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Influence of solitons on the transition to spatiotemporal chaos in coupled map lattices
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We study the transition from laminar to chaotic behavior in deterministic chaotic coupled map lattices and
in an extension of the stochastic Domany-Kinzel cellular automporDomany and W. Kinzel, Phys. Rev.
Lett. 53, 311(1984)]. For the deterministic coupled map lattices, we find evidence that “solitons” can change
the natureof the transition: for short soliton lifetimes it is of second order, while for longeffibiie lifetimes,
it is more reminiscent of a first-order transition. In the second-order regime, the deterministic model behaves
like directed percolation with infinitely many absorbing states; we present evidence obtained from the study of
bulk properties and the spreading of chaotic seeds in a laminar background. To study the influence of the
solitons more specifically, we introduce a soliton including variant of the stochastic Domany-Kinzel cellular
automaton. Similar to the deterministic model, we find a transition from second- to first-order behavior due to
the solitons, both in a mean-field analysis and in a numerical study of the statistical properties of this stochastic
model. Our study illustrates that under the appropriate mapping some deterministic chaotic systems behave like
stochastic models; but it is hard to know precisely which degrees of freedom need to be included in such

description.
DOI: 10.1103/PhysReVvE.67.046207 PACS nunier05.45.Jn, 05.70.Jk, 47.27.Cn, 05.45.Ra
I. INTRODUCTION has already been publish&6l.

Spatiotemporal chaos occurs in many spatially extended
deterministic systems and remains notoriously difficult to
characterizd 2]. Therefore, one may attempt to map such Chateand Manneville[7,8] introduced the notion of a
deterministic chaotic systems onto stochastic models founiversal transition to extended chaos via “spatiotemporal
which many more analytical methods are available. It is therintermittency” (STI) in a study of thedeterministicdamped
tacitly assumed that, after sufficient coarse graining of the&Kuramoto-Sivashinsky partial differential equatif®]. STI
deterministic model, the role of deterministic chaos can bestates are composed of “turbulentthaotig and “laminar”
taken over by the noise in the stochastic system. A criticalordered patches, and the laminar patches remain so except
test of the validity of such mappings are the predictions forfor contamination by turbulence at their boundaries. These
the transitions between qualitatively different states that exstates are conjectured to occur quite generally when, locally,
tended chaotic systems display. The key question is then daminar and turbulent dynamics are separated by a subcritical
follows: Are transitions in deterministic chaotic systems gov-bifurcation, and indeed a large number of different experi-
erned by the universality classes of stochastic systems? mental systems and theoretical models display [8T].

As is known for a variety of spatiotemporal chaotic sys- As a function of their parameters, STI systems display a
tems[2,3] and as we will show below for the deterministic transition from states where the turbulence eventually dies
system at hand, chaotic states in extended systems often disdt to states where the turbulence spreads and dominates.
play a mixture of rather regularly propagating structures andPomeau proposefill] an analogy between this transition
more disordered behavior. When the propagating structureand the phase transition of the stochastic process known as
that we will refer to as “solitons’{following Ref.[4]) have a  directed percolatiofDP); for an introduction to DP, see,
finite lifetime, it may seem that they can be ignored aftere.g., Refs[12,13. In directed percolation, one considers the
sufficient coarse graining. We will find strong indications spreading of “activity” in an absorbing, inactive back-
that this isnot always the case, and we will give an exampleground. Earlier, Grassberggt4] and Janssefi5] had con-
where their influence may even be so strong as to change thectured that angtochastigprocess with an unique absorbing
nature of the transition. We will also show that extendingstate should be in the same directed percolation universality
simple stochastic models with the appropriate solitonic dee€lass.
grees of freedom can mimic this behavior quite accurately: Relating laminar to inactive and turbulent to active states
not only can we change the order of the transition, we carappears to map spatiotemporal intermittency to directed per-
also get transient nonuniversal scaling of the type observedolation. To verify whetherdeterministic chaotic models
in coupled map latticef5]. Therefore, we conclude that, in with an absorbing state would be in the DP universality class,
many cases, deterministic chaotic systecasm indeedbe Chafeand Manneville introduced a very simple coupled map
mapped to stochastic models. A short account of our workattice (CML) that displays STI and numerically obtained the

A. Historical background
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critical exponents that characterize the transition from inaca profound effect on the importance of “solitons,” and that
tive to active states. Surprisingly, these critical exponentdong living solitons change the transition from inactive to
appear to vary with the parameters and are in general diffeactive states from a second- to a first-order transition in Sec.

ent from the DP values. Therefore, the Chitenneville Il B. In the second-order regime, we estimate the bulk criti-
model appears to beotin the DP universality class and not cal exponents using finite size scaling techniques in Sec.
even universal. Il C, and measure spreading exponents in Sec. Il D. All this

ence of long lived traveling structures, which they call SO|i_un|vers_al|ty class of dlr_ected percolatlon_W|§h infinitely many
tons in the Chatdlanneville model, may lead to large cross- absorbing states, provided that soliton lifetimes are short. In
over times, and conjectured that in the long-time limit the S€C- !ll. we discuss the extension of the standard Domany-

behavior of the Chat®lanneville model would be in the DP Kinzel cellu!ar_ automata which includes new degree_s of free-
. . dom that mimic the solitons of the coupled map lattices. The
universality class.

Recently. the Chatdanneville model with an asvnchro- mean-field equations for this model are studied in Sec. Il B,
Y : Y and these show a transition from second- to first-order be-
nous update rule was studig¢d6]. Here random sites are

h be i df d while keeping the oth Ihavior as a function of the soliton lifetimes. We study the
chosen to be iterated forward while keeping the others una|5hen0menology and its statistical bulk properties of the full

tered. For this model, the solitons observed for the s.tz.slndarphodd in the soliton rich regime in Sec. Il C. The behavior

synchronous update rule are suppressed and the critical €¥¢ the model in the soliton rich regime is quite distinct from

ponents are universal with DP values, implying that theyp ordinary second-order transition.

ChateManneville model with asynchronous updating be-

longs to the DP universality class. However, the asynchro- Il. COUPLED MAP LATTICES

nous updating introduces an element of stochasticity into the

model, thus ruining the deterministic character of the original The model introduced by Chatnd Manneville consists

model. of coupled maps, each of which either performs “laminar”

or chaotic motion. The model was motivated by the fact that

B. Outline studies of the deterministic partial differential equations,

such as the damped Kuramoto-Sivashinsky equation, are nu-

In this paper, we will study aleterministicextension of merically quite demanding and had not provided enough pre-

the ChateManneville CML that facilitates the tuning of the ision to allow a definitive comparison to O0B,7]. In one
soliton properties. We will demonstrate that the influence Ofgpatial dimension, their coupled map lattice V\;aS defined ac-
solitons may be much more profound than setting a Crossg rding to '

over time, since they appear to be able to change the type of)

transition from second to first order. The role of the solitons e

is further illustrated in an extension of thstochastic ui(n+21)="f(uj(n))+ EAfui(n), (1)
Domany-Kinzel cellular automaton. In its standard form, all

Sif‘ﬁs 8; this mlodel ca(r; be eithferf actcijve orhinactive, bUthWQNhere the subscripts denote the spatial positiom, is the

will add a “solitonic” degree of freedom that mimics the ; _

behavior of the solitons ﬁ] the CMLs. The mean-field equa-dlscrete time —and A;u(n)=1(U;-1(n)=2f(u(n)
tions of this stochastic model show a transition from second
order DP-like behavior to a first-order transition when the
soliton lifetimes are increased. Numerical studies of this StOf e coupling strength between a sitand its two nearest
chastic model also find evidence for such a crossover to ﬁrStﬁeighbors at sitesi € 1) and (+1).

order behavior, although it is very difficult to asses the The mapf is chosen such that locally the scalar fieid

asymptotic behavior_ for our model. In any case, we present,, po in either of two states: the absorbitagnina) or the
strong numerical evidence that the transition is not an ordi-

g . .chaotic(turbuleny one. Wheru<1, f is a standard tent map
nary second-order transition and that there is no asymptotic N ) _ .
scaling regime, although there are appears to be a transieft the formf(u)=r(z —|u—z|) that displays chaotic behav-
that displays nonuniversal scaling behavior. ior, while in the region wherei>1, fis simply the identity
Our study illustrates that for extended systems, it is é2nd leads to a laminar state. The sharp discontinuity in.
difficult task to faithfully map a deterministic system to a ensures that the two stat_es are distinguishable at each site.
stochastic counterpart. In this particular case, localized he parameter>2 determines the steepness of the tent map
propagating structures can be identified as responsible for tHs Well as the transition ratio from the chaotic to the laminar
breakdown of DP universality, but one can imagine that leséegime in the absence of coupling.
easily identified properties of the deterministic dynamics The form of the diffusive coupling ensures that turbulent
could be responsible for such a breakdown in other system§ites cannot be spontaneously generated in a background of
The outline of this paper is as follows. In Sec. I, we laminar sites: states where all sites are laminar remain so,
discuss the coupled map lattices. Starting from a brief disand the laminar state is truly absorbing. The laminar state is
cussion of the classic Chalanneville model, we introduce Not unique: Updating a state where all sites are in the laminar
our extension to lattices of two-dimensional maps in Secregime (;;>1) leads, via the diffusion operator, to a state

Il A. We show that the new parameter, that is introduced, hasvhere all variables are equal to the global average value

+f(uj; 1(n)). This expression is a discrete approximation of
diffusive coupling in one dimension and introduces spatial
correlations in the system; the parameteis a measure of
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Once initiated, turbulent activity can spread through this L5 L5[(p)
CML by infecting laminar patches from their boundaries. u R u S T
The effectiveness of the resulting spreading of the chaos de- 1.0 e / 1.0 |4
i VT

pends on the values afande. Suppose we study the be- 1]
havior of this system by keepingfixed while varying the v j{

. " 0.5 0.5
coupling strengthe. Completely analogous to DP, a critical
valuee = g(r) exists, such that for <e. an absorbing state 00 00
is reached with unit probability, while sustained chaotic be- 0 0 n2 o 0  n20

havior (in the thermodynamic limjtis found fore >¢.. Tak-
ing the density of chaotic sites or “activityin as an order FIG. 1. Average profiles of a righe) and left(b) moving soli-
parameter, transitions from a “laminar” staf@herem de-  ton that occurs in the Chatdanneville model at criticality for
cays to zerpto a “turbulent” state(wheremreaches a finite r=3.

value in an infinite systejncan be studied.

new parameteb actually opens up the possibility to study
A. Extensions to two-dimensional maps the effect of the solitons on the dynamical states and transi-

Coupled map lattices can, in principle, be related to Con:[IonS of CMLS; this appears to be a more important issue

. . . than the dimensionality of the local map.
tinuous time physical systems of weakly coupled elements
by interpreting the mag as a return map on a Poincare
section. The time spent by two different sites between suc- B. Qualitative properties
cessive returns would in general be different for systems
without periodic external forcing, and this was precisely the
motivation for the asynchronous update rule in Réf6].
However, here we wish to mimic the variations in return
times in adeterministicfashion. This motivated us to intro- : ;
duce a second field in the CML. Note that the simplest chaF"F =3 andb=0, the dynamics shows many solitofzee
otic oscillator would be a system of three phase space dimeri9- 1 and the critical exponents appear to differ signifi-
sions like the Lorenz equations. Applying a Poincseetion cantly from those of DP. . .
reduces such a system to a two-dimensional map. This is alsp 0 9€t & feeling for the location of the transition as func-
the case in systems with external periodic forcing. Here thdlon of bande, we show in Fig. 2 the activitydefined as the
simplest realization would be systems like a damped nonlin2/€rage number of active sijesfter 1000 iterations in the
ear pendulum or Duffing oscillator with a time-periodic forc- rgnge"s—0.3§t.)$0.3 and 6<e<0.4 atr=3.0. The “tradi-
ing. A Poincaresection again reduces the system to a two-ion&l” transition is that occurring atb=0 and &
dimensional map and after the synchronous iteration thé 0-3598t . ... Clearly, for negative values df, two addi-
respective units are still at equal time. tional trar_1§|t|ons emerge. Here we only stydy _pomts on the
We, therefore, replace the single variable nfiép), used two transition branches labeled\” and “ B” in Fig. 2; be-

in Eq. (1), by a new map with an additional variahle low we focus on the behavior along branch A.

Our CML now contains three freely adjustable parameters
r,e, andb, and clearly we will have to focus on a subset of
parameters. Our main focus will be on the case where
=3, although we will also study the transition for2.2.

&
W+ D= UM+ 2Au(m+oin), () 04/(a)
2 (2)]
€

vi(n+1)=b(u;(n+1)—u;(n)). ©) 0.3 B'manch A
I

Heref is the same map as before and the new paranhater

the Jacobian of the full two-dimensional local map; this map

is invertible for any nonzerd and becomes increasingly 0.2
two-dimensional witHb|. The change in the local mdf) is

analogous to how the two-dimensioriaD) Henon map[17]

is constructed from the 1D logistic map, except that;(n 0.1
+1)—u;(n)) appears here on the right-hand side instead of

bu;(n). This ensures that the absorbing state fixed points -0.3 -0.1 0.1 b 0.3

ui(n)=u* of the old CML (1) are mapped to the laminar gy 5 aciivity in the model, Eqs(2) and (3), at t=1000.
fixed point (ui(n),vi(n_))=(u*,0) in the new CML The White regions correspond to points in the,lf) plane where the
model, Eqs(2 and 3, is a completely deterministic system nitia| activity has decayed into an absorbing configuration and the
with no element of stochasticity and is updated synchroyarker regions to points with a nonvanishing order parameter.
nously. The value ofi; determines, as in modél), whether  ciearly the transition curve becomes quite complicated; the two
a given site is “active” or “inactive.” Starting from the pranches discussed in this paper are indicated as “Braricind
ChateManneville casel§{=0), we can follow the transition “Branch B” (see text The dashed line indicates the Chate
between laminar and chaotic states. As we will see below, th®lanneville model b=0).

¢ Bran:ch B
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FIG. 3. Activity in the model, Eqs2) and(3), for 128 systems
of sizelL =2048 and = 3. (a) Activity as a function ofée (distance
to the critical point at time 2<10° for b=—0.1 (squares b=0
(open circley andb=0.2 (closed circles The transition appears
much sharper for negative valuestof(b) Steepening for the tran-
sition atb=—0.1 for increasing times: 810° (+), 5X10* (*),
and 5 10° (X). To stress the magnified scale &, also the data
shown in panela) for b=0 is plotted(open circles

Qualitative changes in behavior along branch A

Figure 2 hints that the sharpness of the transition varies
along branch A: the jump in order parameter appears to be-
come steeper for negative valuestofThe differences in the
nature of the transitions are illustrated more clearly in Fig. 3,
by plotting the value of the order parameter as a function of
e for b=0 andb=—0.1 averaged over an ensemble of 32
systems for a number of times. The behavior ot 0 is
consistent with a continuous transition, whereas for
=—0.1, longer times lead to a marked steepening, consistent
with the emergence of a discontinuity.

FIG. 4. Spacetime plots of our coupled map lattice Egsand

. : (3) for r =3 above(left column and below(right column critical-
Soliton regime.Some effects of the parametbron the ity. Inactive sites are white, chaotic sites are bla@.b=—0.1,

dynamics can also be seen from the evolution of the binar¥:0.353;(b) b= —0.1, 6=0.343: (¢) b=0, £—0.361: (d) b=0.
patterns at =3 (Fig. 4). Forb=0, solitons can be seen both £=0.351: (6) b=0.2, £ =0.374; and(f) b=0.2, e = 0.364.
above and below thresho[&igs. 4c)—4(d)]. They consist of
pairs of active sites and propagate with velocity one. Their
maximal lifetimes are of order 10{Fig. 4(d)]. Whenb is
decreased to a value of0.1, the typical lifetimes of solitons ~ Stochastic systems belonging to the DP universality class
become so long that they typically only vanish when theyare characterized by a set of critical exponents describing,
collide with other solitons or propagate into turbulent struc-€.9., the order parameten(e,L,t) and the behavior of the
tures. When two solitons collide, they either annihilate or‘absorption time” 7(r,e,L), i.e., the averaged time it takes
create new turbulent structures. Such creation is clearly visthe system, starting from a random initial state, to reach the
ible in Fig. 4a) for n~200 andi~ 600. absorbing state. From finite-size scaling argumgh&, one
For sufficiently largeb, the isolated solitons present in the finds that the order parameten at the critical pointe,
original model p=0) are suppressed: solitons with a life- should behave as
time longer than a few iterations are rare here. On the other —plv .
hand, there are regular “edge” states visible, where an active m(L,t)~L"#"g(t/L?). 4
state propagates ballistically while emitting new activity; one
example is visible in Fig. @) for n~400 andi~800. These For a finite lattice, the absorption timethen increases as
structures do not seem to influence the order of the transition,
but they may very well lead to rather large crossover scales. ~LZ (5
In conclusion, the value df has a large influence on the
presence of solitons, and also influences the steepness of t
transition. In fact, discontinuities are found at points énk)
space where solitons dominate the dynamics. This implie
that the(colliding) solitons have a strong influence on the )
global dynamics and are able to change the nature of the m(L,t)~t" for t<L" (6)
transition from a continuous to what appears as a first-order
one. We will make this point more precise below in our studyHere the usual dynamical exponest v /v, has been intro-
of a stochastic model. duced, defined as the ratio between the correlation length

C. Finite size scaling in second-order regime

Eﬁ]ally, for short times (<L?), g(t/L?~(t/L?) P, so
ghat for short timesn should decay as
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10° @ 10° () TABLE I. The critical exponentz and 6= 8/v| for our CML.
Tt | m’ The values for DP are taken from R¢19].
4
10 r b € z %
10? 102 2.2 —-0.02 0.01338 1.52) 0.161)
100 1> L 10 10°10% 10" t° 10' —0.01 0.01465 1.52) 0.161)
106 10° 3 0.0 0.016082) 1.531) 0.171)
T (©) | ( 0.01 0.017626)  1.571) 0.161)
10°} 0.02 0.0192(2) 1.572) 0.172)
3.0 -0.25 0.16313) 1.581) 0.1605)
o 5 -0.2 0.164982) 1.582) 0.1683)
10— S ~015  0.16208)  1581)  0.17Y)
100 100 L 10° 10° 107 107 t' 10 ~0.125  0.1636@) 157  0.200)
FIG. 5. Examples of good rescaling plots for-0.2 [(a) and -01 0.352081) 1.523) 0.022)
(b)] and poor rescaling fob=—0.1[(c) and (d)]. (a) Absorption 0.0 0.359843) 1.422) 0.181)
time 7 vs system size L, for=3, b=0.2 ande=0.3727, 0.373 22, 0.1 0.33981) 1.482) 0.1551)
0.373 23(critical valug, 0.373 25, 0.3733, and 0.373b) Rescaled 0.125 0.3474%) 1.532) 0.151)
average activitym’:==mL~? vs rescaled time¢’:=t/L? for r=3, b 0.15 0.3568(b) 1.571) 0.1593)
=0.2 ande =0.373 23 fOﬂ_:32, 64, 128, 256, and 512, showing a 0.175 0-36546-) 1.5&1) 0.1&1)
gioodbd_ata coIIapze{c_) Absorption timer vs system size L, for . 0.2 0.373281) 1.581) 0.161)
=3, b=-0.1 ande=0.352 00, 0.352 03, 0.352 05, 0.35206, an DP 1.58074 0.15947

0.352 07. Even small changesdriead to substantial changes in the
absorption time, and it is difficult to estimate the critical values of
(d) Rescaled average activitn’ vs rescaled timet’ for r=3, =22 andr=3.0. Forr=3.0, the critical exponents for the
b=-0.1 ande=0.35203 forL =64, 128, 256, 512, and 1024, griginal model p=0) show significant deviations from the
showing poor data collapse. Neither the initial decay nor the ta"%orresponding DP values and the computational costs are
overlap; shown here is a compromise. Note that the initial decay i§0|erab|e' In Figs. &) and 5b), we show examples of the
very slow, leading to a small estimate for the valuegof rescaling plots for =3, b=0.2, where a nice data collapse
h occurs and the transition appears to be of second order, and
for r=3, b=—0.1[Figs. 5c) and 8d)], where the data col-
lapse is poor and the transition appears to be no longer con-

exponent in the time direction and the correlation lengt

exponent in space, . The scaling relatiord= — /v con-

nects the critical exponents. .
To estimate the critical exponents for our CML, we per- tinuous. . . .

formed direct numerical simulations and calculated the ab- The values of t_he critical exponents are given in _Table .

sorption timer and the order parameten, defined as the and correspond simply to the best possible values, irrespec-

average activity. We used ensembles of initial conditions, iflve of the quality of the data collapse. HQFZ.Z, DP_\_/aIues
are found for|b|=0.01. Forr=3, the critical transition on

which all initial u values are assigned a random value in theb hB 0 be DP-lik hil braneh
chaotic phase, €u;(0)<1. Thev values of the initial state °rancnb appear to be DF-lIike, while on branena Cross-
over to DP values is found wheib is large enough

are set to zero to ensure that they do not influenceuthe _ . S :
values from the onset of iteration and that the analogy Witl{|b|>0'.15)' This regime coques with valu_es biwhere
the original model and our variant bt=0 is satisfied. the ;ohtons are.s.uppressed in the space-time pl.ots, and a
The behavior of the absorption time at criticality is usedcontinuous transition takes place. The soliton dominated dy-
namics ab= —0.1 is reflected in the extremely low value of

to determine the critical point and tzeexponenf16,18. An h h ing the d f the ord
ensemble of 128 systems is iterated forward in time until arfn€ exponend, characterizing the decay of the order param-

absorbing configuration is reached. The average number (gier. Here the data collapse is rather poor as shown in Figs.
time steps needed before reaching such a configuratio (c) and d).
yields the absorption time. Examples ofr as function ofL ] ) )
are shown in Figs. ®-5(c); the best fit to a straight slope D. Spreading of turbulence in second-order regime
determines the critical exponent So far the critical properties of the CMLs starting from
In Figs. §b)—5(d) we plot examples ofm’:==mL"? as “homogeneous” states have been studied, i.e., with initial
function oft’:=t/L? for a range ofLs. When proper scaling conditions where each site in the lattice is assigned a random
occurs, as is the case in Figb the curves for different  number in the chaotitturbuleny phase. A different approach
fall on top of each other, and the initial power-law decay ofis to consider the spreading of a single turbulent seed in an
m’ determines the exponemt Here an ensemble of 1000 otherwise laminar configuratio(see Fig. 6. This makes it
systems was used. The order parameter was calculated as {isssible to study the dynamical critical exponents, or spread-
sum of active sites divided by the total amount of sites. Theéng exponents, and see how these compare to the directed
systems are iterated forward urttit L%, where the algebraic percolation counterparts.
behavior clearly ends. For spreading of activity in stochastic systems with ab-
Estimates of critical exponents have been done rfor sorbing states, the following quantities are characterized by
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1500 (a) 1500((p) 1500(c)
i i i
0 0 0
0 n 4000 0 n 4000 0 n 2000
@ © [
=500 L\»“ =500 “ =500
i=1000 n \ i=1000
L i=1500 L J [\ i=1500
0 n 4000 0 n 4000 0 n 2000

FIG. 7. The average spreading of active seeds in the natural-
initial-state close to criticality. The densities are obtained by aver-
FIG. 6. Spreading of a single turbulent seed through theaging over 16 realizations, and for clarity, we have included three
“natural-initial-state” below criticality, at criticality, and above snapshots of this average activity in the bottom rows. Parameters
criticality, for b=0.2 (a)—(c), the ChateManneville model forb ~ arer=3 (for all rung; andb=—0.1[(a) and(d)]; b=0.0[(b) and
=0 (d)—(f), andb=—0.1(g)—(i). In all cases =3.0. (e)], andb=0.2 [(c) and (f)]. The respective values of natural-
initial-state are 1.170, 1.212, and 1.235.
critical exponents[20]: the total number of chaotic sites
N(t), the survival probabilityP(t), the mean-squared devia- ration, thus being nonuniversal. So the nonunique absorbing
tion R?(t) of the turbulent activity from the “seed,” and the state of our CML(any configuration with alli values above
densityn(t) of chaotic sites within the spreading patch of unity andv values not too large will be absorbintpads to
turbulence. It is assumed that they behave according to  behavior as can be expected for DP with an infinite numbers
s ’ , o of absorbing states.
N(O~t7,  P(O~1"° RY(O~ts  n)~t"% We determined the natural-initial-state by iterating sys-
(7 tems of up to 4096 sites from homogeneous initial conditions

I . . until an absorbing configuration is reached. The average
For probabilistic systems, it has been conjectured and Velalue of all sites is then used as the value of the laminar

fied numerically{21,22 that the dynamical exponents satisfy background. For =3.0, we have calculated these as 1.235

the generalized hyperscaling relations+ o+ 05=dz/2, ¢, =051 212 foib=0, 1.170 forb=—0.1, and 1.0395
whered is the spatial dimension. For systems with a singlefor b= _0’2 ' '

absorbing state, including DP, one finds thi&t ;= 5/v, : : :
and zg=2/z, reducing the hyperscaling relation t&4 2 7 b:"lglg' 70’ Waenglsglgy tchégzlr\l/;r?gte):sp_r%aflr;%Zeﬁratnhde

=dz,. e . ChafeManneville model at =3, b=0 it is basically impos-

. . Sible to estimate the spreading exponents at the natural-
been studied carefully recently and it has been found NUMETY,itial-state, since the spreading is dominated by the solitons

gigrtgﬁt t:tea){edgferh;rq;n thiélafs'%ﬂrgqgsb\év';hos il'nglrz%ﬁee Figs. (b) and 7e)]. This behavior is distinctly different
Ing y having w PP univ om what is observed in the various systems belonging to

spreading exponen(<2], yvhiqh depend on intavhich ab- the DP universality class. We have, therefore, only estimated
sorbing state the spreading is taking place. Only exponentﬁ‘ﬁe spreading exponents for=0.2 at branchA, and b=

characterizing quantities averaged over surviving runs alone_0 5 at branclB: in both cases the solitons are not domi-
are found to be universal. It has thus been conjectured thaI;]t | '

. ant.
.ZS’.the sumzs+ 8, and 6; are universal, wh?reaas ar_1dl§ Note that the strength of the spreading solitons can be
individually are not. Only for the so-called “natural-initial-

state” are the DP values found for the exponents characteré}Iterecj by changing the value of the laminar background. By

izing quantities averaged over all runs. Such a particular

0 n 256 0 n 256 0 n 256

state is constructed by letting the system evolve at criticality 2000q) 2000(b)

from homogeneous initial conditions, where all sites initially i \ i

are in the active phase, until an absorbing configuration is

reached. This scenario is rather unusual for critical phenom- 0 0

ena and is still somewhat controversial, see, e.g., RS 0 n4000 0 n 4000

for a different interpretation. FIG. 8. Average spreading activities near criticality for 3, b

After a few spreading experiments in our CML, we in- =g 2 (a) andr=3, b=0 (b). In comparison to the spreading into
deed observed that the propagation of activity from the initiakne natural-initial state as shown in Fig. 6, the valueudh the

seed through the laminar region depended strongly on theminar background has been lowered from 1.235 to 1.22@)in
configuration of the laminar state surrounding the seedthus strongly enhancing solitons, and has been increased from 1.212
Moreover, the dynamical exponents varied with this configuto 1.22 in(b), thus strongly suppressing soliton activity.
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1.0 used to extract the exponents in Table Il. The figure shows
Pl the survival probability for various choices of background
I 123 and thus gives the exponefit Whether these curves display
1235 1 true power-law behaviofeven away from the natural back-
1.24 ground statgis hard to judge, but we believe that it is at least
0.1¢ 1245 1 a reasonable interpretati¢@4].
1.255 ] Our results in Table Il agree rather well with previously
. . 126 obtained results for probabilistic systems with an infinite
1 10 100 1000 ¢t number of absorbing states. In particular, the exponents av-

) ) _ eraged over surviving runs alone definitely seem to be uni-

FIG. 9. Average survival probabllltle_s for spreading clusters iny,arsa as long as the background does not deviate too much
our CML with r=3 andb=0.2 for various values of the back- g, the natural-initial-state one. While the values for the
gr—OIin2d3(I5ndlcated in the figure The natural background state has sum 6+ 7, are very close to the DP value of 0.47315,
u=L.e9o. our results forzg and 6 deviate from their respective DP
. : values. A very interesting observation is that the hyperscaling
:Eﬁir:Iftlgge tc?nee b&%kig;:ggs t(?ag g:llsjj afez\;ee;hsvh?litl:;]ae'elation is satisfiedA=0) for the majority of different back-
can be enhancéd by a decrease of the Igr[:ﬁnar va{Iue' see F%reognq values. Only for the highest values are significant
g ' viations encountered.

Our estimates of the dynamical exponents have been done
for simulations with a maximum time of 2000 iterations. An
active seed is placed in the center of the lattice, surrounded ) ] )
by a laminar background. The seed consists of two active The propagatlhg _Structures, w_h|ch are observed in the
sites, each of which is assigned a random number in th&€ML that we studied in the preceding section, appear to play
chaotic regime, such that the location is fixed but the value&" important role for the transitional behavior. Itis, however,
of the active sites differ for each trial in the ensemble. Thehumerically very demanding to obtain good statistics for
ensemble sizél, used for statistical averaging and the num-'argé CMLs and long times. As pointed out already in the
ber of sites in the latticé have been adjusted to the number introduction, this is the reason why one tries to map such
of surviving runs the different setups produced, and how fafeterministic models to simple stochastic models. Not only_
the turbulence propagated out from the seed. A minimum ofn@y there be more hope to understand such models analyti-
200 surviving runs have been used in the averaging. In FigGally: they also are much easier to handle from a computa-

9, we show a typical example of the curves that have beeHonal point of view. _
In this section, we will introduce and study a very simple

extension of the Domany-Kinzel cellular automaton that it-
self is a simple model showing DP behavior. While for the
Domany-Kinzel automaton, every site can only be active or
inactive, we will allow sites to either contain a left or right
traveling soliton. As in the CML, these solitons should be
generated from active sites only, and we wish to be able to
tune their typical lifetime. The only process in which these
solitons aid the spreading of activity is by collisions: for

IIl. STOCHASTIC MODEL

TABLE Il. Estimated spreading exponents fo 3.0 for back-
ground values; . The deviation from the hyperscaling relation for
d=1 is defined aa =z,/2— ( 5+ 5+ 65). Note that fob=0.2, the
natural background state has~1.235; for this value, the expo-
nents § and 7 are close to their DP values. Similarly fdr
=—0.2, the natural background state has 1.1395; agairny and
7s are close to their DP values.

b Xi Zs 3 s Os A simplicity, we assume that with probability 1, a pair of col-
liding solitons yields a single active site.

02 1229 1.9¢) 0000 Below we will first discuss the definition of our model in
123 1.68) 0.1q1) 0432 0321 -0.012) Sec. Il A. We will then discuss the mean-field equations for
1.235 1.601) 0.141) 0.341) 0.291) 0.01(2) our model in Sec. Il B, and these will show a transition from
124 1612 0232 0251 031D 0.042) second- to first-order behavior. We will study the statistical
1245 1.681) 0301) 0.231) 0292) 0.001) properties of our model in Sec. Il C. We will illustrate the
125 16%3) 0.342) 0141 0.3043) 0.092)  (gle of solitons in direct simulations of this model; these
1.255 16%2) 0352 0142 0291 00712  sjmulations will point to the relevance of large “holes” that
126 1.723) 0431 0.041) 0.297) 0.102) cannot be “healed” by the solitons. We will discuss the sta-

-02 113 1.9@) 0.000) 0.7932) 0.2081) 0.001) tistical properties of our model near the transition from inac-
1135 15¢) 0.091) 0.421) 0.291) -0.011) tive to active states in the soliton-dominated parameter re-
1.139 1.58) 0.1703) 0.321) 0.301) 0.001) gime. We will find that the transition is no longer in the DP
1.1395 1.581) 0.161) 0.311) 0.281) 0.041) universality class, since no asymptotic scaling regime can be
1.145 1.561) 0.2492) 0.201) 0.242) 0.082) reached. While the transition shows some characteristics of a
1.15 1.611) 0.3473) 0.11) 0.271) 0.091) first-order transition(dependence on initial state, for ex-
1.155 1.683) 0.451) 0.041) 0.221) 0.161) ample, the asymptotic situation is not entirely clear: rather

DP 1.26523 0.15947 0.31368 0.15947 we find a regime of long lived transient states between active

and inactive regimes.
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(i) (i) @) @ | o i) (v) Transformation: a single active site can give rise to a
P=1-d P=1 P=p P=m(lpc)i P=q P=m(l-qc) soliton (S) with probability min(1-p,c); c denotes the cre-

[} [}

[} [}

[} [}

D ® : : ation rate of solitons. Such a new soliton can be either left-
| | : or right-moving with equal probability.

! ! ! vi) Pair of active sites: two active sites create a new
®O ®O! | V)

particle with probabilityq; we restrict ourselves to bond-
directed percolation and talee=p(2—p).

)
P=1

FIG. 19' Schematic def”?"'or.‘ of our stochastic mOde".The bot- (vii) Soliton creation from pair of active states: similar to
tom two circles denote possible incoming states and the circle at tog . . . . . . .
i ) . ; ase(v), a pair of active sites can give rise to solitons with
denotes the possible stochastic outcome. Our model is defined ona babilit in(1
diamond lattice and so one only needs to define the probabilities foprobabiliity min(%-q,c).
certain offspringactive, inactive, right or left traveling solitpas a _ _
function of its two predecessors. Empty circles depict inactive B. Mean-field equations

states, black circles are activeR™ and “L" denote right- and To interpret the physical properties of our cellular au-
left-moving solitons, ‘'S” denotes a soliton of arbitrary direction, {ymaton a crude insight can be obtained by applying mean-
an? tX f'na”{) r%prestents{hany '.St‘."‘teLl(R’ Imac(:;ve ch)Lactl\C/jdehe field theory. In this approximation, it is reasonable to ignore
notationm(a,b) denotes the minimal value af andb, an € the differences between left and right traveling solitons, and
notes the conditional probability that this outcoming state OCCUIS. ' ur mean-field equations are for two concentrations. those
See text for a more elaborate explanation. of chaotic sitex ang solitonss !
(a) Equation for chaotic sitesChaotic sites can emit soli-

tons and can be generated by collisions of two solitons; apart

A. Definition of model from these two rules they behave like DP. Thus, without the

The (1+ 1)-dimensional Domany-Kinzel cellular automa- solitons, the rate equatiofwithout nois¢ would bec=b,c
ton is defined on a diagonal square lattice, where each site bsc® [13]. To incorporate the creation of an active site,
can either be active or inactive. The model evolves by parwhen two solitons collide according to ruldi), the term
allel updates according to the transition probabilipeendg,  b»S® needs to be added to this equation. There is no source
corresponding to the probabilities that an empty plus an acterm linear insin the rate equation foc, reflecting that we
tive site or two active sites, respectively, produce a singlé@Ssume that individual solitons do not give rise to activity.
active site. The choicg=p(2—p) corresponds to a realiza- Note that, for simplicity, we have not distinguished between

tion of directed bond percolatiofi]. righlt)- and Ieft-m?ving ?olitonsh . N
In our extension the active sites behave like usual directed () Equation for solitonsThere are four processes that

bond percolation except from the fact that with probabitity influence the solitons. Solitons may decay spontaneously ac-

they can emit a left- or right-moving soliton. These solitonSZOLdAEg;?Orgeggl’itggg gll?) ﬂieeldj ?)r:ecr(m:igsnl?eg:j?nraﬁ a
have a tunable lifetime and travel ballistically. We assume d P . - up : 9
mo« —s°. Depending on the lifetime of the solitons, either

hat th liton nn hemselv r h X .
that the solitons cannot, by themselves, create chaos, exce these two terms may dominate and so we keep both of

when two solitons collide. them; we will see below that this will indeed be a crucial
The updating rules illustrated in Fig. 10, where the sites ’

can be either inactivéempty), active (black), or contain a Ingredient. Solitons are created from active sites according to
left- or a right-moving soliton’ are as foIIovx}s rule (v) and(vii). While this in principle yields source terms

i ; ; 2
(i) The inactive state: two inactive sites always yield an'" the rate equation of prop_ortlonal to botfc andc”, we
inactive site. This property ensures that there is a uniqu nly keep the linear term, since the prefactor for both these

absorbing state erms will be of the same order. Inclusion of the quadratic

(ii) Soliton propagation: a right-moving soliton either dies terq_whdoes not affept t?e qt;ahtat:ye dynaréuci. .
with probability d, or propagates with probability (1d), then ger\?vtﬁtéﬂu;:on or the solitons and chaotic sites can
when the “O” state to its right- is inactive or another right-
moving soliton. The rule for left-moving solitons follows by
left-right symmetry.

(iif) Soliton collision: when two oppositely propagating .
solitons collide, they generate an active site with probability c=Db;c+b,s?—bsc?, 9
one. This is the only process where solitons lead to spread of
active sites. In principle, we could generate active sites witlwhere the lifetime of the solitons is set byaj/and the
a probability less than one, but it may be expected that thigpreading rate of the chaotic patchesthy
does not change the behavior of the model in a qualitative These two equations can be simplified by the introduction

sense. of a rescaled of time- and densitieS andC to be
(iv) Single active sites: a single active site, where X can

either be a soliton or inactive site, leads with probabititip

s=a;C—a,s°—ass, (8)

o~ 2
a new active site. Note that the spreading of activity is thus S=C-S'-as (10
not enhanced by individual solitons enhanced by individual )

solitons. C=r,C+S?—uC? (11
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®) the origin in a transcritical bifurcation. The various types of

C
A / flows that occur as function of andr are illustrated in
// ©|[¢ ) Fig. 11.
S

i As shown in Fig. 11, there are essentially four qualita-
= g tively different types of flow and two bifurcations occurring.
@[ / We will here discuss these flowtypes and their relevance for

the dynamics as follows.
(a) Only the trivial fixed point is present, and is stable.
§ Hence all initial conditions flow to the absorbing state.

(e) C T
/ (d) [

_7] (b) For small soliton lifetimez>1, the two nontrivial
S

fixed points 8 ,C}) and (S5 ,C3) that are born in a saddle-
node bifurcation do not lie in the first quadrant and are,
therefore, not relevant for the mean-field equations. Hence,
this situation means that there is a single relevant fixed point
0 N at the origin and so the system is in the absorbing state.

0 (c) When, forz>1, r, crosses through zero from below,
éS’l‘ ,C7) crosses through the origin in a transcritical bifur-
cation. All initial conditions in the first-quadrant flow now to
#,S’{, 1); the mean-field equations indicate that there is a
|

N
v 7

S

FIG. 11. Dynamical system analysis of the mean field equation
(10) and(11). The full and dashed curves show the locatiom ,in

space of the saddle-node and transcritical bifurcations, respectively:~1 . . . .
The five insetga)—(e) show schematically the flow in the various Nit€ activity, whose value grows approximately linearly in
regimes of the mean field equations. For more details see text. Fo- The transition ar,=0 corresponds to the standard DP

transition forz>1.
where (d) For long soliton lifetimes £<1), the two nontrivial
fixed points 87 ,C7) (square¢ and (S5 ,C%) (triangle are
a,a, ab; b,bs also created in a saddle-node bifurcation; but in contrast to
= =— (12 case(b) both lie in the first quadrant and are, therefass;
evantfor the dynamics. Depending on initial conditions, the
final state can either be absorbing or active; the incoming

a=——, ro=——, u
ab; a;b, as

a, a;h, a,b3 manifold of the saddle point acts as a separatrix. The transi-
t= a,b, T, ST _a2 v C= _a3 C. (13 tion that occurs here as the saddle-node bifurcation is crossed
2 2

leads to a finite jump in the value afin the active state,

We will now analyze the possible transitions in the mean-WhiCh Is indicative of a first-order transition.
y P (e) When, forz<1, rq crosses through zero from below,

field equationg12) and(13). * o L . )
: : ; : * (S5 ,C3) crosses through the origin in a transcritical bifur-
(c) Fixed pointsThe fixed points §,C*) of the rescaled cation. All initial conditions in the first quadrant flow now to

equationg10) and(11) satisfyC* =S*2+aS", whereS* is

given by solutions to the fixed point equation (S2.C2). . .
To study the phase transition, we shall primarily vagy
Sf(S)=0, (14)  While keepinga andu fixed. There are following three ge-
neric choices foz relevant here.
f(S)=uS+2uaS+(uat—1—r)S—ar,. (15) (i) z—o: In this case the solitons have probability 1 to

die once they are generated, and so the system is effectively

Apart from the trivial fixed point ¢ ,C*)=(0,0), there may soliton free. This is the case of pure DP, and the transition
be either 1 or 3 other fixed points that can be found fromi@kes place ato=0. There is no hysteresis.
solving Eq.(15). It can be shown that Eq15) always has (i) z>1: '_I'h|s is the regime of short soliton I|fet|mes.
one solution for large negativé This fixed point can be Here the solitons do not contribute to any change in the
ignored since only points where boBi andC* are positive ~ dualitative behavior. An  attractive fixed poin§= Sy

are relevant for our mean-field equatioftsmember thas  ~ar/(z—1) emerges for small, positive,. This corre-
and C are both concentrationsThe two nontrivial fixed sponds toC=C}~a’ry/(z—1), such that this fixed point
points (S} ,C¥) and (S5 ,C%) are born in a saddle-node bi- converges towards the DP val@ —r/u for largea. As
furcation, when the discriminant of E¢L5) becomes nega- 'o—0, this fixed point converges towards the origin and it
tive. Introducing the parameter=au and performing the changes stability at,=0 (see Fig. 1], implying that the

tedious standard algebra, yields that this occurs when transition is continuous. Thus, the transition for small soliton
lifetimes (z>1) still takes place at,=0 and resembles DP.
72— (2—5r9—r3l4) +(1+r1)%=0, (16) (iii) z<1: This is the soliton dominated regime, where a

completely different scenario occurs. Fgr>0, the behav-
and so the locus of the saddle-node bifurcation only dependsr is determined by the stable node $~a(z Y?—1).
onry andz It can also be shown that s§=0, always one of Whenr, becomes negative, this fixed point remains stable
the nontrivial fixed points crosses through the fixed point ofand away from the origin. Simultaneously the origin be-
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FIG. 12. (a) Large scale dynamics of our stochastic model for
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n 5000

FIG. 13. Concentration of active sité® and solitongb) for the

d=0.01,c¢=0.1, andp=0.614. The gray scale corresponds to the state shown in Fig. 12.
number of solitons and active sites coarse grained in a cell of 20

space and 20 time unité) Enlargement of the dynamics shown in
the top left corner ofa).

top left corner of Fig. 1@) which shows the dynamics of
active sites and solitons in detail. At first glance, the clusters

comes attractive and a saddle appears close to the origin @f activity look extremely similar to the ordinary Domany-

S=Sj~arg/(z—1). Initial conditions close to the origin
will evolve into that point, while initial conditions above the
stable manifold for the saddle located &;(,C7) will con-
verge toward the nodeS ,C%). This will go on until the
saddle 67 ,C7) and the node $5 ,C%) merge in a saddle-
node bifurcation aty=r.(z). Below this critical point, the
origin is globally attractive and every trajectory in the phas

space converges towards this. Going back and forth alon

scenarios(a), (d), and (e) there is hysteresis and so far
<1, we clearly observe a first-order transition.

For infinite soliton lifetimes =0, z=0), the critical
point is shifted down ta,=—1. Settinga=0 into Eq.(15)
yields the fixed pointS* =+/(1+ry)/u that shows that the
transition is continuous, but witjg=1/2 instead of the DP
mean-field valueBpp=1.

Finally, at the tricritical poinz=1, Eq.(15) is reduced to
a’f(S)=S°+2aS—a?r,S—a’r,. At r,=0, the only non-
negative root isS=0, but for small positivey a new root
appears aS*~a\r,/2. The transition thus remains a
=0 and is continuous, but again wi~ 1/2 instead of the

e

Kinzel Cellular Automaton, but after closer inspection it be-
comes clear that colliding solitons generate new active clus-
ters [one example can be seen in Fig.(d2for n~50,
i~4825]. We have shown the coarse grained activity and
solitons separately in Figs. (@ and 13b). Clearly, the soli-

ton density is more uniformly spread, and one can think of
the coarse grained dynamics as active clusters surrounded by
8Iouds of solitons.

(b) Decay of activity.To gain insight in the statistical
properties of our model, we have studied the decay of the
number of active sites as a function of time, for a range of
system sizet and parameter valugs Unless noted other-
wise, we keep the soliton parameterandc at values 0.01,
and 0.1 respectively. In Fig. 14, we show the results of these
calculations fomp ranging from 0.612 to 0.621.

For early times (<10%), one could misinterpret that data
as being indicative of a second-order transition with non-DP
exponents. Wheip is small enough €0.61), the activity
decays faster than a power law, while whenis large

DP valueBpp=1. m (a)
- . 0.10F
C. Phenomenology and statistical properties
of the stochastic model

Let us now discuss the properties of the full stochastic 0.01
model based on direct numerical simulations. For small but (b)
finite values of the soliton lifetimed>0) or for sufficiently 0.1?0 L
small production of solitonsg<1), the transition from in-
active to active states that occurs whels increased is of
second order and indeed appears to be in the DP universality 0.01
class. There is, however, also a regime in which the model ©)
appears to display a first-order transition. In the remainder of m
the discussion on the stochastic model, we will focus on this 0.10¢
regime, which shows some interesting new features.

(a) PhenomenologyThe phenomenology of this regime
will be illustrated following Figs. 12 and 13, where different 0‘0100 e s

aspects of the dynamics of our model are shown. The param-
eters chosen are somewhere in the transitory regime, which F|G. 14. Decay of average activity for c=0.1, d=0.01, and
in the mean-field description corresponds to the regime witlp=0.610, 0.611. . .,0.621 (increasingp leads to an increase of

two stable fixed pointgFig. 11(b)].
In Fig. 12a), we show the evolution of our model, start-
ing from a fully active state. Figure 12 is a closeup of the

activity; the curves wittp=0.610 and 0.620 are thickeAverages
are taken ovefa) 2000 systems of £ 200, (b) 200 systems of L
=2000, and(c) 20 systems of & 20 000.
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10 100 1000 i

1 n 1000
FIG. 15. Average activityn for c=0.1,d=0.01 in an ensemble
of 20 systems ofL=20000, showing the appearance of quasi- ; ) ) )

power-law decay. The three curves correspong40.612, 0.616, that g large hole of size 2500 ii®t healed(a), while a hole of size

and p=0.62, respectively, and are shifted by 30% for clarity. The 500 is healedb).

three straight lines corresponds to power laws with exponents

—0.19;-0.21, and—0.23. In particular, the scaling in the system dynamical states that occur when the activity drops below

for p=0.612 looks rather convincing with an exponent-00.23.  the plateau value, shows that this is the general scenario: the

nucleation and subsequent spreading of a large inactive drop-

enough, the active state does not decay, and we are above tlg¢ is what dominates the asymptotic decay of the active

transition and the activity reaches a plateau value. For DRstates here.

there is a critical value op where the activity decays as a  We illustrate this property by following the dynamics of a

power law. As shown in Fig. 15, our model displays a tran-large inactive droplet fop=0.618, where the system has a

sient decay towards the plateau value which can look like gvell-defined plateau in the activitisee Fig. 1% A hole of

power law. For a transient period that in this case goes up tgize 2500 grows as can be seen in Figalvhile a hole of

t~10? it is possible to find values qf such that the decay sjze 500 is healed for these same parameter velbEs

of mappears to be a power law with a non-DP exponent. We 6(b)]. The difference between the spreading of a small ac-

speculate that this transient behavior may be the origin ofive cluster and the behavior of an homogeneously active

some of the nonuniversal power laws observed in coupledtate indicates that the initial concentration of active sites

map latticed5,7,18,29, where it is very hard to reactef-  plays a role. This is illustrated in Fig. 17, where we follow

fective) large times. the evolution of the activity for a range of initial concentra-
For this “scaling” to be truly asymptotic, one should be tions of activity for p=0.621. For initial activities in the

able to extend the scaling regime to arbitrary large timesiange from 1 to 0.1, the same plateau value is reached, but

however the activity curves for system sizes 200, 2000, angbr initial activities of 0.05 and smaller, there is an initial

20000 all bend downwards at nearly the same time; hencencrease of the activity after which the activity rapidly de-
there is no hope that increasing the systemsize extends th@ys: the plateau is never reached.

time interval over which apparent scaling can be found. For Finally, in Fig. 18, we show the evolution of the activity
times longer than 3-1¢%, the activity either decays rapidly, m divided by the number of surviving clusters for the same
or first hits a plateau. Clearly, the transition in our model iSparameter values. For small systems, these plots are very
not an ordinary second-order transition. If we focus on thejifferent from the ones averaged over all systdfig. 14);
activity as a function op for a fixed large timet>10%, we  in the present case there is a typical activity in each system
find a very abrupt transition from an inactive to an activewhich rapidly disappears. We interpret this as further evi-
state, with a value of the activity given by the “plateau” that dence that the nucleation of large holes dominates the even-
can be seen in Fig. 14. This behavior is indicative of a firsttyal decay_ For |arger systems, this effect disappears because
order transition, consistent with the mean-field theory for
large soliton lifetimes.

(c) Nucleation of holeds this transition now an ordinary
first-order transition, and if so, what would be the critical 0.10
value ofp? From the magnetization curves, such as shown in
Fig. 14, it is not so easy to answer this question; in particular,
we observe that the plateau is not the truly asymptotic state 0.01
for these parameters, since decay eventually sets in. We will 10 100 1000 i 10000
now first study the reason for this decay. Let us return to Fig. FIG. 17. Evolution of the average activity in 20 systems of

13, where the activity appears to arrive at the platde ;e 20000 foc=0.1,d=0.01, ando=0.621, i.e., well in plateau

overall activity appears to approacﬂh a Eon:étahlowever, regime. Here we vary the initial concentration of active states by
aroundn~4000 and ~3000 a large “hole” opens up. Once randomly distributing active sites through our lattice for 1.

the size of this hole becomes larger than twice the lifetime Ofrhese activities are, respectively, 1.0, 0.85, 0.7, 0.55, 0.4, 0.25,
the solitons, it becomes unlikely that colliding solitons will 0.15, 0.1, 0.05, and 0.025. For the latter two cases, the plateau is not
create new activity there and “heal " the hole. In fact, for reached, even though initially the activity is increasing. That the
this particular example, the hole did spread out and the syseng-time behaviori(>200) depends on the initial concentration is
tem decayed to the inactive state. A closer inspection of theeminiscent of a first-order transition.

FIG. 16. Dynamics for=0.1,d=0.01, andp=0.618, showing

046207-11



MIKKELSEN, van HECKE, AND BOHR PHYSICAL REVIEW E57, 046207 (2003

o 5400a) 06310 0.6305__]
0.10¢ <size>f ]
3000k 0.6300
0.01 4800 1
. (b) 4600 0.6290 0.6295
it 0t et 0t a0t suo?
0.10¢ 10t 20" 310 410t | set0
0.650
« |(b)
p
0.01 0640 |
Cc
m (c)
0.10} ) 0630
0620
0.01 1 50 100 1/4d 150
100 10! 102 10 10%i10°

FIG. 19. (a) Time evolution of the average size of an active
FIG. 18. Average activity divided by the number of active sys- droplet (averaged over 500 realizationsf initial size 5000, forp
tems, for the same parameter values as shown in Fig. 14. =0.631, 0.6305, 0.063, 0.6295, and 0.629. The slope of these
curves varies linearly witlp in this regime, yielding that the droplet
the time it takes for a hole to engulf the whole system isstarts to spread fop=0.630124). (b) Critical value ofp, p*,
large. where front velocity changes direction as a function of the soliton
(d) Nature of the transitionPurely from the activity lifetime 14, for c=0.1. The error bars are smaller than the symbol
curves such as shown in Fig. 14, it is very difficult to deter-size. Ford\,0, p**\,0.692§2), while for d=1, p* approaches
mine the transition valup. . For very large holes, or equiva- 0.641%85). This latter value is slightly different from the soliton-free
lently a large droplet in an infinite inactive background, onevalue; even thougkd=1, solitons life for one time step and hence
can however determine the propagation velocity of the “do-slightly alter the critical value.
main wall” that separates the active from the inactive state.
In the examples shown above, such an active droplet would IV. DISCUSSION
shrink, and the “plateau” is not the asymptotic state. One
could imagine that the real transition occurs when active The overall picture that emerges from our study is that the
droplets start to spread. Even the nucleation of a large hol&ansition to spatiotemporal intermittency is strongly influ-
will then not destroy the active state. enced by coherent ballistically traveling “solitons,” which,
We have performed simulations of the shrinking andeven though they have a finite lifetime, change the nature of
spreading of active patches of size 5000 in an inactive backhe transition and can introduce first-order-like behavior.
ground(see Fig. 19 from which we conclude that the active That such a scenario is relevant, is supported by recent evi-
state starts to spread into the inactive state porp* dence for a discontinuous transition to spatiotemporal chaos
~0.630124). Note that Fig. 14 indicates that for such in the damped Kuramoto-Sivashinsky equatj@6], which
value, we are already deep into the plateau regime. is well known to support localized ballistically moving exci-
In addition, we did some simulations to determine thetations, or “pulses”27].
critical value ofp where the domain wall velocity changes  We build our conclusions upon an extension, using two-
sign as a function ofi, the inverse soliton lifetime. These dimensional local maps, of the Chai#anneville coupled
simulations indicate that fod™\ 0, i.e., for infinite soliton map lattice. We thereby gain an additional parameter, which
times, there is a well-defined domain wall velocity thatturns out to tune the importance and lifetime of the solitons.
changes sign fop~0.62982); furthermore,p* (d) appears For this coupled map lattice, we find, depending on param-
to be a smooth functiofsee Fig. 1&)]. eters, evidence for both continuous phase transitions in the
We conclude from this that the best way to find the tran-universality class of directed percolation with infinitely many
sition point is to study the spread of a domain wall betweerabsorbing states and for first-order behavior.
an active and inactive state. To determine tiaure of the To understand this behavior, we have developed a sto-
transition, one needs to inspect activity graphs like Fig. 14chastic model generalizing the Domany-Kinzel cellular au-
When, for large systems, there is no plateau, the transition i®maton. In this model, the active sites can emit solitons and
of second order, while for cases such as presented in Fig. 18y colliding, the solitons can create new active sites. Simu-
the transition is most likely of first order. The lifetime of the lations of this model, together with the appropriate mean-
solitons introduces a much larger crossover time for thdield theory, support the existence of both continuous and
nucleation of sufficiently large holes. This leads to a range ofliscontinuous transitions. With the stochastic model, one can
p values where an isolated droplet does not spread, dook at the behavior on much larger length and time scales.
equivalently, a large enough hole does not heal, but neveone, thereby, discovers that there is a whole range of param-
theless a very long lived transient first-order-like plateaueters, where the active states close and above the apparent
state is reached. discontinuous transition are actually metastable, and will
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finally, decay when a sufficiently large droplet nucleates.and we believe that such transients are the origin of the
There is, however, a larger value for the critical parametebbserved nonuniversality in the transition to spatiotemporal
where such inactive droplets shrink, and this value couldntermittency.
constitute the “true” transition value.

The metastable regime appears very clearly over a sur-
prisingly long range of intermediate time scales, and would ACKNOWLEDGMENT
thus be relevant in the interpretation of experiments. We fur-
ther show that this feature can lead to long powerlike R.M. gratefully acknowledges support form “Stichting
transients displaying nonuniversal “critical exponents,” Fundamenteel Onderzoek der Mater{&OM).
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