID controller. A schematic overview of the
PS can be seen in �g. 3.3. The HWP is set so that a small portion of the
main beam is tapped o� by the PBS and the optical power is monitored by the
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detector. The resulting voltage signal is digitized and used as error signal for a
digital PID controller connected to the driver of the motorized waveplate. The
feedback loop of the PS then allows us to stabilize drifts in both optical power
and polarization originating from the main laser source and to choose a locking
point resulting in a desired optical power after the PS. For reliable operation
of the PS it is important to choose the locking point so that the signal-to-noise
ratio (SNR) of the error signal is su�cient.

PID

Drv.

HWP PBS

ADC

Figure 3.3: Polariza-
tion stabilizer (PS)

A mod
D mod

flip:
ON

flip: 
OFF

AOM1

AOM2

Dual
driver

Figure 3.4: Beam chopper (BC)

[2] Local oscillator �ber coupling

Just after the PS part of the main laser �eld is tapped o� using a half-wave plate
(HWP) and polarization beamsplitter (PBS) combo. Since the beam is linearly
polarized after the PS stage, turning the HWP tuned the power splitting of the
PBS. The LO �eld is coupling to polarization maintaining (PM) single mode
�ber (SMF) through a �ber collimator at 80% e�ciency. A z-translation degree
of freedom on the collimator can be used to adjust the coupling e�ciency and
thereby tune the LO power at the homodyne station. Detuning the coupling
e�ciency slightly also increases the stability of LO power, since it becomes less
sensitive to mechanical drift. By �ber coupling the LO we also circumvent the
need to use a mode matching cavity to clean the LO mode before interference
with the signal for homodyne detection.

[3] Beam chopping

To avoid the strong beams used for phase control and cavity locking to cou-
ple through the trigger channel and into the SPCM and saturating it, we use
a "sample-hold"-scheme when running the experiment. The scheme consists
of continuously switching the control and probe beams on and o� at a �xed
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frequency and have been used extensively for heralded non-Gaussian state gen-
eration [53]. When the beams are on (sample) all phase and cavity locks are
active and the experiment is being stabilized, when the beams are o� (hold)
all the feedback controls are kept constant, while the generated state is being
measured. When using this scheme it is important to keep the hold period
short enough so that drifts of phase and cavity locks are negligible and the sam-
ple period long enough to properly restabilize the experiment before holding
it. Usually a longer sample period compared to the hold period is used. The
speci�c settings used when running the experiment are listed in sec. 3.4.3.

In the setup we use a beam chopper (BC) consisting of two acousto-optic modu-
lators to chop (turn on and o�) the beam before it is split into a probe and lock
beam (see �g. 3.4). An AOM operates by transcending an input electrical RF
signal into standing sound waves across a transparent crystal, thereby de�ecting
part of an incoming light �eld due to the acousto-optic e�ect. Depending on
the incident angle θin, the de�ected part has its frequency either increased or
decreased by the sound wave frequency, while the amplitude of the de�ected
part depends on the RF signal strength. The angle of de�ection θout is related
to the RF signal by 2Λ sin θout = mλ0/n, where Λ is the wavelength of the sound
wave, λ0 is the incident light wavelength, n is the refractive index of the crystal
material and m = 0,±1,±2, ... is the de�ection order [54]. We use AOMs from
ISOMET and drive them with a 80 MHz dual driver in an up-down con�gura-
tion. In this con�guration the beam is �rst up-shifted by 80 MHz (+1st order)
with 60% e�ciency and then down-shifted again with -80 MHz (-1st order) with
60% e�ciency. The dual driver ensured that the total frequency shift is exactly
cancelled. The driver has both an input for digital modulation (D mod), which
turns the driver on and o�, and analogue modulation (A mod), which tunes the
strength of the modulation, and even when both inputs are zero, and there is
no standing wave inside the AOM crystal, a small portion of the incident �eld
will still scatter into the 1st order mode. Using both inputs in conjunction gives
the highest possible extinction ratio, where we measure ∼ 120 dB. Before the
BC a �ip mirror allows for the BC stage to be skipped if desired.

[4] Filter cavity lock beam �ber coupling

After the BC stage part of the beam is tapped o� the be used as the locking
beam for the FC in the trigger channel. The beam is again tapped using a
HWP+PBS combo and coupled into SMF at 70% e�ciency through a graded
index (GRIN) lens. An electro-optic modulator (EOM) in the beam path before
the BC stage is driven at 28.7 MHz by the SHG lockbox, to create a phase
modulation used for Pound-Drever-Hall locking. This locking scheme is used
for both SHG, OPO and FC cavities, since all their lockboxes are synchronized.
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Further details regarding the locking schemes are given in sec. 3.4.2. The �ber
coupling e�ciency is not critical, since the FC only needs low power to lock and
so any re�ection will be minimal.

[5] SHG cavity

The frequency doubling of the fundamental 1550 nm light �eld into the second
harmonic �eld at 775 nm is done by a nonlinear crystal placed at the waist of a
tightly focused cavity mode, resonant to the fundamental �eld. The nonlinear
conversion e�ciency of the crystal is low (less than 1%/W ) and so the cavity is
used to enhance the input �eld to several watts of circulating power. As a result
up to 60% total power conversion from the fundamental to the second harmonic
�eld is realised. The cavity uses a compact bowtie con�guration with the crystal
waist between two curved mirror. The input �eld is coupled in through a 90%
re�ective mirror, while the rest are high-re�ectivity (HR) to the fundamental
�eld. All mirrors are transparent to the second harmonic �eld and so it simply
coupled out through one of the curved mirrors. Details regarding the crystal and
cavity design is given in sec. 3.1.2. The cavity is locked with the PDH locking
scheme [55] using a PZT-actuator clamped to one of the �at cavity mirrors. An
EOM in the input beam path creates a 28.7 MHz phase modulation, which is
used to derive the error signal from a photodetector signal measuring a small
part of the circulating light is leaking out through one of the high-re�ector
mirror. After the SHG cavity a HWP+PBS combo and a beamdump is used
to control the power of the pump �eld coupled into the OPO cavity, thereby
tuning the pump rate ε.

[6] OPO cavity

The parametric down-conversion of the OPO cavity is carried out by a nonlinear
crystal identical to the one used for second-harmonic generation. Here the cavity
is used to de�ne the mode of the generated �eld and is designed identical to the
SHG. The pump is coupled through the curved mirrors and dumped on the
other side of the cavity. The generated fundamental �eld is leaked out through
a 90% transmitting outcoupling mirror. The OPO is also locked using the PDH
scheme and PZT-actuated mirror, with a locking beam coupling in through a
HR mirror into the counter-propagating direction relative to the down-converted
�eld. A photodetector with a 28.7 MHz resonant ampli�cation circuit measures
the locking beam coupling out through the outcoupler mirror. The OPO lockbox
is synchronized to the SHG lockbox and so the same modulation is used. The
crystal is AR coated and has a 1.15◦ degrees angled facet to ensure that the
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locking beam does not couple to the co-propagating direction. A probe beam
is also coupled into the OPO in the co-propagating direction to serve has a
phase reference between the down-converted �eld and the local oscillator during
homodyne measurement.

[7] Idler tapping and gain locking

Finally the output �eld of the OPO is divided into two channels, signal and
trigger, by a HWP-PBS combination. We denote the beam in trigger channel as
idler and the beam in signal channel as signal. Since the OPO output �eld is lin-
early polarized, turning the HWP e�ectively tunes the splitting ratio T between
the two channels. Note that in our model we assumed the signal state to be the
transmitted part, but in the experiment we use the re�ection of the PBS as the
signal part, since it has a higher extinction ratio, leading to cleaner polarization
mode as compared to the transmitted part. From our model we know that the
optimal choice of T depends on the dark count rate, but in the lab one also has
to consider the overall stability of the setup when running the experiment and
so even if a su�ciently low dark count rate would theoretically allow a very low
tapping ratio, the time required to gather enough measurement statistics could
become longer than the stability of some parts of the setup. As a starting point
we choose to tap 3% corresponding to setting T = 0.97 in the model, since this
value has been used in previous photon subtraction experiments [40].

When the probe beam is coupled into the OPO it will be either ampli�ed or
deampli�ed by the phase sensitive parametric interaction with the pump beam
in the nonlinear crystal. The amount of ampli�cation or de ampli�cation relative
to the no pump level is called the gain and is given by

G(φp) =
cos2 φp
(1− x)2

+
sin2 φp

(1 + x)2
(3.1)

where x = ε/γ =
√
Pin/Pthr is the pump parameter and Pthr the oscillating

threshold of the OPO. This equation can be calculated from eq. 2.24 by ex-
changing |αp|eiφp with the vacuum terms. The gain is then the fraction of the
square of the steady state solution to the cavity �eld with and without the pump
�eld. The phase between the pump and probe �eld is locked by tapping o� 1%
of the signal �eld and measuring it with a photodetector. By modulating the
phase of the probe beam with a PZT-mirror, the relative phase between the
probe and pump beam can be locked, using an AC locking scheme, to either
ampli�cation φp = 0 or deampli�cation φp = π/2. Consequently this locking
angle sets the squeezing angle and so in our setup we lock to deampli�cation
resulting in amplitude squeezing. See sec. 3.4.2 for more details regarding the
locking scheme.
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3.1.2 SHG and OPO design

Here we will present a short overview of the steps and considerations involved
in designing the second-harmonic generation (SHG) and optical parametric os-
cillator (OPO) cavities used in the setup. Further details can be found in my
master thesis [56]. In essence the design process is as follows:

1. Choose crystal material and design phase matching method to facilitate
desired nonlinear process.

2. Based on crystal speci�cations design an optical cavity to enhance the
nonlinear interaction.

For both steps an essential parameter to consider is the single-pass nonlinear
conversion e�ciency Enl, which is a measure of the e�ectiveness of the power
conversion between the fundamental and harmonic �elds involved in the non-
linear process. For SHG we write P2ω = EnlP

2
ω and so we would like our design

choices during step (1) and (2) to maximize Enl. In 1968, when studying the
optimization of SHG and parametric generation (PG), Boyd and Kleinman ar-
rived at a theoretical expression for Enl in the experimentally relevant context
of focused Gaussian beams [57]:

Enl =
16π2d2

eff lcry

ε0cλ3
ωnωn2ω

e−α
′lcryhBK(σ, β, κ, ξ, µ) (3.2)

where hBK , called the BK-h factor, is the Boyd-Kleinman focussing function
containing all the experimentally tunable parameters

hBK(σ, β, κ, ξ, µ) =
eµα

′lcry

4ξ

∫ ∫ ξ(1−µ)

−ξ(1−µ)

e−κ(τ+τ ′)+iσ(τ−τ ′)−β2(τ−τ ′)2

(1 + iτ)(1− iτ ′) dτdτ ′

(3.3)
An overview of the involved parameters can be found in tab. A.4. From the
optimization of the BK-h factor (�g. 3.5) we obtain several key insights. If
negligible absorption κ = 0 is assumed then the optimal focus position is in the
middle of the crystal µ = 0 and there then exists both an optimal focus strength
(ξm = lcry/2zR) and optimal, non zero, phase mismatch (σ = zR∆k), which are
both determined solely by the crystal length. We therefore have the following
two design constraints, which are independent of non-linear process or cavity
geometry:

� The optimal focusing strength ξm = 2.837 determines the cavity design
through the optimal Rayleigh length of the resonant cavity mode zR,m =
lcry/2ξm = lcry/5.675.
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� The optimal phase mismatch σm = 0.574 determines the crystal de-
sign through the optimum wave vector mismatch ∆km = σm/zRm =
3.255/lcry.

Phase matching

The phase mismatch of non-linear process is de�ned as the wave vector mismatch
∆k = kin − kout of the �elds inside the crystal. For SHG and SPDC the
�elds are ∆kSHG = 2kω − k2ω and ∆kSPDC = k2ω − 2kω respectively, so that
∆kSHG = −∆kSPDC = 4π

λω
(nω−n2ω). This means that we will be able to use the

same crystal for both SHG and SPDC. For plane waves this mismatch should be
zero to fully utilize the crystal length, since a non zero mismatch will eventually
lead to the accumulated phase di�erence between the two �elds exceeding π
thereby causing the process to reverse and power to be transferred back to the
pump �eld. This exact length is called the coherence length lcoh = π/∆k. But
from the Boyd-Kleinman theory we know the optimal wave vector mismatch
∆km for focused Gaussian beams.
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Figure 3.5: The σ- and ξ-dependence of the BK-h factor under the assumption
that β = κ = µ = 0, so that eqn. 3.3 reduces to a single, real-valued, integral:

hBK(σ, ξ) = 1
4ξ

[∫ ξ
−ξ

cosστ+τ sinστ
1+τ2 dτ

]2
[58]

For crystal material we choose periodically poled potassium titanyl phosphate
(PPKTP) from Raicol Crystals, as their crystals had previously shown good
performance for both SHG of 775 nm pump light and SPDC into 1550 nm
squeezed light [59�61]. Here periodically poling is a method of obtaining quasi-
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phase matching (QPM) by having the nonlinearity of the crystal periodically
change sign, so that a phase grating of period Λpol is formed, e�ectively imposing
an additional momentum of G = −2π/Λpol to the phase matching condition.
In practice the alternating nonlinearity is achieved by periodically poling the
crystal with a strong electric �eld along its length, forming domains of length
Λpol/2 with every other domain �ipped. By carefully engineering the poling pe-
riod Λpol it should then be possible to ful�l the QPM condition ∆km = ∆k+G.

A downside of using QPM is that the e�ective nonlinearity deff is scaled by
a factor 2/π, while the upside is that periodically poling works for any crys-
tal direction, so that one with the largest nonlinearity d0 can be utilized. The
principle of using periodically poling to obtan QPM is best illustrated for plane
waves, where the optimal phase mismatch is 0 resulting in the mth order QPM
condition Λpol = 2mπ/∆k = mlcoh, m ∈ 1, 3, 5, .... Here the poling period
should be an odd integer number of coherence lengths. This e�ect is illustrated
in �g. 3.6.

In general both the dispersion and birefringence of the crystal will be tempera-
ture dependent, and so we need to know the exact temperature dependence of
refractive index to calculate the phase mismatch accurately. From the littera-
ture we use the formula obtained by Emanueli and Arie [62] for the temperature
dependence and the base indexes obtained by Fradkin et al. [63], Kato et al. [64]
and Fan et al. [65]. Further details and an overview of all involved parameters
can be found my thesis [56]. We plot the phase mismatch as a function of crys-
tal temperature and poling period to see if we can reach the optimal mismatch
with reasonable values. The results are shown in �g. 3.7. From �g. 3.7 we see
that we should be able to obtain optimal phase matching for a range of poling
periods and temperatures. In the end we choose to use a 16 mm crystal, where
Raicol recommends a poling period of ∼ 24.7 µm and operating temperature
of ∼ 30 − 50 oC, which appears to match well with the parameters suggested
by using the Fradkin numbers. We also note that even if the poling period
is slightly o�, we have some leeway in the temperature to reach the optimal
mismatch. The parameters suggested by using the Kato and Fan numbers are
quite far o� from the recommended parameters, so we choose to disregard them.
We conclude our crystal analysis by investigating the dependence of the BK-h
factor on di�erent parameters of the model 3.3. The results of this analysis is
shown in �g. 3.8.

Cavity geometry

From the optimization of the BK-h factor for our choice of crystal length
(lcry = 16mm), we know that we should design our SHG and OPO cavities
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Figure 3.6: Illustration of the e�ect of using periodically poling to obtain quasi

phase matching for planar waves. Calculated using E2ω ∝
∫ lcry

0
d(z)ei∆kzdz,

where d(z) is a ±d0 step function along the crystal length with Λpol as period,
emulating the periodically poled nonlinearity d0. We see that the �eld is only
e�ectively build up, when the QPM condition of Λpol = mlcoh, m ∈ 1, 3, 5, ... is
satis�ed. The upper line plot shows the linear scaling of the quasi phase matched
�eld build-up for comparison, together with the corresponding perfectly phase
matched �eld build-up using the e�ective nonlinearity deff = (2/mπ)d0. The
overlap of the curves shows that using the e�ective nonlinearity for perfect phase
matching correctly captures the e�ect of mth-order QPM.

such that the resonant mode has a waist size inside the middle of the crystal of
ω0,m =

√
λ0zR,m/πn(λ, Tm) =

√
λ016 mm/(π1.82× 5.675) = 27.7 µm. Of the

three main cavity geometries (linear, triangle, bowtie) we choose the bowtie, as
this geometry design has several key advantages for our purpose. Besides being
practically easy to design, build and work with due to the several degrees of
freedom, the main advantage is, from the perspective of OPO, that it supports
a running wave resonant mode, meaning that the two directions of propagation
inside the cavity does not interfere, and the output coupler mirror will be angled
relative to the output signal beam path. This means that we can use a counter
propagation lock beam relative to the signal beam and that any back re�ection
from signal path, such as FC lock or LO light, into the OPO will not inter-
fere with the signal �eld. This both helps to reduce the contamination of the
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Figure 3.7: Phase mismatch of type-0 SHG for three di�erent PP-
KTP crystal lengths calculated using refractive index values from literature.

∆k = ∆k
(ω)
SPDC-0

(T ) + G with ∆k
(2ω)
SHG-0

(T ) = 4π
λω

∣∣nz(λω2 , T )− nz(λω, T )
∣∣ =

∆k
(ω)
SPDC-0

(T ) and G = −2π/Λpol

squeezed light �eld in the signal path and to reduce the possibility of light being
scattered into the idler path and coupling to the SSPD. The facet of the crystal
is, for the same reason, cut at an angle of 1.15o. Further details regarding the
mechanical design can be found in my master thesis [56].

Using the cavity design approach as outline in sec. A.2.2 of the appendix with
the bowtie geometry de�nition of tab. A.3, with crystal length lcry = 16mm,
crystal refractive index n = 1.82, mirror curvature R = 50mm, cavity round-trip
length lcav = 310mm and folding angle θ = 6o, we obtain the resonant solution
shown in �g. ??. Here �xing lcav and θ lets us vary l1 as the only free parameter.
We see that with a distance of 58 mm between the curve mirrors, the resonant
mode will have the optimal waist size inside the crystal and that the low folding
angle ensures very low astigmatisme of the mode. The �nesse F = π

√
r/(1− r)

of the cavity is a similar measure of how well the cavity stores the resonating
light �eld and is related to the full-width at half-maximum (FWHM) bandwidth
as 2γ ≈ ∆ω/F . The parameters of our cavity is summarised in tab. 3.1.

3.1.3 SHG performance

For the performance of the SHG cavity the metric we consider is the total
conversion e�ciency of the fundamental �eld into the second harmonic �eld,
which will be determined by the nonlinear conversion e�ciency Enl. The input-
output power conversion is easily measured experimentally, but in order to relate
the result into the corresponding nonlinear conversion e�ciency we need to
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Figure 3.8: Dependence of the BK-h factor (eq. 3.3) on di�erent model pa-
rameters. The temperature dependence comes from the refractive index (�g.
3.7). (top-left) Temperature has to be controlled to at least within 1 oC to
maintain a stable nonlinear conversion. (bottom-left) Even a ±30% deviation
from the optimal focus, will not result in drastic reduction of the BK-h factor.
(top-right) We are not concerned with the overall wavelength dependence of
the fundamental �eld since our �ber laser is stable. (bottom-right) Phase
matching bandwidth of the down-conversion process. This will be important
when we design the frequency �ltering of the trigger channel needed to suppress
all the frequency sideband modes of the OPO output.

consider how the intra-cavity �eld is related to the input power. We start with
the simple expression for the relationships between the input, intra-cavity and
re�ected �elds [66]

Pcav
Pin

=
T1

(1− r)2

Prefl
Pin

=
1− (T1 − r)2

(1− T1)(1− r)2
(3.4)

Here T1 is the input coupler transmission, which is 0.1 for our SHG and r =
√

1− T1

√
1− L

√
1− E′nlP

(ω)
c is the total round-trip �eld amplitude attenua-

tion caused by the combination of outcoupling, linear loss L and nonlinear loss
due to the frequency conversion, where E′nl is the nonlinear conversion e�-
ciency without accounting for the absorption of second harmonic �eld in the
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Crystal

Length, lcry 16 mm
Height x width 2 mm x 1 mm
Poling period, Λpp 27.7 µm
Operating temperature, Tm ∼ 45 oC

Geometry

Crystal waist 27.7 µm
Cavity length, lcav 310 mm
Mirror curvatures, R 50 mm
Folding angle, θcav 6o

Spectral

Outcoupler, T1 10%
FSR, ∆ω 967 MHz
Bandwidth, γ 8 MHz
Finesse ∼ 60
Escape e�ciency, ηesc 0.98

Table 3.1: Design speci�cations of the SHG and OPO cavities

crystal (α′ = 0 in the model). This correction is needed since the amount of
lost fundamental �eld, relevant in the context of intra-cavity �eld attenuation,
is independent on loss of the harmonic �eld due to absorption. The absorp-
tion of the fundamental �eld can then be included in the linear loss term for
convenience. The full nonlinear conversion e�ciency is then calculated using

P
(2ω)
out = Enl(P

(ω)
c )2 with P

(ω)
c obtained numerically from eq. 3.4. The result is

shown in �g. 3.9.

3.1.4 OPO performance

From a classical perspective the OPO performance can be benchmarked by the
observed parametric gain. The measurement is straight forward; a probe is cou-
pled to the OPO and the gain at various pump powers is recorded. From this
measurement the threshold of the OPO can be determined, which is an impor-
tant parameter since it tells us what pump power to inject for a desired pump
rate ε. The results of such a measurement is shown in �g. 3.10. The threshold
is related to the nonlinear conversion e�ciency by Pthr = (T + L)2/4Enl [67]
and for the OPO we measure an escape e�ciency of ηesc = 0.97 corresponding
to an intra-cavity loss of L ≈ 0.3%. With a measured threshold of 788 mW
this should correspond to a nonlinear conversion e�ciency of approximately
0.34%/W , which is seen to agree reasonable well with our result from the SHG
performance test.

From a quantum perspective the OPO performance is benchmarked by the
amount of squeezing produced, though this in reality is a benchmark of the com-
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Figure 3.9: Plot of the measured performance of the SHG cavity. We observe
a maximum total conversion of 0.63 at 350 mW, but with a resulting low con-
version e�ciency of 0.18%. The obtained nonlinear conversion e�ciency ranges
between 0.16%/W and 0.38%/W as seen from the insert. These values are lower
than the 0.7%/W expected by Raicol and can be attributed to a combination
of misalignment of the cavity �eld and irregularities in the poling period long
the crystal. The model is calculated using eq. 3.2 with deff as the lowest and
highest value reported in literature and the linear loss estimated by measuring
the depth of the cavity resonance dip in re�ection, when the crystal temperature
is tuned outside the interaction bandwidth.

bined performance of the OPO, signal channel and homodyne detector. Since
we plan to run our experiment using the sample-hold scheme we are interested
in investigating the stability of our setup. It should of course be so stable, so
that no di�erence in the measured squeezing level is seen during the hold pe-
riod. To see this we record a sequence of 1000 individual time traces of the OPO
output locked to both squeezing and antisqueezing. We divide the long traces
into several shorter segments and compute the variance and power spectrum of
the noise relative to noise of corresponding shot noise segments. The results of
this analysis are shown in �g. 3.11.

We observe a maximum squeezing level of close to −5 dB at 1− 2MHz relative
to the vacuum level with a corresponding anti squeezing level at 7.5 − 8.5 dB.
The reduction in squeezing and antisqueezing at low frequencies can be con-
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Figure 3.10: Plot of the measured gain at di�erent pump powers. Fit of eq.
3.1 gives a threshold power of Pthr = 788 ± 1 mW. The right axis shows the
scaling of the corresponding pump parameter x =

√
P/Pthr

tributed to phase noise of the local oscillator lock, which a�ects the squeezing
level more severely than the antisqueezing as seen be the identical squeezing at
1 and 2 MHz. During the measurement the coupling e�ciency of the signal into
SMF was 89%, while the other measurement parameters were estimated to be
0.53 pump rate, total homodyne e�ciency 0.90, escape e�ciency 0.97, gain lock
tapping 0.99 which gives a total e�ciency of 77%. Taking the phase noise into
account the best �t to the power spectrum are obtained using γ = 2π×6.9 MHz,
x = 0.53, η = 0.78 and φac = 9o phase noise during the squeezing measurement.
Though the bandwidth appears to be somewhat smaller than expected by the
OPO design, we often get get a lower bandwidth when �tting using a phase
noise term, since they a�ect the shape of the squeezing trace in a similar fash-
ion and with the large phase noise used by the �tting routine the uncertainty
is large. Our two main take away conclusions is that the squeezing level seems
to stay constant during the hold time and that our measurement su�ers from
large phase noise of the LO lock at frequencies below 2 MHz, which will have
to be improved.

The setup for squeezing light generation also contains an additional identical
OPO (not shown here), and has been used for the deterministic generation of a
2-dimensional cluster state [68] and later the deterministic implementation of a
multi-mode gate set on it [69].
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Figure 3.11: Typical squeezing levels using �ber coupled homodyne detector
and sample-hold measurement scheme.

3.2 Trigger channel

As we know from our model and plan of the experimental layout the job of the
trigger channel is to �lter away all the undesired longitudinal modes of the OPO,
so that only photons subtracted from the central frequency mode are coupled
to the single photon detection module (SPDM) for heralding. A conceptual
schematic of the trigger channel is shown in �g.3.12. Here a linear �ltering
cavity (FC) and a dense wavelength division multiplexing (DWDM) �lter work
in combination to provide the frequency �ltering necessary for suppression of
the higher and lower order longitudinal OPO modes, while a superconducting
single photon detector plus ampli�er electronics work as the SPCM, converting
the subtracted photons into electrical trigger signals for heralding. After the FC
a free space AOM is used to protect the SSPD from saturation when running
the experiment with the sample-hold scheme, by blocking the strong idler beam
during the sample period. The refracted part of the idler beam, containing only
single photons from the central frequency mode of the OPO, is coupled into
SMF through a gradient-index (GRIN) lens and after passing the DWDM �lter
leaves the optical table and is guided through 10 m of �ber into the SSPD in an
adjacent technical room. Here the inherent broadband detection of the SSPD
makes the +80 MHz frequency shift of the refracted beam by the AOM irrele-
vant.
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The FC locking beam is turned to an orthogonal linear polarization, as com-
pared to the idler beam, and coupled into the FC from the backside using a
PBS, while a second PBS on the front side couples the locking beam out again
and into a locking detector. The FC is locked using the PDH scheme (see sec.
?? for details). An isolator (ISO) ensures that neither probe light re�ected on
the FC or light from the FC locking beam couples back into the OPO.

FC

FC
lock

FC 
lock

ISO

DWDM

SPCM
Trigger

Idler

10m

FC lockbox
HWP

AOM3

Figure 3.12: Schematic overview of trigger channel

3.2.1 Frequency �ltering

From �g. 3.8(bottom-right) we expect the bandwidth of the SPDC process for
a 16 mm crystal to be 5 − 6 nm corresponding to 622 − 746 GHz and with a
designed OPO FSR of around 1 GHz it is clear that many hundreds of OPO
modes will be available for the SPDC process to populate. Though in reality
the number of available modes will be smaller since both the upper and lower
mode pair will have to be simultaneously resonant within the cavity. The exact
number of available modes can in principle be calculated by considering that the
dispersion of the crystal will cause the relative resonance frequencies the upper
and lower modes to be detuned. As a result, when the detuning becomes larger
than the OPO bandwidth, the SPDC process will be suppressed, due to the
energy conservation requiring equal spacing of the modes from the fundamental
frequency. But as we shall see from the use of the DWDM �lter, we need not
take this e�ect into account.

From our model we know that the bandwidth of our trigger �lter should ideally
be several times larger than the OPO bandwidth, but it should of course not be
comparable to the FSR of the OPO. In reality it is quite di�cult to construct
a single frequency �lter which has both a narrow bandwidth and a very large if
not in�nite FSR. To this end we choose to employ two �lters; �rstly a narrow
(2.2 mm) linear �lter cavity with a bandwidth of γFC ≈ 24 2πMHz and FSR of
∆ωFC ≈ 75 2πGHz, secondly we take advantage of the SSPD being �ber cou-
pled and use a standard 50 GHz DWDM C-band �lter centred at 1550 nm as a
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passive bandpass �lter. An overview of the two �lter spectra relative the OPO
and full SPDC is presented in �g. 3.13, where it is clear from the lower plot
that the bandpass spectrum of the DWDM allows us to disregard the reduced
SPDC spectrum as discussed above.

1.0 0.5 0.0 0.5 1.0

Idler channel - filtering spectrum
OPO
FC

100 75 50 25 0 25 50 75 100

OPO
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DWDM

1500 1000 500 0 500 1000 1500
Frequncy shift from fundamental [GHz]
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Figure 3.13: Overview of the combined �ltering of the �lter cavity (FC)
and dense wavelength division multiplexing (DWDM) bandpass �lter. OPO
bandwith is γOPO ≈ 8 2πMHz with FSR ∆ωOPO ≈ 1 2πGHz, FC band-
with is γFC ≈ 24 2πMHz with FSR ∆ωFC ≈ 75 2πGHz, DWDM bandwith
is γ ≈ 50 2πGHz and the full SPDC bandwidth is ∆ωSPDC ≈ 685 2πGHz.

We measure a typical transmission e�ciency of the FC of ∼ 80% followed by
a typical e�ciency of the remaining channel (AOM, �ber coupling, DWDM)
measured at the �ber output before the SSPD of ∼ 40%. We therefore estimate
the total optical transmission e�ciency of the trigger channel to be ∼ 30%.
Together with an estimated SSPD e�ciency of 60% the total trigger channel
e�ciency is then ηt ≈ 20%. More e�ort could be made to increase this e�ciency,
but from our model, with the low dark counts we are able to achieve, we expect
negligible improvements.
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Filter cavity geometry

The �lter cavity is build around a Thorlabs cage system and uses two identical
500 mm curved 1/4”-inch mirrors with T = 0.2% transmission coatings. One
mirror is mounted together with a ring PZT-actuator in a specially designed
holder. The mirror sits in a small aluminium socket that is clamped to the
PZT-actuator by a preload mechanism. The aluminium socket allows the mirror
to sit extended forward, so that the cavity distance in principle can be made
arbitrarily short. For our measurements we set it to 2.2 mm and the cavity
�nesse is ∼ 1600. The holder is mounted in a typical tip-tilt stage, while the
second mirror is kept �xed without any degrees of freedom. The waist size is
calculated using the cavity design guide outlined in sec. A.2.2 of the appendix
and a plot of the design consideration is seen in �g. A.6. Further details
regarding the cavity design can be found in my thesis [56].

3.2.2 Superconducting single photon detector

To detect the photons subtracted from the squeezed vacuum signal, we employ
a �ber-coupled superconducting single photon detector (SSPD) based on a nio-
bium titanium nitride (NbTiN) nanowire cavity stack developed at the National
Institute of Information and Communications Technology in Kobe, Japan [70].
The stack consists of a few nm thick meandering NbTiN nanowire sandwiched
between a layer of SiO, with a ∼ 100 nm thick Ag mirror on top, and a layer
of SiO2 towards the Si substrate, forming a doubled sided cavity around the
nanowire to increase the absorption probability [71]. The �lling factor of the
nanowire have been optimized for high system detection e�ciency (SDE) and
high counting rate simultaneously for 1550 nm [72]. The reported speci�cations
of the sensor are a SDE of ∼ 70%, with a maximum timing jitter of 68 ps and
dark count rate of 100 Hz. The sensor package is housed in a Gi�ord-McMahon
(GM) cryocooler [73], which is pumped to a vacuum pressure of ∼ 5× 10−5 Pa
and cooled to ∼ 2 K by a helium compressor.

An overview the SSPD and readout electronics is shown in �g. 3.14. A Battery
powered voltage source supplies a steady bias current to the SSPD nanowire
through the dc arm of a bias tee. The nanowire is cooled below its critical
temperature and the the voltage is set so that the bias current is just below the
critical current. An absorption of a photon will then create a small resistive
hotspot at the absorption location, causing the current density to rapidly in-
crease in the vicinity of the hotspot end eventually exceeding the critical density.
This causes a resistive barrier to form across the nanowire and, aided by joule
heating from the bias current, eventually blocking the current �ow. The drop
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in current is readout as a voltage pulse through the AC arm of the bias tee and
ampli�ed by a low noise ampli�er. Even after the ampli�er the voltage pulse is
quite small and short and we therefore use a discriminator to convert the pulse
to a signal more suitable signal for triggering an oscilloscope. The shape of the
pulses after the ampli�er and discriminator can be seen in �g. 3.15.

Disc.
Trigger

50 Ω

100k Ω

Bias T Low noise 
amp

2K cryo.Idler

SSPD

Figure 3.14: Single photon counting mod-
ule (SPCM) consisting of a superconducting
single photon detector (SSPD) and readout
electronics

Figure 3.15: Electrical trig-
ger signal after low noise ampli-
�er (Amp.) and discriminator
(Disc.). Overlay of 200 traces
is shown.

For every input pulse the discriminator can output a pulse on two di�erent chan-
nels at the same time and so we use one channel as the trigger for an oscilloscope
during data collection and the other we connect to a 8-channel Counter/Timer
Device (PCI 6602 form National Instruments) installed on a lab computer. From
a homemade LabView program we then monitor the count rate and collect count
statistics when running an experiment. The program is especially useful since
we also input the hold signal and program one counter to use it as a gate, thus
allowing us to monitor both the total count rate and the equivalent hold period
count rate. It is this count rate we use to estimate the modal purity.

During the measurements for the cat state transmission projected presented
in cha. 4 we observed typical SDEs of ∼ 60% and could maintain count rates
of up to a few million Hz before latching with dark count rates between 10 and
50 Hz. Here dark count rate, 〈∆n2

dc〉, is considered to be the observed count
rate when the SSPD �ber is disconnected from the trigger channel, not to be
confused with the fake count rate, 〈∆n2

fake〉, which we consider as the observed
count rate when running the experiment and blocking the OPO pump beam.
Both rates are counted during the hold period, as mentioned above. This rate
therefore includes the dark count rate and the counts originating from all other
sources than subtracted signal photons. As we use LED lights in the laboratory
very little ambient light couples to the SSPD and the fake count rate is there-
fore mainly caused by scattered light probe and lock light. To minimize the fake
counts we installed several sections of blackout hardboard to wall o� the parts
of the setup containing the strongest beams, as well as encapsulating the SSPD
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�ber coupling setup.

3.3 Signal channel

As motivated in the introduction the aim of the non-Gaussian project is to
successfully transmit a CV non-Gaussian quantum state between two physically
distant locations. A successful transmission is benchmarked by the survival of
non-Gaussianity through the veri�cation of a measurable Wigner negativity at
the receiver side. The desired setup for the signal channel is therefore quite
straight forward: after a small part of the beam is tapped o� for the trigger
channel the signal beam is coupled into SMF through an anti re�ective (AR)
coated graded index (GRIN) lens. The non-Gaussian signal state is then trans-
mitted through a �ber channel, to the receiver location where it is characterized
by quantum tomography. The tomography is performed on quadrature statis-
tics collected by measuring the state with homodyne detection at various locked
local oscillator (LO) angles. To perform the state characterization at the re-
ceiver location a portable �ber coupled homodyne measurement station (HMS)
with all the necessary components for locking, triggering and data collection is
used. The only signals needed to be transmitted between the sender (lab A) and
receiver location are then the signal state, LO and trigger signals. An overview
the signal channel is shown in �g. 3.16 and a description of the three di�erent
con�gurations used for �ber network channel is given in sec. 3.3.2.

To transmit the electrical SSPD trigger signals a electrical-to-�beroptic (E → O)
converter from Highland Technology is used to convert the signals to 1310 nm
optical TTL pulses, which are then combined with the LO on a 1310/1550 wave-
length division multiplexer (WDM) and coupled into a separate SMF channel
adjacent to the signal channel. On the HMS an identical WDM and correspond-
ing �beroptic-to-electrical (O → E) converter �rst splits the LO and trigger
signals and then converts the trigger pulses back to electrical TTL signals. The
E → O conversion happens with a < 250 ps risetime, < 12 ps typical RMS link
jitter and total propagation delay of 1.2 ns, while the O → E happens with a
< 750 ps risetime, < 12 ps typical RMS link jitter and total propagation delay
of < 10 ns. The low jitter time is especially important to ensure that the photon
subtracted part of the homodyne photocurrent arrives at the digital sampling
oscilloscope (DSO) a �xed delay relative to the arrival of a SSPD trigger click. If
the trigger delay varies, the photon subtracted part will not appear at the exact
same point in time of the recorded time traces. As a result the temporal mode
function can not be placed correctly for all time traces, leading to additional
background squeezed vacuum being included ultimately reducing the observable
Wigner negativity.
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Figure 3.16: Schematic overview of the signal channel

3.3.1 Homodyne measurement station

The HMS relies on a SMF �ber based homodyne measurement setup. Here both
signal and LO beams are SMF coupled and interfered on a �ber 50:50 beam-
splitter (BS) before directly outcoupling onto the homodyne detector diodes
through GRIN lenses. The main advantage of the �ber setup is that almost
perfect mode overlap between the signal and LO is inherently guaranteed by the
�ber BS and with carefully taped SMF �bers the polarization is well maintained
leading to close to unity homodyne visibility being achievable using manual po-
larization controller. In order to scan the phase of the LO we use a homemade
�ber stretcher, which is based on a 3D printed, Pacman like, structure with a
PZT-actuator stack placed in the mouth of the Pacman and the �ber tightly
wound around the circumference (see �g. A.12). Applying a voltage to the
PZT-actuator then pushes the structure apart stretching the �ber, leading to
a phase change at the �ber output and by making the radius of the Pacman
larger than the critical bending angle of the �ber, the �ber stretcher introduces
no additional losses, besides the unavoidable 0.18 dB/km propagation loss of
SMF-28 �ber. To implement the arbitrary phase lock, AC/DC lock for short,
two �ber stretchers are used: one for modulating the LO phase and one for
scanning and locking. A thorough description of the AC/DC locking scheme is
given in sec. 3.4.2.

The HMS consists of a two-level 300× 450 mm optical breadboard tower hous-
ing the homodyne detector, outcoupling GRIN lenses, 50:50 coupler, manual
polarization controller and two �ber stretchers on the upper level together with
the WDM, O → E converter and Red Pitaya board on the lower level. The
breadboard tower is placed on top a rolling cart, with the required electrical
components on a lower shelve. These are dual lab power supplies to provide
the ±9 V and ±19 V required to power the homodyne detector and a pream-
pli�er. The preampli�er together with a high-voltage ampli�er (HVA) ampli�es
the 0− 2 V output of the Red Pitaya to the 0− 150 V range permitted to drive
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the �ber stretcher PZT-actuators. A function generator (FG), identical to the
FG in lab A, is used to generate a similar sample-hold signal in lab B. The two
FGs are not synchronized, but by carefully detuning the frequency of the lab B
FG and adjusting the phase, the two sample-hold signals can be overlapped and
drift by only ∼ 10 µs over 2 mins. A network router to connect a laptop to the
Red Pitaya and DSO to control the AC/DC lock and program the measurement
procedure.

Figure 3.17: Photographs of the HMS placed in lab C (bld. 340)

We know from the theoretical description of homodyne detection (sec. 2.4) that
the measurement hinges on the precise cancellation of the classical laser noise of
the local oscillator. For a free-space homodyne setup this cancellation is usually
achieved by carefully tuning the splitting ratio of the interference beamsplitter,
but tuning the coupling ratio of a �xed 50:50 �ber coupler is not possible and so
any asymmetry in the splitting ratio has to be balanced by attenuation of one
of the �ber arms after the coupler. To this end we use a homemade 3D printed
�ber attenuator, which consists of a small solid structure with a channel for the
�ber, raising it a few mm above the table. The channel has a short gap with an
arm piece reaching over. The end of the arm piece is �xed to the table with an
M6 screw and by turning the screw the arm piece is lowered, thereby pushing
down on the �ber across the gap inducing bending loss. The amount of loss is
then controlled by the screw (see �g. A.13).

To reduce optical losses the outcoupling GRIN lenses are spliced to the 50:50
coupler and from the LO side we measure a 48.1% and 47.8% transmission
e�ciency out of the diodes. The exact splitting ratio is also very slightly polar-
ization dependent and due to the high gain of the HD this leads to a measurable
change in DC output when adjusting the LO polarization during HD visibility
optimization. And since the polarization is changed whenever a �ber mating
sleeve has been disconnected, we routinely have to reoptimize the visibility and
rebalance the HD by adjusting the attenuation. From sec. 2.4.1 we know that
for small asymmetry in the splitting ratio the attenuation required to balance
the HD leads to a loss corresponding to the asymmetry ratio. We therefore
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estimate the typical optical loss of the HD, before detection, to be 5% and a
99% visibility.

Homodyne detector

Besides the direct noise cancellation other important performance metrics of
a homodyne detector (HD) is the quantum e�ciency of the diodes, detection
bandwidth and noise clearance of the electrical circuit. The detection e�ciency
should be as close to unity as possible to not impart additional loss during
the detection process and the bandwidth should be large enough to detect all
frequency components of the measured �eld. Finally the detector circuit should
handle a high enough LO power to provide a �at frequency response across the
relevant bandwidth range at a noise level far above the electrical circuit dark
noise. To meet these requirements we use high quantum e�ciency AR coated
100 µm diodes optimized for 1550 nm at a 10− 15o angle of incident. In order
for the photocurrents to be correctly subtracted, the diodes are placed close to
each other on opposite sides of the HD PCB. A simpli�ed schematic of the HD
circuit is shown in �g. 3.21(a). Here the di�erence photocurrent is converted to
a voltage signal by a trans-impedance ampli�er stage and the signal split into
a DC and 100 Hz highpass �ltered AC output. To con�rm that our detector
is correctly shotnoise limited across its bandwidth, we measure the balanced
noise for di�erent LO powers check that the noise power scales linearly with
the optical power. From the measurements we con�rm our designed bandwidth
of 30 MHz and �nd that we have 20 dBm of clearance between the electronic
noise and shot noise when using a LO power of 1 mW. By ensuring proper
focus of the light into the HD diode and comparing the optical input power to
the output voltage we estimate a ηq ≈ 97% quantum e�ciency of the full HD
circuit. To total e�ciency of the homodyne measurement is therefore estimate
to be ηhd = 0.95 · 0.992 · 0.97 ≈ 0.90.

3.3.2 Measurement con�gurations

Here we give a description of the three di�erent network con�gurations and the
accompanying modi�cations of the HMS used for each.
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Con�guration (1)

Here the network channel is a ∼ 1 m SMF �ber placed on the same table as
the non-Gaussian state generation setup. We measure the state using only the
detector part of the HMS and place the two-level optical breadboard tower on
the optical table on pedestals. We further bypass the electrical-to-optical and
optical-to-electrical conversion of the trigger signals and feed them directly to
the DSO and reuse the 50 kHz gain modulation of the probe beam to generate
the AC locking signal for the AC/DC LO lock. Never leaving the optical table
results in the setup having excellent long term phase stability, as seen from the
squeezing measurements in �g 3.11.

Con�guration (2)

Here the network channel is a 60 m SMF connecting lab A to an adjacent lab B.
The �ber is pulled through a ventilation tube and into a basement corridor and
placed in a standard cable try running along the corridor ceiling. Inside lab A
and B the �ber is carefully taped to reduce phase noise, while no special precau-
tions are taken to secure the �ber along the corridor. A map of the basement
corridor and the �ber connection can be seen in �g. A.7 of the appendix. Here we
measure a channel e�ciency of ∼ 95%. The less than unity e�ciency is mainly
caused by the APC/APC couplings in mating sleeves. In general we �nd that
the e�ciency for SMF APC/APC connections can very between 100%and90%,
that there can be di�erence between mating sleeves, that disconnecting and re-
connecting the same �ber from the same sleeve does not guarantee that same
e�ciency and that some �bers, due to imperfections of the �ber tip, never can
be coupled with high e�ciency using mating sleeves. The precise estimation of
optical e�ciency therefore becomes di�cult when many connection are involved.

For this con�guration we �rst used a homemade �ber modulator to modulate
the phase at 20 kHz, which provided a clear AC locking signal in lab B. The
modulator consisted of stripping the ends of two �ber pigtails and splicing them
together without adding a protective sleeve leaving roughly 2 cm of exposed
�ber. The bare �ber was then glued to the feet of a U-shaped piece of 3D
printed material with a PZT-actuator element squeezing in between the feet be-
low the �ber (see �g. A.13. Modulating the PZT-actuator length then pushed
the feet apart thereby stretching the �ber and inducing a phase shift.

While the design does work, the exposed �ber is extremely delicate and in our
experience both samples we assembled broke within a few hours of use. Instead
to chose to use a second �ber stretcher, from which we found a resonance at
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14 kHz to give the best result. We also tried to modulate and lock with a single
�ber stretcher, but due to the scanning of the PZT-actuator during calibration
the AC error signal would be uneven across the scan, thereby prohibiting correct
calibration.

Con�guration (3)

Here the network channel consists of a 70 m SMF connecting lab A to a node
(B307) of the DTU campus �ber network. From there a connection is patched
through two other nodes into a separate building (340) on campus. We denote
the technical room in which the B340 node is placed as lab C and use a ∼ 3 m
SMF �ber made from two spliced SC and APC pigtails to couple out of the B340
node and into the HMS. An overview of the entire channel is sketched in �g. 3.18
and a map of the campus network can be seen in �g. A.8. Including the initial
70 m �ber we estimate the total channel length to be ∼ 400 m. The patched
connection in which the LO and trigger signals are transmitted consists of 10
years old �bers and we measure a total transmission e�ciency, from incoupling
in lab A to outcoupling in lab C (before the HMS), of ∼ 75%. The connection
in which the Signal is transmitted uses newer �bers and here we measure an
e�ciency of ∼ 90%. We also �nd that cleaning the SC/SC couplings at each
network node greatly improved the e�ciency and so this should be done for any
network channel transmitting sensitive quantum states.

To improve the AC locking signal we modify the HMS by removing the sec-
ond �ber stretcher and instead use a �ber coupled EOM to generate the phase
modulation. But since the EOM uses PM �ber we have to use a �ber polariza-
tion controller and polariser before the EOM in order to rotate the polarization
into the PM �ber and maximize the transmission e�ciency. With the polariza-
tion controller we get a transmission e�ciency of the LO through the polariser
and EOM of ∼ 60%.
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3.4 Experimental control

An integral challenge to all quantum optics experiments is the stabilization of
optical phases and cavity lengths. In general, even on a damped optical ta-
ble and with sturdy optics mounts or taped �bers the path lengths of di�erent
beams are always drifting slightly causing the relative phases to �uctuate. Ac-
tive feedback is therefore needed to lock the relative phase between interfering
beams. The same is true for optical cavities, where it is typically the case the
master laser frequency is much more stable than the cavity length (resonance
frequency). For a beam to couple resonantly with a cavity, the optical length of
the cavity therefore has to be locked to the resonant length de�ned by the laser
frequency.

The general scheme for such locks is a close loop control system, where the
interference (or cavity resonance) signal is monitored and used to derive an
error signal that is fed to an proportional-integral-derivative (PID) controller
which drives the physical feedback mechanism. An excellent introduction to
practical feedback control for experimentalist is [74].

3.4.1 Red Pitaya and PyRPL

In our experimental setup all such locks are handled by Red Pitaya (RP) �eld-
programmable gate array (FPGA) boards running the PyRPL (Python Red
Pitaya Lockbox) software package [75]. Besides the FPGA chip, the RP is
equipped with 2 x analog input and output SMA ports, sampled at 125 MHz us-
ing 14 bits. The PyRPL package provides high-level functions and user-interface
in python together with a custom FPGA design in Verilog, which implements
the various digital signal processing (DSP) modules used for the feedback con-
trol systems - lockboxes for short. These modules include a two-channel oscil-
loscope, two arbitrary function generator, four PID controllers with four-order
�lters, three demodulation (IQ) modules, an in�nite impulse response (IIR) �l-
ter and a network and spectrum analyser. On a lab computer we therefore have
a programmable interface with real-time display and tuneability of all our locks
and lockbox parameters. A photograph of the RP setup can be seen in �g A.10
of the appendix.
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Figure 3.19: Overview of the various cavity and phase lockboxes implemented
in PyRPL. The cavity lockbox is used to lock the SHG and OPO cavity, while
the AC/DC lockbox is used to lock the LO phase for homodyne measurement.

3.4.2 Cavity and phase locks

SHG and OPO cavity locking

The lockbox used for the SHG and OPO cavity locks is shown in �g. 3.19(a).
In the SHG lockbox the demodulation module outputs a 27.8 MHz sine wave,
which is ampli�ed and fed to the EOM in the beginning of the setup (�g. 3.1 to
generate a phase modulation sideband on the main laser beam before it is split
up into SHG pump, OPO lock and FC lock beams. The modulation serves as
the phase reference for the Pound-Drever-Hall (PDH) locking scheme [55]. Here
a small portion of the circulating cavity light is leaked out through a mirror
and monitored by a photodetector connected to the input of a RP. The signal
cannot be used directly, as the resonance peak results in equal values on either
side of the resonance. The signal is instead demodulated in the IQ module
and the resulting error signal fed to a PID module. The phase of the demodu-
lation is set manually by visibly optimizing the error signal on the PyRPL scope.

Using the python interface a locking procedure is programmed; �rst the locking
point is set at around 20% of the error signal peak height to catch the lock
when it is engaged. A threshold value is set, so that when the input signal is
above, the locking point is changed to 0 locking the cavity length on resonance.
The cavity length is changed by a PZT-actuator, clamped to one of the cavity
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mirrors, connected to the PID output through a HVA. In practice we do not
use the di�erential (D) parameter of the PID module and optimize the P and I
values by hand.

The exact same locking scheme is used to lock the OPO cavity. But by syn-
chronizing the clock of the SHG and OPO RP boards, the OPO RP does not
need to output any modulation signal to the EOM and can reuse the 27.8 MHz
phase modulation to generate the error signal.

FC locking

The lockbox used for the FC lock is shown in �g. 3.19(b). The FC RP is also
synchronized to the SHG RP, so that the same 27.8 MHz phase modulation
signal can be used to lock the FC using the PDH scheme. But due to the
high �nesse of the FC compared to the SHG and OPO cavities and the �nite
resolution of the RP DAC a more elaborate locking procedure is used. An error
signal is generated in the usual fashion via demodulation, but is then fed to two
di�erent PID modules whose output are connected to an external adder box.
Before adding the two signals, one arm of the adder is ampli�ed with a low gain,
while the other arm is ampli�ed with a high gain. The idea is to use the �ne
(low gain) PID to handle small high frequency �uctuations and the course (high
gain) PID to handle the slower and larger drifts as well as scanning the cavity
length. The locking procedure is as follow:

1. The �ne PID is inactive and the course PID is set to scan the cavity length
slowly (low P and I). A python timer in PyRPL is set to check the input
signal value every 10 ms.

2. Once the value is at 50% of the resonance peak height the �ne PID is and
the course P, I, lockpoint and �lter settings are changed.

3. If the lock is lost (input signal goes low) the locking procedure is immedi-
ately repeated.

A 10 Hz LPF of the course arm is also included in the adder box, which can
be activated by the RP. But in practice we found that switching the �lter on
caused the lock to break, due to a slight change in phase delay of the course arm
relative to the �ne. And in general we could maintain a stable lock by tuning
the PID parameters and relying on the digital LPF of course arm.
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Gain phase locking

The lockbox used for the gain lock is shown in �g. 3.19(c). It implements a AC-
locking scheme, similar to the PDH scheme used for cavity locking. As described
in sec. 3.1.1 a PZT-actuated mirror in the probe path is used to modulate the
probe phase at fp = 50 kHz before the OPO. After the OPO the probe is mea-
sured by tapping 1% o� from the signal path. Through the parametric gain the
input signal at lockbox is then proportional to cos(φp + φq +M cos(2πfpt)),
where φq is the global phase of the down-converted �eld equal to the pump
phase, φp is the global probe beam phase and M is the modulation depth,
which is assumed small compared to the amplitude of the interference fringe.
Disregarding the high frequency part we call this signal the DC signal, since
it is obtained directly without any modulation. By demodulation (convoluting
with cos(2πfp) and low-pass �ltering) a signal proportional to − sin(φq − φp)
can be obtained. We call this signal the AC signal and use it as the error signal,
since it both centred around 0 due to the LPF and is shifted 90o relative to the
DC signal. Locking the error signal to 0 then corresponds to locking at the top
(ampli�cation) or bottom (de-ampli�cation) of the interference signal between
the probe and pump beam. Changing between the two locking regimes is simply
done by changing the sign of P and I in PyRPL. The only practical di�erence
to the cavity locks is here then, that the both the modulation and feedback is
performed by the same PZT-actuated mirror.

To allow for the PZT-actuated mirror to operate at high frequencies a design
based on [76] was used. Here a quarter inch mirror and single-disk (low capaci-
tance) PZT is glued to a tapered brass base with lead �lling. The small mirror
and tapered interface e�ectively reduces low frequency drumhead modes, while
the lead �lling dampens sharp longitudinal resonance modes of the structure.

LO phase locking

The lockbox used for the LO lock is shown in �g. 3.19(c). It implements a
AC/DC-locking scheme, where a DC and AC error signal is combined to form
a new error signal, shifted by an arbitrary phase in between the two. Since the
gain lock sets the relative phase between the pump and probe beam φ = φq−φp,
locking the phase between the probe beam and LO φp−φlo e�ectively locks the
relative phase between the LO and squeezed vacuum signal �eld.

From the DC output of the homodyne detector both a DC and AC error signal
is derived and fed to individual PID modules. The AC signal is obtained by
modulating the LO phase with a �ber stretcher at flo = 14 KHz and demodu-
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lating. In both PID modules the I and D values are set to 0 and the P value is
used to tune the amplitude of the error signal. By modifying the FPGA code,
the output of the PID modules are hardcoded to be summed and used as input
to a third PID module. The PID �lters should be chosen so that the DC signal
is a clean cosine and the AC signal a clean sine. By setting the lockpoint of the
DC PID any detector o�set can be compensated and by tuning the quadrature
factor applied in the IQ module after the demodulation the amplitude of the
AC signal can be scaled to the DC signal amplitude.

Once the DC and AC error signals have been properly calibrated, setting Pdc =
sin(θ) and Pac = cos(θ) leads to the input signal of the third PID being a sine
shifted by θ relative to the AC signal. Thus setting θ = 0 leads to pure AC lock-
ing corresponding to locking to the squeezed quadrature, while θ = 90o leads to
pure DC locking corresponding to locking to the anti-squeezing quadrature. The
advantage of this method is that it can be implemented using a single RP board,
while the downside is that it requires precise calibration of the error signals to
lock to the correct intermediate phase. If either the pump, probe or LO power
is changed the locking parameters also have to be reoptimized. Fortunately,
thanks to PyRPL, most of the calibration can be automatized.

3.4.3 Sample-hold scheme

When running the experiment we use a sample-hold scheme, where �rst all lock-
ing beams and stabilization feedbacks are active during a sample period and then
turned o� and held constant during a hold period, where measurement data is
collected. When running the non-Gaussian experiment we use a sample-hold
period of 10 ms, where the locking beams are on for 7 ms, followed by a 0.3 ms
dead time before AOM3, in the trigger channel blocking the SSPD, is opened
for 2.5 ms and data is collected followed by another 0.2 ms dead time. The
scheme is outlined in �g. 3.20.

Using PDH and AC locking schemes and an on/o� switching of the locking
beams faster than the drift and bandwidth of the locks, it is in principle not
necessary to modify the locks as they will not "see" that the error signal is
turned on and o�. But since we are using rather slow 100 Hz chopping with
a 3 ms hold time, we modify the PyRPL FPGA code in two ways to accom-
modate; (1) when the sample signal, given to the RP through the extension
connectors, is low corresponding to the lock beams being o�, the input value of
the PIDs is set to 0 so that they keep a constant output value and (2) when the
sample signal is high again there is a 1.05 ms delay until the PID output value is
updated, ensuring the error signal has time to build up and not cause a sudden
jump of the lock due to drifts during the hold period. The 1.05 ms corresponds
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to the time needed when a 1 kHz LPF of the error signal is used. The signals
used to drive the sample-hold scheme are generated by a 2-channel FG, shown
in �g. 3.21. Here channel 1 is the sample signal (100 Hz 70% duty cycle square
wave) and is given to the RPs and dual driver of the beam chopping AOMs and
channel 2 is the hold signal (100 Hz 25% duty cycle square wave) and is given
to the SSPD AOM and the DSO as the quali�ed trigger for when to trigger on
SSPD clicks.
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0 V
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Figure 3.20: The sample-hold scheme. When sample is high lock beams and
feedbacks are on, when sample is low lock beams are o� and feedbacks kept
constant. When hold is high the SSPD is open and the DSO triggered on the
SSPD clicks. The high count rate during the sample period is due to strong lock
beams scattering through the SSPD AOM, even when it is o�.
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Figure 3.21: (a) Simpli�ed homodyne detector circuit. A trans-impedance
ampli�er (TIA) stage converts the subtracted photocurrent of the two diodes
to a voltage, which is then split into a DC and AC arm. The AC arm is high-
pass �ltered at 100 Hz to remove any technical DC noise. (b) Overview of the
signals used to drive the sample-hold scheme. Channel 1 is the sample signal
and channel 2 is the hold signal. The A mod signal of the dual driver is ampli�ed
to be 0− 10 V and the gate signal of the �xed driver is left �oating.
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Chapter 4

Non-Gaussian State

Transmission

In this chapter the data collected from the non-Gaussian state transmission
project will be analysed and the obtained results compared to the theoretical
model developed in sec. 2.3.2. The data presented will the best obtained from
three di�erent experimental con�gurations. In con�guration (1) the homodyne
stage was placed in lab A on the same optical table as the squeezed light gen-
eration stage, in con�guration (2) the portable homodyne station was placed in
a separate adjacent laboratory (lab B) and in con�guration (3) the station was
placed in a completely separate building (lab C). The technical details of the
con�gurations are given in sec. 3.3.2. For all con�gurations the data sets yield-
ing the best results, namely the lowest obtained Wigner negativity, are used for
the analysis.

4.1 Experimental run and data collection

When running the experiment our aim is to produce photon subtracted squeezed
vacuum states and subsequently verify the quality of those states. To this end we
will employ quantum state tomography using data collected via homodyne mea-
surement in order to reconstruct the density matrix and Wigner function of the
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generated state. The negativity of the Wigner function will be our benchmark
for the performance of our experimental setup. In order for the tomographic
reconstruction to be successful we will need both su�cient azimuthal resolu-
tion and statistics of the measures state. Based on the analysis of sec. 2.5, we
choose to collect 5000 traces at each of six equally separated angles; 0o, 30o,
60o, 90o, 120o, 150o. Since the photon subtracted squeezed vacuum state is
π-symmetrical, only data between 0o and 180o needs to be collected. From the
model we expect the temporal mode of the photon subtracted squeezed vacuum
state to extend roughly 60 ns in time, and therefore choose a trace length of
1 µs with a sampling rate of 500 MS/s, giving a time resolution of 2 ns. Saving
a long enough time traces is bene�cial for two reasons; �rstly the trace has to
be long enough to encompass any potential timing delay between the SSPD
trigger signal and homodyne photocurrent corresponding to the temporal mode
reaching the oscilloscope and secondly it will allow us to extract information
about the unconditioned squeezed state away from the signal temporal mode.
The experiment is run using the setup in described in cha. 3. Running the
experiment consists of:

1. Lock SHG, OPO and FC cavities and then lock the parametric gain to
deampli�cation as described in sec. 3.4.2.

2. Set the OPO pump beam power and transmittance of the tapping beam-
splitter (3%).

3. Engage the sample-hold scheme in lab A. For con�guration (2) and (3)
synchronize the locally generated sample-hold signal to the lab A signal
using the SSPD trigger signals as reference.

4. Set the HD DC signal to zero o�set by attenuation and calibrate the
homodyne AC/DC lock as described in sec. 3.4.2.

5. Trigger the oscilloscope with the SSPD clicks using the hold signal as a
quali�er and set the oscilloscope to record a sequence of time traces.

6. For each desired phase angle lock the LO phase and record a measurement
sequences.

7. Block the signal channel and record a shot noise sequence.

8. Block the LO and record an electronic noise sequence.

9. Block the OPO pump beam and note down the SSPD fake counts.

Before running the experiment other parameters of the setup should also be
checked and optimized if necessary. Typically this includes the OPO threshold
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(optimized through pump beam alignment and crystal position and tempera-
ture), �ber coupling to the signal GRIN lens, LO polarization for HD interfer-
ence, GRIN lens coupling to the HD diodes, shielding position to reduce SSPD
fake counts as well as locking parameters of cavity and phase locks.

4.2 Data analysis

The data analysis consists of three main steps. Firstly we use the portion of the
time traces away from the signal temporal mode to compute power spectrum
of the quadrature �uctuations at the di�erent measurement angles of the un-
conditioned "background" squeezed vacuum. By normalizing to the shot noise
spectrum we can then perform curve �tting using the power spectral density
formula 2.31 to check if the �tted parameters correspond to the measurement
settings. Secondly we determine the shape of the temporal mode function, which
we will use to extract the quadrature values from our time traces. Each time
trace results in a singular value and so for each measurement angle we build a
distribution of quadrature values. Finally we employ the maximum likelihood
algorithm, as explained in sec. 2.5, on our set of distributions in order to re-
construct the density matrix corresponding to the quantum state most likely to
have produced those exact statistics. From the resulting density matrix we can
then directly use eq. 2.10 to calculate the states Wigner function and (hope-
fully!) con�rm the presence of Wigner negativity. The reconstructed Wigner
function also serves as an illuminating point of comparison to our theoretical
model.

4.2.1 Fitting of unconditioned squeezed vacuum

Before computing the power spectrums we need to determine the position of the
photon subtraction event within the time traces. We �nd the event by computing
the time dependent quadrature variance

〈
∆q̂θ(t)

2
〉
of the traces locked to the

x̂ and p̂ quadrature, as we expect the noise variance of the photon subtracted
state to be larger than the surrounding squeezed vacuum. This is shown in
�g. 4.1, where we clearly see a large increase in the noise variance of the anti-
squeezed trace as well as a minor increase in the squeezed noise variance. The
negative o�set of the peak relative to the oscilloscope trigger time (t = 0) is
due to the timing di�erence between the arrival of the homodyne photocurrent
of the conditioned state and the electrical trigger signal from SSPD electronics.
The shape of the peak also reveals some hints about the correlations between
the signal and trigger �elds and, as we shall see in the next section, can serve
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as a guide to determining a suitable temporal mode function.
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Figure 4.1: (left) Noise variance of the vacuum, squeezing and anti-squeezing
traces of the D2 data set. The large peak in the anti-squeezing trace at −192 ns
indicates the photon subtraction event. (right) Full normal ordered autoco-
variance matrices of the squeezed and anti-squeezed quadrature, calculated by
subtraction the shotnoise covariance matrix.

The variance traces of 4.1(left) could be modelled by taking the expectation
value of the convolution of a �lter function, corresponding to the homodyne
detector impulse response, across the signal quadrature correlations after con-
ditioning. With the conditioned state located in the �rst half of the time traces
at −192 ns relative to the trigger time, we choose to use the second half of the
time traces to compute the background noise power spectrum. This procedure is
followed for all the presented data sets. We note that the diagonal of the covari-
ance matrix describes the time dependent normal ordered quadrature variance
〈: ∆q̂(t)2 :〉 = 〈: q̂(t)q̂(t) :〉. From our initial test of a squeezing measurement
we expect our LO lock to su�er from some phase �uctuations and include this
in our model of the power spectrum by assuming that the actual phase locking
point is a normal distribution with a small standard deviation φ and that the
�uctuations can be di�erent for the AC and DC lock. From [77] this corre-
sponds to a phase o�set in the locking angle of φ when locked to squeezing and
antisqueezing. We therefore modify eq. 2.31 to re�ect this

S̃(θ) =
[
Sx cos2 δθac + Sp sin2 δθdc

]
cos2 θ

+
[
Sp cos2 δθac + Sx sin2 δθdc

]
sin2 θ (4.1)

As described in sec. 3.4.2 the AC/DC locking scheme requires precious calibra-
tion of the AC and DC error signal for the locking points in between 0o and
90o to be accurate. We therefore choose to �rst �t only the squeezing and an-
tisqueezing traces using eq. 4.1 to obtain en estimate of the bandwidth, pump
rate, e�ciency, ac and dc phase �uctuations. Afterwards we use the resulting
�tting parameters to �t a phase locking o�set of the {30o, 60o, 120o, 150o} traces.
The result of this analysis is shown in �g. 4.2.
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Figure 4.2: Power spectrum �tting of background squeezed vacuum of dataset
D2 (left) and D3 (right). The dotted lines indicate the expected position of the
{30o, 60o, 120o, 150o} traces based on the {0o, 90o} �t. The �tted locking angles
of D2 are seen to match well with the intended locking angles, while the D3

�t show both a signi�cant o�set from the intended locking angle and a large
mismatch between the symmetrical angles.

In order for the �tting routine to estimate uncertainties the phase noise of the
DC lock is �xed to 0 during the �t (φdc = 0). This is justi�ed as the result of
the �t is unchanged by including it or not, as its e�ect is negligible compared
to the phase noise of the AC lock φac. The �tting results are:

γ1 = 7.9± 0.2 MHz γ3 = 7.5± 0.2 MHz

ε1 = 0.48± 0.02 γ1 ε3 = 0.49± 0.02 γ3

ηs,1 = 0.76± 0.05 ηs,3 = 0.73± 0.05

φac,1 = 4± 3.5o φac,3 = 11± 1.2o (4.2)

The uncertainties are estimated as the 95% uncertainty interval and the �ts
are generally seen to match the measured data well. The uncertainties of the
�tted angles are all within ±1o. The di�erence in OPO bandwidth between the
two measurement series is a result of the large phase �uctuations, which causes
the �tting routine to be slightly over parametrized as discussed in sec. 3.1.4.
The �tted pump rate agrees reasonably well with the 200 mW of 775 nm pump
power used for the measurements and the estimated OPO threshold of 788 mW,
as
√

200/788 ≈ 0.5. The �tted e�ciencies are also within range of the expected
loss, based on the estimation of the loss budget from sec. 3.1.4. But it is worth
keeping in mind that when �tting with both the bandwidth γ, pump rate ε, loss
η and squeezing phase noise φac the �tting routine is over parametrized and so
the �tting result can not be trusted as the true values of the measurement. We
therefore only only on the obtained numbers as rough estimates and as a check
that the automated measurement process was carried out correctly. Our main
take away is e.g. that the AC/DC lock of the homodyne measurement seem to
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work correctly for con�guration (1), where the measurement is done on the same
optical table and low phase drifts of the signal and LO is expected and that for
con�guration (2) the change of AC locking mechanism and an increased phase
drift from the long �ber channel between the two rooms cause the AC/DC lock
to become unstable.

4.2.2 Choice of signal temporal mode function

In order to perform the tomographic reconstruction of our state we need to
extract quadrature values from our time traces. As described in the derivation
of our theoretical model this is done applying a mode function fs(t) to the time
trace and integrating it. Each trace then results in a single quadrature value.
The mode function should ideally completely overlap the true temporal mode
of the conditioned state for the tomography to give the best result. In order to
determine this optimal mode function shape we follow two approaches: �rstly we
choose three di�erent double-sided exponential functions and perform the full
tomographic reconstruction while varying their bandwidth parameters to �nd
the mode shape that results in the largest Wigner negativity, secondly we employ
the slightly more elegant approach of expanding the autocovariance function into
eigenfunctions and using the function corresponding to the largest eigenvalue as
the mode function. This approach relies on the conditioned state having higher
variance than the background squeezed vacuum and was �rst introduced by
Morin et al. in the context of continuously measured time traces [78]. This
approach has been used in previous photon subtraction experiments [79, 80] to
provide the optimal mode function and have recently been expanded to also
include complex mode functions [81]. To perform the eigenfunction expansion
we consider our data as not continuous, but instead discretely binned in time due
to our 2 ns measurement resolution. In the discrete scenario the eigenfunction
expansion turns high-dimensional principal components analysis (PCA) [82],
where we have 1000 dimensions corresponding to the 1 µs measurement time.
An excellent description of this equivalence is given in the master thesis of Larsen
[83]. The result of using PCA on the covariance matrices in �g. 4.1 is shown in
�g. 4.3.
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Figure 4.3: (left) Eigenvalues of the covariance matrices of D2. (middle)
Corresponding eigenvectors of the largest and second largest eigenvalues. Red
and blue is for the p̂ and x̂ quadrature respectively. (right) The corresponding
normalized mode function. The dotted line is the leading eigenvector and solid
line is square of that, while the red is the naive guess with a bandwith of
7.5 2πMHz.

From �g. 4.3 we curiously see that the leading eigenvector is quite broad com-
pared to the naive guess and that its square looks more reasonable. This can
be explained by the fact that the PCA mode function is only based on the anti-
squeezing quadrature which has the bandwidth γ − ε and for the high pump
rate used here (x ≈ 0.48) this di�erence becomes signi�cant. To circumvent
this problem an average between then PCA-x and PCA-p can be used, but this
is not possible for us due to the low variance of the squeezing measurements.
As we will see, we �nd that using the square of the PCA gives better results
and this can be explained by the fact that the square is roughly equal to twice
the bandwidth PCA(t, γ)2 ≈ PCA(t, 2γ). This can also be considered by try-
ing to perform the average using e−γx|t| = e−|t|/tx , but since the variance of
squeezing is so low in�nite bandwidth is needed to see the correlations and so
t′ = (tx + tp)/2→ t′ = tx/2 since γp =∞→ tp = 0.

We normalize all mode functions as fs(t) = fs(t)/
√∫
|f(t)|2dt so that

∫
f(t)2dt =

1. Using this normalizing the pre-factor on double-sided exponential functions
is not required. The functions we use are:

fs,1(t) = e−γ1|t−tc|

fs,2(t) = e−γ
2
1 |t−tc|2/2 (4.3)

fs,3(t) = 1
γ1
e−γ1|t−tc| − 1

γ2
e−γ2|t−tc|

The result of the brute force optimization for the D2 dataset is shown in �g. 4.4.
Similar optimizations were performed for D1 and D3 datasets as well and the
results are summarized in tab. 4.1 and 4.2. In general we �nd that the maximal
Wigner negativity is obtained when using a slightly smoothed signal TMF, such
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as fs,2 or fs,3, compared to the sharp shape of fs,1. This is to be expected as
both the optical �ltering of the trigger �lter cavity and any electrical lowpass
�ltering of the detection circuit will result in a smoothing the signal temporal
mode. In the summarised results the PCA mode function used is the square of
the mode function suggested by the PCA analysis, since using the direct mode
function did not result in any Wigner negativity. The obtained lower Wigner
negativities con�rm our suspicion that using the PCA method of deriving the
optimal TMF is not the best choice for our data, due to the missing support
from the squeezing quadrature.
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Figure 4.4: (left+middle) Optimization of the signal TMF for three di�erent
�lter functions for the D2 set. (right) The resulting optimal mode functions
with the PCA mode being the squared eigenvector. The solid line in the left plot
is a �t of the fs,1 data points to the model with γ0 = 8.0, ε = 0.48γ0, T = 0.97,
ηt = 0.2 and Ξ = 0.995 �xed and the �t returning γ = 7.8 ± 0.14, κ = 32 ± 2,
ηs = 0.728 ± 0.003. All frequency numbers are in 2πMHz. The insert shows a
higher resolution optimization around the optimal �lter width. Here the black
curves lying close to the red and orange is the Wigner negativity at ξ = (0, 0),
showing that the value does not deviate much. This is further supported by
that fact that the minimal Wigner values were obtained are all ξmin < 0.03.

From our TMF optimization analysis we �nd that for the D1 and D2 measure-
ment series, using the correction to the phase space locking angle obtained from
the unconditioned squeezed vacuum power spectrum �tting, does in fact not
result in a larger Wigner negativity. While for the D3 series, taken using con-
�guration (2), a Wigner negativity could be obtained when using the corrected
angles. This can be explained from the fact that
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D1 D2 D3

{θ0}
fs,1 7.80 7.35
fs,2 8.76 7.10
fs,3 12.47, 14.32 10.42, 14.95

{θ′k}
fs,1 5.42 7.34 7.10 (8.45)
fs,2 8.53 7.10 7.45 (8.34)
fs,3 6.76,15.64 10.42,14.95 11.37, 12.43 (9.74, 19.53)

Table 4.1: Table of the optimal decay parameters of the di�erent TMF of
the di�erent data sets. Values are in 2πMHz units. The used angles were
obtained from the power spectrum �tting of the background squeezed vacuum
as {θ0} = {0o, 30o, 60o, 90o, 120o, 150o}, {θ′1} = {0o, 38o, 68o, 90o, 111o, 139o},
{θ′2} = {0o, 31o, 62o, 90o, 121o, 150o} and {θ′3} = {0o, 17o, 36o, 90o, 148o, 169o}.

D1 D2 D3

{θ0}
fs,1 −0.182 −0.180 −
fs,2 −0.206 −0.170 −
fs,3 −0.202 −0.181 −
PCA2 −0.162 −0.171 −

{θ′}
fs,1 −0.151 −0.173 −0.047 (−0.087)
fs,2 −0.172 −0.166 −0.052 (−0.097)
fs,3 −0.185 −0.174 −0.046 (−0.094)
PCA2 −0.144 −0.165 −0.042 (−0.080)

Table 4.2: Table of the minimum Wigner negativities obtained for the opti-
mized TMF of tab. 4.1. Values are πW (ξmin), which have been found to be
very close to πW (0, 0) at the optimal mode function. The second set of values
for D3 has been obtained by disregarding the {30o} measurement sequence.

4.3 Inspection of reconstruction process

As seen from tab. 4.2 a Wigner negativity was observed for 1-PSSqV states mea-
sured using con�guration (1) and (2). For con�guration (3) technical di�culties
sadly prevented us from measuring any Wigner negativity. We now then further
investigate the tomographic reconstruction process using a datasets from each
con�guration and applying the optimal fs,1 TMF to compare to our model. For
con�guration (2) we want to ensure the validity of using the corrected locking
angles for the reconstruction and for con�guration (3) we want to �gure out what
experimental imperfections prevents us from measuring a Wigner negativity.
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4.3.1 Con�guration (1)

We start by plotting the quadrature histograms for each measurement angle
(as in �g. 2.9) and compare them to the expected marginal distributions of
the Wigner function calculated from our model using the parameters obtained
from the power spectrum �tting of the background squeezed vacuum. The
result is shown in �g. 4.5, where we �nd good agreement between the measured
(red dots), expected (green lines) and reconstructed (black line) quadrature
distributions.

Figure 4.5: Quadrature distributions and histograms of the D1 dataset, to-
gether with the expected marginal distributions using both the set {φ} and
corrected {φ∗} locking angles. The quadrature values are extracted using the
�tted parameters of eq. 4.2 and fs,1(t) with γ1 = 7.35 2πMHz. The black curve
is the marginal distributions of the reconstructed Wigner function. The over-
lap of all three curves with the measured histograms indicates that the state
generation setup and measurement is working as intended.

Using the uncorrected locking angles and quadrature histograms shown in �g.
4.5 we perform the MaxLik reconstruction and the result is shown in �g. 4.6.
The reconstructed state has a Wigner negativity of −0.18±0.001π with a �delity
of 0.98 to the state expected form the model. The �delity can be increased to∼ 1
by slightly increasing the signal channel e�ciency. We therefore feel con�dent
that our model accurately describes the 1-PSSqV state that our setup produces
and that our HMS is capable of correctly measuring it. Looking at the density
matrix ρ that the MaxLik algorithm directly produces we also see expected
behaviour. Our 1-PSSqV states are produced from amplitude squeezed vacuum
and so the anti-squeezed quadrature is along the p-axis leading to negative o�
diagonal terms as well as non-zero imaginary parts. We also see that all ρmn
elements with odd m − n are close to zero, as should be expected from a π-
symmetrical state. Due to high pump rate (x = 0.48) that was used for the D1
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set the state contains photon number contributions all the way up to n = 10
with a mean photon number of 2.46 as well has strong correlations between
them as seen from the o�-diagonal terms. Rotation invariant (2π-symmetrical)
states, such as the fock states, have no o�-diagonal terms and so the presence of
the o�-diagonal terms is also an indication of the CV nature of the state. The
diagonal of the density matrix is the photon number distribution and from it
we see a small glimpse of the cat-like nature of our state - the super position
of odd photon number states. This is seen from the fact that ρ33 is larger than
ρ22 and partly by the similar height of the ρ55, ρ77 and ρ99 terms with their
even counterpart. Here the high loss ηs ≈ 0.75 has caused the superposition
to degrade. Finally the trace distance of the evolution of the state during the
reconstruction process con�rms that the algorithm had reached a stable solution
after 500 iterations.
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Figure 4.6: (Left) Visual comparison of expected and reconstruction Wigner
functions of the D1 dataset. (Right) Density matrix output of the MaxLik
algorithm together with the photon number distribution and trace distance evo-
lution.

4.3.2 Con�guration (2)

Follow the same procedure for con�guration (2), as we did for con�guration (1),
we plot the results in �g. 4.7. Looking at the quadrature histograms we see, as
we expected from the power spectrum �tting, that there is a larger discrepancy
between the measured and expected quadrature distribution for the set locking
angles (light green curve). Using the corrected locking angles appear to result in
better agreement between the measured and expected quadrature distributions,
though the {30◦, 150◦} measurements still appear o�, with {30◦} slightly worse.
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Figure 4.7: D3 hist

It is for this reason that we initially excluded this measurement from the re-
construction, in order to obtain even higher Wigner negativities as seen in tab.
4.2. But is the use of the corrected phase angles for the reconstruction even
a valid approach? Surely if these "bad" measurements are truly how the state
looks, due to degradation from loss or other sources, it would not be scienti�-
cally proper to simply alter (or even exclude!) them from the analysis in order
to obtain better results. We are therefore interested in seeing how di�erent
experimental imperfections a�ect the 1-PSSqV state, to determine if the cause
of the discrepancy really is an o�set in the locking angles. To this end we in-
vestigate how three di�erent mechanisms; locking phase noise θ̃, locking phase
o�set δθ and loss ηs e�ects the shape of the expected marginal distributions.
From the marginal distributions the e�ect of locking phase o�set and loss can
be observed directly and to see the e�ect of locking phase noise we generate
samples from a normal distribution of locking angles centred at the set angles
and with variance θ̃. From the samples we then calculate the corresponding
marginal distribution1. The result is shown in �g. 4.8.

From the analysis we learn several important features; the shape at {90◦} is
dominantly a�ected by loss and so its dip gives a good indication of the signal
channel e�ciency. The closer the measurement angle is to the squeezing an-
gle the more the height of the volcano shape is dependent on the locking phase
o�set. That a locking phase noise of θ̃ for {0◦, 90◦} gives a volcano height equiv-
alent to a phase o�set of 2θ̃, but with a reduced dip. In that sense phase noise
appears like a combination of locking phase o�set and loss.

From these observations it is then clear that for the D3 dataset, the histograms
we obtain for {30◦, 60◦, 120◦, 150◦} only can be explained by a locking phase

1This approach is similar to what was done in sec. 2.5.2 to generate the simulated quadra-

ture histograms for MaxLik reconstruction.
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Figure 4.8: Plots of how locking phase noise θ̃, locking phase o�set δθ and loss
ηs a�ects the shape of the marginal distributions of a 1-PSSqV state, calculated
from our model with γ = 8 2πMHz, ε = 0.5γ, T = 0.97, κ = 30 2πMHz,
fs = 7.5 2πMHz, ηs = 0.75, ηt = 0.2 and Ξ = 0.995

o�set, since neither loss or phase noise could have resulted in the large discrep-
ancy we see between the expected and measured distributions for set set locking
angles. Another thing to note is that from the power spectrum �ts we expect
that our measurements should su�er from phase noise of the AC lock and while
a phase noise of θ ≈ 10◦ could explain the discrepancy between the expected
and measured distributions for the {30◦ 150circ} measurements it should also
reduce the {0◦}measurement, which should be the most sensitive to phase noise.
But we don't see this and so the missing dip for {30◦ 150circ} could be from
erroneous low e�ciency or large phase noise for those particular measurements,
though a sudden drop in e�ciency seems unlikely while an increase in locking
phase noise is entirely possible as the locking parameters of the AC/DC lock are
set and optimized only once before a full measurement run. The optimization
consists of adjusting the P and I parameters of the PID module driving the feed-
back, by looking at the lock for θ = 0◦ and θ = 90◦. While the AC and DC error
signals should in practice be made identical so that the �nal error signal fed to
PID does not change between the measurements, drifts in the experiment can
cause them to change. This can both explain how such a locking phase o�set can
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occur and how, for some measurement angles, the locking parameters could be
suboptimal leading to a large locking phase noise. This was especially true for
con�guration (2), where the modulation for the AC locking signal was provided
by a second �ber modulator driven at a resonance of only 14 MHz compared
to the 50 KHz of con�guration (1). For this reason we also decided to perform
the MaxLik reconstruction on the D3 dataset without including the {30◦ 150◦}
measurements and the result, together with the other reconstructions of the D3

dataset is shown in �g. 4.9 The Wigner negativity of of the model is −1.403,
while the reconstructed states have −0.045±0.001π and −0.105±0.001π respec-
tively. The di�erence can here be explained by either additional loss or phase
noise as discussed.
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Figure 4.9: (Left) Comparison of the Wigner function from the three dif-
ferent reconstructions of the D3 dataset to the Wigner function expected by
the model. {φ(0)} = {0◦, 30◦, 60◦, 90◦, 120◦, 150◦} is the set locking angles,
{φ(1)} = {0◦, 17◦, 36◦, 90◦, 148◦, 169◦} is the corrected angles and {φ(2)} =
{0◦, 36◦, 90◦, 148◦} is with the possibly erroneous measurements excluded. All
histograms were created using the fs,1(t) mod function with γ1 = 2π7.5 MHz,
2π7.1 MHz and 2π8.42 MHz for {φ(0)}, {φ(1)} and {φ(2)} respectively.

4.3.3 Con�guration (3)

For con�guration (3), the true objective of this project, we sadly did not succeed
in measuring any Wigner negativity. This was mostly a result of the con�gura-
tion only being avaible within the �nal month of the deadline of this thesis, due
to the lockdown of the DTU campus caused by the ongoing COVID-19 virus
outbreak. Within the available time it was not possible to �gure out and solve
all the experimental imperfections, but we will still here present the collected
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measurement data here. As previously we start by looking at the covariance of
the squeezing and antisqueezing measurements (�g. 4.10). For this measure-
ment (D4) we used a pump rate of ∼ 0.35 is compared to the ∼ 0.48 used for the
previous measurements. The reason being that we expected the locking phase
noise to be worse for the measurement con�guration due to the longer �ber
network, and so a smaller anti-squeezed level reduces the e�ect of phase noise.
From �g. 4.10 we see a clear sign of the photon subtraction event. We then pro-
ceed with the curve �tting of the background squeezed vacuum power spectrum,
but already from the observed variance levels we expect the squeezed to be re-
duced from either additional loss or increased phase noise. The �tting results
are as well less clear. Including the AC phase noise term we get γ = 7.0± 0.5,
x = 0.28± 0.08, ηs = 0.66± 0.26 and φac = 17± 5◦, which immediately seems
wrong due to the incorrectly �tted pump parameter and high e�ciency with
high AC phase noise. Fixing φac = 0 we get γ = 8.0± 0.3, x = 0.37± 0.015 and
ηs = 0.37±0.016, which both �t the used experimental parameters much better
and has lower �tting uncertainties. For both �ts the locking angle corrections
are with ±4◦ from the set angles.
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Figure 4.10: Measurement result from con�guration (3). A clear sign of the
photon subtraction event can be seen, but the low squeezing level indicate that
Wigner negativity is most likely not preserved.

We then plot the quadrature distributions and histograms and compare them
to the marginal distributions we would expect our model using the two set of
�tted parameters and optimized signal TMF. This is shown in �g. 4.11 and we
clearly see, as we expected, that the darkgreen curve of the �tted parameters
without the AC phase noise term matches the measured data better. From our
previous analysis (�g. 4.8) we also know that the low dip of the {90◦} volcano
is mainly caused by loss and so this also suggests that con�guration (3) had
a signi�cantly reduced e�ciency compared to con�guration (1) and (2). This
could be a attributed to the many connections of the �ber network, but from
an independent measurement it was estimated to ∼ 0.90± 0.01%.

Even though we could obtain a better match to the measured quadrature dis-
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tributions using the �tted parameters excluding the phase noise term, we will
conclude our analysis by investigating the actual phase noise that our D4 mea-
surement su�ered from. We do this by keeping all locks and beams constantly on
in lab A, while only running the sample-hold scheme on the AC/DC lockbox.
This means that we can continuously track the probe intensity from the DC
output of the homodyne detector during sample-hold periods, when locked to
di�erent LO phases corresponding to a tomographic measurement. An overlay
of 200 such traces across two sample-hold periods is shown in �g. 4.12.

Figure 4.11: Quadrature distributions and histograms of the D4 dataset, to-
gether with the expected marginal distributions using the two di�erent sets of
�tted results.

For the traces shown here we used a frequency of 200 Hz with a sample-hold
duty-cycle of 60:40. We see that from the moment the hold period starts (t = 0),
and the feedback is held constant, the phase of the probe relative to the LO
starts to drift and that already after ∼ 1 ms the phase has drifted more then
180◦. For a measurement this would correspond to the measured phase being
randomized after 1 ms, and so it seems surprising that our measured quadra-
ture distributions are not worse than they are. To further investigate we also
plot a zoom of the �rst 0.5 ms of the hold period and for the {60◦, 90◦, 120◦}
measurements calculate the phase noise in degrees as the standard deviation of
the phase angle of the sinusoidal interference. This can not straightforwardly
be done for the other phases as they close to the interference edge and so the
unwrapping of the phase from the noisy traces leads to large uncertainties. The
calculation shows that even the strong phase drift caused by the �ber network
connection our AC/DC lock is able to maintain a lock with ∼ 4◦ of phase noise
and that the phase �uctuations increases to more than ∼ 10◦ after only 0.5 ms
of hold time.

One explanation for why such large phase �uctuations does not appear to hurt
our measurements more, is that we used a sample-hold frequency of 100 Hz and
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that the measurement time for a single set of 5000 sequences, corresponding
to 5000 SSPD trigger clicks, was roughly 1.5 mins corresponding to 1 click per
sample-hold period. It might be so that the internal speed of the DSO is exactly
so slow that it would trigger on the �rst click of a hold period and then not be
ready to trigger again before a new period would start. In that way only data
from the �rst (and best) trigger clicks of each hold-period would be recorded
during a measurement sequence. Unfortunately our DSO does not provide tim-
ing information on individual traces within a sequences data �le to con�rm this
suspicion.
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Figure 4.12: Drift of the relative phase between the LO and signal for con�g-
uration (3). Visualized as the overlay of 200 time traces across 2 sample-hold
periods with a constant probe signal. (right) Zoom of the �rst 0.5 ms of hold
time and corresponding phase noise calculated as the standard deviation of the
phase �uctuations. The darker shaded area indicate the time duration when the
lock is on.



Chapter 5

Distributed Quantum

Sensing

In 2018 Zhuang et al. proposed the �rst protocol for utilizing CV multipartite
entanglement to improve the precision of phase or displacement sensing tasks
in a network [14]. Late the following year we then demonstrated the �rst ex-
perimental realization a distributed sensing protocol improved by multipartite
entanglement. In our published work we show that for �xed probe resources
we obtain an improvement of the root-mean-square (rms) estimation error of
sensing the average phase shift across 4 nodes, by using a multipartite entan-
gled probe state as compared to using non-entangled probes. Generally the rms
estimation error for protocols utilizing entanglement can scale as the Heisenberg
scaling in the number of nodes M, that is 1/M , while protocols without entangle-
ment only scale as the standard quantum limit 1/

√
M . But due to experimental

imperfections in our implementation, mainly optical loss, we only show a 20%
improvement for M = 4 nodes. Due to the scaling advantage of CV multipar-
tite entanglement being highly sensitive to loss, recent advancement have been
made in protocols utilizing nonlinear ampli�ers [84] or CV error correction codes
[85] to improve their robustness against loss. Besides phase sensing distributed
quantum sensing have also recently been demonstrated in the context of sensing
RF signals [86]. For a more general introduction to using squeezing vacuum for
sensing see the review by Lawrie et al. [87].
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5.1 Experimental setup

The experimental setup used to implement our distributed sensing protocol
uses an almost identical setup for generating the squeezed probe as for the non-
Gaussian state project. The main di�erence is the addition of a second EOM in
the probe beam path, which is used to create a 3 MHz sideband acting as the
probe state for the sensing protocol. The sideband probe state is then squeezed
by the OPO, allowing us to adjust the coherent and squeezed part of the probe
state by tuning the OPO pump power and EOM modulation strength. The
squeezed probe state is then passed through a beamsplitter network (BN) cre-
ating the multipartite entanglement between the four exit arms.

In [14] the phases to be sensed is then imagined as a small phase shift in one arm
of a Mach-Zehnder interferometer just before homodyne detection in each arm.
For four nodes this would requires four phase locked interferometers followed by
four LO phase locks and so to reduce the experimental complexity we choose
to overlap the LO with the probe before the BN and use QWPs after to trans-
form their polarizations to opposite circular polarizations. We then use the fact
that a HWP will shift the relative phase between the two circular polarizations
modes and detect them with homodyne detection using a polarization beam-
splitter (PBS) to interfere the probe and LO. In this way the QWP+HWP+PBS
e�ectively realises a copropagating Mach-Zehdner interferometer with the phase
shift split between the two arms and we only need to lock the probe and LO
phase before the BS network. A sketch of the setup is shown in �g. 5.1 and
more details are given in the supplement material.
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Networking is integral to quantum communications1 and has 
significant potential for upscaling quantum computer tech-
nologies2. Recently, it was realized that the sensing perfor-
mances of multiple spatially distributed parameters may 
also be enhanced through the use of an entangled quantum 
network3–10. Here, we experimentally demonstrate how sens-
ing of an averaged phase shift among four distributed nodes 
benefits from an entangled quantum network. Using a four-
mode entangled continuous-variable state, we demonstrate 
deterministic quantum phase sensing with a precision beyond 
what is attainable with separable probes. The techniques 
behind this result can have direct applications in a number of 
areas ranging from molecular tracking to quantum networks 
of atomic clocks.

Quantum noise associated with quantum states of light and mat-
ter ultimately limits the precision with which measurements can 
be carried out11–13. However, by carefully designing the coherence 
of this quantum noise to exhibit properties such as entanglement 
and squeezing, it is possible to measure various physical parameters 
with significantly improved sensitivity compared to classical sens-
ing schemes14. Numerous realizations of quantum sensing utilizing 
non-classical states of light15–17 and matter18 have been reported, 
but only a few applications have been explored. Examples of these 
include quantum-enhanced gravitational wave detection19, the 
detection of magnetic fields20–22 and sensing of the viscous-elasticity 
parameter of yeast cells23. All these implementations are, however, 
restricted to the sensing of a single parameter at a single location.

Spatially distributed sensing of parameters at multiple locations 
in a network is relevant for applications from local beam tracking24 
to global-scale clock synchronization3. The development of quan-
tum networks enables new strategies for achieving enhanced per-
formance in such scenarios. Theoretical works4–8,25–27 have shown 
that entanglement can improve sensing capabilities in a network 
using either twin photons or Greenberger–Horne–Zeilinger (GHZ) 
states combined with photon number-resolving detectors5,6 or using 
continuous-variable (CV) entanglement for the detection of distrib-
uted phase space displacements7. In this Letter, we experimentally 
demonstrate an entangled CV network for sensing the average of 
multiple phase shifts inspired by the theoretical proposal of ref. 7. 
We focus on the task of estimating small variations around a known 
phase in contrast to ab initio phase estimation. We successfully 
demonstrate deterministic distributed sensing in a network of four 
nodes with a sensitivity beyond that achievable with a separable 
approach using similar quantum states.

We start by introducing a theoretical analysis of the networked 
sensing scheme assuming the existence of an external phase  

reference. Consider a network of M nodes with optical inputs that 
undergo individual phase shifts, ϕj(j = 1, …, M). The goal is to esti-
mate the averaged phase shift, ϕ ϕ= ∑ ∕= Mj

M
javg 1 , among all nodes 

with as high precision as possible. Two different sensing set-ups are 
considered: a separable system where the nodes are interrogated 
with independent quantum states (Fig. 1a) and an entangled system 
where they are interrogated with a joint quantum state (Fig. 1b). We 
assume the squeezers give out pure single-mode Gaussian quantum 
states described by the state vectors α Ŝ̂ ∣D r( ) ( ) 0 , where D̂ and Ŝ are 
the displacement and squeezing operators, respectively, α is the dis-
placement amplitude and r is the squeezing factor. We assume that 
each probe state undergoes loss in a channel with transmission η. We 
furthermore restrict the estimator to be the joint phase quadrature, 

̂ = ∑ ̂ ∕=P p Mj
M

javg 1  (where ̂pj
 are the phase quadratures of the indi-

vidual modes), practically corresponding to the averaged outcome 
of M individual homodyne detectors. These states and detectors are 
of particular interest due to their experimental feasibility, inherent 
deterministic nature, high efficiency and robustness to noise.

Using the separable approach, M identical Gaussian probe states 
are prepared and individually detected, while in the entangled 
approach, a single squeezed Gaussian state is distributed evenly to 
the M nodes via a beamsplitter array and similarly measured indi-
vidually with homodyne detectors at the nodes. If one wanted to 
estimate different linear combinations of the phase shifts than the 
simple average, other beamsplitter divisions would be required4,5. 
The sensitivity of the measurement can be defined as the standard 
deviation (s.d.) of the measurement which, by error propagation, is13

σ
ϕ

=
Δ ̂

∣∂ ̂ ∕∂ ∣

P

P
(1)

avg
2

avg avg

where Δ ̂ = ̂ − ⟨ ̂ ⟩P P Pavg
2

avg
2

avg
2 is the variance of the estima-

tor. We are only interested in the sensitivity for small phase shifts, 
because one can always use an initial rough phase estimation to 
adjust the homodyne detector (the local oscillator phase) to the 
maximum sensitivity setting16. For small phase shifts, we obtain 
the sensitivities for the separable (σs) and entangled (σe) approaches 
(Supplementary Section I):

σ
η

α
=

+ ∕ −−

M

e 1 1

2
(2)

r

s

2

s

s

Distributed quantum sensing in a continuous-
variable entangled network
Xueshi Guo   1*, Casper R. Breum   1, Johannes Borregaard2, Shuro Izumi1, Mikkel V. Larsen   1, 
Tobias Gehring   1, Matthias Christandl2, Jonas S. Neergaard-Nielsen   1* and Ulrik L. Andersen   1*

Nature Physics | www.nature.com/naturephysics



Letters NaTURE PHysics

σ
η

α
=

+ ∕ −−e 1 1
2

(3)
r

e

2

e

e

We now constrain the average number of photons, N, hitting 
each sample. The photons can be separated into those originating 
from coherent displacement and those originating from squeez-
ing: η α= + = +N N N r( sinh )s,coh s,sqz s

2 2
s  for the separable case and 

η α= + = + ∕N N N r M( sinh )e,coh e,sqz e
2 2

e  for the entangled case. The 
ratio between photon numbers, parametrized as μs(e) = Ns(e),sqz/N can 
be tuned to give the optimal sensitivities
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For perfect efficiency (η = 1), it is clear that the sensitivity of 
the entangled system yields Heisenberg scaling both in the num-
ber of nodes (1/M) and the number of photons per mode (1/N), 
whereas the separable system only achieves the latter and a classical 
∕ M1 -scaling with the number of modes. The gain in sensitivity of 

the entangled network relative to the separable network (denoted 
σ σ= ∕G s

opt
e
opt) is thus =G M .

For non-ideal efficiency, the Heisenberg scaling ceases to exist, 
in accordance with previous work on single parameter estimation28. 
In fact, for η → 0, both sensitivities approach ∕ MN1 2 . Still, it is 
important to note that the entangled network exhibits superior 
behaviour for any value of η, M and N for optimized μs, μe. Some 
examples for the sensitivity gain are illustrated in Fig. 1c,d. From 
Fig. 1d where a network of M = 4 nodes is considered, it is clear that 
the highest gain in sensitivity is attained at a finite photon number. 
We also note that, for large photon numbers, the gain tends to unity 
for non-zero loss, meaning no enhanced sensitivity when using the 
entangled approach. However, there is still a practical advantage for 
the entangled approach: only one squeezed state is needed com-
pared to the M squeezed states with similar squeezing levels for the 
separable approach (Supplementary Section I).

Next, we demonstrate experimentally the superiority of using an 
entangled network for distributed sensing. A schematic outline for 
the experimental set-up is shown in Fig. 2a (for more details see 
Extended Data Fig. 1, Methods and Supplementary Section II). The 
entangled network is realized by dividing equally a displaced single-
mode squeezed state into four spatial modes by means of three bal-
anced beamsplitters. These entangled probe states are then sent to 
the four nodes of the network, where they each undergo a phase 
shift ϕj and are finally measured with high-efficiency balanced 
homodyne detectors that are set to measure the phase quadrature, 

̂pj
. The external phase reference is set by the local oscillator, which 

co-propagates with the probes through the set-up but in a different 
polarization mode. This ensures that the relative phases between 
the probes and the local oscillator can be controlled. The resulting 
photocurrents from the four detectors are further processed and 
subsequently combined to produce the averaged phase shift. For 
demonstration purpose, we set all ϕj to the same value ϕj = ϕavg, but 
in principle they could be different.

An experimental run is shown in Fig. 2b. In this particular run, a 
displaced squeezed state is prepared with an average photon number 
of N = 2.48 ± 0.12 in each mode, of which Ne,sqz = 0.30 ± 0.01 photons 
are from the squeezing operation and Ne,coh = 2.19 ± 0.11 are from the 
phase modulation, as this distribution is near-optimal for the entan-
gled case. We then impose 12 different ϕavg values by phase shifts 
at each node while recording the Fourier transformed homodyne 
detector outputs; the spectra around the 3 MHz sideband for six of 
the ϕavg values are shown in Fig. 2b. These outputs yield poor esti-
mates of the individual phase shifts (because the squeezing in each 
mode is only ~0.8 dB), but the averaged phase shift, obtained by 
summing the photocurrents, produces an entanglement-enhanced 
estimate with significantly lower noise, ~5 dB squeezing. The spec-
tra for the averaged photocurrents are shown in Fig. 2c. For compar-
ison, we also simulate the separable approach by directing the entire 
displaced squeezed state (with properly optimized parameters) to a 
single node. We then perform the phase estimation at that node and 
scale the obtained sensitivity by 4  to obtain the projected perfor-
mance for an average over four identical sites.

We quantify the performance of the sensing network by estimat-
ing the sensitivities of the two approaches based on the averaged 
homodyne measurement outcomes, Pavg. By extracting the rate of 
change with respect to a phase rotation, ϕ∣∂ ̂ ∕∂ ∣Pavg avg

, as well as 
the variance, Δ ̂Pavg

2 , of Pavg, we deduce the sensitivity using equa-
tion (1). See Supplementary Section IV for more details on the data 
analysis. For the experimental runs described above, we obtain 
sensitivities of σe = 0.099 ± 0.003 and σs = 0.118 ± 0.002 for the 
entangled and separable approach, respectively. These correspond 
to single-shot resolvable distributed phase shifts (that is, phase 
shifts for which the signal-to-noise ratio is unity) of 5.66° ± 0.18° 
for the entangled case and 6.76° ± 0.11° for the separable case 
with ~2.5 photons. Using a coherent state instead of the squeezed 
state, the minimal resolvable phase for 2.5 photons is 9.06° ± 0.07°,  
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Fig. 1 | Distributed phase sensing scheme. The task is to estimate the 
average value of M spatially distributed small phase shifts ϕ1, …, ϕM. a, 
Without a network, the average phase shift must be estimated by probing 
each sample individually. This can be done with homodyne detection of 
the phase quadrature (HD1, …, HDM), and the sensitivity can be increased 
by using squeezed probes generated by M independent squeezers S1, …, 
SM. b, If the M sites are connected by an optical beamsplitter network 
(BSN), a single squeezed probe can be distributed among the sites. This 
enables entanglement-enhanced sensing of the average phase shift. c,d, 
The entangled approach of b shows a gain in sensitivity compared to the 
separable approach in a for the same number of photons, N, hitting each 
sample and with optimized probe states. This gain, σ σ= ∕G s

opt
e
opt, is plotted 

as a function of the number of samples M with N fixed at 10 (c) and as 
a function of the average number of photons with M fixed at 4 (d) for 
different values of η, the efficiency of the channel between pure resource 
state and phase sample.
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corresponding to the standard quantum limit. Note that these 
angles are larger than our small phase shift approximation (which 
requires ϕavg to be much smaller than ~7° for the conditions in this 
experimental run; Supplementary Section I). In practice, this means 
that it is necessary to probe the sample more than once to resolve 
the small phases implemented in the experiment. Sampling the 
phases K times will result in K  times smaller resolvable phase shift  
angles. The entangled strategy will still benefit from the enhanced 
sensitivity per probe.

We find the sensitivities for different total average photon num-
bers both for the entangled and separable network, and plot the 
results in Fig. 3a. For every selection of the total photon number, we 
adjust μ to a near-optimal value for optimized sensitivity (Fig. 3b,c). 
It is clear in Fig. 3a that both realizations beat the standard quan-
tum limit (reachable by coherent states of light) and, most impor-
tantly, we see that the entangled network outperforms the separable 
network. The ultimate sensitivity of our entangled approach is 
not reached in our implementation (see Methods and Extended 
Data Fig. 2). However, homodyne detection will not, even in prin-
ciple, saturate this bound, and non-Gaussian measurements are in  
general needed.

Our results demonstrate experimentally how mode entangle-
ment, here in the form of squeezing of a collective quadrature of a 
multimode light field, can enhance the sensitivity in a distributed 

sensing scenario. The main limitation of the scheme when applied 
to realistic scenarios will be the channel efficiency, which will even-
tually limit the achievable gain. Other technical challenges will be 
to supply phase-locked local oscillators to each site that are sepa-
rate from the probe beams and to suppress the spectral parts of the 
squeezed light that does not contribute to the sensing. On the other 
hand, because the probes are generated from a simple beamsplitter 
network, it will be straightforward to scale to more modes where 
the sensitivity gain may be even larger (Fig. 1c). Consequently, 
we believe that techniques demonstrated in this proof-of-prin-
ciple experiment have direct applications in a number of areas. 
Specifically, beam tracking, relevant for molecular tracking24, could 
benefit from these techniques. Such applications impose limits on 
the allowed probe power to prevent photon damage and heating of 
the systems. Mode entanglement can thus be used to increase sen-
sitivity without increasing the probe power. Using squeezed coher-
ent light for quantum non-demolition (QND) measurements has 
also been exploited for the generation of spin squeezing in atomic 
ensembles29 and optical magnetometry20. Although this is usually 
considered for single ensembles, the generalization to multiple 
ensembles can provide enhanced sensitivity and new primitives for 
quantum information processing. Combining several ensembles  
for magnetometry and utilizing mode entanglement would further 
reduce the shot noise and increase the sensitivity of a collective 
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optical measurement. Performing a collective optical QND mea-
surement of several atomic ensembles can prepare a distributed 
spin-squeezed state for quantum network applications. In particu-
lar, squeezing of multiple optical lattice clocks could be used for col-
lective enhancement of clock stability3,30. In ref. 30, this was obtained 
by letting a single probe interact with all ensembles in a sequential 
manner. However, by utilizing mode entanglement, this can be per-
formed in a parallel fashion with no quantum signal being transmit-
ted between the ensembles.
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Methods
Outline of the experimental methods. Full details of the experimental set-up and 
data analysis are provided in Supplementary Sections II–IV. A brief outline is  
given here.

With this set-up, squeezed vacuum at 1,550 nm wavelength is generated in a 
bowtie-shaped OPO containing a periodically poled KTiOPO4 crystal (Extended 
Data Fig. 1a). The OPO cavity has a half-width at half-maximum bandwidth 
of 8.0 MHz, an oscillation threshold of 850 mW and 95% escape efficiency. It is 
pumped by 775 nm light generated by second harmonic generation in an identical 
cavity. Two 1,550 nm beams are injected into the cavity through a high reflector: 
one beam propagates against the direction of the squeezed light and is used for 
locking the cavity length and the other beam co-propagates and serves multiple 
purposes. First, this latter beam exits the cavity in the same spatial mode as the 
squeezing and is therefore used for alignment with the local oscillator. Second, it is 
used for locking the phase of the squeezing through the classical parametric gain, 
observed after tapping off 1% of the light. Third, and most importantly, it serves 
as the coherent displacement part of our probes. For this purpose, it is modulated 
at 3 MHz by an EOM. The modulation depth determines the amplitude of the 
displacement. Finally, it is used as the phase reference for locking the probe state 
and the local oscillator (LO) phase for homodyne detection.

The LO used in all four homodyne detectors is combined with the squeezed 
probe on a polarizing beamsplitter (PBS) in orthogonal polarizations prior to the 
distribution of the combined beams in the beamsplitter network (Extended Data 
Fig. 1b). Because the LO is co-propagating with the signals in the same spatial 
modes, balanced homodyne detection—which is inherently insensitive to noise 
in the LO—is achieved by changing the fields to orthogonal circular polarizations 
with λ/4 wave plates and subsequently mixing and splitting the fields on PBSs. The 
PBS outputs are then detected on a balanced photodetector (Extended Data Fig. 
1c). To lock the local oscillator to either the phase or amplitude quadrature of the 
probe, 1% is tapped off and detected with a homodyne detection set-up identical to 
those at the four sensing sites. All locks in the set-up are controlled by the PyRPL 
software package31 running on a PC and multiple RedPitaya FPGA boards. At each 
of the sensing sites, as well as at the LO phase lock, the relative phase of the LO and 
probe is manually controlled by a λ/2 wave plate. Before the measurements, the 
wave plates are carefully calibrated in order to be able to apply a well-defined phase 
shift to the probe states. Turning the λ/2 wave plate by 1° induces a 4° phase shift.

The data for the sensitivity measurements are obtained by simultaneously 
recording 200 μs-long oscilloscope traces of the high-pass filtered homodyne 
detector signals. The power spectral density is then calculated via the FFT of 
these traces and, from each, the single point at 3.000 MHz is extracted for further 
processing. Finally, the phase estimation sensitivities are obtained from fitting to 
simple sinusoidal models the amplitudes of the sideband peaks and the background 
noise floors as a function of the induced phase shift.

Mode definition of the optical field for sensing. The choice of modulation for 
generation of the coherent displacement defines the spectral mode of the probing 
scheme: a narrow 5 kHz band around the 3 MHz optical sideband of the 1,550 nm 
carrier. This sideband is chosen as it is in the spectral region of our source with 
maximum squeezing. At higher frequencies, the squeezing reduces due to the 
limited bandwidth of the OPO, while at lower frequencies, it is degraded by 
technical noise. Equivalently, the temporal mode is given by the 200 μs oscilloscope 
trace length. The spatial mode of the beams (~1.8 mm diameter) and their 
polarization also add to the definition of the optical mode that probes the sample, 
and it is the average photon number within this mode that counts as the resource of 
the phase sensing. Note that there are no fundamental restrictions in the scheme on 
the optical modes employed. In any practical setting, they would be chosen based on 
the nature of both the squeezing source and the samples being probed. In this work, 
the classical, separable and entangled schemes are compared using the same mode 
definitions. One could of course consider choosing different modes for a classical 
or separable scheme, but the relevant comparison of the schemes is still in terms 
of sensitivity versus average photon number within the mode. Whichever mode 
is chosen for each of the three schemes, as long as there is multimode squeezing 
(entanglement), the entangled scheme will outperform the other schemes.

In this proof-of-principle experiment, many photons outside the sensing mode 
still hit the sample, even though they do not count in the resource calculations. For 
applications where the power on the sample is restricted, these ‘inactive’ photons 
should be avoided. Photons from the local oscillator can be avoided by using 
individual local oscillators locally at the sites, combined with the probes after phase 
sampling. Photons in the carrier of the coherent modulation can be filtered away 
optically. The same is true for squeezed photons outside the employed spectral 
mode. Conversely, the spectral mode could be extended to contain most of the 
bandwidth of the squeezed OPO output.

Quantum Cramér–Rao bound for ϕavg sensing. Throughout the experiment, we 
did not try to pursue the ultimate sensitivity by using optimal probe states and 
optimal measurements. This means that the sensitivity for ϕavg sensing, with both 
the separable approach and the entangled approach, can be further optimized. 
Here, we confine the discussion to Gaussian states, and analyse the ultimate 
sensitivity limit for ϕavg sensing for a given probe with the help of the quantum 

Cramér–Rao bound (QCRB). We also compare the QCRB for ϕavg sensing to the 
counterpart of single parameter phase sensing by using a single-mode Gaussian 
state as the probe, as discussed in detail in ref. 32. We assume the sensing channel 
has a constant efficiency η < 1.

For a general sensing problem, the QCRB sets a lower bound, minimized over 
all possible measurements, on the uncertainty with which a parameter ϕ can be 
estimated through an unbiased estimator ∼ϕ , given a probe in a certain quantum 

state: ∼ϕΔ ≥ ϕ
−F

2 1, where Fϕ is the quantum Fisher information. The ultimate 

sensitivity limit for sensing of a single phase shift is thus σ = ∕ϕ ϕF1CR . The 

quantum Fisher information for single-mode phase sensing using a Gaussian probe 
with initial displacement α and squeezing r is given by32
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The QCRB for sensing of an average ϕavg of multiple phase shifts with coherent 
probes, σcoh

CR, and with our separable approach, σsep
CR, can also be found from equation 

(6), divided by M  to account for the M independent phase estimations.
For non-trivial estimation involving multiple parameters, the quantum Fisher 

information matrix (QFIM) is needed. The variance of an unbiased estimator ∼q of 
an arbitrary linear combination of M parameters, ϕ= ∑ =q wi

M
i i1 , is ∼Δ =q Kw w2 T  

with the weight coefficients wT = (w1, …, wM) and parameter covariance matrix K 
with ∼ ∼ϕ ϕ ϕ ϕ= − −K ( )( )ij i i j j

. Given a quantum Fisher information matrix F, the 
QCRB is expressed as
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How to calculate the QFIM for arbitrary multimode Gaussian states, as well as the 
existence (or not) of a measurement that reaches the bound, is discussed in refs. 
33,34. We use equations (16)–(21) in ref. 34 to numerically calculate Fent. As discussed 
in ref. 33, when any of the symplectic eigenvalues of the quadrature covariance 
matrix of the Gaussian state has unity value, the process in ref. 34 gives a singular 
result. This applies to our entangled scheme, because it has three vacuum input 
modes. We solve this numerical problem pragmatically by replacing the three 
vacuum states with very weak thermal states (10−6 mean photon number in each).

The optimal QCRBs for different scenarios, together with the optimal 
sensitivity of our measurement schemes σs

opt and σe
opt, are shown in Extended 

Data Fig. 2. The QCRBs are optimized over α and r for a fixed mean photon 
number. For the η = 0.735 detection efficiency, the states optimizing the QCRBs 
are all squeezed vacuum states. It is interesting to compare this with ref. 35, where 
it is shown that for pure states (η = 1), the optimal Gaussian probes to sense a 
parameter encoded in a BSN (ϕavg is a special case of such a parameter) can be 
prepared by sending a single-mode squeezed vacuum state into one port of the 
BSN and vacuum states to all the other ports. This is equivalent to what we do in 
our entangled scheme. At our detection efficiency, we find

σ σ σ σ σ> > > > (9)coh
CR

s
opt

e
opt

sep
CR

ent
CR

The sensitivities obtained do not reach the corresponding ultimate limits. 
Furthermore, these relations show that, in principle, it should be possible to 
reach a better sensitivity with a separable scheme than what is obtained with 
the entangled scheme. However, the difference between them is small and—to 
the best of our knowledge—no efficient way of experimentally implementing a 
measurement to reach the ultimate limit σsep

CR is known. In ref. 36, it is discussed 
that an ̂ ̂+ ̂ ̂XP PX type of measurement is needed to reach the QCRB when η < 1. 
This is non-Gaussian and cannot be realized by only Gaussian operations such as 
squeezing, beamsplitters, phase shifts and homodyne/heterodyne detection. For 
sensing involving multiple parameters, a joint, non-Gaussian measurement may be 
optimal, but the experimental approaches to reach the optimal bound σent

CR remain 
unclear.
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Finally, note that the QCRB of the entangled scheme overlaps with that of the 
single parameter estimation. This makes sense intuitively: splitting a resource state 
equally into four and using these to probe the average of four phase shifts should 
result in the same sensitivity as that of a single phase shift probed by the same 
unsplit resource.

Data availability
The data represented in Figs. 2 and 3 and Supplementary Fig. 6b are available 
as Source Data or Supplementary Data. Raw oscilloscope data and data analysis 
scripts are available at https://doi.org/10.11583/DTU.9988805. All other data that 
support the plots within this paper and other findings of this study are available 
from the corresponding author upon reasonable request.
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Extended Data Fig. 1 | Experimental Setup. See Supplementary Sec. II for details. (a) Single mode displaced squeezed state generation at the 3 MHz side 
band; (b) A proof-of-principle experimental setup for distributed phase sensing with entangled probes. The local oscillator (LO) is used as external phase 
reference, and the phase shift is introduced by wave plates; (c) The balanced homodyne detection setup corresponding to HD1 to HD4 in (b).
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Extended Data Fig. 2 | Optimal sensitivities and quantum Cramér–Rao bounds (QCRB) for different scenarios. All calculated with a total efficiency 
of η = 0.735 as in our experiment. The optimal sensitivity of our separable scheme σs

opt and entangled scheme σe
opt are plotted in solid blue and red, 

respectively. These are derived in the Supplementary Material Section I. The remaining four curves show the QCRBs derived in the Methods section: 
The optimal QCRB for ϕavg sensing with coherent probes (σcoh

CR, dashed black), the separable scheme with squeezed probes (σs
CR, dashed blue), and the 

entangled scheme (σe
CR, dashed red), as well as the QCRB for single parameter phase sensing with a squeezed probe (σsm

CR, solid green).
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Chapter 6

Outlook

In this thesis two projects related to quantum information processing in net-
works, namely the non-Gauusian state transmission project (1) and the dis-
tributed quantum sensing project (2), were discussed. The goal of project (1)
was to transmit a continuous variable non-Gaussian state across a short distance
network channel and to measure its Wigner negativity at the receiver side as
a sign of the non-Gaussianity of the received state. For project (2) the goal
was to use a multi-partite entangled probe state to show a sensitivity advantage
over a non-entangled probe states for the sensing of distributed phase shifts in a
network. First, before presenting the results of either project, the theory of con-
tinuous variable quantum optics were introduced together with a realistic model
of the experimental procedure for generating a one photon subtracted squeezed
vacuum state (1-PSSqV). An implementation of the maximum likelihood algo-
rithm for tomographic reconstruction of states measured by homodyne detection
was also discussed. Next, the experimental setup constructed to perform the
measurements for both projects was described. Finally the result of project (1)
was presented as a detailed analysis of the data collected for the di�erent mea-
surement con�gurations, while the results of project (2) was presented in the
form of the published work.



100 Outlook

Non-Gauusian state transmission

For the non-Gauusian state transmission project we build a setup consisting of
a SHG cavity in order to generate continuous wave squeezed vacuum at 1550 nm
via parametric down conversion in an OPO cavity. To subtract single photons
from the squeezed vacuum �eld, we employed the conventional scheme of using
a weakly re�ecting beamsplitter to tap a small portion of the squeezed �eld into
a trigger channel where the detection of a single photon heralds the subtracted
state in a signal channel. In the trigger channel we constructed a frequency
�lter system consisting of a narrow linear �lter cavity and a DWDM bandpass
�lter. For the �lter cavity we developed a locking scheme to e�ciently lock the
cavity using an FPGA based lockbox controlled by the PyRPL software suite.
The single photons were detected by a single photon detector based on super-
conducting niobium titanium nitride nanowires. We characterized the trigger
channel to have a total detection e�ciency of 20% and with careful shielding
of the optical setup dark count rates of 10 − 50 Hz were achieved. To measure
the heralded state we designed and assembled a portable measurement station
based on a �ber coupled homodyne detector setup and characterized it to have a
total detection e�ciency of 90%. By coupling the generated non-Gaussian state
into single mode �ber, transmitting it through three di�erent network channel
con�gurations and measuring using the portable measurement station, the re-
ceived states were characterized by quantum tomography.

For con�guration (1), in which the channel was a 1 m �ber and the measurement
station was placed on the same optical table, we measured a maximal Wigner
negativity of −0.206π with a mean photon number of 2.54. For con�guration
(2), in which the channel was a single 60 m �ber terminating at an adjacent
lab, we measured a maximal Wigner negativity of −0.105 with a mean photon
number of 2.345. Here we also showed how carefully analysing the tomographic
process allowed us to compensate for incorrect measurement settings. For con-
�guration (3), in which the channel was a ∼ 300 m connection through the
DTU campus �ber network terminating in a separate building, we could sadly
not measure any Wigner negativity before concluding the project. In the end
we found, for yet unknown reasons, that the e�ciency of the signal channel had
severely decreased between the measurements of con�guration (2) and (3).

For con�guration (3) we performed measurements of the phase �uctuations of
the �ber channel and found that, while severe, our locking scheme could com-
pensate for them and determined that a holding time of no longer than a few
100 µs will be required. The most obvious point of improvement is the optical
transmission e�ciency of the signal channel. Improving this e�ciency can be
done in three places; locally in lab A by checking the transmission e�ciency of
all optical components in the signal channel, by cleaning all �ber connections of
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the campus network and by rebuilding the measurement station using a higher
quality beamsplitter and resplicing the �ber connections. Besides the optical ef-
�ciency the expected Wigner negativity can also be improved by using an even
lower pump rate and by reducing the length of the �lter cavity to increase its
bandwidth. We therefore strongly believe that given the improvements listed
measuring Wigner negativity of a CV non-Gaussian state transmitted troiugh
the DTU campus network is entirely possible with our setup.

Besides measuring the Wigner negativity by improving the optical loss of the
signal channel other interesting paths to pursue could be to use a true local-
local oscillator setup to perform the homodyne measurements, thereby reducing
the channel requirements to a single quantum channel for network transmission.
This could be implemented in our setup by either adding a pilot tone during the
sample period or by placing it a high sideband frequency outside of the band-
width of the 1-PSSqV state [88]. Another interesting experiment could be split
the cat state on a 50:50 beamsplitter and direct either half to di�erent buildings
and measure them using identical measurement stations. Since our SSPD has 6
channels, we could also easily split the trigger channel after frequency �ltering
onto several SSPDs in order to generate up to six photon subtracted squeezing
vacuum states. Though using this approach the measurement time would scale
exponentially due to the decreased success probability of a trigger events and
so the long term stability of our setup and especially the fake count rate be-
comes increasingly important. Beside the fundamentally interesting aspects of
creating large non-Gaussian state, other protocols more relevent for quantum
communication tasks could be pursued, such as CV entanglement distribution
and distillation across the network [89]

Regarding the measurement station there are also possible points of improve-
ment. From our data analysis we found that locking to the angles between 0◦

and 90◦ could be problematic for our implementation of the AC/DC lock. This
issue could be circumvented adding a second homodyne detector and changing
the measurement setup to hetorodyne detection, in which the signal is split on a
50:50 beamsplitter and one half is measured in x-quadrature and the other in the
p-quadrature. In this way the entire phase space of the Q-function is sampled at
once and only a pure AC and pure DC lock is required [81]. The usual di�culty
of getting two interference visibilities close to unity is further reduces by using a
�ber setup, where we found that a > 0.99 visibility routinely could be achieved.
For the measurement presented in chap. 4 a "slow" sample-hold scheme was
used. Here slow means that the sampling frequency was well below the locking
bandwidth and we therefore had to hold all locks during data collection. This of
course allows for long measurement traces to be collected, but as we saw from
the measurement of the phase noise of the full �ber network (�g. 4.12) this is of
no use as the phase drifts too quickly. We should therefore opt to use the "fast"
sample-hold scheme, in which the sampling frequency is much higher than the
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locking bandwidth and so the locks can be kept continuously on, as they won't
see the on/o� switching of the locking signals. One thing to solve would then
be the synchronization of the sample-hold signal generated in lab A and lab C.
If solved, using this method our measurement should then only su�er from the
locking phase noise, which we found to be ∼ 4◦ for con�guration (3).

Distributed quantum sensing

For the distributed sensing project, which was carried out before the non-
Gaussian state transmission project in the old lab, we also build a setup to
generate squeezing vacuum from using parametric down-conversion in an OPO
cavity as well as the four node free-space network consisting of three 50:50
beamsplitters and eight QWPs and HWPs. For the project we developed the
technique of using overlapped probe and LO signals in opposite circular polar-
izations to realise a phase shift between the two modes using only a HWP. This
allowed us to to scale the network size to four nodes without having to deal with
the otherwise eight phase locks. With the entangled probe state we showed a
roughly 20% improvement in root-mean-square estimation error compared to a
non-entangled probe, for the sensing task of measured the average phase shift of
the four nodes. The main obstacle preventing us from showing a better scaling
was the 75% total optical e�ciency of the network channels. To obtain the
maximal sensitivity with our experimental setup we had to carefully optimize
the distribution of coherent and squeezed photons within the entangled probe
state. As this project was a proof-of-principle experiment and since we had to
disassemble the experimental setup completely, we have no current plans for
developing the experiment further.

Though an interesting idea could be to use the same scheme of overlapped
LO and probe state to implement a multipass sensing protocol. In ?? Higgins
et al. show how passing a probe state through a phaseshift multiple times can
linearly increase the accumulated phase and thereby leading to a Heisenberg
limited measurement sensitivity. In experimental setup they used polarization
NOON states created by passing a heralded single photon trough a PBS. But
due to the heralding their scheme was only probabilistic. Using a setup similar
to what we build for this project, but with a multipass stage as in ?? (HWP in
between two mirrors and QWPs) instead of the beamsplitter network we could
show, assuming low enough loss, a deterministic Heisenberg limited scaling in
the number of probe passes of the multipass stage.
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A.1 Homodyne tomography plots
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Figure A.1: Homodyne tomography using MaxLik algorithm. Fideli-
ties for various bin ranges. States have average photon number 2 and an az-
imuthal resolution of 30o is used.
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Figure A.2: Homodyne tomography using MaxLik algorithm. Trace
distances for various bin ranges. States have average photon number 2 and an
azimuthal resolution of 30o is used.



106 An Appendix

0.2

0.4

0.6

0.8

1.0

d
 =

 1
0o

SqV 1-PSSqV Odd cat 

0.2

0.4

0.6

0.8

1.0

d
 =

 1
5o

0.2

0.4

0.6

0.8

1.0

d
 =

 3
0o

0.2

0.4

0.6

0.8

1.0

d
 =

 4
5o

100 101 102

iteration step: k

0.2

0.4

0.6

0.8

1.0

d
 =

 9
0o

 = 1.0
 = 0.9
 = 0.8
 = 0.7

100 101 102

iteration step: k
100 101 102

iteration step: k

Figure A.3: Homodyne tomography using MaxLik algorithm. Fideli-
ties for various azimuthal resolution dθ. States have average photon number 2
and 200 bins are used.
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Figure A.4: Homodyne tomography using MaxLik algorithm. Trace
distances for various azimuthal resolution dθ. States have average photon num-
ber 2 and 200 bins are used.
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Waist size ω0

√
λzR/π

Rayleigh length zR πnω2
0/λ

Divergence angle φR λ/πω0

Wavenumber k 2πn/λ
Angular frequency ν 2πc/λ

Beam width ω(z) ω0

√
1 + (z/zR)2

Beamfront curvature R(z) z
(
1 + (zR/z)

2
)

Gouy phase Glm(z) (1 + l +m) arctan(z/zR)
Modematch 1↔ 2 ηol,0 2/(ω0,2/ω0,1 + ω0,1/ω0,2)

Table A.1: Typical parameters of a focused Gaussian beam [54].

A.2 Cavity design guide

A.2.1 Ray transfer matrix analysis

The beam parameter q(z) fully describes a Gaussian beam by its Rayleigh length
or waist size

q(z) = z + izR ⇔ 1
q(z) = 1

R(z) − iλ
nπω(z)2 (A.1)

The transformation of a Gaussian beam by a combination linear optical elements
is described by the ABCD law

q2 =
Aq1 +B

Cq1 +D
(A.2)

where q1 is the initial Gaussian beam parameter, q2 is the resulting beam pa-
rameter and A,B,C and D are the matrix elements of the ray transfer matrix
M = M3M2M1 describing the sequential transformation of optical elements
1→ 2→ 3.
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Propagation d = distance Mp =

[
1 d
0 1

]

Thin lens f = focal length Mtl =

[
1 0
−1
f 1

]

Curved
mirror

R = mirror curvature
Mm =

[
1 0
−2
Re

1

]
Re = R cos θ (tangential plane)
Re = R/ cos θ (sagittal plane)

Curved n = refractive index
Mb =

[
1 0

n1−n2

Rn2

n1

n1

]

boundary 1→ 2 R = boundary curvature

Table A.2: Common ray transfer matrices [54].

Fabry-Perot
(FP) M =Mp(

l1
2 )Mm(R)Mp(

l1
2 )

Monolithic
FP

M =Mp(
lcry

2 )Mm(Rcry)Mp(
lcry

2 )

Triangle

M =Mp(
l1
2 + l3)Mm(R, θ)

×Mp(
l1
2 + l3)

l3 =
√

( l12 )2 + l22, θ = arctan 2l2
l1

Flat triangle
w. crystal

M =Mp(l3)Mm(R, θ)

×Mp(
l1−lcry

2 )Mb(n, 1)Mp(
lcry

2 )

l3 =
√

( l12 )2 + l22, θ = arctan 2l2
l1

Bowtie w.
crystal

M =Mp(l4 + l2
2 )Mm(R, θ)

×Mp(
l1−lcry

2 )Mb(n, 1)Mp(
lcry

2 )

l4 =
√

( l1+l2
2 )2 + l23, θ = arctan 2l3

l1+l2

Table A.3: Common optical free-space cavity geometries and the associated
ray transfer matrixM used to calculate the resonant mode waist size. Generally
M describes the waist to waist transfer, so that if the cavity has has two waists
or is symmetric M only describes half a round trip.
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Waist-to-waist transfer equations

If we say that both q1 = izR,1 and q2 = izR,2 are waists, we can then use the
ABCD law to write

izR,2 =
iAzR,1 +B

iCzR,1 +D
=
i(AD −BC)zR,1 +ACz2

R,1 +BD

(CzR,1)2 +D2

which is solved by separating the real and complex part

Re(q2) : 0 =
ACz2

R,1 +BD

(CzR,1)2 +D2
⇔ zR,1 =

√
−BD
AC

(A.3)

Im(q2) : zR,2 =
(AD −BC)zR,1
(CzR,1)2 +D2

=
(AD −BC)

√
−BD
AC

−C2BD
AC +D2

=
(AD −BC)AD

√
−BD
AC

−BC +AD
=

√
−AB
CD

(A.4)

Here we use that zR must be real so the terms −BD/AC and −AB/CD are
assumed positive. The two equations can then be used directly to obtain the
Rayleigh lengths and thereby waist size of any resonant cavity geometry. Since
the equations only hold for resonant modes, a geometry resulting in complex
Rayleigh lengths corresponds to no resonant mode being supported.

A.2.2 Mechanical designs
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Figure A.5: Design consideration of the SHG and OPO cavities.
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Figure A.6: Design considerations of the FC. resonant mode waist size, band-
width (BW) and free spectral range (FSR) as function of the cavity length
(lcav/2) and mirror speci�cations. Using a cage system, we can easily change
the cavity length, but initially choose a cavity length of 2.2 mm with identi-
cal 99.8% re�ective, 500 mm curved mirrors. This results in a waist size of
ω0 = 0.12 mm and, assuming no additional losses, a �nesse of ∼ 1600, BW of
γFC ∼ 24 MHz and ∆ωFC ∼ 75 GHz FSR.

A.2.3 Boyd-Kleinmann parameteres

Phase mismatch parameter σ ∆kzR
Focusing strength paramter χ Lcry/2zR
Focusing position parameter µ (lcry − 2f)/lcry
Double refraction parameter β ρ/δ0
Absorption parameter κ α+zR
Phase mismatch ∆k
Focus position f
Double refraction angle ρ
Di�raction half-angle δ0
Crystal length lcry
E�ective nonlinear coe�cient deff
Linear absorption coe�cient αn
E�ective absorption coe�cient α± αω ± α2ω

Table A.4: Overview of parameters used in Boyd-Kleinman theory [57].
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A.3 Measurement con�gurations

Figure A.7: Map of the laboratory rooms in the basement of building 307 at
the DTU campus. The 1-PSSqV state is generated in lab A and is connected
to lab B via two 60 m SMF �bers (con�guration 2) and to the 307b node of the
campus �ber network (G in �g. A.8) via two 70 m SMF �bers (con�guration
3).
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Figure A.8: Map of the DTU �ber network with central nodes shown. For
measurement con�guration (3) a connection between node G and E was patched
up, so that the channel connecting lab A in bld. 307 to lab C in bld. 340 passes
through a total of three node cabinets. The total channel length is estimated
to be ∼ 400 m.

Figure A.9: HMS in lab B (right), on the way to bld. 340 (middle) and inside
lab C (left).
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A.4 Lab infrastructure

A.4.1 Red Pitaya

In our setup we typically use one RP per lockbox and have modi�ed them in
the following way:

� change the output voltage from ±1 V to 0− 2 V and improve the output
noise performance by removing resistor R1, R2, R3 and R4 of the output
ports [90].

� synchronized the clock of several RP by jumping R23 and R24 (master)
and removing R25 and R26 (slave). The clock from the master RP is
carried to the slave RP through the GND, CLK+ and CLK- pins of the E2
extension connector. Using this method we have successfully synchronized
up to �ve RP using short unshielded cables as well as synchronizing to RP
using a 4 m 2-poled shielded cable.

Figure A.10: Red Pitaya rack
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A.4.2 Homebuild feedback components

Figure A.11: Network analysis of the small piezo mounted mirror used for
probe phase modulation and gain locking.

Figure A.12: Network analysis of the 3D printed �ber stretcher used for
AC/DC locking of homodyne detection.

Figure A.13: (right) 3D printed �ber modulator. Good LO locking was
achieved using 20 kHz modulation with low ringing, but after a few hours of
continuous use the piezo broke. (right) 3D printed �ber attenuator.
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A.5 Supplementary material to Chap. 4



Letters
https://doi.org/10.1038/s41567-019-0743-x

Distributed quantum sensing in a continuous-
variable entangled network
Xueshi Guo   1*, Casper R. Breum   1, Johannes Borregaard2, Shuro Izumi1, Mikkel V. Larsen   1, 
Tobias Gehring   1, Matthias Christandl2, Jonas S. Neergaard-Nielsen   1* and Ulrik L. Andersen   1*

1Center for Macroscopic Quantum States (bigQ), Department of Physics, Technical University of Denmark, Lyngby, Denmark. 2QMATH, Department of 
Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark. *e-mail: xguo@fysik.dtu.dk; jsne@fysik.dtu.dk; ulrik.andersen@fysik.dtu.dk

SUPPLEMENTARY INFORMATION

In the format provided by the authors and unedited.

Nature Physics | www.nature.com/naturephysics



Supplementary material for distributed quantum sensing in a continuous variable
entangled network

Xueshi Guo,1 Casper R. Breum,1 Johannes Borregaard,2 Shuro Izumi,1 Mikkel V. Larsen,1

Tobias Gehring,1 Matthias Christandl,2 Jonas S. Neergaard-Nielsen,1 Ulrik L. Andersen1

1Center for Macroscopic Quantum States (bigQ), Department of Physics,
Technical University of Denmark, Fysikvej, 2800 Kgs. Lyngby, Denmark

2QMATH, Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
(Dated: October 24, 2019)

I. AVERAGED PHASE SHIFT SENSING WITH P̂avg ESTIMATOR

Our distributed phase sensing scenario is as follows. At each of M spatially separated locations, an optical phase

shift φj occurs. We are interested in estimating the average phase shift φavg = 1
M

∑M
j=1 φj . It is straight-forward

to generalize to other linear combinations of the phase shifts, but for the sake of demonstrating the power of the
entangled approach it suffices to consider the simple average, where the gain is maximum [1]. We consider two
different approaches: The separable scheme where each phase shift is probed individually by squeezed coherent states,
and the entangled scheme where the M locations are part of an optical network endowed with a single squeezed
coherent state that is distributed among the nodes to serve as an entangled probe. In either case, the phase shifted
probes are measured by homodyne detection of their phase quadratures and the results are communicated classically
to establish the average.

We furthermore make the following assumptions to simplify the analysis:

1. All the phase shifts are small, giving the small-angle approximation sinφ ≈ φ.

2. All probes in the separable approach are identical, having real-valued displacement amplitude αs and squeezing
in the phase quadrature with squeezing parameter rs. That is, the M probes are each in the state |ψ(s)〉 =

D̂(αs)Ŝ(rs)|0〉, where D̂(α) = exp(αâ† − α∗â) is the displacement operator and Ŝ(r) = exp( r2 (â†2 − â2)) is the
squeezing operator.

3. In the entangled approach, the single initial resource state has real-valued displacement amplitude αe and phase
squeezing with squeezing parameter re, that is, it is in the state |ψ(e)〉 = D̂(αe)Ŝ(re)|0〉. This resource is divided
evenly through the network to the M nodes.

4. The channel losses, quantified by the efficiency parameter η, are identical for the M channels and they occur
entirely prior to the probes reaching the phase samples. In other words, we assume the phase samples themselves
and the detection to be lossless. While this assumption is not quite realistic, even in our experiment, it mostly
has consequences when keeping track of the number of photons hitting the sample but does not influence the
sensitivity as such. In a truly distributed setting, most losses would also happen in the distribution of the
resources.

For high-sensitivity estimation of larger phase shifts, these assumptions can still be fulfilled, as long as the local
oscillator in the homodyne detector is pre-adjusted to be roughly 90◦ out of phase with the shifted probe. This rough
estimation can be done with just a few initial probings [2].

A. General sensitivity for small phase shift

1. Separable scheme

With probe states given as described above, we use the notation defined in Figure 1 to analyse the separable scheme.
The phase quadrature of a single mode after channel loss and the phase shift φj is

p̂j =
(√

η x̂s,j +
√

1− η x̂vac,j
)

sinφj +
(√

η p̂s,j +
√

1− η p̂vac,j
)

cosφj , (1)
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FIG. 1. Phase quadrature notations for analyzing the separable scheme. The amplitude quadrature is defined accordingly.
p̂s,1 . . . p̂s,M : operator for the initial squeezed states; p̂vac,1 . . . p̂vac,M : the vacuum operators induced by loss. η: the overall
detection efficiency; φ1 . . . φM : the local phase shifts; p̂1 . . . p̂M : phase quadrature of a single mode after channel loss and the
phase shift.

where x̂s,j , p̂s,j are the quadrature operators of the initial squeezed states with mean values 〈x̂s,j〉 =
√

2αs, 〈p̂s,j〉 = 0
and variances 〈∆x̂2s,j〉 = 1

2e
2rs , 〈∆p̂2s,j〉 = 1

2e
−2rs , while x̂vac,j , p̂vac,j are vacuum mode operators admixed through

the losses. The expectation value of the rotated phase quadrature is

〈p̂j〉 =
√
η 〈x̂s,j〉 sinφj =

√
2ηαs sinφj ≈

√
2ηαsφj . (2)

The phase shift can thus be directly estimated from the measured p̂j values. The average phase shift of M modes,

φavg = 1
M

∑M
j=1 φj , can then be estimated with the estimator P̂avg = 1

M

∑M
j=1 p̂j :

〈P̂avg〉 ≈
√

2ηαsφavg. (3)

The sensitivity of the estimation is defined as the standard deviation which, from standard error propagation
analysis, is given by

σs =

√
〈∆P̂ 2

avg〉∣∣∣∂〈P̂avg〉/∂φavg
∣∣∣
. (4)

The slope of P̂avg versus φavg is

∂〈P̂avg〉/∂φavg ≈
√

2ηαs, (5)

and its variance is

〈∆P̂ 2
avg〉 =

1

M2

〈
∆




M∑

j=1

p̂j




2〉
=

1

M2

M∑

j=1

〈∆p̂2j 〉 (6)

=
1

M2

M∑

j=1

(
sin2φj(η〈∆x̂2s,j〉+ (1− η)〈∆x̂2vac,j〉) + cos2φj(η〈∆p̂2s,j〉+ (1− η)〈∆p̂2vac,j〉)

)
(7)

=
1

M2

M∑

j=1

(
ηe2rs

2
sin2 φj +

ηe−2rs

2
cos2 φj +

1− η
2

)
. (8)
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The second equality comes from the fact that in the separable approach there are no correlations between the modes.

Under a stronger bound on the magnitude of the phase shifts, φj �
√
〈∆p̂2s,j〉/〈∆x̂2s,j〉, this expression reduces to

〈∆P̂ 2
avg〉 ≈

1

M

(
η〈∆p̂2s,j〉+

1− η
2

)
=
ηe−2rs + 1− η

2M
. (9)

Hence, the sensitivity is

σs =

√
e−2rs + 1/η − 1

2αs
√
M

. (10)

The average number of photons hitting each sample is

Ns = Ns,coh +Ns,sqz = η(α2
s + sinh2 rs). (11)
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FIG. 2. Phase quadrature notations for analyzing the entangled scheme. The amplitude quadrature is defined accordingly.
BSN: beam-splitter network with M inputs and outputs; p̂e: the only non-vacuum input of the BSN; p̂′1 . . . p̂

′
M : the evenly split

M output of the BSN. All the other notations are the same as Figure 1.

2. Entangled scheme

With entangled probes (the notation used in our analysis is summarized in Figure 2), we use the same estimator,

P̂avg. The individual modes that combine to form the average are, however, now related through the distributed single
initial resource p̂e:

p̂j =
(√

η x̂′j +
√

1− η x̂vac,j
)

sinφj +
(√

η p̂′j +
√

1− η p̂vac,j
)

cosφj , (12)

where the primed mode operators are obtained after symmetric distribution in the beam-splitter network, that is,

x̂e =
1√
M

M∑

j=1

x̂′j , p̂e =
1√
M

M∑

j=1

p̂′j . (13)

The mean value of the estimator is

〈P̂avg〉 =
1

M

M∑

j=1

〈p̂j〉 ≈
√
η

M

M∑

j=1

〈x̂′j〉φj =

√
2η

M
αeφavg. (14)
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The variance is

〈∆P̂ 2
avg〉 =

1

M2

〈
∆




M∑

j=1

p̂j




2〉

≈ η

M2

〈
∆




M∑

j=1

x̂′jφj




2〉
+

η

M2

〈
∆




M∑

j=1

p̂′j




2〉
+

1− η
M2

〈
∆




M∑

j=1

p̂vac,j




2〉

≈ η

M2

〈
∆




M∑

j=1

p̂′j




2〉
+

1− η
M2

M∑

j=1

〈p̂2vac,j〉

=
η

M2
M〈∆p̂2e〉+

1− η
M2

M∑

j=1

〈p̂2vac,j〉

=
ηe−2re + 1− η

2M
. (15)

In the second line, we made use of the fact that there are no correlations between x̂ and p̂ quadratures for the given
probe state in our entangled scheme as well as the small angle approximation cos(φj) ≈ 1, sin(φj) ≈ φj . In the third

line, we further tightened the small angle approximation by taking a φ̃ such that for all j, |φj | < φ̃ and assuming

φ̃2

〈
∆




M∑

j=1

x̂′j




2〉
�
〈

∆




M∑

j=1

p̂′j




2〉

⇒ φ̃2 � 〈∆p̂
2
e〉

〈∆x̂2e〉
⇒ φ̃� e−2re . (16)

This approximation gives a sensitivity for the entangled approach of

σe =

√
〈∆P̂ 2

avg〉∣∣∣∂〈P̂avg〉/∂φavg
∣∣∣

=

√
e−2re + 1/η − 1

2αe
. (17)

Note that this, in contrast with the separable approach, does not depend on the number of modes M . The sensitivity
is therefore the same as the sensitivity for a single mode with the same resource state - but in the single mode case
the sample would of course be exposed to M times as many photons. The average number of photons hitting each
sample in the distributed, entangled scheme is

Ne = Ne,coh +Ne,sqz =
η

M
(α2
e + sinh2 re). (18)

B. Optimized parameters and sensitivities

1. Entangled scheme

With the sensitivities given by eqs. (10) and (17), we wish to find the values for the displacement amplitudes and
squeezing parameters that optimize the sensitivity for a fixed photon number on the sample. This problem can be
solved with Lagrangian multipliers, using the constraint Ns,e − N = 0, where N is the photon number to be held
fixed during optimization. The total photon number of the resource state(s) before loss is then Ntot = MN/η.

The Lagrange function for the entangled scheme is
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Le(αe, re, λ) = σe + λ(Ne −N) (19)

=

√
e−2re + 1/η − 1

2αe
+ λ

η

M
(α2
e + sinh2 re)− λN, (20)

and the equations for the stationary point of the Lagrangian become

0 = ∇αe
Le = −

√
e−2r + 1/η − 1

2α2
e

+
2ληαe
M

, (21)

0 = ∇reLe = − e−2re

2αe
√
e−2re + 1/η − 1

+
2λη cosh r sinh re

M
, (22)

0 = ∇λLe =
η

M
(α2
e + sinh2 re)−N. (23)

After some manipulation, the solutions can be expressed as

e2re =
ΛM − η
1− η , (24)

α2
e = Ntot − sinh2 re = Ntot −

e2re + e−2re − 2

4
=
MN

η
− (ΛM − 1)2

4(1− η)(ΛM − η)
, (25)

with ΛM =
√

1 + 4MN(1− η). The optimal photon number ratio is

µe =
Ne,sqz
N

=
sinh2 re
Ntot

=
η(ΛM − 1)2

4MN(1− η)(ΛM − η)
, (26)

and the optimal sensitivity obtained with these parameters becomes

σopt
e =

1

2MN

√
MN(1− η) + η(ΛM + 1)/2

1 + η/(MN)
, (27)

which for η = 1 reduces to σopt
e (η = 1) = 1

2MN

√
MN
MN+1 . This sensitivity exhibits Heisenberg scaling in both photon

number (due to the squeezing) and mode number (due to the entanglement).

a b

FIG. 3. a and b: Optimized squeezed photon number ratio µ and squeezing degrees ηe−2r + (1 − η) for the Fig. 1c and 1d in
the main text, respectively. Sep, the separable approach; Ent, the entangled approach.
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2. Separable scheme

Doing the same derivation for the separable scheme, that is, starting from the Lagrange function Ls(αs, rs, λ̃) =

σs + λ̃(Ns −N), results in the following optimal parameters for squeezing and displacement:

e2rs =
Λ1 − η
1− η , (28)

α2
s =

Ntot

M
− sinh2 rs =

N

η
− (Λ1 − 1)2

4(1− η)(Λ1 − η)
, (29)

with Λ1 =
√

1 + 4N(1− η), and a corresponding photon number ratio

µs =
Ns,sqz
N

=
M sinh2 rs

Ntot
=

η(Λ1 − 1)2

4N(1− η)(Λ1 − η)
. (30)

Finally, the optimal sensitivity becomes

σopt
s =

1

2
√
MN

√
N(1− η) + η(Λ1 + 1)/2

1 + η/N
, (31)

which for η = 1 reduces to σopt
s (η = 1) = 1

2
√
MN

√
N
N+1 , thus no longer showing Heisenberg scaling in the mode

number. The result enable us to obtain the simulation result in Fig 1c and 1d in the main text, and the optimal µ
and corresponding squeezing rated need to get the optimal µ is shown in Fig. 3.

II. PREPARATION OF ENTANGLED PROBES

The entangled probes are prepared in two steps. First, we generate a squeezed coherent state, denoted as the
squeezed probe (SP), by an optical parametric oscillator (OPO). Second, we send the SP through a beam-splitter
network (BSN) to generate 4 entangled probes. We define the mode of the SP to be a narrow sideband at 3 MHz,
since this is region where we have high squeezing quality.

A. Generation of squeezed probes with OPO

The laser source for the experiment is an amplified NKT Photonics X-15 fibre laser operating at 1550 nm. Most of
the light is used for pumping a second harmonic generation (SHG) cavity (same design as the OPO described below)
to produce 775 nm light to act as the OPO pump. The rest is used for the local oscillator and the probe and lock
beams. As shown in Fig. 4, we use a bow-tie shaped OPO with a periodically poled potassium titanyl phosphate
(PPKTP) crystal to generate the SP by type-0 parametric down conversion. The bandwidth of the cavity is 8.0 MHz
half width half maximum (HWHM) and the OPO pump power threshold is 850 mW. The 775 nm pump, which for
the measurements presented here varied between 150 mW and 350 mW, is coupled through the dichroic curved cavity
mirrors and dumped after passing the crystal. A 3.6 mW coherent beam at 1550 nm, weakly phase-modulated by
an electro-optic modulator (EOM) at 3 MHz and 28.7 MHz, is coupled into the OPO in the counter-propagating
direction through a high reflectivity mirror (HR) with a transmittance of about 100 ppm. This beam is used to lock
the cavity by the Pound–Drever–Hall technique with the 28.7 MHz side band and the resonant detector D1. All cavity
and phase locks in the experiment are handled by Red Pitaya FPGA boards running the PyRPL lockbox software [3].

The reflection from the HR mirror is re-coupled into the forward-propagating mode of the OPO with a 0◦ mirror
to serve as the carrier of the sideband mode that defines our probe state. A variable attenuator (Att.) is inserted
to control the optical power. In the OPO, the forward-propagating beam is squeezed by the parametric process and
coupled out through a 10% transmittive out coupling mirror (light gray in Fig. 4). A half-wave plate (λ/2) and
a polarization beam-splitter (PBS) is used to tap around 1% of the OPO output towards detector D2 to lock the
phase between the carrier and the pump for de-amplification. As a result, the carrier is squeezed in the amplitude
quadrature, leading to squeezing of the phase quadrature of the probe in the 3 MHz modulated sideband frequency
mode since the sideband is encoded by phase modulation.
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FIG. 4. Squeezed probe (SP) preparation with OPO. M, high reflectively mirror; EOM, electro-optic modulator; Att, attenuator;
D1, resonant detector for cavity lock; D2, high gain detector for OPO gain lock.

B. Generation and detection of entangled probes

The detailed experimental setup is shown in Fig. 5. It is essentially a multi-port version of a squeezed-light-enhanced
polarization interferometer [4]. We create four entangled probes by sending the squeezed probe, SP, through a BSN
consisting of three 50:50 beam-splitters. Prior to this, the SP is spatially combined on a PBS with a strong beam
(LO) which will act as the local oscillator for all four modes. The LO phase is locked to either the p̂ or x̂ quadrature
of the SP by tapping ∼ 1% towards a polarization-based homodyne detection setup, the output of which is used to
control a piezo-mounted mirror in the LO path. In each of the four modes, the phase between LO and SP can be
further controlled by a λ/4 and a λ/2 wave plate. The λ/4 plates change the LO and SP into left-hand and right-hand
circular polarization, respectively. The λ/2 plates introduce phase shifts between SP and LO and play two roles:
First, they are used to synchronize the phases for the entangled probes by compensating the phase difference induced
by 50:50 beam splitters. Second, they are used to simulate the phase samples, that is, the imposed phases φ1, . . . , φ4.
For details, see section III A. Finally, the four outputs are measured on homodyne detectors.

LO
HD1

tapping

SP

BSN

PBS

50:50

λ/2
λ/4

HD2

HD3

HD4

φ1

HDL

EOM OPO

φ2

φ3

φ4

1

2

3

4

1

4 2

3

λ/4 λ/2

FIG. 5. Detailed experimental setup and the input-output relationship of the beam splitter network (BSN). The input modes

â1 to â4 with s-polarization are transferred into the output modes b̂1 to b̂4. Here, only â1 is a squeezed coherent state operator.
â2 to â4 are vacuum operators. By tuning the wave plates at each output of the BSN, b̂1 to b̂4 are set to circular polarization.

1. Homodyne detection and data acquisition

All five homodyne detection setups use the same scheme, illustrated in Fig. 6a. The circularly polarized SP and
LO interfere after the PBS. The optical power of the LO is about 3 mW on each HD and it detects a SP of about 10
nW. The output of the detector is electronically split into AC and DC parts with a bias-tee of about 100 kHz. The
AC signal, Vac, is used for phase sensing. It includes the 3 MHz side-band, but filters out the carrier at DC and the
side-band for cavity locking at 28.7 MHz with a low pass filter at around 14 MHz. The DC signal, Vdc, detects the
carrier. It is used for phase locking and phase calibration (see section III B).
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a. b.

FIG. 6. a. The circular polarized SP and local oscillator (LO) are projected into p- or s-polarization by a PBS, and detected
with a balanced photo-detector. The output voltage of the detector photo diodes is separated into DC–100 kHz output Vdc and
100 kHz–14 MHz output Vac. PD, photo diode; TIA, trans-impedance amplifier. b. Power spectral densities (PSDs). SNL,
shot-noise limit; ASQ, anti-squeezing; SQ, squeezing; PX and PP, probe noise in X and P quadrature respectively, measured
by blocking pump; EL, electronic noise of the data acquisition system, measured by blocking both SP and the LO.

The Vac outputs of HD1 to HD4 are sent to a 4-channel oscilloscope (LeCroy HDO6034), which acquires time-
voltage traces of 200 µs with a 50 MHz sampling rate. The power spectral densities (PSDs) of the individual HD
outputs and the averaged output is obtained by Fast Fourier Transform (FFT) on a computer. Fig. 6b shows PSDs
for the averaged voltage of the 4 HDs in different experimental conditions with no modulation from the EOM. All
the PSDs in Fig. 6b are the averaged result of 400 oscilloscope measurements. To show the signal-to-noise ratio of
the data acquisition system, we measure the PSDs of the shot noise level (SNL, measured when SP is blocked) and
electronic noise (EL, measured when both SP and LO are blocked). The result is shown in green and dark grey traces
in Fig. 6b. We see that the electronic noise clearance is about 23 dB at the 3 MHz side band, which corresponds to
about 0.5% effective loss in detection efficiency. We will discuss the other PSDs shown in Fig. 6b in the following
subsection.

2. Input-output relations of the BSN

The BSN we use in the experiment is shown in Figure 5. The only non-vacuum input mode â1 is the SP, whose
mode operator is â1 = Ŝ†(r)âŜ(r) + α in the Heisenberg picture, with â being the annihilation operator of the OPO
input at 3 MHz and the real-valued α being the effective coherent excitation of the mode after modulation by the
EOM and de-amplification in the OPO. All the other input modes â2, â3 and â4 are vacuum modes. The output

modes of the BSN, b̂j can be explicitly written as:

b̂1 =
1

2

√
η(â1 − iâ4 +

√
2iâ2) +

√
1− ηâvac,1

b̂2 =
1

2

√
η(â1 − iâ4 −

√
2iâ2) +

√
1− ηâvac,2

b̂3 =
1

2

√
η(â1 + iâ4 +

√
2iâ3) +

√
1− ηâvac,3

b̂4 =
1

2

√
η(â1 + iâ4 −

√
2iâ3) +

√
1− ηâvac,4. (32)

Here we have introduced an identical overall efficiency η and vacuum mode operator âvac,j for j = 1 . . . 4. Although
the various inefficiencies occur at different points in the experiment, for simplicity we have assumed (as in section I)
that they all occur after the distribution of the probes in the BSN and that they are identical for the four channels.
Experimentally, we use eight variable irises before the PDs of all four HDs to equalize the overall detection efficiency.

3. Overall detection efficiency estimation

The loss budget of our experiment setup is as follows: the escape efficiency of the OPO ∼ 95%; the quantum
efficiency of the photo diodes in HD ∼ 98%; the imperfection of the mode matching between SP and LO ∼ 90%; the
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electronic noise of the homodyne detection ∼ 99%; the efficiency introduced by tapping for phase locking ∼ 97% and
the efficiency of all optics between OPO output and the PD of the HD ∼ 92%. The loss budget of the experiment
system gives an estimation of the overall detection efficiency of η ∼ 74%.

We also estimate the overall detection efficiency by measuring the squeezing/anti-squeezing degrees (notated with
v2sq and v2asq) for the entangled approach at 3 MHz. Since

v2sq = ηe−2re + (1− η)

v2asq = ηe2re + (1− η), (33)

we can calculate η and re with measured v2sq and v2asq. The overall efficiency estimated with 5 different pump powers
to the OPO is η = 73.5% ± 1.5%. This result coincide with the loss budget estimation, and we use this result to
theoretically calculate the sensitivity.

For the separable approach, where the BSN is removed, the overall efficiency is ∼ 1.5% higher. However, we
compensate this by tapping more to the lock detector D2 in Figure 4 so the separable approach has similar efficiency
to that of the entangled approach.

4. Entanglement characterization of the probes

The squeezing degree for each individual output mode will not be better than 3/4 shot noise due to the splitting
of the SP in the BSN. However, the squeezing of SP is converted into entanglement between all the probes. By joint
measurement of the 4 probes (simply averaging the voltage from the four HDs), we can recover the squeezing degree
of the SP: From Eq. (32), the joint measurement recovering the squeezing of SP is simply the sum of the four HD1–4

outputs. The recovered squeezed and anti-squeezed quadratures are shown as SQ (blue) and ASQ (red) in Fig. 6b.
We see the joint measurement gives about 4.8 dB of squeezing at the 3 MHz side band frequency. The additional
noise seen below 2 MHz is due to technical noise from our laser. As a calibration of the noise of the probe before
the parametric process, we measure the PSDs of X̂ and P̂ quadrature by blocking the pump of our OPO, and the
result is shown with PX (light blue) and PP (light red) in Fig. 6b (noting that here we refer to the amplitude/phase

quadrature of the carrier of the SP since there is no side-band). We see the technical noise of both X̂ and P̂ quadrature
decreases as the frequency increases and overlap with the SNL when the frequency is above 1.8 MHz. Therefore, in
our estimation of the overall detection efficiency at the side band frequency (3 MHz), we ignore contributions from
technical noise of the laser.

HD1 Joint Measurement

a. b.

FIG. 7. a. Squeezing and anti-squeezing spectra for a single distributed spatial mode obtained from HD1. b. Squeezing and
anti-squeezing spectra from joint measurement. Dashed lines: spectra predicted by theory.

With the measurement described in Fig. 6b, we can get the squeezing/anti-squeezing degree in SNL units. Fig. 7a
and b shows the squeezing and anti-squeezing of an individual channel (HD1) and that from the joint measurement,
respectively. The dashed lines show the squeezing and anti-squeezing predicted by [5]

S±(f) = 1± 4η
√
P/Pth

(1∓
√
P/Pth)2 + (f/fcav)2

, (34)

where S−(f) and S+(f) denotes the squeezing and anti-squeezing spectrum, η = 0.735 is the estimated overall
detection efficiency, fcav = 8.0 MHz is the HWHM of the OPO cavity and Pth = 850 mW is the threshold of the
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OPO. In this measurement, P = 300 mW pump power is used. Here both fcav and Pth are obtained from independent
measurements.

We quantitatively verify the entanglement of the probes by reconstructing the covariance matrix of the 4 modes.
As we do not expect correlations between x̂ and p̂ quadratures, we only experimentally reconstruct Mx = Cov(x̂j , x̂k)
and Mp = Cov(p̂j , p̂k) for j, k = 1 to 4 at around 3 MHz. After balancing the length of cables from HD1–4 to
the oscilloscope, we digitally filter the recorded traces by a 50 kHz band pass filter centered around 3 MHz, and
measure Mx and Mp, respectively. The covariance matrices in shot noise units from the average of 400 oscilloscope
measurements are:

Mx =




0.83 −0.18 −0.17 −0.19
- 0.84 −0.16 −0.18
- - 0.83 −0.18
- - - 0.82


 Mp =




3.0 1.9 1.9 2.0
- 2.8 1.8 1.9
- - 2.8 1.9
- - - 3.0


 , (35)

where symmetric elements are not shown. We show the entanglement property of the probes by calculating the
logarithmic negativity N (ρ̂) between them, where N (ρ̂) > 0 is a sufficient condition for entanglement [6]. For a
Gaussian state this can be obtained through the symplectic eigenvalues of the partially transposed covariance matrix,
so that N (ρ) =

∑
k f(ṽk), where ṽk are the symplectic eigenvalues and f(x) = −log2(x) for x < 1 and 0 otherwise.

By constructing the full Mx,p covariance matrix from Mx and Mp, we find that for any two, three or four modes the
value of N (ρ̂) is within the range of 0.20± 0.02, 0.33± 0.02 and 0.51± 0.02 respectively, confirming the presence of
quadrature entanglement across all mode combinations.

III. PHASE CONTROL AND CALIBRATION

In this section we first calculate the interference at the two photo diodes of the HD in Fig. 6. The result shows that
the phase between SP and LO can be controlled by rotating the λ/2 wave plates. After that, we describe the phase
calibration procedure and result in our experiment. With the phase calibration result, we can control the phase φj
for j = 1 . . . 4 (and therefore φavg) by rotating the λ/2 wave plates to a specific position.

A. Phase control with λ/2 wave plates

The LO with p polarization and OPO output with s polarization are combined by the PBS in Fig. 5, and the Jones
vector after the PBS is

Jin =

[
ELO · e−iφLO

ESP · e−iφSP

]
, (36)

where ELO · e−iφLO is the LO and ESP · e−iφSP is the OPO output (squeezed probe). The Jones Matrix for a wave
plate is [7]

Mwp =

[
cos(φ/2) + i sin(φ/2) cos(2θ) i sin(φ/2) sin(2θ)

i sin(φ/2) sin(2θ) cos(φ/2)− i sin(φ/2) cos(2θ)

]
, (37)

where θ is the angle between the fast axis of the wave plate and p polarization (the direction of LO), and φ is the
retardance of the wave-plate (φ = π or φ = π/2 for an ideal λ/2 or λ/4 wave-plate, respectively). We fix the λ/4
wave plate at θ = 45◦ and put the λ/2 wave plate at a variable angle θv, resulting in the output Jones vector

Jout = Mλ/2(θv)Mλ/4(45◦)Jin =

[
J1
J2

]
(38)

with

J1 =
1√
2

[
iELOe

i(2θv−φLO) − ESP e−i(2θv+φSP )
]

J2 =
1√
2

[
ELOe

i(2θv−φLO) − iESP e−i(2θv+φSP )
]
. (39)
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Therefore, the interference between the two polarization modes observed at the two diodes of the HD after the second
PBS is:

IHD = |J1|2 − |J2|2 = 2ESPELO sin(4θv − φd), (40)

where φd = φSP − φLO is the initial phase difference between OPO output and LO mode before being overlapped at
the first PBS. The result show that if we rotate the λ/2 wave plate by an angle of 1◦, the phase between LO and OPO
output will change 4◦. The form of Eq. (40) also shows the visibility of the HD is not affected by the polarization
transformation since it doesn’t have any constant term. However, if the wave plates or PBS are not perfect, which
means that the wave plates have either more or less retardance or that the PBS has a finite extinction ratio between s
and p polarization, a similar calculation shows the rotation of λ/2 wave plate by 1◦ will result in a phase shift slightly
deviating from 4◦, and that the visibility of the interference at HD can be reduced. We experimentally measure these
imperfections as shown in the following subsection.

B. Phase calibration

During the experiment we lock φd to be either 0◦ or 90◦ with HDL, and use the rotation of the λ/2 wave plate
before each HD to control the phase of each mode. In order to account for potential imperfections in our experiment,
we first measured the visibility reduction from imperfect polarization components. We find a worst-case reduction of
the HD visibility from 98.5% to 95.2%. We also perform a phase calibration by scanning the phase between LO and
SP carrier with a ramp at 27 Hz while the interference fringe measured from Vdc of HDL and HD1,2,3,4 is recorded.
The phase between LO and signal in each path is inferred from sine curve fitting. We calibrate the phase with 40
repeated measurements at each λ/2 wave plate position, and the result is shown in Fig. 8. The SQ (blue dots) shows
the result when we lock φi = 0◦ and the HDs measure the squeezed quadrature, and the ASQ (red dots) shows the
result when we lock φi = 90◦. For both SQ and ASQ, we rotate the λ/2 wave-plate position in each channel by an
actuator in the wave-plate mount, allowing us to faithfully use the calibration result in the experiment.
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FIG. 8. Phase calibration result for each HD. The black dashed line is the linear fitting of the calibration.

TABLE I. The phase calibration result

Squeezing
k1 -3.96 k2 -3.97 k3 -3.95 k4 -3.96
b1 -0.13 b2 -0.59 b3 -0.64 b4 0.37
Anti-squeezing
k1 -3.99 k2 -3.99 k3 -4.06 k4 -4.06
b1 -89.50 b2 -89.97 b3 -89.87 b4 -88.90
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From the calibration results, we see that the phase is linear within the whole range of the actuator (8◦) on the wave
plate mounts. The result of the linear fitting to HD channel j = 1 to 4 with the equation

φj = kjθv + bj (41)

is summarized in Table I. With these fitted parameters, we can control both the phase in each channel φj or the
averaged phase φavg accurately. Particularly, if we lock φi to 0◦, we can change the φavg by a slope of 3.96◦ ± 0.02◦;
if we lock φi to 90◦, can change the φavg by a slope of 4.02◦ ± 0.02◦.

IV. DATA ANALYSIS

In this section we introduce the details of our data analysis procedure, which includes measuring the sensitivity by
fitting and counting how many photons in average is used in the SP.

As the estimator of φavg, P̂avg is experimentally estimated from the PSD of the averaged output of the four HDs
in each mode. Fig. 9 shows the PSD results measured for different φavg. Each PSD is obtained from the FFT of an
average of 2000 oscilloscope traces. The spectrum peak at 3 MHz Spk gives the value of

Spk = 2V 2
sn · 〈P̂ 2

avg〉 = 2V 2
sn · (〈∆P̂ 2

avg〉+ 〈P̂avg〉2), (42)

where Vsn is the 4-mode shot noise limit (SNL) voltage from HDs decided by LO power, electronic gain and the digital

filtering. The constant 2 in Eq. (42) comes from the commutation relationship we choose [X̂, P̂ ] = i. We start our
data analysis by separating the peak into two voltage parts

Spk = V 2
s + V 2

n , (43)

where Vs =
√

2Vsn|〈P̂avg〉| is the signal part induced by the coherent photons of the side band, and Vn =
√

2Vsn

√
〈∆P̂ 2

avg〉 is the part induced by the fluctuation of the light. Except at the 3 MHz peak, the spectra in

Fig. 9 vary slowly with frequency. This enables us to extract Vn from the adjacent frequencies of the 3 MHz peak.
The procedure of Vn estimation is illustrated with the anti-squeezing quadrature (ASQ, φavg = -89.5 ±0.8◦) PSD in
Fig. 9 as an example. We first do a linear fit with the frequency range indicated by the red dots, which is slightly
away from 3 MHz. This fitting gives the black dashed line labeled as ”Fitting for ASQ”. Vn is then inferred by the
square root value of the fitted line at 3 MHz. Since our side band line width is obviously smaller than the 5 kHz
resolution of the FFT, only one peak point is observed in the PSDs in Fig. 9. Therefore, Vs can simply be calculated
by the difference between the blue dot at 3 MHz and the fitting result.

In our experiment we always introduce equal positive phase shift in all channels. In this case we know that
〈P̂avg〉 > 0, and Vs and Vn relate to the averaged phase φavg by

Vs(φavg) =
√

2Vsn〈P̂avg〉 =
2√
M
Vsn · αe| sin(φavg + θ1)|

Vn(φavg) =
√

2Vsn

√
∆P̂ 2

avg = Vsn ·
√
v2sq cos2(φavg + θ2) + v2asq sin2(φavg + θ2). (44)

Here α is the real coherent amplitude from modulation, M is the mode number, θ1 and θ2 are parameters indicating
the imperfections of the experimental setup (ideally they should be 0), where θ1 parametrizes the residual amplitude
modulation of the phase modulating EOM and θ2 parametrizes the phase locking offset of the squeezing measurement.
v2sq = ηe−2re + (1 − η) and v2asq = ηe2re + (1 − η) are squeezing and anti-squeezing degrees in SNL units. Note that
the form of Eq. (44) rely on two assumptions: First, we assume that the modulation signal on the EOM is perfectly
coherent so Vs(φavg) doesn’t have an offset term. This assumption is consolidated by the fact that we drive the EOM
with a sine wave generated from a function generator with phase noise less than -65 dBc. Second, we ignore the phase
fluctuations of the phase locking. This assumption is consolidated by the high (∼32 dB) signal-to-noise ratio of the
locking detector HDL, though this signal-to-noise ratio is not a direct measurement of the phase fluctuation.

A. Sensitivity fitting

With Vs and Vn extracted for a range of φavg settings, we can estimate the sensitivity. By comparing the definition
of σ in Eq. (4) with Eq. (44), the sensitivity to a small phase shift at a given φavg offset is

σ = Vn(φavg)/V ′s (φavg), (45)



13

Fitting for ASQ

SQ

ASQ

SNL

FIG. 9. PSDs of averaged HD output voltage with 3 MHz phase modulation on at different φavg. SNL: shot-noise limit; SQ,
φavg=0.2 ±0.8◦; ASQ, φavg = 89.5 ±0.8◦. We estimate Vs and Vn from these PSDs.

a b

FIG. 10. (a) and (b): Fitting from measured Vs and Vn in different φavg. With the fiting result, σ is estimated by using Eq.
(46). All the error bars are standard deviation of the data.

where V ′s = ∂Vs/∂φavg is the partial derivative of Vs with respect to φavg and the σ estimation is independent of SNL
measurement since dividing Vn with V ′s can cancel Vsn out.

In the experiment we give an identical local phase shift to all 4 modes so that φj = φavg for all j = 1 to 4, and
change the value of φavg around both the squeezing φavg = 0 and the anti-squeezing |φavg| = 90◦. The φavg we choose
to induce as well as the fitting to Eq. (44) with measured Vs and Vn from Figure 9 is shown in Figure 10. In the

Vs(φavg) fitting, the parameters to fit are the slope k =
√

2
M Vsnαe and θ1. In the Vn fitting, the squeezing noise

voltage scaled by SNL, ksq = Vsn · vsq, the anti-squeezing noise voltage scaled by SNL, kasq = Vsn · vasq, and θ2 are
fitting parameters. With the fitting result, we estimate the small angle sensitivity of our system σmin by

σmin =
Vn(φavg = 0)

V ′s (φavg = 0)
. (46)

We do fitting for 5 different pump power of OPO and find the fitted values of θ1 and θ2 are 3.4◦±0.2◦ and 1.6◦±0.6◦,
respectively. These values are reasonably small, and in principle could be further reduced by better locking and phase
modulation techniques. For the most sensitive case (maximum squeezing rate) in our result, the fitted θ1 and θ2
indicate σmin could have been further improved by ∼ 0.2% and ∼ 0.9%, respectively. The σmin extracted in Eq. (46)
is shown in our experiment results for the entangled approach in main text Fig 3 as σe. The uncertainty of V ′s is
obtained from the fitting, and the uncertainty of Vn is obtained from the standard deviation of 2000 measurements.
The error bars for σ in Fig. 3 are calculated by error propagation of Eq. (46).

A similar analysis method is used for the separable approach, but the PSDs used in the separable approach are
from only one HD instead of averaged HD outputs. By removing the BSN, our setup gives the separable approach of
M = 1. To compare with the entangled approach of M = 4, we rescale our result with 1/

√
M as a result of classical

averaging. The scaled sensitivity is quoted as our experiment result for the separable approach in main text Fig. 3 as
σs.
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B. Resource counting

In this section, we show how to experimentally measure the average photon number per mode that we use in the
phase sensing.

For the entangled approach, we estimate MNe = MNe,coh + MNe,sqz by comparing the joint measurement PSDs
for squeezing and anti-squeezing quadrature to that for SNL, where M = 4 is the mode number. With the notation
defined above, the average number of squeezed photons for all modes in the entangled approach are obtained by
comparing Vn to Vsn with

M ·Ne,sqz =
1

2

(
〈∆P̂ 2

avg〉+ 〈∆X̂2
avg〉 − 1

)
=

1

4

[
V 2
n (φavg = 0◦)

V 2
sn

+
V 2
n (φavg = 90◦)

V 2
sn

− 2

]
, (47)

Similarly, the average number of coherent photons are obtained by comparing Vs to Vsn with

M ·Ne,coh = ηα2
e =

V 2
s (φavg = 90◦)

4V 2
sn

. (48)

With Eq. (47) and (48), Ne = Ne,coh +Ne,sqz gives the N values in main text Fig. 3 for the entangled approach σe.
The error bars for N in Fig. 3, entangled approach are calculated by error propagation of Eqs. (47-48).

For the separable approach, we use a very similar technique. However, the PSD is from a single HD instead of joint
measurement. Explicitly, the photon number per mode for the separable approach is Ns = Ns,coh +Ns,sqz, with

Ns,sqz =
1

2

(
〈∆p̂2j 〉+ 〈∆x̂2j 〉 − 1

)
=

1

4

[
V 2
n (φ = 0◦)
V 2
sn′

+
V 2
n (φ = 90◦)
V 2
sn′

− 2

]
(49)

and

Ns,coh =
V 2
s (φ = 90◦)

4V 2
sn′

, (50)

where φ is the phase shift of the single mode, and we use Vsn′ to denote the 1-mode SNL, which is about 1/4 of
the 4-mode SNL Vsn used in the entangled approach. The photon number per mode Ns = Ns,coh + Ns,sqz gives the
N values in main text Fig. 3 for the separable approach σs. The error bars for N in Fig. 3, separable approach are
calculated by error propagation of Eqs. (60-61).
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